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Introduction
Recovery plans for conserving rare or endangered species

often recommend that new populations be established to lessen
the risk of extinction (Williams et al., 1988; Tear et al., 1993).
For many imperiled taxa, individuals are brought into captivity
to be bred for reintroduction or supplementation of declining
wild populations, or to establish self-sustaining captive
populations (Kleiman, 1989; Snyder et al., 1996; Wallace,
2000; Brown and Day, 2002). Other species with chronically
small populations or highly restricted ranges may be
translocated to new habitats (Minckley, 1995). Conditions in
these new environments rarely mirror those of the native
habitat, and new populations can rapidly change morphology,
behavior, and physiology relative to those characteristics

expressed in the natural population. Such unexpected changes
in phenotype can hinder the survival and reproductive success
of individuals raised in captivity and, in some cases, have led
to genetic change (Philippart, 1995; Reisenbichler and Rubin,
1999). Understanding how these rapid changes in phenotype
arise could help both to remedy and avoid unintended
phenotypic alterations. 

The potential benefits and problems of transferring
individuals to novel habitats are illustrated by conservation
efforts for the endangered Devils Hole pupfish (Cyprinodon
diabolis Wales), a species that in many ways has served as an
example for endangered species management (Deacon and
Williams, 1991). Devils Hole pupfish are endemic to Devil’s
Hole, which is a small surface opening (~3·m wide by 20·m

Imperiled species that have been translocated or
established in captivity can show rapid alterations in
morphology and behavior, but the proximate mechanisms
of such phenotypic changes are rarely known. Devils Hole
pupfish (Cyprinodon diabolis) are endemic to a single
desert pool and are characterized by a small body, large
head and eyes, and lack of pelvic fins. To lessen the risk of
extinction, additional populations of C. diabolis were
established in artificial refuges. Yet, pupfish in these
refuges rapidly shifted to a larger body, smaller head and
eyes, and greater body depth. Here we examined how food
availability and temperature, which differ between these
habitats, influence morphological development in closely
related Amargosa River pupfish (Cyprinodon nevadensis
amargosae). We were interested in knowing whether these
environmental factors could developmentally shift
Amargosa River pupfish toward the morphology typical of
pupfish in Devil’s Hole. By regulating food ration, we
created groups of pupfish with low, medium and high
growth rates. Pupfish with low growth showed
proportionally larger head and eyes, smaller body depth,
and reduction in pelvic fin development. Elevated

temperature further inhibited pelvic fin development in all
treatments. Pupfish in the low growth group also showed
reduced levels of thyroid hormone, suggesting a possible
physiological mechanism underlying these morphological
changes. To test this mechanism further, pupfish were
reared with goitrogens to pharmacologically inhibit
endogenous thyroid hormone production. Pupfish given
goitrogens developed larger heads and eyes, shallower
bodies, and reduced pelvic fins. Taken together, our results
suggest that changes in environmental factors affecting the
growth and thyroid hormone status of juvenile pupfish
may play a developmental role in generating the
morphological differences between C. diabolis in Devil’s
Hole and the refuges. These findings illustrate the need to
incorporate a mechanistic understanding of phenotypic
plasticity into conservation strategies to preserve imperiled
fishes.

Key words: development, phenotypic plasticity, morphology, captive
breeding, translocation, ecophysiology, thyroid hormone,
conservation.

Summary

The Journal of Experimental Biology 209, 3499-3509
Published by The Company of Biologists 2006
doi:10.1242/jeb.02417

Testing an ecophysiological mechanism of morphological plasticity in pupfish and
its relevance to conservation efforts for endangered Devils Hole pupfish

Sean C. Lema* and Gabrielle A. Nevitt
Center for Animal Behavior and Section of Neurobiology, Physiology and Behavior, University of California, Davis,

Davis, CA 95616 USA
*Author for correspondence at present address: Physiology and Endocrinology Program, Northwest Fisheries Science Center,

