
455

Introduction
It is possible for animals of very different sizes to use similar

patterns of locomotion. For example, kangaroo rats and
kangaroos hop bipedally, quails and ostriches walk and run
bipedally, and quadrupeds of a wide range of different sizes
walk, trot and gallop. A more detailed comparison of
locomotion in animals of different sizes can be made by
comparing dimensionless parameters, such as stride length
divided by leg length (‘relative stride length’, RSL), stance
time divided by stride time (‘duty factor’, DF), peak ground
reaction force (GRF) divided by body weight (‘relative peak
force’, RPF) and the phase relationships of the limbs.
Alexander and Jayes (1983) showed that mammalian species
of very different sizes use the same values of these
dimensionless parameters when moving at speeds
corresponding to equal values of another dimensionless
parameter, the Froude number (u2/gh, where u is forward
speed, g is the acceleration due to gravity and h is hip height).

All of the dimensionless parameters considered above are
‘mechanical’ dimensionless parameters, because the
parameters from which they are constructed can be defined in
terms of forces, lengths and times. Systems that have equal
values of mechanical dimensionless parameters are said to be

‘dynamically similar’ (Isaacson and Isaacson, 1975), so
Alexander and Jayes (1983) described animals that have equal
values of the above dimensionless parameters as moving in a
‘dynamically similar fashion’.

Dynamically similar locomotion is not, however, inevitable
in animals moving at equal Froude number. For example,
Alexander and Jayes (1983) found that cursorial and non-
cursorial mammals do not move in a dynamically similar
fashion at equal Froude number and Donelan and Kram (2000)
found that humans do not move in a dynamically similar
fashion when running at equal Froude number in different
levels of simulated reduced gravity. Engineering theory tells
us that, for dynamic similarity to occur in some aspect of
a system, all relevant system parameters must scale
appropriately with size (Isaacson and Isaacson, 1975).
Previously, we have applied this to understanding dynamic
similarity in animal locomotion. We argued that, because
tendon elastic modulus does not increase with size as required
for dynamic similarity, compensatory changes in other
parameters with size are required for dynamically similar
locomotion to be possible (Bullimore and Burn, 2004). We
referred to these changes as ‘compensatory distortions’, after
a term that has been used in engineering to describe the

It is possible for animals of very different sizes to use
the same patterns of locomotion, i.e. to move in a
‘dynamically similar fashion’. This will only occur,
however, if relevant biomechanical parameters scale with
size in such a way that they compensate for the effects of
size differences. Here we apply this principle to
understanding the effects of size on locomotion within a
species: the domestic horse. We predict that, without any
factor to compensate for size differences, detectable
deviations from dynamically similar locomotion would
occur over the size range present in adult horses. We
measured relative stride length (RSL) and duty factor
(DF) in 21 trotting horses (body mass: 86–714·kg), and
interpolated the data to predict RSL and DF at equivalent
speeds (Froude numbers: 0.5, 0.75, 1.0). RSL and DF at
equal Froude number were not significantly related to

body mass. This is consistent with the hypothesis that
horses trot in a dynamically similar fashion at equal
Froude number. We show that the nonlinear stress–strain
relationship of tendon can contribute to reducing
deviations from dynamic similarity, ‘buffering’ the effects
of variation in body mass, but conclude that this effect is
unlikely to explain fully our results. This suggests that
a ‘compensatory distortion’ may occur in horses,
counteracting the effects of size differences. The approach
used here is also applicable to understanding the
consequences of size changes within an individual during
growth.
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changes that must be made in physical models in order to make
them dynamically similar to the systems that they represent
(Baker et al., 1973). We showed that the changes in limb
posture that occur with size in mammals (Biewener, 1989)
should compensate for the size-independence of tendon elastic
modulus sufficiently for dynamically similar locomotion to be
possible in species of different sizes.

This is an example of a general principle that is frequently
encountered in studies of size effects in biology: where
organisms of different sizes are made of the same materials,
they cannot remain functionally similar unless systematic
changes in form compensate for size effects. For example, for
animal bones and tree trunks to maintain the same resistance
to elastic buckling, their thickness must increase
disproportionately with length (McMahon, 1973). Conversely,
where form remains the same, differently sized organisms
differ functionally. For example, the functional characteristics
of the hairy appendages of crustaceans are size-dependent
(Koehl, 2004). In the case of mammalian locomotion, changes
in limb posture with size allow functional similarity in
locomotor mechanics to be maintained despite the size-
independence of tendon material properties. However, if no
factor compensates for size effects, changes in locomotor
patterns with size can be expected, so locomotion will not be
dynamically similar.

Size not only varies between species, but also within
species. This occurs under two circumstances: (a) between
adult individuals, due to genetic and environmental factors,
and (b) within an individual during growth. The same
principle will apply within species as between species:
if tendon elastic modulus is size-independent, and a
compensatory distortion does not occur, then individuals of
different sizes would not be expected to move in a
dynamically similar fashion. This raises two questions. (1)
Over the smaller size range present within a species, could the
resulting deviations from dynamically similar locomotion be
large enough to be detectable and physiologically significant?
(2) If so, do systematic deviations from dynamically similar
locomotion occur with size within species, or does some factor
(a compensatory distortion or a change in tendon elastic
modulus with size) prevent this? Answering these questions
is important in order to understand the biomechanical
consequences of growth and the factors that affect the optimal
size for the adults of a species.

