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Introduction
It has been shown that humans and animals choose to move

in a way that minimizes the cost of locomotion (Alexander,
2000; Alexander, 2001; Hoyt and Taylor, 1981; Saibene,
1990). Until recently, it was generally assumed that the least
metabolically costly gait for any given forward speed (v), step
frequency (f), or step length (d) could be described by a single
functional relationship between these parameters. Thus, one
should be able to generate a single behavioral relationship
representing the least costly gait in speed–frequency–step
length (v–f–d) space by controlling any one gait parameter,
measuring the self-selected value of either one of the two other
parameters, and calculating the value of the third using some
form of the relationship v=fd.

However, Bertram and Ruina (2001) suggested in a walking
study that not one but three different ‘least costly’ relationships
are generally obtained by following such a procedure. The
behavioral relationship obtained depends on which parameter
is specified. Thus, one ‘least costly’ behavioral relationship
was obtained by specifying v, another by specifying f, and yet
another by specifying d. It is apparent from these results that

optimal gait is not rigidly predetermined by internal factors,
but rather depends on the conditions presented to the individual
and emerges from interaction between factors, both internal
and external to the individual.

But how can three different curves all represent the least
costly gait? To explain this apparent paradox Bertram and
Ruina formulated the constrained optimization hypothesis
(Bertram and Ruina, 2001). According to this hypothesis, gait
parameters are selected to optimize (minimize) some objective
function within the limitations of imposed constraints. In
keeping with the original observation that animals and humans
move in a way that minimizes cost, Bertram and Ruina (2001)
proposed that cost of transport (metabolic cost/distance) serves
as the objective function and that the controlled gait parameters
serve as constraints. Bertram (2005) compared self-selected
behavioral relationships to behavioral predictions obtained by
applying constrained optimization to a metabolic cost surface
and found that these were strikingly similar for walking. This
suggests that metabolic cost does indeed strongly influence
choice of gait parameters, and validates constrained
optimization as a model for predicting gait selection.

Walking humans spontaneously select different speed,
frequency and step length combinations, depending on
which of these three parameters is specified. This behavior
can be explained by constrained optimization of cost of
transport (metabolic cost/distance) where cost of transport
is seen as the main component of an underlying objective
function that is minimized within the limitations of
specified constraints. It is then of interest to ask whether
or not such results are specific to walking only, or indicate
a more general feature of locomotion control. The current
study examines running gait selection within the
framework of constrained optimization by comparing self-
selected running gaits to the gaits predicted by
constrained optimization of a cost surface constructed
from cost data available in the literature. Normalizing
speed and frequency values in the behavioral data by

preferred speed and frequency reduced inter-subject
variability and made group behavioral trends more
visible. Although actual behavior did not coincide exactly
with running cost optimization, self-selected gait and
predictions from the general human cost surface did agree
to within the 95% confidence interval and the region of
minimal cost+0.005·ml·O2·kg–1·m–1. This was similar to the
level of agreement between actual and predicted behavior
observed in walking. Thus, there seems to be substantial
evidence to suggest that (i) selection of gait parameters in
running can largely be predicted using constrained
optimization, and (ii) general cost surfaces can be
constructed using metabolic data from one group that will
largely predict the behavior of other groups.
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623Constrained optimization in human running

Is this result specific to walking, or does it apply to other
aspects of human movement control? There are many features
of the mechanics of walking that differ substantially from
running. Identifying a similar control strategy in both running
and walking would indicate a general feature of movement
control effective at levels beyond the mechanics of each
specific gait. The objective of the present study was to test the
applicability of the constrained optimization hypothesis to
running. We did this by comparing self-selected running
behavioral data collected under v-constrained, f-constrained
and d-constrained conditions to predictions obtained by
performing constrained optimization on metabolic data
available in the literature. This allowed us to see whether or
not constrained optimization of metabolic cost can reliably
predict gait selection in other modes of terrestrial locomotion
besides walking, and whether or not constrained optimization
of metabolic cost data from one group of subjects can predict
the gait selected by another group.

Materials and methods
Subjects

Five healthy subjects (one female and four males)
participated in the study. Anthropometric data for each subject
are given in Table·1. We obtained informed consent from all
subjects prior to experimentation. All testing was done
according to the guidelines set by the Florida State University
Human Subjects Committee Review Board.

