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Introduction
Melanin is one of the most widespread pigments in nature

(True et al., 1999). It causes the dark coloration found in an
enormous array of insects and vertebrates (see Majerus, 1998).
Batesian mimicry (Poulton, 1909; Brower, 1958) and industrial
melanism (Kettlewell, 1973) are classical examples of adaptive
melanism. Additional adaptive properties of melanin include
functional camouflage [e.g. Lepidopterans (see Kettlewell,
1973)], background matching [e.g. lower vertebrates (see
Hadley, 2000)] and ultraviolet protection [e.g. humans (see
Jablonski and Chaplin, 2000)].

The biochemical pathway resulting in the production of
melanin is conserved across vertebrate taxa (Hadley, 2000; True
et al., 1999). Melanin is formed when tyrosine is converted into
the catecholamine 3, 4-dihydroxy-phenylalanine (L-dopa), then
into dopamine. Both steps are catalyzed via the rate-limiting
enzyme, tyrosine hydroxylase [a.k.a. tyrosinase or hereafter, TH
(Nagatsu et al., 1964; Berne and Levy, 1998)]. The expression
of this enzyme differs in melanic and non-melanic tissue of
some organisms [e.g. Xiphophorus (Kazianis et al., 1999)].
Allelic mutations altering TH result in albinism in cats (Imes et
al., 2006) and mice (Halaban et al., 2000). Similarly, in some
birds and mammals, mutations in the melanocortin-1 receptor

gene (MC1R), which produces the receptor for melanocyte
stimulating hormone, are correlated with the replacement of
wild-type coloration by melanic coloration [e.g. birds (Theron
et al., 2001; Mundy et al., 2004), mammals (Robbins et al.,
1993; Kijas et al., 2001; Takeuchi et al., 1996; Klunglund et al.,
1995) (reviewed by Horth, 2005)].

Temperature often plays a key role in the expression of
melanin. In Siamese and Burmese cats, temperature-sensitive
(hereafter, TS) TH alleles result in a face-mask and dark
pigmentation on extremities (Lyons et al., 2005). TS-TH
affects melanic expression in fruit flies (O’Grady and DeSalle,
2000) and mice (Kwon et al., 1989). In nature, a seasonal
polymorphism occurs in some Colias butterfly species, which
is thought to be adaptive: summer broods are composed of
individuals with orange/yellow coloration in their wings. This
is replaced by melanic coloration in spring and fall broods,
allowing individuals to warm-up more quickly in colder
temperatures (Watt, 1969). In the laboratory, in mouse
melanocyte cell lines, heat shock and cold exposure both
reduce TH activity and melanin production (Kim et al., 2001;
Kim et al., 2003). As well, UV induction of reactive melanin
radicals in skin cells was determined to be a major cause of
melanoma in Xiphophorus fish (Wood et al., 2006).

About 1% of male mosquitofish (Gambusia holbrooki)
express melanic (mottled-black) body coloration, which
differs dramatically from the wild-type, silvery-gray
coloration. Here, I report on the genetic inheritance
pattern of melanic coloration, which indicates Y-linkage,
and at least one autosomal modifier. Phenotypic expression
of melanism is also affected by temperature. Expression is
constitutive (temperature insensitive) in some populations,
inducible (temperature sensitive) in others. Constitutive
and inducible expression occur among geographically
proximal populations. However, males from any single
population demonstrate the same constitutive or inducible
expression pattern as one another. The F1 males from
inter-population crosses demonstrate temperature-related
expression patterns like their sires’. As well, the sex ratio

of melanic males’ progeny differs among populations.
Here, inter-population crosses demonstrate a sex-ratio bias
in the same direction as intra-population crosses of the sire
population. About 20% of the male progeny of melanic
sires express the wild-type phenotype. These silver F1
males sire only silver offspring, suggestive of loss of the
melanin gene in F1 males from crossover between sex
chromosomes, or control by additional modifiers, or
involvement of additional factors. In nature, melanic males
persist at very low frequencies. The data collected here on
heritability indicate that genetic factors contribute to the
rarity of melanic male mosquitofish.

