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Introduction

A fundamental aspect of flight behavior is how an organism
responds to varying external factors such as wind. The relation
between wind and flight behavior has important implications
for migration, orientation, foraging behavior and flight
energetics. Unlike many seeds, for example, that are passively
dispersed by wind, intuitively we know that many flying
organisms must react to wind, otherwise they would not reach
their goal, whether long distance such as a wintering or
breeding site, or short distance such as a foraging location. In
this paper, we select birds as our topic of discussion, although
many of the ideas presented below are equally relevant for
insects, bats and other flying organisms. Furthermore, we focus
on the analysis of air speed, but our approach can be extended
to analyze heading as well. A bird’s air speed and heading,
movement in relation to the air, are determined by the bird’s
behavior, whereas ground speed and flight direction, the
movement relative to the earth’s surface, are determined by
both the flight behavior and the corresponding winds. During
powered, flapping flight a bird’s air speed is directly related to
the metabolic cost of flight, which can be estimated using the
power curve for flight (e.g. Pennycuick, 1989; Rayner, 2001;
Tucker, 1975). A bird’s ground speed and flight direction are
relevant for calculations of distance and duration of travel.
Therefore, the relationship between wind, flight and fuel, may
change with different objectives.

Numerous field and theoretical studies have tried to measure
or predict how birds and insects react to wind (e.g. Liechti,
2006; Riley et al., 2003; Srygley and Oliveira, 2001). One
hypothesis regarding migratory flight is that birds should
maximize the distance traveled for a given amount of fuel. In
order to fulfill this hypothesis birds are predicted to increase
their air speeds in headwinds and decrease their air speeds in
tailwinds (Liechti, 1995; Pennycuick, 1978). Pennycuick
(Pennycuick, 1978) further proposed that this prediction could
be tested by comparing the relationship, initially assumed to be
non-linear, between air speed (Va) and the difference between
ground speed (Vg) and Va, both scalar quantities. It is
noteworthy that this difference is generally represented in the
literature as Vg–Va and termed the ‘speed increment due to
wind’ or the ‘wind effect’, where positive values of Vg–Va

represent tailwinds and negative values represent headwinds.
Pennycuick states “A ‘tail wind’ is conventionally defined as
the scalar difference between ground speed and true air speed.
The ‘wind effect’ means that a bird whose ground speed is less
than its air speed will normally respond by increasing its air
speed, resulting in a negative correlation between the air speed
and ‘tail wind’” [(Pennycuick, 2001) p. 3288]. Perhaps as a
result of the simplicity of this particular approach, the linear
relationship between Va and Vg–Va has been tested in the
literature numerous times for birds (Alerstam et al., 1993;
Alerstam and Gudmundsson, 1999; Green and Alerstam, 2000;
Gudmundsson et al., 2002; Hedenström and Alerstam, 1996;
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Hedenström et al., 1999; Hedenström et al., 2002; Liechti et
al., 1994; Pennycuick, 1982; Pennycuick, 2001; Rosen and
Hedenström, 2001; Wakeling and Hodgson, 1992) and for
migratory insects (Srygley, 2003). The results have been used
to determine how birds alter their air speed in relation to
tailwinds and headwinds and to predict air speeds in varying
wind conditions. The overwhelming evidence from these
studies has often been used in support of the prediction that
birds increase their air speed in a headwind and decrease their
air speed in a tailwind. However, conflicting results were found
when head- and tailwind situations were separated
(Hedenström et al., 2002). In several cases, no relationship was
found and treated as potential type II errors (Rosen and
Hedenström, 2001), or no compensation for wind was made
(Alerstam et al., 1993; Rosen and Hedenström, 2001).
Although the initial prediction was for the specific case of pure
headwind or tailwinds, the prediction was expanded to include
the influence of side wind on optimal air speeds (Liechti et al.,
1994); however, no solution was provided for analyzing the
effects of side and tail winds simultaneously.