Self-selected running behavior

We employed methods similar to those detailed in Bertram
and Ruina (2001) and Bertram (2005) for human walking, but
used constraint values appropriate for running. Since steady
state locomotion can be defined by the simple relationship
v=fd, we evaluated running behavior under three different
constraint conditions: v-constrained, f-constrained and d-
constrained. In each case one variable was controlled (either v,
f or d), one variable was directly measured, and the third
variable was calculated using the relationship v=fd. We briefly
outline the specific procedures below.

For constrained v, subjects ran on a treadmill (Desmo Pro,
Woodway, Wakeshaw, WI, USA) at constant belt speed.
Eleven different belt speeds were used, ranging from 0.49 to
4.32·m·s–1. We presented the belt speeds at random to reduce

the potential for systematic bias and cross-trial interference.
Between trials the subjects walked at a comfortable speed until
they had fully recovered. At each v, f was measured by timing
the duration of two sets of 20 steps using an electronic
stopwatch. The two trial results were averaged to obtain a
reliable measure of f for that speed and individual. We
calculated step length using d=v/f. Measurements were made
after at least 1·min of running at each v.

For constrained f, subjects ran in time to the beat of an
electronic metronome (KDM-1, Korg Inc., Tokyo, Japan) at ten
different frequencies ranging from 2 to 3.33·steps·s–1. Again,
step frequencies were randomly presented and subjects were
allowed to fully recover between trials. We measured v by
timing how long it took subjects to travel a 10·m segment of a
30·m level runway (using a portion of an outdoor athletic track).
Accurate measurements of speed were facilitated by use of two
portable cameras (TK-S241U, JVC, Victor Co., Yokohama,
Japan), mounted perpendicular to the path of the runner on
tripods placed at the starting and ending points of the 10·m
distance along the straight portion of the track. We combined
the signals from both cameras into a single viewing channel via
a signal inserter (SCS splitter/inserter, American Video
Equipment, Houston, TX, USA) and fed the signal into a video
monitor (Panasonic, Matsushita Electric Industrial Co., Ltd.,
Kadoma, Japan). This allowed the timer a perpendicular view
of the starting and ending points. We timed each 10·m run using
an electronic stopwatch. We calculated step length using d=v/f.

Finally, for constrained d, subjects ran by stepping on evenly
spaced markers (2·inch roofing nails with colored plastic washers
inserted into a grass athletic field) over level ground at ten
predetermined step lengths, ranging from 0.3·m to 2·m. Some
subjects were unable to reliably maintain 2·m step lengths, so
only nine step lengths were used for these individuals. Step
lengths were randomly presented and subjects were allowed to
fully recover between trials. We also gave the subjects one or
more practice trials at each step length and did not take
measurements until the subject felt fully comfortable with the
step length requirements of the trial. This was especially
necessary for step lengths approaching 2·m. We measured f at
each speed by timing the duration of 2 sets of 20 steps within 30
markers for each given step length. We then averaged the two
measured frequencies to obtain f. We calculated speed using v=fd.

Data analysis

Self-selected running behavior

All self-selected running behavioral data were pooled to
evaluate general gait selection trends. Before pooling the data,
we normalized v data by apparent preferred v (vp), f data by
apparent preferred f (fp), and d data by dp=vp/fp for each
subject. We considered normalizing the data by speed and
frequency of variants of the Froude number, but rejected this
normalization since it did not improve the fit of the linear
regressions. We determined vp and fp by estimating the location
of the point of intersection of the v-constrained, f-constrained,
and d-constrained v–f relationships (Fig.·1). The point of
intersection should indicate the absolute minimum cost of

Table·1. Physical characteristics of subjects

Mass Height Leg length 
Subject Sex (kg) (m) (m)

1 M 90.8 1.85 0.930
2 M 58.5 1.73 0.910
3 M 69.3 1.78 0.950
4 M 103.7 1.84 0.906
5 F 53.9 1.60 0.845

M, male; F, female.
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transport for each individual and, therefore, should also
correspond to the freely chosen v and f selected by an
individual during unconstrained running, as it does for walking
(Bertram and Ruina, 2001; Bertram, 2005).