Key words: color, polymorphism, temperature, melanin, melanic,
melansitic.
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Despite exciting advances unveiling the genetic control of
melanism in mammals and birds (see Horth, 2005), there exists
a depauperate literature on the basic genetic and environmental
control of the inheritance of melanism in fish. One recent study
has, however, demonstrated an association between relative
melanic pigmentation in the lateral stripes of zebrafish and a
putative cation exchanger. In the golden zebrafish mutant, lateral
stripes are lighter in coloration and have fewer melanophores
than the wild-type fish (Lamason et al., 2005). By contrast, little
is understood regarding the inheritance of melanism in the
Poeciliidae (the live-bearing fish family), which demonstrate
strikingly unique melanic expression patterns among species,
as well as among conspecific individuals (see Axelrod and
Wischnath, 1991). The association between pigmentation and
natural selection has been well-studied in this family. Platyfish
(Xiphophorus maculatus) express few melanic tail-spot patterns
(Borowsky, 1978), which serve as valuable disassortative mating
traits (Borowsky and Kallman, 1976). Guppy (Poecilia
reticulata) melanic spot sizes are inversely correlated with
orange spot size/brightness – attributes which are important for
female choice and male mating success (Endler and Houde,
1995; Houde, 1997; Brooks and Endler, 2001). Both sexes
of sailfin mollies (Poecilia latipinna) express melanism, but
very rarely (Angus, 1983). Melanism is absent in western
mosquitofish (Gambusia affinis) and is rare in eastern
mosquitofish (G. holbrooki) (Regan, 1961; Snelson et al., 1986)
where it occurs in ~ 0.01% of males in nature (Horth and Travis,
2002). Natural selection acts differentially on silver and melanic
eastern male mosquitofish: melanic mosquitofish are subjected
to a lower predation rate (and higher recapture rate in nature)
than silver males (Horth, 2004) and negative frequency-
dependent survival is also associated with melanism in this
species (Horth and Travis, 2002).

In melanic eastern mosquitofish, macromelanophores are
found in the dermis of the skin (Regan, 1961). Melanin is
deposited into these, which produces the black-spotted

phenotype (Fig.·1A,C). Melanin is not absent in wild-type fish;
they have small micromelanophores with melanin deposits,
hence their body coloration remains light in comparison to
melanic fish (Fig.·1B,D). For comparison, albino fish have no
melanic pigmentation and thus have red eyes and light skin.

The genetic crosses that were conducted in the study were
designed to elucidate the inheritance patterns of melanism in
eastern mosquitofish and to obtain an understanding of how
temperature interacts with genetics to affect melanic expression.

Materials and methods
Fish collection and mating design

Small groups of female (N�10) and melanic male (N�5)
eastern mosquitofish were periodically collected (additional
melanic males were captured as needed), with dipnets, from three
natural populations during the period 1996–1999. Collections
were made from two north Florida sites: Picnic Pond (Wakulla
Co., FL, USA; hereafter PP) and Newport Springs (Wakulla Co.,
FL, USA; hereafter NS), and from one south Florida site: Miami
(Pahayokee, Everglades National Park, Dade Co., FL, USA).

Field-collected males were held in large stock tanks in a hot
laboratory and females were placed into individual breeding
chambers, one per 22.73·l (5·gallon) aquarium, kept at 31°C.
After parturition, approximately four young from each female’s
brood were randomly selected to grow to maturity (31°C). Each
juvenile was housed alone to ensure virginity at maturation.
Upon maturation, a virgin female was selected from each
maternal line and paired with one melanic male for 1·month
(31°C). Afterward, the sire was removed from the aquarium and
the gravid female was placed in a breeding chamber to avoid
cannibalism of young at birth. Young were typically born within
a few days and were periodically checked every few weeks
thereafter for maturation. The sex and color of each F1 was
tallied: as each juvenile fish matured, it was removed from the
tank. When a male matured that did not express melanism, it was

transferred to a cold (18°C) laboratory and
monitored for �12·weeks [the approximate time
required for melanic expression (Angus,
1989a)] or until death. 

Intra- and inter-population crosses were
conducted. Intra-population crosses (one virgin
female � one melanic male) included: (1) NS
(N=24 crosses), (2) PP (N=30) and (3) Miami
(N=20). Inter-population crosses included: (1)
Miami melanic male � PP virgin female (N=35)
and (2) PP melanic male � Miami virgin female
(N=18).