Here we address both of these questions for the first
circumstance under which intraspecific size differences occur:
variation between adult individuals. We chose to study the
domestic horse (Equus caballus) because it occurs in a wide
range of sizes, allowing small deviations from dynamic
similarity to be detected, and because there is a large volume
of published anatomical and biomechanical literature on this
species. To address the question of whether detectable
deviations from dynamic similarity could occur (question 1
above), we modelled ‘idealised’ horses that were identical
except for size differences, so that there were no
compensatory distortions, and predicted by how much

locomotion would deviate from dynamic similarity in these
animals. To address the question of whether real horses of
different sizes move in a dynamically similar fashion
(question 2 above), we measure RSL and DF in trotting horses
of body mass 86–714·kg. The theoretical predictions are
presented in Part 1 of this paper and the experimental results
in Part 2.

A factor that could potentially decrease the effects of size
on locomotion is the nonlinear stress–strain relationship of
tendon. Because tendons are stiffer at higher stresses, a given
increase in stress causes a smaller increase in strain when it
occurs at higher stresses. A consequence of this is that tendon
strain will scale less markedly with size than tendon stress
(Fig.·1). If tendon elastic modulus does not increase with size
as required for dynamic similarity, and there are no
compensatory distortions, then it would be expected that larger
animals would experience greater tendon strains, causing
deviations from dynamically similar locomotion (Bullimore
and Burn, 2004). The capacity of the nonlinear tendon
stress–strain relationship to decrease the scaling exponent for
strain would reduce this effect. This is not a compensatory
distortion, because it does not depend upon something
changing with animal size. It also could not compensate
completely for a size-independent tendon elastic modulus,
because it would never give the same tendon strain for different
stresses. However, it could reduce deviations from
dynamically similar locomotion to some extent. In order to
estimate the magnitude of this effect, we made the predictions
in Part 1 both with and without taking these nonlinear tendon
properties into account.
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Fig.·1. Consequences of the nonlinear stress–strain relationship of
tendon for the scaling of tendon strain. Data of Riemersma and
Schamhardt (1985) for equine superficial digital flexor tendon.
Because the tendon is stiffer at higher stresses, a given increase in
stress causes a smaller increase in strain when it occurs at a higher
initial stress (compare shaded regions). A consequence of this is that
the scaling exponent for strain is lower than the scaling exponent for
stress. For example, over the part of the curve within and between
the shaded regions, a stress proportional to Mb

0.33 causes a strain
proportional to Mb

0.19. Therefore, a nonlinear tendon stress–strain
relationship can reduce the effects of size differences on tendon
strain.
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(Part 1) Predicted scaling exponents
Two possibilities exist as to the effects of size in horses: (i)

there may be no systematic changes with size, or (ii) there may
be systematic changes in some parameters with size, for
example, in anatomy or muscle activation patterns. In either
case, there will also be individual variation due to other factors.
Our approach to determining whether size differences could
cause detectable deviations from dynamically similar
locomotion in the absence of compensatory distortions was to
model ‘idealised’ horses which did not differ in any way except
for in size. They therefore had identical muscle activation
patterns and tendon properties and were geometrically similar
(so all lengths scaled in proportion to Mb

0.33 and all areas scaled
in proportion to Mb

0.67, where Mb is body mass). This
represents situation (i) above, except that variation due to
factors other than size is ignored. The relationships of RSL and
DF to body mass predicted for these ‘idealised’ horses were
then compared to the relationships measured in real horses in
Part 2. A difference between the predicted and measured
relationships was taken to indicate that systematic changes
with size do occur, i.e. that possibility (ii) above is correct.

The predictions were made in four stages. We first predicted
the scaling of tendon strain with size, and used this to estimate
the scaling of joint angular excursion. From this, we predicted
the scaling of limb stiffness, which we defined as the ratio of
peak GRF to limb shortening during the stance phase. Lastly,
we used the planar spring-mass model of locomotion to predict
how this scaling of limb stiffness would affect RSL, DF and
RPF. We made the predictions for both a linear tendon
stress–strain relationship and a realistic nonlinear relationship,
in order to determine how much this would affect deviations
from dynamic similarity.

In order to predict limb stiffness, i.e. in stages (i) to (iii) of
the predictions below, we took peak GRF to be proportional to
Mb in horses moving at equal Froude number. In horses that
are not moving in a dynamically similar fashion, peak GRF
will not be exactly proportional to Mb. However, because the
force–length relationships of the limbs of animals tend to be
approximately linear (Farley et al., 1991; McGuigan and
Wilson, 2003), limb stiffness is not sensitive to the GRF for
which it is calculated. The scaling exponents predicted below
for RPF are small (Table·1), justifying this approximation.

We also assumed that peak tendon force would be
proportional to peak GRF, and therefore also to Mb. Again, this
assumption will only be exact for dynamically similar horses.
If larger horses experience greater joint angular excursions, as
expected if tendon elastic modulus is size-independent and
there are no compensatory distortions, the moment arms of the
GRF about the limb joints will be relatively greater. This will
increase the tendon forces required to counteract a given GRF
and so could potentially increase deviations from dynamic
similarity. From this point of view, the predictions made here
are conservative.