The pooled self-selected running behavioral data were fit
with least-squares linear regressions (SigmaStat, SPSS,
Chicago, IL, USA). Since the constrained variable (independent
variable) was different for each constraint condition, regression
analyses were performed with the data plotted on different axes
for each constraint. Frequency-constrained data were plotted
with f on the x-axis and v on the y-axis; v-constrained data with
v on the x-axis and f on the y-axis; and d constrained data with
d on the x-axis and f on the y-axis. However, for the sake of
consistency and ease of comparison, each linear regression
equation was converted into v(f) form and replotted in v-f space
(Fig.·2), as per Bertram (2005).

The slope of the v–f relationship for each of the three
constraint conditions was obtained from the linear regressions
and the standard error for each slope was computed. A one-
way analysis of variance (ANOVA) was used to determine
whether or not the three slopes were significantly different
from one another. Once statistical significance was determined,
a Tukey post hoc comparison (also in SigmaStat) was used to
identify where the significant differences lay. We defined
statistical significance as P�0.05.

Cost surface

We compiled and evaluated cost data from several sources
available in the literature (Cavanagh, 1982; Knuttgen, 1961;

Liefeldt, 1992) as well as from an undergraduate
student honors project done in our laboratory at
Florida State University (Rouviere, 2002). See
Appendix for an outline of the methods used in
this thesis. Information on these data is displayed
in Table·2. We used data from the single-subject
studies directly and average values from
multiple-subject data.

Although the above data represented a
reasonable assemblage of running metabolic
cost data, all data sets did not agree well. Two
sets of data, v-constrained data from Knuttgen
(1961) and from Liefeldt (1992), differed
substantially from the other data available. The
cost values reported by Liefeldt (1992) were
unusually low (0.1611–0.1769·ml·O2·kg–1·m–1).
These levels are approximately 70% of
those reported by the remainder of
the studies (0.1930–0.2992·ml·O2·kg–1·m–1).
Knuttgen (1961) reported v-constrained data in
which f remained virtually constant over a wide
range of speeds. This is in contrast to
observations from our study as well as v–f data
from Minetti et al. (1998), indicating that
subjects increase f as v increases (at least under
the speeds considered here). The differences
between these two sets of data and the other sets
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Fig.·1. A plot of speed–frequency relations for a single subject
running under the three constraint conditions imposed in this study.
Red circles show frequencies selected when speed is constrained in
treadmill running, blue circles show speeds selected when frequency
is constrained in over-ground running to a metronome beat, and green
circles indicate the speed–frequency combinations selected when step
length is constrained by stepping in registry with ground markers.
Each relation was fit with a least-squares linear regression with the
constrained parameter as the independent variable, then the
relationship determined was converted to speed–frequency for
comparison (see text for details). The point of intersection of the v-
constrained, f-constrained and d-constrained relationships gives
apparent preferred speed and frequency (vp and fp).
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Fig.·2. Behavioral data for all subjects with least-squares linear regressions
determined as in Fig.·1. Data for v-constrained conditions, red circles; f-
constrained conditions, blue circles; d-constrained conditions, green circles. All
three slopes are significantly different from one another, P<0.001.
v-constrained conditions, f/fp=0.202(v/vp)+0.796; f-constrained conditions,
v/vp=1.347(f/fp)–1.3684; d-constrained conditions, f/fp=0.117(d/dp)+1.078.
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Table·2. Information on metabolic data

Number

Study Constraint Data points in Fig.·3 Subjects Trials/subject Trials/study % of total trials

Cavanagh (1982) d-constrained 7 1 7 7 6.1
Knuttgen (1961) Fully constrained 9 1 9 9 7.9

v-constrained 11 1 11 11 9.6
Liefeldt (1992) v-constrained 6 9 3 27 23.7
Rouviere (2002) Fully constrained 12 5 12 60 52.6