2725 Montlake Boulevard East, Seattle, WA 98112 USA (e-mail: sclema@u.washington.edu)

Accepted 28 June 2006

THE JOURNAL OF EXPERIMENTAL BIOLOGY



3500

length) located 15·m inside a rock fissure that leads to a deep
groundwater aquifer (Soltz and Naiman, 1978). Devil’s Hole
has no surface outflow, and pupfish in this habitat forage and
spawn only on a shallow limestone shelf at one edge (James,
1969). The pupfish in Devil’s Hole are morphologically unique
among pupfish species. They have a small body size,
proportionally large head and eyes, and lack pelvic fins –
characteristics that typify the juvenile life stage of other pupfish
species (Wales, 1930; Miller, 1948). This suite of
morphological characteristics suggests that the Devils Hole
pupfish may be morphologically neotenous. 

During the 1960s, ground water pumping caused the water
level in Devil’s Hole to fall, exposing the shallow rock shelf
that provided the only spawning habitat (Deacon and Williams,
1991; Karam, 2005). This crisis instigated the construction of
three artificial refuges – the Hoover Dam refuge, Point of
Rocks refuge, and School Springs refuge (extinct since 2003)
– to establish additional populations of C. diabolis and to
provide a source of fish for reintroduction should the
population in Devil’s Hole go extinct (Sharpe et al., 1973;
Baugh and Deacon, 1988; Karam, 2005). The artificial refuges
were constructed specifically to emulate the ecological
conditions in Devil’s Hole (Sharpe et al., 1973; Williams,
1977). Nevertheless, only 5 years after their introduction, the
morphology of C. diabolis in the Hoover Dam refuge was
found to differ significantly from the Devil’s Hole phenotype
(Williams, 1977). Pupfish in the refuge had larger, deeper
bodies and smaller head sizes than fish in Devil’s Hole. In
2000, pupfish in the two other refuges were subsequently found
to deviate morphologically along the same parameters, with
32% of fish in the School Springs refuge and 48% of fish in the
Point of Rocks refuge exceeding the maximum reported body
length of pupfish in Devil’s Hole (Wilcox, 2001). These
changes mark substantial morphological deviations from the
phenotype of C. diabolis in its natural habitat.

Understanding how these morphological changes occurred
is critically relevant to the successful management of C.
diabolis (US Fish and Wildlife Service, 1990). Initial efforts
examined whether the refuge populations had changed
genetically from the Devil’s Hole population. A molecular
genetic comparison of these populations showed that refuge
populations contain a subset of the alleles present in fish from
Devil’s Hole, suggesting that refuge populations have
experienced founder effects or genetic drift (Wilcox, 2001).
Even so, the genomes of C. diabolis are nearly identical at the
allozyme, mtDNA and nuclear DNA levels (Echelle and
Dowling, 1992; Echelle and Echelle, 1993; Duvernell and
Turner, 1998; Duvernell and Turner, 1999; Martin and
Wilcox, 2004), suggesting that genetic change may not fully
explain the morphological shifts of the refuge populations
(Wilcox, 2001). 

What has not been tested previously is that the
morphological differences between C. diabolis in the refuges
and Devil’s Hole might be caused by developmental plasticity
– a developmental change in form or behavior caused by
environmental conditions (West-Eberhard, 2003). Here, we

explore this idea by examining how pupfish morphology
responds developmentally to variation in environmental
conditions. Given the crisis conservation status of C. diabolis
in Devil’s Hole (currently fewer than 50 individuals), we
examined whether the morphological traits typical of pupfish
in Devil’s Hole could be experimentally induced in a surrogate
sister species (Amargosa River pupfish, C. n. amargosae) by
providing environmental conditions comparable to those in
Devil’s Hole. First, we regulated food ration to create
experimental groups of Amargosa River pupfish with lower
growth rates to approximately match the growth rate of C.
diabolis in Devil’s Hole (James, 1969). Pupfish in these
treatments were then examined for differences in relative head
and eye size, body depth and pelvic fin development. Recent
work in other fish species has suggested that thyroid hormone
in part mediates the morphological changes that occur as fish
transition from larval to juvenile life stages (Brown, 1997;
Trijuno et al., 2002). We thus used radioimmunoassay to
measure whole-body levels of the thyroid hormone thyroxine
(T4) in pupfish from these food ration treatments. We also
tested the hypothesis that morphological shifts between the
refuge and Devil’s Hole populations might be mediated in part
by shifts in thyroid status by treating larval pupfish with
goitrogens that pharmacologically block the endogenous
production of thyroid hormones. We predicted that goitrogen
treatments would cause C. n. amargosae to develop a
morphology similar to C. diabolis in Devil’s Hole. 