Fig.·1. Male eastern mosquitofish, Gambusia
holbrooki. (A) Melanic male. (B) Silver male. (C)
Magnification (50�) of melanic male dermis,
showing melanin deposition in macromelanophores.
(D) Magnification (50�) of silver male dermis,
showing melanin deposition in micromelanophores.
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Silver sons of melanic sires

Not all sons sired by melanic males express melanism, even
after cold exposure. To determine the inheritance pattern of
melanism in F2 fish sired by silver F1 males (with melanic sires),
17 silver F1 males were mated to virgin females (as described
above). Thirteen of the 17 crosses were PP silver F1 males mated
to 13 virgin PP females (as single pair crosses). The four
remaining single pair crosses were: Miami silver F1 male X
Miami female (N=2), an F1 son (of a Miami female � PP male)
� Miami female (N=1), and another F1 son (of a PP female �
Miami male) � Miami female (N=1). F2 young were reared to
maturity at 31°C then housed at 18°C for 3·months (or until
death) to identify whether melanic expression was inducible
(TS).

Masculinized females

Twenty F1 females sired by different melanic males (a few
females from each of the pure-bred populations and from each
of the population crosses) were evaluated for the presence of
melanin and the formation of a gonopodium (male mating
structure) after being fed flake fish-food laced with male-
hormone (methyl-testosterone). Females were held for at least
3·months, most much longer (four for >1·yr) at 18°C. Food was
prepared by suspending methyl-testosterone in ethanol, adding
this mixture to commercial flake-food (TetraMin, That Fish
Place, Lancaster, PA, USA), then air-drying to evaporate the
alcohol. Fish were fed flakes daily using a final suspension of
0.3·mg·testosterone·g–1·food. Testosterone treatment is used to
identify traits with sex-limited expression.

Statistical tests

Two inheritance patterns were evaluated with �2 tests: if we
assume that all melanic males carry a melanism allele on their
Y chromosome (YM), but must also have a dominant, autosomal
modifier (A) to express the melanic phenotype, then when
crossing a YM male heterozygous for the autosomal, dominant
modifier (Aa) to a female heterozygous (Aa) for this autosomal
gene, a 3:1 ratio is the null expectation. Here, males cannot be
aa genotypes or they would not express melanism. The 3:1 ratio
is used when assuming heterozygotes to be more common than
homozygotes, presuming the A allele is rare due to selection on
the melanic phenotype (the same 3:1 ratio is expected if males
are heterozygous and all three genotypes are found in females in
equal proportions). Alternatively, if there is no fitness cost to the
autosomal allele, then the average frequency of melanism is
expected to be 0.875 (see Fig.·2). Here, female genotypes (AA,
Aa or aa) occur in equal frequency, as do male genotypes (AA
or Aa).

Results
Intra-population crosses

NS melanic males � NS virgin females

The work presented here shows that melanic expression is
constitutive in the NS population. Most sons of melanic sires
expressed melanism at 31°C. A minority of sons (see below)

L. Horth

remained silver; melanism was not induced in them even after
cold exposure (18°C). None of the daughters, in this or any
other cross, developed melanism at 31°C or 18°C. Twenty-four
NS matings yielded a total of 167 progeny at maturity: 79
melanic males, 19 silver males, and 69 females. Thus 0.81 of
the males were melanic (see Table·1). The ratio of
melanic:silver males was ~4:1 at 31°C, which does not differ
from the classical segregation ratio of 3:1 for Mendelian
inheritance of a dominant allele. (�2=1.65; 0.10<P<0.25). The
frequency of melanism of 0.81 also does not deviate from the
null expectation of 0.875 for all autosomal crosses (�2=0.5313;
0.25<P<0.50). The mean number (per brood) of melanic males
at maturity was 3.29 (±3.01), of silver males 0.79 (±1.5), and
of females 2.87 (±2.75). Brood size at maturity ranged from
0–15 individuals. Nineteen broods comprised all, or primarily,
melanic males, and eight broods contained some silver males
(Fig.·3). The sex ratio for all broods combined was male biased
at ~1.4:1.0 (see Table·1). This differs from the null hypothesis
of a 1:1 sex ratio (�2=5.0359, 0.01<P<0.025).