Total 28 114 100.0

Fig.·3. Economy (the inverse of cost of
transport) as a function of normalized speed
(v/vp) and frequency (f/fp). (A) The 3-D
surface; (B) a flattened, overhead view of the
surface, showing the distribution of the data
points more clearly. Economy is used instead
of cost of transport simply for visual clarity in
depicting the surface shape. The surface is
interpolated based on metabolic
measurements from Cavanagh (1982) (red
triangles), Rouviere (2002) (red circles), and
Knuttgen (1961) (red squares), in which
running parameters were fully constrained.
The v-constrained metabolic measurements
from Knuttgen (1961) (�), were considered to
be outliers by virtue of the peculiar frequency
selection of the subject in comparison to
frequencies selected by subjects in other
studies. The measurements of Liefeldt (1992)
(+), were considered to be outliers because the
costs were considerably lower than those
reported in other studies under similar
conditions. These two sets of outliers were not
used to generate the cost surface. The color of
the surface is determined by the height of the
surface. Dark blue indicates regions of low
economy (high cost), bright green indicates
regions of high economy (low cost), and blue-
green indicates regions of intermediate
economy (intermediate cost).
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of data may be due to differences in method, differences in
equipment, or peculiarities of the subjects. In any case, it
seems safe to assume that these two sets of data do not
represent standard responses, so these two data sets were not
included in the metabolic cost profile evaluated in the current
study.

Gross (no baseline correction) metabolic cost measurements
(ml·O2·kg–1·min–1) were converted to cost of transport
(ml·O2·kg–1·m–1), C, and the data points plotted in C–v–f space.
Since the data set was composed of only 28 points once data
points had been averaged for multiple subject studies and
outliers rejected, the resolution of the raw data was inadequate
to reliably predict behavior. Therefore, we used the ‘griddata’
function in MATLAB (MATLAB 5.3, The MathWorks Inc.,
Natick, MA, USA), a triangle-based cubic interpolation
algorithm, to construct a continuous cost surface between the
data points (Fig.·3) that would facilitate appropriate
mathematical analysis of optimization (see below).

Next, we calculated the partial derivatives, �C(f,v)/�f and
�C(f,v)/�v, for the cost surface, C(f,v), to generate gait
predictions for the applied constraints. According to the
principle of constrained optimization, individuals should
choose v–f combinations that correspond to points where one
of the partial derivatives is zero in order to minimize the cost
of transport. This is equivalent to finding points where a
constraint curve is tangent to a cost contour (Bertram and
Ruina, 2001; Bertram, 2005) (Fig.·4). For v-constrained
conditions (v held constant), running cost is minimized when
f is chosen such that �C(f,v)/�f=0. Likewise, for f-constrained
conditions (f held constant), running cost is minimized when v
is chosen such that �C(f,v)/�v=0. Therefore, we predicted self-
selected v–f relationships under v- and f-constrained conditions

A. K. Gutmann and others

by plotting regions where both �C(f,v)/�f=0 and �C(f,v)/�v=0.
We also plotted regions that contain points
<0.001·ml·O2·kg–1·m–1 and <0.005·ml·O2·kg–1·m–1 from
minimal cost (Cmin) for each constraint to show how sensitive
cost of transport is to changes in v–f (Fig.·5A,B). A narrow
region indicates high sensitivity to changes in v and f, whereas
a wide region indicates relative insensitivity to differences in
these values. For d-constrained conditions, we replotted cost
of transport data in d–f space and the data were fit to a new
cost surface. We then calculated new partial derivatives
�C(f,d)/�f and �C(f,d)/�d and plotted as �C(f,d)/�f=0 to
show the predicted v–f relationship. We also plotted
regions containing points <0.001·ml·O2·kg–1·m–1 and
<0.005·ml·O2·kg–1·m–1 from minimal cost for d-constrained
conditions (Fig.·5C). We did not plot solutions to �C(f,d)/�d=0
since they duplicate the �C(f,v)/�v=0 curve.

We chose to fit a new surface to the data points once we had
replotted the data in C–d–f space to make the numerical
calculation of �C(f,d)/�f simpler. It is relatively straightforward
to numerically calculate partial derivatives parallel to the axes
of the plot, whereas more involved calculations are required to
determine partial derivatives along other directions. This is
because the ‘griddata’ interpolation algorithm generates points
on the surface in a rectangular grid aligned with the plot axes.
However, one downfall of replotting the data is that the two
interpolated surfaces are not identical. Still, we do not feel that
the two surfaces differ enough to substantially affect the
behavioral predictions. This is supported by Fig.·6, which
shows a comparison of the curves generated by plotting points
satisfying (i) �C(f,v)/�v=0 and (ii) �C(f,d)/�d=0.