Both wind and flight are composed of two components that
can be considered either in the form of speed and direction or
in the form of their x and y vector components for a given
coordinate system. If the influence of wind on flight is studied
in only one of these two dimensions while either speed or
direction vary, information is lost and erroneous interpretations
may result. To our knowledge, all studies investigating the
influence of wind on heading (e.g. Srygley, 2003; Srygley et
al., 1996; Wege and Raveling, 1984) or air speed (e.g. Able,
1977; Alerstam et al., 1993; Hedenström et al., 2002;
Pennycuick, 2001) have adopted a one-dimensional model.
With a one-dimensional model we mean a model with only one
explanatory variable. In this paper we will focus on the analysis
of air speed. We argue that the conventional analysis of air
speed in relation to wind, by testing the linear relationship
between the scalar Va and Vg–Va, cannot be used to assess the
relationship between air speed and wind nor, more specifically,
the prediction that birds should maximize the distance traveled
per fuel cost by increasing their air speeds in headwinds and
decreasing it in tailwinds. This paper provides an alternative
approach to test how birds alter their air speed in relation to
wind speed and direction. Three different datasets are used to
illustrate the weakness of the conventional model as well as the
strengths of the newly proposed model for (1) simulated
random data, (2) simulated artificial data including an
established influence of wind and (3) measured autumn
passerine migration and corresponding wind conditions.

Materials and methods
In this section we first provide some definitions and describe

the basic mathematical properties of the system that we are
studying. This is followed by an explanation of the
conventional analysis of the effects of wind on a bird’s air
speed, as well as a new method of analysis. Then, we describe
the analytic framework we use to test the two methods, and

finally we describe the data sets that we used in our testing
procedure.

The relation between vector components, speed and direction

To study bird flight in relation to wind, we need three
orthogonal vectors. The first expresses a displacement per unit
time of the bird with respect to the ground (we will call this the
ground vector, g) the second vector expresses the displacement
of the bird with respect to air (the air vector, a) and the third
expresses the displacement of the wind (the wind vector, w).
In this study we consider movement in the horizontal plane and
ignore vertical movement, hence our vectors have two elements
only: displacement in the x- and y-directions. Fig.·1 gives a
graphic representation of this system, and the three vectors are
defined as follows:

In this study we have chosen to represent the eastern
direction by positive x and the northern direction by positive y.
The lengths of these vectors are scalars and are known as
ground speed (Vg), air speed (Va) and wind speed (Vw). These
are calculated as follows:

Angles between the vectors and some reference direction can
also be conveniently calculated on the basis of the x and y
components, using the following equations:

� = arctan(xg/yg)·, (3a)

� = arctan(xa/ya)·, (3b)

� = arctan(xw/yw)·. (3c)

Here � is known as the track direction, � the bird’s heading
and � the wind direction. We have chosen to define north as
the zero angle. Following from the definition of positive x and
y in the eastern and northern directions respectively, the angles
are positive in the clockwise direction.

Obviously, the three vectors are not independent: the ground
vector is the sum of the air and wind vectors:

In most studies, air speed (Va) and heading (�) are not measured
directly, nor are the x- and y-components. Rather, ground speed
(Vg) and direction (�) and wind speed (Vw) and direction (�)
are measured. Note that when studying the influence of wind
on flight, we are interested in the direction wind is blowing to.
Wind measurements received from climatological surface
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stations often note meteorological wind direction, which is the
direction wind is blowing from.