(i) Predicted scaling of tendon strain

For a peak tendon force proportional to Mb, and a tendon

cross-sectional area proportional to Mb
0.67, tendon stress will

increase with size in proportion to Mb
0.33. For tendons with a

linear stress–strain relationship, strain will scale in proportion
to stress and therefore also to Mb

0.33. In order to predict the
scaling exponent for strain in tendons with a nonlinear
stress–strain relationship, we used the data of Riemersma and
Schamhardt (1985), digitised from their fig.·4. This gives
stress–strain relationships for a superficial digital flexor tendon
(SDFT), a deep digital flexor tendon (DDFT) and a suspensory
ligament (SL) from an equine hindlimb. These structures cross
the metacarpophalangeal joint in the forelimb and the
metatarsophalangeal joint in the hindlimb. Hyperextension of
these joints is responsible for a large proportion of the
shortening of the limb during the stance phase in trotting horses
(McGuigan and Wilson, 2003) and, because the muscle fibres
associated with these structures are relatively short (Ker et al.,
1988), it is likely that most of this hyperextension occurs
through tendon elongation. Therefore, the properties of these
tendons have a substantial influence on overall limb
compliance. To determine whether the data of Riemersma and
Schamhardt (1985) were typical we fitted straight lines to the
stress–strain relationships between strains of 3.5% and 6.5%
(R2>0.99). This gave elastic moduli of 1.15·GPa, 1.44·GPa and
0.56·GPa and intercepts with the strain axis of 1.6%, 2.1% and
2.1%, for the SDFT, DDFT and SL, respectively. Comparison
with published values indicated that these are typical properties
for mammalian tendons: mean elastic modulus for mammalian
limb tendons is 1.24±0.23·GPa (Pollock and Shadwick, 1994)
and mean intercept strain for the equine SDFT is 1.5%
(Wilson, 1991). In order to make predictions for horses with
identical tendon material properties, we used the stress–strain
relationships measured by Riemersma and Schamhardt (1985)
for horses of all sizes.

The relationship between the scaling exponents for stress
and strain depends upon which part of the tendon stress–strain
relationship is used. Biewener (1998) calculated peak tendon
stresses of approximately 16, 20 and 13·MPa in the SDFT,
DDFT and SL, respectively, in trotting horses of approximately
275·kg. We used these values as a starting point for calculating
the scaling exponent for strain, which corresponds to a stress
proportional to Mb

0.33. Tendon stresses for horses between 80
and 800·kg were predicted using the equation:

stress = kMb
0.33·, (1)

where the scaling constant, k, was calculated from the above
stresses for a 275·kg horse, giving values of 2.46, 3.08 and 2.00
for the SDFT, DDFT and SL, respectively. The tendon
stress–strain data of Riemersma and Schamhardt (1985) were
fitted with third order polynomials (R2>0.99) and these were
used to predict tendon strains corresponding to the stresses
predicted by Eqn·1. Allometric equations relating these
predicted strains to body mass were obtained by log-
transforming the data and fitting linear least-squares regression
equations (R2>0.99), as described by Schmidt-Nielsen (1984).
This gave scaling exponents of 0.19, 0.16 and 0.18 for strain
in the SDFT, DDFT and SL, respectively. To determine how

THE JOURNAL OF EXPERIMENTAL BIOLOGY



458

robust these predictions were, we varied the stresses used for
calculating k. Large variations (±5·MPa) altered the predicted
exponents by less than 0.01. The predicted exponents are
considerably lower than the exponent of 0.33 for a tendon with
linear properties, indicating that nonlinear tendon properties
could substantially reduce the effects of size on tendon strain.

(ii) Predicted scaling of joint angular excursion

If the joint is modelled as having a circular profile, the joint
angular excursion arising from a given tendon strain can be
calculated as:

For geometrically similar horses, joint radii and tendon
lengths will be proportional to Mb

0.33, so that joint angular
excursions will be directly proportional to tendon strain.
Therefore, we take joint angular excursion to be proportional to
Mb

0.33 for a tendon with linear properties and to Mb
0.18 (the mean

of the scaling exponents calculated above) for a tendon with
nonlinear properties. In both cases this represents an increase
in joint angular excursion with size, but the predicted increase
is substantially smaller for a tendon with nonlinear properties.

The above calculation ignores the contribution of muscle
strain to joint angular excursion. This seems reasonable in
trotting horses because most of the length change in the limb
occurs distally (McGuigan and Wilson, 2003) where the
muscle-tendon units have relatively short fibres and long
tendons (Ker et al., 1988). However, muscle strains would also
be expected to increase with size, by the following argument.
Muscle stress would increase with size in the same way as
tendon stress, i.e. as Mb

0.33. The horses we are modelling have
identical muscle activation patterns. Therefore, due to the
nature of the force–velocity relationship of muscle, these
higher stresses would tend to decrease the ability of the muscle
to shorten and to increase the possibility of it lengthening,
resulting in greater muscle strains in larger animals.

(iii) Predicted scaling of limb stiffness

In order to predict the scaling of limb stiffness, we needed
to be able to predict limb shortening from joint angular
excursion, where limb shortening is defined as the change in
the distance between the proximal and distal ends of the limb
between ground contact and midstance. This cannot be done
without knowledge of limb morphology because the
relationship depends upon limb segment lengths and initial
joint angles. For this reason, we used experimental data from
three horses (horses 7 and 8 from Table·2 and a third horse of
630·kg) as a basis for predicting the scaling exponent for limb
shortening. Reflective markers were placed over the joint
centres of the right fore- and hindlimbs and their positions were
recorded by optical motion capture (240·frames·s–1; Proreflex,

(2)

tendon elongation

joint radius
angular excursion =

tendon strain · tendon length

joint radius
= .