PP melanic males � PP virgin females

Melanic expression is TS (inducible) in the PP population.
Sons of melanic sires did not express melanin at 31°C. Cold
exposure induced melanic expression in some, but not all silver
F1 males. Thirty matings yielded 224 progeny at maturity
(31°C): 0 melanic males, 111 silver males and 113 females.
Cold induced melanism in 67 males, 26 remained silver, and
18 died before sufficient time (~12·weeks) elapsed to determine
final phenotype. Of the females, 63 lived >12·weeks; none were
melanic. Cold induced melanic expression in 0.72 of the F1
males (Table·1). The ratio of melanic:silver males (18°C)
was ~2.6:1, which is not significantly different from 3:1
(�2=0.4337, 0.50<P<0.75) and this frequency of melanism
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Fig.·2. Potential crosses and outcomes for a dominant, autosomal
modifier of a Y-linked melanism gene in Gambusia holbrooki.
Percentage refers to male fish from a given cross that would have a
melanic phenotype. Mean at bottom refers to percentage melanism
that would result if sires were heterozygous or homozygous dominant
for the autosomal modifier and dams were used from all three diplid
genotypes at equal frequency (it is assumed that males are not aa,
otherwise they would not be melanic).
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(0.72) is also not significantly different from 0.875 (�2=2.539,
0.10<P<0.25). The mean number (per brood) of melanic and
silver males at maturity at 18°C was 2.79 (±1.91) and 0.90
(±0.90), respectively; that of silver males and females at 31°C
was 3.7 (±2.25) and 3.8 (±2.07), respectively. Brood size at
maturity ranged from 0 to 15 individuals. Twenty-three broods
contained all, or primarily, melanic males; 18 broods contained
some silver males. The sex ratio at 18°C was 111 males: 113
females (Table·1), which does not differ from 1:1 (�2=0.0179,
0.75<P<0.90).

Miami melanic males � Miami virgin females

Melanic expression is constitutive in the Miami population.
Most sons of melanic sires expressed melanism at 31°C. Cold
exposure did not induce melanism in any silver sons. Twenty
matings yielded 187 progeny at maturity: 108 melanic males,
26 silver males and 53 females. 0.81 of the F1 males were
melanic (Table·1). The ratio of melanic:silver males was ~4:1.
This does not differ statistically from 3:1 (�2=2.2388,
0.10<P<0.25) and a frequency of melanism of 0.81 does not
differ from the null expectation of 0.875 (�2=0.7257,
0.25<P<0.50). The mean number (per brood) of melanic males
at maturity was 5.4 (±4.62), of silver males 1.35 (±1.38), and
of females 2.65 (±2.64). Brood sizes at maturity ranged from

1 to 17 individuals. Eighteen broods contained all, or primarily,
melanic males and 13 broods contained some silver males
(Fig.·4). The sex ratio was male biased at ~2.5:1 (Table·1),
which differs from the null expectation of 1:1 (�2=35.0855,
P<0.001).

Inter-population crosses

Miami melanic males � PP virgin females

Melanic expression is constitutive in this south FL by north
FL cross, as it was in the sire population. Sons of melanic sires
expressed melanism at 31°C and cold exposure did not induce
melanism in silver sons. Thirty-five matings yielded a total of
488 progeny at maturity: 259 melanic males, 62 silver males,
and 167 females. 0.81 of the F1 males were melanic (see
Table·1). The total ratio of melanic:silver male progeny was
~4.2:1, which differs from the dominance expectation of 3:1
(�2=5.5337, 0.01<P<0.05) but a melanic frequency of 0.81
does not deviate from the expected value of 0.875 (�2=1.704,
0.10<P<0.25). The mean number (per brood) of melanic males
at maturity was 6.76 (±5.57), silver males 1.80 (±2.10), and
females 4.72 (±2.76). Brood sizes at maturity ranged from 2 to
29 individuals. Thirty-four broods contained all or mostly
melanic males and 20 broods contained some silver males
(Fig.·5). The sex ratio was male biased at ~1.9:1.0 (Table·1),
which differs from the null expectation of 1:1 (�2=48.5984,
P<0.001).