Most of the metabolic data were taken under a single applied
constraint condition, so we did not have enough information
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Fig.·4. Predicting optimal behavior by finding
the points where constraint lines are tangent to
cost contours. Cost contours are shown as
black curves. Cost is least in the region
bounded by the central curve and greater for
curves lying outside each other. Constrained
optimization predicts that for any given
constraint gait, parameters will be chosen such
that cost of transport is minimized. This occurs
at the tangent of the constraint line and a cost
contour, because any other point on the
constraint line lies outside the contour and
indicates a greater cost. This method is
equivalent to predicting optimal behavior by
finding the points where one of the partial
derivatives is equal to zero and may be used to
verify the optimal behavior predictions shown
in Fig.·5. Speed and frequency constraints can
be visualised as horizontal and vertical lines,
respectively, and step length constraints can be
visualised as lines radiating from the origin
whose slopes are equal to the specified step
lengths – i.e. lines whose equations are of the
form v=fd, where d=constant.
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to obtain vp, fp and minimum cost of transport for
each data set. Therefore, we normalized predicted v–f
relationships from the metabolic data by vp and fp for
the pooled data in order to compare the predictions
made using the metabolic data to the self-selected
behavioral data. We determined vp and fp for the
pooled data by finding the coordinates of the absolute
minimum metabolic cost.

Results
Self-selected running behavior

The slopes of the three different v–f relationships
were significantly different (Fig.·2). The v–f
relationships for v-constrained and f-constrained
conditions were particularly well defined (Table·2).
The overall P-values from the ANOVA and the
pairwise P-values from the Tukey post hoc analysis
were all <0.001. This strongly suggests that the
observed differences between the slopes are caused
by subjects choosing gait parameters in specific
response to the imposed constraints.

Shape of metabolic cost surface

The metabolic cost surface has an ovoid bowl
shape when plotted in C–v–f space (Fig.·3). The long
axis of the bowl lies along the line of the v-
constrained behavioral curve. The bowl has relatively
little curvature along the long axis (contour lines are
widely spaced), and thus along the v-constrained
behavioral curve, and higher curvature perpendicular
to it (contour lines closely spaced) (Figs·4 and 5).

Self-selected vs predicted behavior

Speed constrained

Predicted and self-selected running behavior data
agreed within the region of minimal cost
(Cmin)+0.005·ml·O2·kg–1·m–1 and 95% confidence
interval for v-constrained conditions (Fig.·5A). In the

Fig.·5. Predicted and measured running gait parameter
selection for all subjects. Solid circles indicate measured
parameter selection under specific constraint conditions;
(A) red circles, v-constrained; (B) blue circles, f-
constrained; (C) green circles, d-constrained. Thick black
lines indicate least-squares linear regression of the
behavioral data, as determined using each constrained
parameter as the independent variable. The broken black
lines give 95% confidence intervals of the regression.
Contours lines indicate equivalent cost of transport with
the region of least cost surrounded by the inner contour and
cost increasing outward from that. The bold red lines
indicate the optimal predicted behavior (zero
slope/minimum cost), the orange area represents the region
of Cmin·+·0.001·ml·O2·kg–1·m–1, and the yellow area that of
Cmin·+·0.005·ml·O2·kg–1·m–1.
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area where metabolic data were available, 21 out of 24 data
points fell within the region of Cmin+0.001·ml·O2·kg–1·m–1, and
two of the remaining points fell within the region of
Cmin+0.005·ml·O2·kg–1·m–1, while only one point fell outside
these regions. There was more scatter in the data for speeds
roughly in the middle third (~0.8–1.4v/vp) and for the lowest
speeds (~0.14v/vp).

Frequency constrained

Predicted and self-selected running behavior data also
agreed within the region of Cmin+0.005·ml·O2·kg–1·m–1 and
95% confidence interval for f-constrained conditions
(Fig.·5B). In the area where metabolic data were available, 17

A. K. Gutmann and others

out of 35 data points fell within the region of
Cmin+0.001·ml·O2·kg–1·m–1, 13 of the remaining points fell
within the  region of Cmin+0.005·ml·O2·kg–1·m–1, and five
points fell outside these regions. There was somewhat more
scatter in the data for higher speeds: ~1.05–1.2v/vp.