On the basis of the available information, Va and � can be
calculated. It is convenient to first calculate xa and ya:

The heading � can then be calculated by applying Eqn·3b. 
Air speed is finally obtained by applying Eqn·2b using xa and

ya calculated in Eqn·5. Although apparent from Eqn·4, it is
important to note at this point that any four out of the six
variables determine the values of the other two. For clarity we
also show the full expression for Va as a function of Vg, �, Vw,
� in Eqn·6:

With Eqn·6 in mind we can review the relation between Va and
(Vg–Va), whose linear relationship has been tested to detect a
negative slope in avian and entomological literature (see
Introduction):

Va � (Vg–Va)·. (7)

By substituting Eqn·6 in Eqn·7, Eqn·7 becomes a rather
complex implicit relation. In this context, implicit means that
Va occurs at both the right and left hand side of the equation.
The linearity hypothesis, expressed by Eqn·7, is not valid in
general, since nVa�n(Vg–Va). The functional relationship
between Va and (Vg–Va) depends on Vg and Vw as well as on �
and � and is generally not linear as often treated in the literature
(Fig.·2 and Fig.·S1 in supplementary material).

Two special situations can be distinguished where Eqn·7 is
applicable and the relationship between Va and Vg–Va is linear.
The first is when Vg is constant. Then the relation will be a line
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with slope –1 and intercept Vg (i.e. Va=a–Va, with a=Vg). The
second situation occurs when (�–�)=0 or (��–��)=180°, a pure
tail- or headwind, respectively, with respect to the ground vector
(see Fig.·2A for pure tailwind). In this case, Va=Vg–Vw; note that
although this is quite obvious, it also follows from Eqn·6 by
setting cos(�–�) to 1, and subsequently factoring the equation.
This equality implies that Vg can be eliminated in Eqn·7 so that
one obtains a function with only Vw as explanatory variable
(Va=a+bVw). Clearly, many different functional relationships
between Va and Vg–Va may be expected, including positive
relationships, for example, with pure side winds in respect to
the ground vector and fairly constant wind speeds (Fig.·2C). To
provide intuitive insight in the relation between Va and Vg–Va,
the two-dimensional relation between g, a and w is depicted for
a few points from Fig.·2B (Fig.·3).

In Fig.·4 we further illustrate the relation between Va and
Vg–Va with randomly generated data. Here only the cases with
�–�=45° and �–�=135° are shown. In this example, Vg and Vw

are independently generated random variables with a mean of
10·m·s–1. The variance of Vw equals 4·m2·s–2 and the variance
of Vg equals 0, 1 and 4·m2·s–2 (Fig.·4, top to bottom). Va is
calculated on the basis of Vg, �, Vw and �. As previously
described, when Vg is constant, the relation between Va and
Vg–Va is a straight line with slope –1. However, if Vg varies,
the amount of correlation decreases, depending on �–� as well
as the variability of Vg relative to that of Vw.

Methods to investigate speed changes under influence of wind

We apply the conventional method to investigate the influence
of wind on air speed to test for the significance of the relation
Va=a+b(Vg–Va). Despite the problems with this method as
explained above, we fit it to several data sets in order to compare
the results with the alternative method we propose. For this
model we use the T-statistic to test whether the predictor explains
a significant proportion of the variance. We then review the
residual plots and the quantile–quantile plots to evaluate the
normality assumptions underlying the linear model. The R2

statistic is used to determine the overall fit of the model.
As a more appropriate method of analysis we propose a two-

dimensional model. Our method departs from the fact that Va

is, by definition, a function of two variables, so any model for
Va will have to be explicit (Va only on the left hand side of the
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Fig.·1. A graphic representation of the relationship between a,
g and w, the orthogonal components xa, ya, xg, yg, xw, yw, �
(heading), � (track or ground direction), � (wind direction).
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equation) and two-dimensional. Secondly, we search for
orthogonal variables to make maximum use of the information
content in a dataset when fitting our model. In the third place,
we try to specify variables that are meaningful in a physical or
biological sense. Finally we try to use a modeling framework
that is statistically well developed and offers large flexibility
to model linear as well as non-linear systems.