PP melanic males � Miami virgin females

Melanic expression is inducible in this inter-population
cross, just as it is in the sires’ population. Sons of melanic sires
were silver at 31°C. Cold exposure induces melanic expression
in some, but not all, silver F1 males. Unfortunately, >10 crosses
resulted in no progeny. In addition, a mechanical failure in the
cold-room resulted in many males dying before their
expression pattern was known. However, 18 crosses yielded
132 progeny at maturity. These included two males, each with
a total of two spots (31°C), 74 silver males, and 66 females. At
18°C, 37 silver males turned melanic, 17 silver males remained
silver, and the remainder died before sufficient time elapsed to
know whether they would turn melanic. After cold exposure,
0.68 (0.69 if the two males with two spots are included) of the

Table·1. Sex ratio, and frequency of melanic male progeny from Gambusia holbrooki virgin female � melanic male matings

Number Sex-ratio Male morph Frequency melanic males
Ntotal

Population (male:female) (male:female) (melanic:silver) @31°C @18°C (number of broods)

Newport Springs 98:69 1.4:1*,a 4:1 0.81 0.00 167 (24)
Picnic Pond (PP) 111:113 0.98:1 2.6:1 0.00 0.72 224 (30)
Miami 134:53 2.5:1*,b 4:1 0.81 0.00 187 (20)
PP female � Miami male 321:167 1.9:1*,c 4:1† 0.81 0.00 488 (35)
Miami female � PP male 76:66 1.1:1 2:1 0.02 0.68 132 (18)

*,a,b,cSignificantly different from 1:1 (a: �2
0.05,1=5.04, 0.025<P<0.01; b: �2

0.05,1=35.08, P<0.001; c: �2
0.05,1=48.60, P<0.001).

Progeny were raised until maturity in a hot (31°C) environment, then if silver, transferred to a cold (18°C) environment to monitor
temperature-sensitive melanic expression.
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Newport Springs melanic male � virgin female matings.
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F1 males were melanic (Table·1). The total ratio of
melanic:silver males in the cold was ~2.2:1.0, which does not
differ statistically from 3:1 (�2=1.2098, 0.25<P<0.50), and the
frequency of melanism of 0.68 does not differ from 0.875
(�2=2.212, 0.10<P<0.25). The mean number (per brood) of
melanic males at maturity at 18°C was 2.47 (±2.47), of silver
males at 18°C was 1.42 (±1.44), of silver males at 31°C was
4.11 (±3.25), and of females (31°C) was 3.67 (±2.05). Brood
sizes at maturity ranged from 1 to 21 individuals. Most broods
(N=13) contained all, or primarily, melanic males. Some
broods (N=9) contained no silver males. Overall, the sex ratio
(31°C) was nearly equal at 1.15:1.00 (Table·1), which does not
deviate from the null expectation of 1:1 (�2=0.7042,
0.25<P<0.50).

Silver F1 males with melanic sires

About 0.20–0.30 of the male progeny sired by melanic males
remain silver, even after cold exposure (>12·weeks). So, 13 PP
silver F1 males were mated to 13 PP virgin females. Four
additional crosses were conducted: Miami female � Miami
silver F1 male (N=2), a Miami female � an F1 male (from a
Miami female � PP male cross, N=1), and a Miami female �
an F1 son (from a PP female � Miami male cross, N=1). These
F1 silver sires produced F2 broods composed of only silver
individuals (both sexes). None of the F2 males ever expressed
melanic coloration (31° or 18°C). Sixteen F1 silver sons
produced no young when crossed to females. Seventeen
successful matings yielded 129 progeny at maturity: 55 silver
males and 74 females. The mean number of silver males at
maturity was 6.11 (±2.61) and females was 8.70 (±4.84).
Individual brood sizes ranged from 3 to 25 at maturity. There
was a female bias in the overall sex ratio of 0.74:1.00. The sex
ratio for the PP population crosses was 0.818:1.00 (36 males:44
females), for the Miami crosses 1:1 (12 males: 12 females) and
for the interpopulation crosses, respectively, 0.3:1.0 (3 males:
10 females) and 0.5:1.0 (4 males: 8 females). The PP ratio is
not significantly different from 1:1 (�2

0.05,1=0.455,
0.25<P<0.50). The Miami ratio equals 1:1, and the
interpopulation crosses are too small for meaningful statistical

L. Horth

evaluation. One silver PP F2 was successfully mated to a PP
female. They produced one silver son, no melanic sons, and no
daughters.

Masculinized F1 female progeny of melanic sires

Testosterone-treated females developed a gonopodium (male
sex structure used to transfer sperm), but did not express a dark-
spotted phenotype like melanic males.