Step length constrained

Likewise, predicted and self-selected running behavior
agreed within the  region of Cmin+0.005·ml·O2·kg–1·m–1and
95% confidence interval for d-constrained conditions
(Fig.·5C). However, unlike v- and f-constrained conditions,
only 7 out of 22 behavioral data points fell within the  region
of Cmin+0.001·ml·O2·kg–1·m–1 in the area where metabolic data
were available, and only five more fell within the  region of
Cmin+0.005·ml·O2·kg–1·m–1, whereas ten fell outside these
regions. This reflects a relatively high degree of scatter over
all step lengths.

For all three constraint conditions, the data points that fall
outside the region of Cmin+0.005·ml·O2·kg–1·m–1 came from a
variety of individuals. This indicates that scatter in the behavioral
data was not due to the peculiar behavior of any one individual.

Discussion
Shape of metabolic cost surface

It is well known that cost of transport (metabolic
cost/distance) for running is relatively constant when
measured under v-constrained conditions at commonly
used speeds, and that cost of transport increases more
dramatically under f-, d- or fully constrained conditions
(Cavanagh, 1982; Diedrich and Warren, 1995; Hreljac, 1993;
Knuttgen, 1961; Kram and Taylor, 1990). However, there is
evidence that cost of transport does increase under v-
constrained conditions at extremely high and low speeds –
i.e. at speeds much higher or lower than vp (Hreljac, 2002).
The metabolic cost surface we created reflects these
observations, since there is relatively low curvature along the
v-constrained behavioral curve and higher curvature
perpendicular to it.

Normalization

Normalizing v–f values of the metabolic data after pooling
can be thought of as normalizing by an average vp and fp. This
normalization method did not reduce inter-subject variability.
The sole purpose of using this method was to facilitate
comparison between normalized self-selected behavior and
predicted behavior. However, if self-selected behavior does
indeed reflect the shape of the metabolic cost surface, then
successfully collapsing the behavioral data into generalized
behavioral trends via normalization (i.e. scaling to reduce inter-
subject variability) implies that one should be able to
successfully generate any subject’s cost surface by scaling a
generalized cost surface by the vp, fp, and minimum cost of
transport of that subject. Table·3 and Fig.·7 show that inter-
subject variability in behavioral trends was indeed reduced by
the normalization method used in this study.

Fig.·6. Comparison of optimal minimal cost behavior predictions for
constrained frequency running using cost regions calculated for (A)
speed–frequency–cost space and (B) frequency–step length–cost
space. For comparison, both predictions are displayed on equivalent
speed–frequency plots. Thick red lines represent optimal predicted
behavior (zero slope), the orange area represents region of minimal
cost+0.001·ml·O2·kg–1·m–1 , and the yellow area that of minimal
cost+0.005·ml·O2·kg–1·m–1. The general features of the predicted
behavior are not affected by method of calculation.
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Fig.·7. Comparison of raw (A,C,E) and normalized (B,D,F) gait parameter selection data for all five subjects. Speed and frequency are normalized
according to vp and fp, respectively. Normalization reduced inter-subject variability for all constraint conditions, but the reduction of variability
is most noticeable for v-constrained (A,B) and f-constrained (C,D) conditions. Subject 1, green triangles; Subject 2, black �; Subject 3, blue
+; Subject 4, red squares; Subject 5, blue circles.
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Actual behavior vs predicted behavior

Speed constrained

The narrow region of Cmin+0.005·ml·O2·kg–1·m–1 slope
indicates that the cost of transport increases quite rapidly for f
values to either side of the optimal gait along horizontal lines
representing v-constraints. Therefore, there is a stiff energetic
penalty associated with deviating from the optimal gait under
v-constrained conditions. So, we would expect to see little
scatter in the behavioral data. And, indeed, the f-constrained
data has the highest R2 value (R2=0.88) (Table·3).

Frequency constrained

As with v-constrained running, a narrow region of
Cmin+0.005·ml·O2·kg–1·m–1 indicates that cost of transport
increases quite rapidly for v values to either side of the optimal
gait along vertical lines representing f-constraints. So again
there should be a reasonably stiff energetic penalty associated
with deviating from the optimal gait under f-constrained
conditions and, consequently, little scatter in the data. And
again, prediction matches the observed behavior fairly well
since the f-constrained data has the second highest R2 value
(R2=0.78) (Table·3).