The modeling framework that provides the flexibility that we
are looking for is a generalized additive model [GAM; see
Guisan et al. (Guisan et al., 2002), and references therein]. For
this model we use the �2 statistic to test whether a predictor
explains a significant proportion of the variance and other
graphical diagnostics are used to evaluate the performance of
a model such as residual plots, quantile–quantile plots and
Cook’s distance to identify potential outliers. In a GAM,
deviance reduction is used as a measure of model fit and the
adjusted D2 value (comparable to the adjusted R2), which takes
into account the number of predictors and observations, is used
to determine the real fit of the model and to compare models
(e.g. Guisan and Zimmermann, 2000).

Two orthogonal variables that are related to Va and have no
implicit relationship with Va, or Vg, are the components of wind
along the x and y axis. The two variables are implemented in
a GAM by first transforming them via a rather constrained
LOESS smoother (a locally weighted regression) with a
maximum span of 80% and 1–2 degrees of freedom (d.f.)
(Cleveland, 1979; Cleveland and Devlin, 1988). The resulting
GAM then has the following form:

Va = f(xw) + f(yw)·, (8)

where the function f() refers to the transformation via a LOESS
smoother. If the transformation is not justified, after initial

model derivation, then variables are maintained in their linear
form.

Testing both analyses

In this study we test the two analyses by performing an
experiment using data sets with known properties. A first data
set is generated with no relation between the air vector and
wind vector at all (SRD, simulated random data), therefore no
wind compensation. A second data set is generated with a very
strong relation between the air and wind vectors (SWI,
simulated wind influence), to represent full wind
compensation. The two analyses are applied to both data sets.
A correct analysis should obviously identify both situations
correctly.

Both methods are also applied to real data (a situation where
the degree of compensation is unknown) to consider the
different conclusions from both methods with respect to the
real data.

Description of the data sets

Data set SRD, simulated random data, was generated to
comprise 880 artificial data records of bird flight and wind. The
wind components (xw and yw) were generated independently
with a pseudo random number generator, using a Gaussian
process with a mean of 0·m·s–1 and a standard deviation (s.d.)
of 4·m·s–1. Similarly, xa and ya were generated independently
using a Gaussian process with a mean of 0·m·s–1 and
s.d.=3·m·s–1. Therefore, all four components are entirely
independent of each other and we should not find any
relationship between wind components and flight components.
The ground vector is generated as the sum of the air and wind
vectors (viz. Eqn·4).
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Fig.·2. The relation between Va and Vg–Va for
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�–�=135°). In each subplot Vg varies from
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pure tailwind conditions and C represents pure
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ensure a biologically realistic representation, A
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B, circles represent constant Vg (15·m·s–1) and
a varying Vw (2,4,6 and 8·m·s–1), + symbols
represent constant Vw (6·m·s–1) and varying Vg

(2, 5, 8 and 11·m·s–1), see Fig.·3 for the
individual vectors. See Fig.·S1 (supplementary
material: online appendix) for animated 3-D
visualizations of these figures.
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A second data set SWI, simulated wind influence, was
created to represent a strong influence of wind on Va and �.
The dataset contains 880 artificial data records of birds that
adjust Va and � to maintain constant Vg and � while winds are
variable. The ground components were chosen to be xg=6·m·s–1

and yg=3·m·s–1, with a small Gaussian noise added (using a
mean of 0·m·s–1 and a s.d.=1·m·s–1). The xw and yw components
were taken from the SRD data. The xa and ya components were

J. Shamoun-Baranes and others

subsequently calculated by xg–xw and yg–yw and finally Vg and
Va were calculated (Eqn·2a, 2b).

The third dataset was taken from a radar field study in
southern Germany [for measurement details, see Liechti
(Liechti, 1993)]. The data set contains 880 radar tracks of
autumn passerine migration (APM) with direct observations of
Vg, �, Vw and �. Va was computed from these using Eqn·6.

Rose plots of the headings and direction of flight for all three
data sets are shown in Fig.·5.