Qualisys, Sweden) during trot. The marker positions were used
to calculate the limb segment lengths, joint angles at ground
contact and joint angular excursions between ground contact
and midstance. Each leg of each horse was then used separately
as the basis for calculating scaling exponents for limb
shortening. Limb segment lengths for horses of 80, 200, 400,
600 and 800·kg were predicted by scaling the measured lengths
in proportion to Mb

0.33 (so that they were geometrically
similar), and joint angular excursions were predicted by scaling
measured values in proportion to Mb

0.33 to model a tendon with
linear properties, or to Mb

0.18 to model a tendon with nonlinear
properties, as predicted above. Limb shortening was then
calculated trigonometrically, assuming initial joint angles were
equal to measured values. This produced a total of twelve sets
of values for predicted limb shortening against Mb: six
corresponding to the fore- and hindlimbs of each of the three
horses for linear tendon properties, and another six for
nonlinear tendon properties. For each of these twelve datasets,
an allometric equation relating predicted limb shortening to
body mass was calculated by log-transforming the data and
fitting a linear least-squares regression equation (R2>0.99).
Because the calculated scaling exponents were very similar for
the data based on the three different horses, and on the fore-
and hindlimbs, the means of these scaling exponents were
used. The mean exponent for limb shortening with linear
tendon properties was 0.77±0.01 (± s.e.m.) which, in
combination with a GRF proportional to Mb, gives a limb
stiffness proportional to Mb

0.23. The mean exponent for limb
shortening with nonlinear tendon properties was 0.58±0.01
(± s.e.m.), which gives a limb stiffness proportional to Mb

0.42.
Therefore, the predicted scaling exponent for limb stiffness
is higher with nonlinear tendon properties, but is still
substantially lower than the exponent of 0.67 that would be
required for dynamic similarity (Bullimore and Burn, 2004).

(iv) Predicted scaling of dimensionless locomotor parameters

The effect of the above scaling of limb stiffness on the
dynamics of locomotion was predicted using the planar spring-
mass model (Blickhan, 1989; McMahon and Cheng, 1990).
This is a simple model of running gaits, such as trot, in which
the animal is represented by a point mass bouncing on a spring.
It describes the mechanical relationships between basic
locomotor parameters such as limb stiffness, stride length,
stance time and GRF, and has been shown to be able to model
the mechanics of trotting in mammalian species of a wide
range of different sizes remarkably well (Farley et al., 1993).

GRF data (1000·Hz; model 9287 force plate, Kistler
Instruments, Switzerland) and kinematic data (240·frames·s–1;
Proreflex) from one horse of intermediate size (horse 8;
Table·2) were used to determine model parameter values
representative of a horse trotting at Froude numbers of 0.5,
0.75 and 1.0. With the calculated parameter values, the model
predicted RSL, DF and RPF to within 5% of the values
measured in this horse. Parameter values representing horses
of 80, 200, 400, 600 and 800·kg were generated by scaling limb
stiffness as calculated above (i.e. in proportion to Mb

0.23 for

S. R. Bullimore and J. F. Burn
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linear tendon properties and to Mb
0.42 for nonlinear properties)

and keeping the other model parameters dynamically similar
to the values calculated for horse 8. The parameter values that
were used are listed in the Appendix. Predictions of RSL, DF
and RPF for the horses of different sizes were then obtained
by numerical integration of the equations of motion for the
model using a function written in Matlab (version 6.5, The
MathWorks, Inc., MA, USA). The method used has been
described in detail previously (Bullimore and Burn, 2006).
Allometric equations relating the predicted values of RSL, DF
and RPF to body mass were obtained by log-transforming the
data and fitting linear least-squares regression equations
(R2>0.98). The scaling exponents predicted for both linear
and nonlinear tendon properties are shown in Table·1. The
exponents for RSL and DF are positive, indicating that these
dimensionless parameters are predicted to increase with size,
while the exponents for RPF are negative, indicating that it is
predicted to decrease with size. Incorporating the nonlinear
characteristics of tendon into the predictions substantially
reduced the exponents predicted for RSL, while the exponents
predicted for DF and RPF were small for both linear and
nonlinear tendon properties.

In summary, the results obtained in Part 1 predict that: (a)
in horses that do not exhibit any systematic changes with size,
RSL at equal Froude number will increase with size in
proportion to approximately Mb

0.10, while DF and RPF will be
close to independent of size, and (b) relative to a tendon with
a linear stress–strain relationship, a tendon with a realistic
nonlinear relationship could reduce the effects of size on
tendon strain, joint angular excursion and RSL.

(Part 2) Measured scaling exponents
Materials and methods

Overview

RSL and DF were measured in 21 adult horses Equus
callabus (86–714·kg, Table·2) trotting at a range of speeds. The
data for each horse were interpolated to predict the RSL and
DF that the horse would use at Froude numbers of 0.5, 0.75
and 1.0. Dynamic similarity of RSL and DF was defined as
these parameters being independent of body mass in horses
trotting at equal Froude number.

Anatomical measurements

Girth was defined as the circumference of the trunk just
behind the forelegs. Wither height was defined as the height
above the ground of the highest point at the base of the neck.
Body mass was measured using a weighbridge, girth was
measured using a tape measure and the height of the withers
and the greater trochanter above the ground were determined
using a measuring stick.

To calculate RSL and Froude number, a measure of leg
length is required. Previous studies (e.g. Alexander and Jayes,
1983; Donelan and Kram, 2000) used greater trochanter height
in the standing animal. However, the greater trochanter is
difficult to palpate in horses and its height above the ground

varies with standing posture. Preliminary calculations based on
a pilot study indicated that error in this measurement was likely
to be a significant source of interindividual variability.
Therefore, instead we measured radius and metacarpus length
between the most distal prominence on the lateral side of the
elbow joint and the prominence on the lateral, proximopalmar
aspect of the proximal phalanx. This measurement proved to
be substantially more repeatable than greater trochanter height.
For convenience, we multiplied the measured radius and
metacarpus lengths by a scale factor of 2.05 to obtain a
‘calculated leg length’, which was approximately equal to
greater trochanter height. This was done to make our results
comparable with previous studies. The scale factor of 2.05 was
the mean value of the ratios of greater trochanter height to
radius and metacarpus length for all the horses. This ratio was
independent of body mass (Table·3). Because the same scale
factor was used for all horses it did not contribute to
interindividual variability and so did not affect the capacity to
detect deviations from dynamic similarity. The calculated leg
lengths are shown in Table·2.