One interesting feature of the predicted behavior for f-
constrained conditions is that multiple optima appear to exist
for each frequency at lower frequencies. This is similar to the
predictions for constrained walking (Bertram, 2005) in which
multiple optima were predicted at higher frequencies under f-
constrained conditions. However, in walking, observed
behavior within the subject population was distributed between
the optima, whereas all observed behavior in the present study
was concentrated at the lowest speed optimum. This
concentration could be due to the low number of subjects
recruited for the behavioral part of the study. It is possible that
if more subjects were included, some may have chosen the
higher speed optimum. It is also possible, however, that the
lowest speed optimum was chosen because it corresponds to a
slightly lower metabolic cost than the higher speed optimum
(the method we used to locate optima does not distinguish
between local and global optima). This hypothesis is supported
by the slope of the metabolic cost contour lines. Contour lines
at lower frequencies have roughly positive slopes. Thus, for
any given frequency, a lower speed should, in general, have a
lower metabolic cost. Since the lowest speed optimum is near
the edge of the cost surface, more low speed metabolic data
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would be needed to conclusively confirm this hypothesis. A
third possibility is that the lower speed optimum would provide
an adequate cost/distance solution and lower cost rate
(cost/time). Possibly this appealed to the subjects involved in
this study because this study involved more rigorous activity
than the previous walking study. At this time the interaction
between factors potentially influencing the objective function
are not established (Bertram, 2005).

Step length constrained

As under v- and f-constrained conditions, the fairly narrow
region of Cmin+0.005·ml·O2·kg–1·m–1 indicates that cost
increases quite rapidly for v–f combinations along diagonal
lines representing d-constraints. This indicates that a rather
large energetic penalty should be associated with deviating
from the optimal gait under d-constrained conditions.
However, this does not agree with the measured behavioral
response of the subjects studied. The d-constrained behavioral
data is the most scattered of all three constraint conditions. One
possible explanation for this discrepancy is that the shape of
the cost surface was distorted because we were not able to
normalize speed, frequency and cost values for each individual
before pooling the metabolic data. Another explanation is that
other types of metabolic cost such as cost per time may modify
the shape of the cost surface under d-constrained conditions
(Bertram, 2005). Cost per step would not alter the results for
d-constrained conditions because cost per step and cost per
distance differ by only a constant, d, so both cost per step and
cost per distance surfaces would have the same minima along
lines of constant d. (Note that similar logic holds for cost per
distance and cost per time surfaces under v-constrained
conditions.)

Implications

Although the predicted and actual behaviors do not coincide
exactly, they do agree quite well considering the confounding
factors with this study, e.g. small number of metabolic data
points available, inability to normalize metabolic data prior to
pooling, etc. This indicates that minimizing cost per distance
can largely account for the complex behavior observed in
human running. This is especially important because walking
and running employ fundamentally different mechanics
(Cavagna et al., 1977). Walking is generally modeled using an
inverted pendulum to emphasize exchange of kinetic and
potential energy, whereas running is generally modeled using
spring mass system to emphasize storage and release of elastic
strain energy. The fact that self-selected gait correlates well
with gait predicted via constrained optimization of metabolic
cost for both walking and running indicates that the control of
these two gaits might be quite similar. This, in turn, suggests
that constrained optimization might even be capable of
predicting gait parameters for forms of motion with even more
radically different mechanics.

However, there is substantial evidence that constrained
optimization of metabolic cost would not successfully predict
the self-selected behavior for cycling or other human–machine

Table·3. R2 values for linear regressions run on raw and
normalized behavioral data 

Behavioral linear regression R2

Constraint Raw Normalized

Speed 0.61 0.88
Frequency 0.52 0.78
Step length 0.20 0.24

Data were normalized by vp and frequency.
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forms of locomotion. It has been shown that experienced cyclists
train themselves to pedal at a cadence that is significantly higher
than that which minimizes metabolic cost per distance cycled for
a given speed. Interestingly, less experienced cyclists
spontaneously choose cadences that are closer to (although still
higher than) the energetic optimum (Marsh and Martin, 1997).
One possible explanation for this is that the body might judge

optimality in a way that is inappropriate for locomotion when a
machine intervenes. For example, the body might optimize
whole body muscle work to minimize cardio-pulmonary
metabolic cost per distance as appears appropriate for walking
and running, when localized muscle fatigue is a more important
limitation for performance in cycling (Foss and Hallén, 2005).
Therefore, experienced cyclists train themselves to override their
instincts in order to optimize race performance in the artificial
human–machine integration of cycling.