Results and discussion
The conventional approach, a one-dimensional linear model

We tested the relationship between Va and Vg–Va for three
different datasets (Fig.·6.). From the structure of the simulated
random data (SRD) we know that there is no relationship
between the wind and air components of flight, all variables are
independent. Therefore, the negative slope in Fig.·6A, although
marginally statistically significant (R2=0.06, P<0.001), is the
result of a spurious correlation between Va and Vg–Va. On the
other hand, the negative slope in Fig.·6B, the simulated wind
influence (SWI), reflects a true negative relationship between
air speed and (Vg–Va) (R2=0.94, P<0.001). In the SWI dataset,
the birds make the necessary adjustments in air speed and
heading to fully compensate for the winds and maintain
constant ground speed and heading. Because ground speed is
constant, the SWI example is one of the special cases where
Eqn·7 is applicable. With these examples we have now
illustrated that spurious correlations appear if one takes
uncorrelated and random data for Va and Vw. Therefore,
although there is a significant negative relationship for the
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migration dataset (APM) between Va and Vg–Va using the
conventional approach (Fig.·6C, R2=0.10, P<0.001), it provides
no evidence for a biologically meaningful relationship between
Va and wind. Clearly, from these examples, an alternative
analysis is necessary to determine if there is a biologically
significant relationship between wind and air speeds.

Analyzing air speed in two dimensions, as a function of the x
and y wind components

As expected, there is no statistically significant relation
between Va and xw, yw for the simulated random data (SRD,
Table·1) when applying either a GAM (Fig.·7A) or a linear
model. On the other hand, with the SWI dataset Va is
significantly related to xw and yw (Fig.·7B, Table·1). Both
components of wind are equally influential on Va. Va increases
as wind along the x-axis decreases or increases from 6·m·s–1

and decreases or increases from 3·m·s–1 along the y-axis. In
other words as winds increasingly deviate from the ground
speed and direction (xg=6·m·s–1, yg=3·m·s–1), Va increases. For
complete wind compensation, where Vg and � are constant, the
local minima of each variable indicate the mean ground vector
(xg, yg). Thus, by applying a GAM, we find the true constant
xg, yg values. 

For the observed autumn passerine migration (APM) the
final model shows only a marginal linear influence of wind on

Va (Table·1). This model was derived as follows. First a GAM
was applied on the LOESS transformed wind components (xw,
yw) (Fig.·7C). However, the LOESS transformations of both
variables were not significant. A linear model was then fit for
both variables. In this model, yw appeared to be insignificant,
hence it was excluded.

In the final model, Va is only slightly influenced by wind
along the x-axis. As winds blow more strongly towards the east,
birds increase Va, whereas birds decrease Va when winds blow
to the west (Fig.·7C). As tracks and headings are mainly
towards SW (Fig.·5C), the x-component includes a tailwind as
well as a side wind component. Although birds appear to
increase air speed in headwinds and decrease in tailwinds when
applying the conventional analysis, this relationship does not
emerge when considering both wind components.

Conclusions

One question addressed by many biologists is: how do flying
organisms adapt their flight behavior to dynamic wind
conditions? By way of an artificial analytical example we have
illustrated that the conventional approach to test the hypothesis
that birds maximize their distance per energy consumption by
increasing their airspeed in headwinds and decrease their
airspeed in tailwinds is incorrect. The negative relationship
between Va and Vg–Va can result from spurious correlations in
the data. The two reasons for this spurious correlation are that:
(1) Va is not only a function of Vg–Va but also a function of Vw
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and �–�; (2) Va depends non-linearly on these variables; a
linear model is only applicable with constant ground speed or
pure head/tailwind conditions. Alternative general forms of
analyses, that encompass the multidimensional and non-linear
nature of wind and flight, are necessary.