Experimental procedure

All experimental procedures were approved by the
University ethics committee. Reflective markers were attached
to the medial side of the left fore hoof, to the lateral side of the
right fore hoof and overlying the dorsal spinous process of the
fifth thoracic vertebra (‘t5 marker’). The horses were trotted
along a track by an experienced handler. The first section of
the track was used for acceleration, the central section for data
collection and the final section to slow the horses to a stop. The
positions of the reflective markers were recorded at
240·frames·s–1 using a 3D optical motion capture system
(Proreflex) as the horses passed through the data collection

Table·1. Predicted scaling exponents for the relationships of
relative stride length, duty factor and relative peak force to
body mass in ‘idealised’ horses that are identical except for

size differences

Froude Predicted scaling exponent

number Linear tendon Nonlinear tendon

RSL 0.50 0.19 0.11
0.75 0.17 0.10
1.00 0.16 0.09

DF 0.50 0.03 0.01
0.75 0.04 0.02
1.00 0.05 0.03

RPF 0.50 –0.02 –0.01
0.75 –0.04 –0.02
1.00 –0.05 –0.02

RSL, relative stride length; DF, duty factor; RPF, relative peak
force.

Predictions were made for both a linear and a nonlinear tendon
stress–strain relationship.
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region. The field of view was sufficient for at least one stride
to be recorded from all horses at all speeds. For all except
horses 7 and 8, one stance phase of the left or right fore leg
was recorded at 250·frames·s–1 using a high speed digital video
camera (MotionCorder SR-1000, Kodak, Herts, UK). Trials
were obtained over as wide a range of trotting speeds as
possible while maintaining an approximately constant speed
through the data collection region.

Data analysis

Allometric equations relating girth, wither height, greater
trochanter height and radius and metacarpus length to body
mass were calculated by log-transforming the data and fitting
linear regression lines. Reduced major axis (RMA) regression
was used because this method is appropriate for data in which
error occurs in both the dependent and independent variables
(Rayner, 1985). The fit of the allometric equations was
assessed by calculating the mean absolute percent deviation
(MAPD) of the data from the values predicted by the equations
(Prothero, 1986). 95% confidence intervals for the scaling
exponent were calculated using the t-distribution. If these
confidence intervals included 0.33, the horses were considered
to be geometrically similar in the measurement in question
(Schmidt-Nielsen, 1984). The ratio of greater trochanter height
to radius and metacarpus length was calculated and an
allometric equation relating this parameter to body mass was
calculated as above, except that least-squares regression was
used because the relationship obtained using RMA regression
did not fit the data well, probably because the range of the
dependent variable was small.

Forward speed was calculated as the mean velocity of the t5
marker over one complete stride. Stride length was calculated
as the distance travelled by the left or right fore-hoof marker
between consecutive stance phases of that hoof. Stance time
was determined from the high speed video. Stride time was
calculated as stride length divided by forward speed. RSL was
calculated as stride length divided by calculated leg length, DF
was calculated as stance time divided by stride time and Froude
number was calculated as u2/gh, where u is forward speed,
g is the acceleration due to gravity (9.81·m·s–2) and h is
calculated leg length.

For each horse, the RSL and DF that would be used at
Froude numbers of 0.5, 0.75 and 1.0 were predicted by fitting
quadratic equations to the data for RSL and DF against
Froude number. Quadratics were chosen on the basis of a
pilot study in six horses in which linear, quadratic, power and
logarithmic functions were tested and quadratics gave the
highest R2 values. Higher order polynomials were not used,
despite sometimes giving higher R2 values, because the
resulting curves often exhibited multiple extrema, which
were thought unlikely to be representative of the true
relationship.

For each of the three Froude numbers considered, allometric
equations relating RSL and DF to body mass were calculated
as described above. Least-squares regression was used because
RMA regression gave a poor fit to the data. MAPD and 95%
confidence intervals were calculated as described above. If the
confidence intervals included zero, the parameter in question
was considered to be independent of body mass and therefore
to be dynamically similar.

S. R. Bullimore and J. F. Burn

Table·2. Horses used in the study in descending order of body mass

Body mass Calculated leg Speed range Number 
No. Breed (kg) length (m) (m·s–1) of trials

1 ID 714 1.44 2.18–4.14 15
2 TB�ID 712 1.49 2.50–4.07 14
3 Warmblood 664 1.46 2.43–4.18 13
4 Warmblood 654 1.47 2.54–4.76 14
5 TB type 608 1.49 2.06–4.08 14
6 TB 594 1.48 2.30–4.28 14
7 TB 518 1.38 2.12–3.82 10
8 TB 511 1.40 2.59–3.73 10
9 Arab 418 1.31 2.03–4.25 15
10 New Forest 354 1.10 1.93–3.45 15
11 Unknown 348 1.08 1.66–4.21 15
12 Arab�Welsh 314 1.10 2.16–3.99 15
13 Welsh B 294 1.17 1.95–4.16 16
14 Welsh A 279 1.04 1.95–4.30 13
15 Welsh�unknown 277 1.13 2.06–4.45 15
16 Unknown 266 1.02 2.16–3.82 16
17 Welsh A 240 1.04 1.94–4.66 14
18 Falabella 161 0.72 1.73–3.38 14
19 Falabella 125 0.71 1.59–3.48 16
20 Miniature Shetland 93 0.61 1.65–3.33 14
21 Falabella 86 0.63 1.76–3.12 15

ID, Irish Draught; TB, Thoroughbred.
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Table·3. Allometric equations relating anatomical measurements to body mass in horses used in the study