Although some discrepancies exist between the behavior
predicted by constrained optimization of cost per distance and
the observed self-selected behavior, the basic form of the
predicted and observed behavioral curves agreed. This was
similar to the level of agreement demonstrated for walking
(Bertram, 2005). Optimization of alternative objective
functions such as metabolic cost per time and cost per step did
not predict running gait as well as metabolic cost per distance
(Fig.·8). However, it is likely that these other types of cost
might still help shape the objective function and influence
features of gait parameter selection (Bertram, 2005). Also,
other factors not directly related to metabolic cost, such as local
muscle fatigue and body temperature, might play a role in
running, which places specific demands on the locomotory
system due to the vigor of the activity. Finding a way to
measure the extent to which these elements contribute to the
objective function, and under which circumstances, would be
a worthy and challenging goal for future studies.

Appendix
Summary of methods used in Rouviere’s thesis

The purpose of C. Rouviere’s honors thesis (Rouviere, 2002)
was to examine a few hypotheses regarding signals that might
trigger the transition between running and walking. Testing
one of these hypotheses involved determining the shape of the
cost surfaces for walking and running near their intersection.

To build these cost surfaces, Rouviere measured the
metabolic cost of walking and running near the gait transition
for 5 subjects; 3 male, 2 female (age=25±1.87 years,
mass=79.1±10.8·kg, height=179.4±13.2·cm). Subjects came to

Fig.·8. Comparison of optimal behavior predictions generated using
(A) cost per distance, (B) cost per time, and (C) cost per step surfaces.
Cost contours from each surface are shown as black curves. Colored
broken lines represent least-squares regressions of self-selected
behavioral data and colored solid lines represent optimal predicted
behavior. Red lines are used for v-constrained conditions, blue for f-
constrained conditions and green for d-constrained conditions. The
cost per time plot predicts v-constrained and d-constrained behavior
quite well, but does not predict f-constrained behavior (no solid blue
line). The cost per step plot also does not predict f-constrained
behavior and predicts that the v-constrained behavior should occur
where, instead, we observe f-constrained behavior. Only the cost per
distance plot correctly predicts three different self-selected behaviors
and places all three curves in the correct regions of v–f space.
Therefore, minimization of cost per distance seems to be the best
predictor of running behavior.
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the laboratory twice and performed 12 walking or running
trials on the treadmill over a complete range of constrained
speed, frequency and step length conditions. The order of
frequencies and gaits were originally randomly assigned, but
all subjects used the same random sequence. A recovery period
of at least 5·min was provided between trials to reduce the
effects of fatigue and ensure valid metabolic measurements.

Oxygen consumption and carbon dioxide release rates were
obtained using standard metabolic analysis techniques
(TrueMax 2400, Parvo Medics, Salt Lake City, UT, USA).
Subjects were tested at least 2·h post-prandial. A 7·min baseline
consumption level was determined prior to each test session.
This was used to normalize the metabolic rates of the two testing
days. Values for the metabolic data points were calculated by
averaging metabolic data from the last 3·min of each 5·min trial.
None of the running trials were particularly strenuous as the
highest running speed was in the range of 3·m·s–1, only slightly
faster than the natural gait transition speed. However, to ensure
that all metabolic data were obtained during steady state
exercise, only trials where the rate of oxygen consumption had
reached a steady value by the third minute were used. Also, RER
was monitored and values for all trials were 0.92 or below.

The concept of constrained optimization in locomotion was
initially formulated by Andy Ruina, Theoretical and Applied
Mechanics, Cornell University. We wish to thank the
individuals who volunteered to participate in this study. We
also wish to thank Sharon Bullimore for commenting on the
original manuscript. This paper is based on work supported
under a National Science Foundation Graduate Research
Fellowship awarded to A.K.G. Any opinions, findings,
conclusions or recommendations expressed in this paper are
solely those of the authors and do not necessarily reflect the
views of the National Science Foundation.
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