Our approach, a two-dimensional generalized additive
model, provides a simple, general and straightforward method
to analyze the complex relation between air speed and wind
speed and direction without the risks entailed in information
reduction. In this study the new approach was tested on both
synthetic and observed data. Similarly, this approach can be
applied to studying the relationship between heading, rather

J. Shamoun-Baranes and others

then air speed, and both wind components. Although other
studies have described the importance of multidimensional
analysis (e.g. Green and Alerstam, 2002; Liechti et al., 1994)
a general approach to studying the influence of wind speed
and direction simultaneously on air speed has not been
suggested. See however Shamoun-Baranes et al. (Shamoun-
Baranes et al., 2003), who applied a GAM to study the
influence of the tailwind and side wind component
simultaneously on ground speed.

The analytical problems associated with the simplification
of observational data are a recurrent issue in biology (e.g.
Jackson, 1997) and can have serious consequences for the

Table·1. Models for predicting air speed as a function of the wind components along the x and y axes (xw and yw respectively) 

Dataset Model structure Adjusted D2 P-value

SRD Va~lo(xw, 0.8, 2)+lo(yw, 0.8, 2) NS NS
SWI Va~lo(xw, 0.8, 2)+lo(yw, 0.8, 2) 0.91 <0.001
APM Va~0.09xw+10.8 0.07 <0.001

Va, air speed; xw, yw, wind components along the x and y axes, respectively; SRD, SWI and APM, simulated random data, simulated wind
influence and the measured autumn passerine migration datasets, respectively.

The parameters included in each model are significant (P<0.05), except for the SRD dataset where none of the parameters are significant (NS,
not significant). lo() is the LOESS smoother function with the variables, span and degrees of freedom in parentheses. Adjusted D2 is a measure
of deviance reduction and model fit. 
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influence of the wind
components (xw and yw, left
and center respectively) on air
speed (Va) for each dataset (A)
SRD (simulated random data;
no relation between wind and
flight) (B) SWI (simulated
wind influence) (C) APM
(autumn passerine migration).
The form of each GAM is
Va~lo(xw, 0.8, 2)+lo(yw, 0.8, 2).
The y-axis represents the
contribution of xw and yw on
Va. The solid line is the fitted
functional response and the
broken lines represent the 2	
standard error curves, the
circles represent the partial
deviance for each observation
point. The local minima in
Fig.·7B correspond with xg

(6·m·s–1) and yg (3·m·s–1) in the
SWI dataset. Figures on the far
right represent the observed (y-
axis) vs fitted Va (m·s–1) (x-
axis); note that the x and y axis
are not always equally scaled.
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foundations of our theories. The broadly accepted analysis of
air speed and wind discussed in this paper has not only been
used to support the current theories on optimal avian flight
but also to form them. The validity of these and other one-
dimensional studies in their current form may therefore also
influence our theoretical foundations. Hence, a reanalysis of
previous one-dimensional studies dealing with the effect of
wind on air speed is desirable. The adaptive behavior of birds
towards their environment, particularly wind, has important
implications when incorporated into models of, for example,
stopover strategies and take-off decisions during migration
(Liechti and Bruderer, 1998; Weber et al., 1998; Weber and
Hedenström, 2000) estimations of potential flight range of
long distance migrants (Battley and Piersma, 2005), of
optimal flight speeds of birds (Hedenström and Alerstam,
1995), energetic requirements during for migration (Butler et
al., 1997) consequences for individual fitness (Clark and
Butler, 1999) and the evolution of migratory strategies (Erni
et al., 2005). In order to properly interpret model results or
compare models to measurements we must ensure that the
analysis underlying model assumptions or the predictions
themselves is appropriate.

We hope this paper stimulates new and revisited studies of
the influence of wind on flight.

List of symbols
a air vector
APM autumn passerine migration
g ground vector
GAM generalised additive model
lo LOESS smoothing function
SRD simulated random data
SWI simulated wind influence
Va air speed
Vg ground speed
Vw wind speed
w wind vector
� bird’s heading
� track direction
� wind direction
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