95% CL

a b Lower Upper MAPD (%)

Including horses 18–21
Wither height 0.11 0.43 0.39 0.48 4.63
Radius and metacarpus length 0.04 0.45 0.41 0.49 4.62
Girth 0.26 0.32 0.30 0.34 2.17
Greater trochanter height 0.09 0.44 0.40 0.49 4.99
GT/RMC 2.13 –0.01 –0.04 0.02 3.28

Excluding horses 18–21
Wither height 0.14 0.39 0.32 0.46 3.85
Radius and metacarpus length 0.06 0.38 0.32 0.46 3.85
Girth 0.20 0.35 0.32 0.38 1.74
Greater trochanter height 0.11 0.40 0.33 0.49 4.46
GT/RMC 1.83 0.02 –0.04 0.07 3.04

Equations are of the form: measurement=aMb
b, where Mb is body mass in kg.

CL, confidence limits for the scaling exponent, b.
MAPD, mean absolute percent deviation of measured values from the fitted relationship.
All anatomical measurements are defined in Materials and methods.
GT/RMC = ratio of greater trochanter height to radius and metacarpus length.
All measurements are in m (GT/RMC in m/m).
Relationships are given both excluding and including data for horses 18–21.

Table·4. Allometric equations relating relative stride length and duty factor to body mass in horses trotting at equal Froude
number

Froude 95% CL

number a b Lower Upper MAPD (%)

RSL
Including horses 18–21

0.50 1.43 0.00 –0.04 0.03 3.7
0.75 1.49 0.01 –0.02 0.04 3.3
1.00 1.66 0.01 –0.01 0.04 3.1

Excluding horses 18–21
0.50 1.30 0.01 –0.04 0.07 3.4
0.75 1.37 0.03 –0.03 0.08 3.2
1.00 1.61 0.02 –0.03 0.07 3.1

DF
Including horses 18–21

0.50 0.47 0.00 –0.03 0.03 2.5
0.75 0.44 –0.01 –0.04 0.03 3.5
1.00 0.39 0.00 –0.03 0.04 3.7

Excluding horses 18–21
0.50 0.41 0.02 –0.03 0.08 2.5
0.75 0.38 0.02 –0.04 0.08 3.5
1.00 0.32 0.04 –0.02 0.10 3.2

RSL, relative stride length; DF, duty factor.
Equations of the form: RSL or DF=aMb

b, where Mb is body mass in kg.
CL, confidence limits for the scaling exponent, b.
MAPD: mean absolute percent deviation of measured values from the fitted relationship.
Relationships are given both including and excluding data for horses 18–21.
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Results
The allometric equations calculated for the anatomical

measurements are given in Table·3. The four smallest horses
(horses 18–21) had relatively short legs for their mass so that,
when all horses were included in the analysis, the scaling
exponents for wither height, greater trochanter height and
radius and metacarpus length were significantly higher than
would occur in geometrically similar animals. Only the
exponent for girth was not significantly different from 0.33.
When these horses were excluded from the analysis, the
scaling exponents for wither height, radius and metacarpus
length and girth were not significantly different from 0.33,
indicating that the other horses were geometrically similar in
these parameters. The scaling exponent for greater trochanter
height was still significantly greater than 0.33 (P=0.045),
however. To determine the effect of the proportionally shorter
legs of horses 18 to 21, the relationships of RSL and DF to
body mass were determined both with and without the data for
these horses.

The number of trials and range of speeds obtained for each
horse are shown in Table·2. The Froude numbers at which
comparisons were made were well within the range of speeds
achieved by all but one of the horses (horse 10), which only
reached a Froude number greater than 1.0 in one trial, while
all the other trials were at Froude numbers of 0.80 or slower.
This horse was excluded from the analysis at a Froude number
of 1.0, but was included in the rest of the analysis. The
quadratic equations were a good fit to the relationships of RSL
to Froude number, with R2 values between 0.95 and 1.00. The
data for DF showed more scatter around the fitted lines, with
R2 values between 0.60 and 0.98.

At all three of the Froude numbers considered, the scaling
exponents for RSL and DF against body mass were not
significantly different from zero (Fig.·2, Table·4). This
conclusion was not altered by including horses 18–21 in the
analysis. Including data from these horses increased the body
mass range without greatly increasing the scatter of the data,
so resulted in narrower confidence intervals (Table·4). The

results support the hypothesis that RSL
and DF are independent of size in horses
and therefore that these parameters are
dynamically similar in horses trotting at
equal Froude number.

Discussion
The first question that we addressed was

whether detectable and physiologically
significant deviations from dynamic
similarity could occur over the size range
present within a species. When the
nonlinearity of the tendon stress–strain
relationship was taken into account in the
theoretical predictions, RSL was predicted
to scale in proportion to approximately
Mb

0.10 (Table·1). This illustrates the
argument that we have made previously
that dynamically similar locomotion
would not be expected in geometrically
similar animals with identical tendon
properties (Bullimore and Burn, 2004).
The scaling exponent of 0.10 is well
outside the 95% confidence intervals that
we obtained experimentally when all
horses were included in the analysis
(Table·4), so would have been detectable
in our experimental measurements
(Fig.·3). This suggests that detectable
deviations from dynamically similar
locomotion are possible over the size range
present in adult horses.