Discussion
It is important to emphasize that the work conducted in this

study was designed to shed light on the basic inheritance
patterns of melanism in mosquitofish. Melanic inheritance is
more complex than can be entirely resolved from the
experimental design of this work. However, four findings are
reported here. (1) Some populations have inducible melanism,
others constitutive, therefore, more than one genotype produces
the melanic phenotype. In Himalayan mice, a point mutation
results in TH-misfolding at high temperature (Halaban et al.,
2000; Kwon et al., 1989), and a pale phenotype. Mosquitofish
with TS-melanism are silver at 31°C so they could carry a
similar mutation. This, however, does not account for the ~0.20
silver sons produced by both types of melanic sires. (2) The F1
silver phenotype implies several possibilities (A–E). (A) More
than one gene controls melanic expression. Over 120 genes
regulate mouse pigmentation (Bennett and Lamoreux, 2003),
�40 color-pattern loci exist in guppies (see Endler, 1978;
Houde, 1997), and several melanic pattern-forming genes
occur in other Poeciliids (Lindholm and Breden, 2002). The
relatively constant frequency, across populations, of ~0.20 F1
silver males, is suggestive of an autosomal effect. If
mosquitofish melanism is controlled by a Y-linked gene, plus
one or more autosomal modifier(s) – and temperature affects
expression – this in-part (but not entirely) explains the results
obtained in this study, as well as some of the inconsistency
revealed in studies on melanism in this species. For example,
one study (Regan, 1961) found that all the sons of two south
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FL (USA) melanic males were silver, which contrasts with my
Miami data (but can be explained if Regan’s population is TS).
Two additional studies (Martin, 1984; Angus, 1989a) found
that about half the sons of a few NC and Central FL
(respectively) melanic males were melanic, and in Angus’
work, the other half became melanic in the cold.

If melanism is controlled by a dominant, autosomal gene, plus
a Y-linked melanic allele, and the autosomal (A) allele is very
rare (thus found primarily in the heterozygous state in males and
females), the expected melanic:silver phenotypic ratio is 3:1. In
my work, one population cross deviates from this ratio.
Alternatively, if the autosomal allele is not assumed to be rare,
and all three diploid states (AA, Aa, aa) persist in equal
frequency, the expected frequency of melanism is 0.875 (see
Fig. 2). In none of my work do the population crosses deviate
from this frequency. However, the F2 males that remained silver
(and had melanic grandfathers) cannot be explained by the
stated inheritance patterns alone (unless all F1 males were YM

aa genotypes and all were mated only to aa females). No
account was made of female autosomal genotype in the
laboratory crosses, hence one would assume a random sampling
of genotypes. Thus, a Y-linked melanic allele, plus one
autosomal modifier, in addition to temperature dependence,
does not fully explain melanic inheritance patterns.

An alternative is to assume that melanism is dominant,
autosomal, and sex-limited. Under this assumption, the
dominant melanic allele would have a frequency P=0.005 in
nature, resulting in the observed 1% melanic male phenotype.
Among melanic males P/(2–P) would be homozygous (MM)
and a frequency of (2–2P)/(2–P) would be heterozygous (M+).
If melanic males were mated to females at random, the progeny
of MM melanic males would all be melanic. However, such
males would be present in nature at a frequency of 0.0025, and
as such, would be unlikely to be used often in laboratory
crosses. M+ males’ progeny would be melanic at a frequency
of 1/2P+1/2=0.5025. These frequencies are not well reconciled
with laboratory cross data where 100%x+50%(1–x)=80%
melanism, which can only occur if more than half of the
melanic sires are MM, which is inconsistent with the 0.01
frequency of the melanic phenotype observed in nature. (B)
Transposons result in the production of silver F1 males. Some
transposons are TS, alter pigmentation (Epperson and Clegg,
1987) and cause multiple changes in biochemical pathways
(e.g. Clegg and Durbin, 2000). Helitrons are transposons found
in the sex-determining region of the sex chromosomes of
platyfish (Xiphophorus maculatus) and are posited to play a
role in sex chromosome evolution (Zhou et al., 2006). Jule is
also a transposon found in several live-bearing species that may
have a sexually dimorphic pattern in platyfish, where it is found
in the subtelomeric regions of the sex chromosomes (Volff et
al., 2001). However, classical transposition rates are typically
<0.20. (C) Environmental effects on melanic expression are
more complex than addressed here. If TS-TH operates on a
step-function and some individuals require <18°C for
expression, I would not have uncovered this. (D) There is an
extremely high rate of spontaneous mutation from black to