Horses have been bred by humans to
occur in a wider range of sizes than the
adults of most wild species. Over a
narrower size range, the scaling exponent

S. R. Bullimore and J. F. Burn
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Fig.·2. Relationships of relative stride length (RSL) and duty factor (DF) to body mass (Mb)
in horses trotting at three different Froude numbers (Fr). Allometric equations describing
the data are shown (scaling exponents given ± 95% confidence intervals) and are indicated
by the solid lines. The scaling exponents were not significantly different from 0, indicating
that RSL and DF are independent of body mass in horses trotting at equal Froude number.
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of 0.10 predicted for RSL would not be detectable over inter-
individual variation. For example, if RSL was 1.50 in an
animal of 400·kg, a scaling exponent of 0.10 would give an
RSL of 1.55 in a 550·kg individual. This difference is smaller
than the differences that would occur between individuals of
the same size given a MAPD of 3.5% as measured here.
This suggests that, with a nonlinear tendon stress–strain
relationship, locomotion would not deviate sufficiently from
dynamic similarity to be detectable, or physiologically
significant, among the adult members of many species.

In this study, we have only considered the consequences of
size differences between adult individuals. However, the size
changes that occur during growth are often much greater.
Therefore, it seems likely that detectable alterations in
locomotion could arise within an individual during growth. It
would be of interest to determine whether this occurs and to
identify the biomechanical consequences. In addition to the
effects of size, locomotion will also be influenced by changes
in anatomical proportions and tendon properties during growth.
For example, the increase in tendon elastic modulus that occurs
with age in some species (Gillis et al., 1995; Yamamoto et al.,
2004) may allow dynamically similar locomotion to be
maintained despite large size differences.

The question of the physiological significance of the
predicted deviations from dynamic similarity is more difficult
to answer. A useful first approach is to compare the magnitude
of the predicted size effects with the amount of interindividual
variability that arises from other sources. The values of RSL
that we measured at a Froude number of 0.75 ranged between
1.50 and 1.69, although some of this variability probably arose
from experimental error. With a scaling exponent of 0.10,
mean RSL would increase from 1.50 to 1.85 over the size range
of horses used in this study. This effect is larger than the

measured interindividual variability, so could potentially be
physiologically significant.

The scaling exponents predicted for DF and RPF, both with
and without taking nonlinear tendon properties into account,
were very low. This indicates that these parameters are
unlikely to vary much with size, even without compensatory
distortions, and that they are insensitive to the scaling of leg
stiffness. This may explain why Alexander and Jayes (1983)
found greater differences in RSL than in DF when comparing
mammalian species of different sizes. Because the exponents
predicted for these parameters were within, or close to, our
measured confidence intervals, we could not distinguish them
statistically from zero.

The second question that we addressed was whether
systematic deviations from dynamically similar locomotion
occur with size in adult horses. We found that the scaling
exponents for RSL and DF in horses trotting at equal Froude
number were not significantly different from zero. The 95%
confidence intervals for the scaling exponents were narrow
(Table·4), indicating that any deviations from dynamic
similarity that occur in RSL and DF are likely to be very small.
We did not measure the phase relationships of the limbs or the
RPF. However, all of the horses were trotting, so their diagonal
limb pairs must have had a phase difference of half a stride.
Griffin et al. (2004) have also shown that the abrupt change in
limb phase at the walk–trot transition occurs at similar Froude
numbers in horses of different sizes, as would occur in
dynamically similar locomotion. It can be deduced that RPF
must have been close to independent of size because, if vertical
GRF rises and falls as a half sinusoid during the stance phase,
animals moving with equal DF must also have equal RPF
(Alexander et al., 1979). Vertical GRF is approximately
sinusoidal in horses (Witte et al., 2004), and we found that DF
was independent of size, so RPF must have been independent,
or close to independent, of size.

Our results are therefore consistent with the hypothesis that
horses of different sizes move in a dynamically similar manner
when trotting at equal Froude number. This does not
necessarily imply that the same would be found in an
undomesticated species that is subject to natural selection.
However, it does show that dynamic similarity in RSL and DF
is possible within a species over a more than eightfold range
of body mass. Because we only considered trotting, further
work would be needed to establish whether horses of different
sizes move in a dynamically similar manner at other gaits. It
is also important to note that dynamic similarity in some
mechanical parameters cannot be taken to imply that other
mechanical parameters are dynamically similar (Bullimore and
Burn, 2004).

We predicted theoretically that, in ‘idealised’ horses
which were identical except for size differences, RSL at
equal Froude number would increase with size. However, we
did not find this experimentally; the measured scaling
exponents were significantly different from the theoretically
predicted values and were not significantly different from
zero. This discrepancy suggests that some systematic change

Fig.·3. Measured and predicted relationships of relative stride length
(RSL) to body mass (Mb) in horses trotting at a Froude number of 0.5.
Crosses are measured values, solid line is allometric equation fitted
to measured values (RSL�Mb

0.00±0.03), broken line is relationship
predicted with linear tendon properties (RSL�Mb

0.19), circles are
relationship predicted with realistic nonlinear tendon properties
(RSL�Mb