silver. This is improbable. (E) There is a high rate of sex
chromosome recombination (consider the location of Jule), and
crossover results in loss of the melanic allele (M), in silver
F1 males. Angus (Angus, 1989a) posited atypical sex
determination (XX silver males), or sex chromosome crossover
to explain silver males, but his deduction was based upon much
lower rates of incomplete penetrance (0.05) than I saw. He also
noted that XX silver males would produce all female progeny,
which did not occur in my work. For other Poecillidae genera,
crossover rates between sex chromosomes are ~0.002–0.003
[Xiphophorus (Kallman, 1965)] and 0.01 [Poecilia (Angus,
1989b)]. Crossover can explain why F2 males do not express
melanism, however, the highest rate reported in Poecillids is
~0.0742 (Lindholm and Breden, 2002), suggesting a rate of
0.20 to be extraordinary. It is noteworthy that in G. holbrooki’s
sister taxa, G. affinis, females possess a heteromorphic (sex)
chromosome pair that G. holbrooki lack (Black and Howell,
1979). Many poeciliids have autosomal sex determination,
often associated with a melanism locus (see Meffe and Snelson,
1989). Some species have three sex chromosomes, such that
XY and YY are males (WY, WX and XX are females). Here,
if all cross types contributed equally to the production of
melanic males (Y carries a dominant melanin gene and WYM

females are extremely rare, so not considered), then ~77% of
males would be melanic (this is likely an underestimate since
few males would probably be homozygous YMYM). If F1 YY
males were silver, they would only produce F2 melanic males
if they were crossed to WYM females (presumed very rare). The
sex ratio of broods of YY males would be 50:50 for WY and
WX females, and 100% male for XX females. Two cross types
(XX by YYM and XX by YMYM) would produce no females,
and if all cross types were mated at equal rates, half of the
broods would be 50% melanic, the other half, 100% melanic.
Whereas the silver F1 male conundrum is resolved by the WXY
system, most F1 females would carry a melanic allele, and
females sired by melanic males would be expected to turn
melanic when exposed to testosterone, which did not occur. (3)
When a sex-ratio bias occurs in these crosses, it tends toward
the gender bias (male) of the paternal population. These are
also the crosses with higher frequencies of melanism (Table·1).
In cell culture lines, an androgen receptor activates the TH
promoter, and an androgen response element is ~1.4·kb
upstream of the promoter (Jeong et al., 2006) suggestive of an
association between androgen and TH production. From a
similar perspective, mosquitoes (Aedes aegypti) demonstrate
Y-chromosome meiotic drive due to a distorter gene that is
closely linked to the male determining locus on the Y
chromosome (Wood and Newton, 1991). Y chromosomes of
some strains drive against some X chromosomes, but not others
(Owusu-Daaku et al., 1997). A parallel would be Y-
chromosome drive when a cross involves a Miami sire but not
a PP sire. In the WXY chromosome system, some crosses (XX
by YMYM and XX by YYM) are expected to produce only
males. These genotypes might be found in higher frequency in
populations with male biased sex ratios. In X. maculatus, which
has a WXZ sex chromosome system, pigmentation genes are
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close to the sex-determining gene, too. Drosophila simulans
also have autosomal suppressor genes that inhibit the sex-ratio
distortion of driving X chromosomes (Atlan et al., 1997). Here
the parallel would be driving Y suppressors in populations like
PP, but not Miami. Relative overproduction of males by
melanic sires could act as compensation for the loss of
phenotypic expression in F1 silver males. Female numbers
decreased with increasing frequencies of melanic males in
empirical mesocosm populations (Horth and Travis, 2002),
though whether this occurred solely as a result of female deaths
or because of a skewed F1 sex ratio as well, is not known. (4)
Melanic expression appears to be sex linked, not sex limited.
This is supported by the fact that none of the female progeny
with melanic sires express a melanic phenotype, even after
ingesting testosterone and being subjected to the cold for at
least 12·weeks (see also, Angus, 1989a).

The consequence of loss of expression of melanism is the
loss of fitness for the black male phenotype/genotype. If this
male color polymorphism were to be maintained via mutation-
selection balance, a loss of 0.20/generation of the rare allele
would imply a huge selective cost to the melanic genotype and
an improbably high mutation rate to the melanic phenotype
(Lynch and Walsh, 1998). The only potential benefit identified
here is possible sex-ratio control. Additional work is underway
to explain more about the genetic by environmental control of
melanism in mosquitofish.
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