0.11). The predicted effect of size is substantially reduced by
taking into account the nonlinear properties of tendon, but is still
greater than measured experimentally. This suggests that additional
factors compensate for size effects in horses.
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occurs with size in horses that compensates for the effects
of size differences on locomotion. It would be of interest to
identify this factor. One possibility is that, while tendon
elastic modulus does not increase with size across species
(Pollock and Shadwick, 1994), it does increase with size in
horses. Alternatively, a compensatory distortion may occur.
For example, larger horses may have relatively thicker
tendons. We have discussed possible sites of compensatory
distortions previously (Bullimore and Burn, 2004) and
concluded that an important compensatory distortion
between species is the scaling of the effective mechanical
advantage (EMA) of the limb (Biewener, 1989). Large
animals tend to have a more upright limb posture than
smaller species, and Biewener (1989) demonstrated that this
results in a systematic increase the ratio of muscle moment
arms to GRF moment arms (the EMA) with animal size. This
compensates for the size-independence of tendon elastic
modulus in three ways: (i) by decreasing the muscle and
tendon forces required to counteract a given GRF, (ii) by
decreasing the joint angular excursion that arises from a
given tendon elongation, and (iii) by decreasing the limb
shortening that arises from a given joint angular excursion.
Griffin et al. (2004) have shown that no gross changes in
limb posture occur with size in horses. However the changes
in EMA that would be required to maintain dynamically
similar locomotion in horses would be small and therefore
difficult to detect. To illustrate this, the metacarpophalangeal
joint can be taken as an example. In a 450·kg horse, the
digital flexors have a moment arm about this joint of
approximately 30·mm (Brown et al., 2003) and the GRF
moment arm at midstance is approximately 100·mm (S.R.B.
and J.F.B., unpublished data). If EMA is independent of size,
and muscle moment arms scale in proportion to Mb

0.33, then
the corresponding GRF moment arms would be 57·mm in an
80·kg horse and 116·mm in a 700·kg horse, while the muscle
moment arms would be 17·mm and 35·mm, respectively.
However, a small change in muscle moment arms, to 11·mm
and 39·mm respectively, would give an EMA that was
proportional to Mb

0.26, as has been found between species
(Biewener, 1989). This is a difference of only a few
millimetres, suggesting that careful measurements from a
large number of individuals would be required to detect it.

An important question is how such a compensation for the
effects of size could occur in a species where the size range
has developed through artificial selection by humans. Horses
are often used for physically demanding activities and are
selectively bred for a wide range of characteristics including
speed, endurance, agility and resistance to injury. The fact
that this has resulted in similar patterns of locomotion being
maintained across a wide range of sizes suggests that this way
of moving confers desirable qualities. The lack of even a
small amount of locomotor scaling with size suggests that
relatively slight alterations in movement would be
detrimental. Similarly, the (different) selection pressures
acting on wild species could potentially also result in
dynamically similar locomotion by selecting for optimal
locomotor patterns.

Our third aim was to estimate the extent to which nonlinear
tendon properties could compensate for the effects of size.
We found that taking nonlinear tendon properties into
account substantially reduced the scaling exponents predicted
for tendon strain, joint angular excursion and RSL, so that
predicted deviations from dynamic similarity were smaller
than for linear tendon properties. These predictions were
made for horses, but tendon properties are similar among
species (Pollock and Shadwick, 1994), and the tendons of
many species are loaded predominantly in the nonlinear
region of their stress–strain relationships (Ker et al., 1988).
Therefore these conclusions are likely to be widely
applicable. The effect of tendon nonlinearity will be greatest
when tendons are used in the low stress region, where the
stress–strain relationship is at its most nonlinear. Therefore
we expect the effect of tendon nonlinearity to decrease as
speed increases during locomotion. Because the digital flexor
tendons of horses are loaded at higher stresses than many
other tendons (Ker et al., 1988), we also expect the effect of
nonlinear tendon properties to be greater in many other
species and tendons than was found here. Where tendons are
used at low stresses, their nonlinear properties will effectively
help to ‘buffer’ the effects of size differences on locomotion.
In addition to reducing locomotor differences between
individuals, this could also reduce the effects of body mass
fluctuations within an individual due to, for example, growth,
pregnancy or seasonal variation.

S. R. Bullimore and J. F. Burn

Table·A1. Spring-mass model parameter values used to model horses of different sizes trotting at equal Froude number (Fr)

Body mass Fr=0.5 Fr=0.75 Fr=1.0

(kg) Klin Knonlin U0 V0 Klin Knonlin U0 V0 Klin Knonlin U0 V0

80 40.72 28.63 0.71 0.05 40.72 28.63 0.87 0.08 40.72 28.63 1.00 0.09
200 27.29 22.84 0.71 0.05 27.29 22.84 0.87 0.08 27.29 22.84 1.00 0.09
400 20.17 19.25 0.71 0.05 20.17 19.25 0.87 0.08 20.17 19.25 1.00 0.09
600 16.89 17.42 0.71 0.05 16.89 17.42 0.87 0.08 16.89 17.42 1.00 0.09
800 14.90 16.22 0.71 0.05 14.90 16.22 0.87 0.08 14.90 16.22 1.00 0.09

Dimensionless parameters are defined in Appendix A.
Klin, dimensionless spring stiffness predicted for linear tendon properties; Knonlin, dimensionless spring stiffness predicted for nonlinear

tendon properties.
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Appendix
Spring-mass model parameters used

The planar spring-mass model is specified by four
dimensionless parameters: dimensionless spring stiffness
(K), dimensionless horizontal landing velocity (U0),
dimensionless vertical landing velocity (V0) and initial spring
angle (�0), where K=kl0/Mbg, U0=u0/��gl0 (the square root of
Froude number), V0=v0/��gl0 and k is spring stiffness, l0 is
initial spring length, Mb is mass, g is the magnitude of the
acceleration due to gravity, u0 is horizontal landing velocity
and v0 is vertical landing velocity (McMahon and Cheng,
1990). The values of K, U0 and V0 that were used to simulate
trotting horses of different sizes in Part 1(iv) are listed
in Table·A1. �0 was chosen so that the model bounced
symmetrically, by the method described previously
(Bullimore and Burn, 2006).

List of abbreviations
DDFT deep digital flexor tendon
DF duty factor
EMA effective mechanical advantage
GRF ground reaction force
MAPD mean absolute percent deviation
Mb body mass
RMA reduced major axis
RPF relative peak force
RSL relative stride length
SDFT superficial digital flexor tendon
SL suspensory ligament
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