Materials and methods
Animal collection

On 18 October 2001, male and female Amargosa River
pupfish (Cyprinodon n. amargosae Miller) were collected by
minnow trap and dip net from the Amargosa River near
Dumont Dunes, San Bernardino County, California. Fish were
transported to the Center for Aquaculture and Aquatic Biology
at the University of California, Davis, and maintained in 1.2·m
diameter, flow-through tanks at 26-28°C under ambient
photoperiod. All procedures were approved by the Animal Care
and Use Committee of the University of California, Davis. 

Pupfish breeding

On 20 December 2003, wild-caught pupfish were spawned
in two groups of six females and three males in 114-liter tanks.
These spawning tanks were maintained at 29.10±0.30°C (mean
± s.e.m.) and 0.4·p.p.t. salinity. The bottom of each tank was
covered with cheesecloth. Pupfish spawned their eggs onto the
cheesecloth, which was then removed from the spawning tank
and placed into aerated 2-liter beakers. A single drop of
acriflavine (Novalek, Inc., Hayward, CA, USA) was added to
each beaker to prevent fungal growth. Eggs were maintained
at 31.28±0.52°C until hatching (up to 10 days).

On the day of hatching, larval pupfish were transferred to 2-
liter, aerated buckets (32.06±0.75°C; 0.4·p.p.t.) and fed a diet
of Liquifry No. 1 (Interpet, Ltd, Dorking, Surrey, England) and
live brine shrimp nauplii (San Francisco Bay Brand, Inc., CA,
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USA). On 4 January 2004, at 15 days post-fertilization (d.p.f.),
larval pupfish from both breeding tanks were photographed for
later body length measurement and divided evenly into
experimental treatments.

Food availability and growth rate effects on morphology

In the first experiment, we examined how variation in growth
rate influenced morphological development. At 15·d.p.f., larval
pupfish were randomly assigned to three treatments: high food
availability (100% daily rations, ad libitum), medium food
availability (50% daily rations), and low food availability (20%
daily rations). Given the small size of pupfish at the start of the
experiment, food treatments were determined as a proportion
of the highest feed amount. In the highest feeding amount, fish
were fed to excess so that some food was left on the bottom of
the rearing bucket. All treatments were fed brine shrimp and
spirulina flake foods (Aquatic Eco-Systems, Inc., Apopka, FL,
USA), and maintained at 0.4·p.p.t. salinity. Each ration
treatment was replicated (N=8 for high and medium ration
treatments; N=7 for low ration treatment due to mortality) in
2-liter buckets with four pupfish per bucket. Morphological
values reported represent the mean per bucket. Buckets were
maintained in four tanks (approximately 114-liter; 90·cm
long�45·cm wide�30·cm high) that were filled ~s deep with
water. Two buckets from each ration treatment were placed in
each tank, to insure that treatments were balanced among tanks.
Water temperature was maintained at 33.33±0.09°C by electric
heaters. However, minor variation in temperature in the room
resulted in slight temperature variation among the four tanks
(range, 32.35–34.06°C), so temperature was added post hoc to
our analyses.

During the experiment, we measured the standard length
(SL) and total length (TL) of pupfish every 21 days beginning
at 15·d.p.f. From 15·dpf through 51·d.p.f., length was measured
from digital photographs taken with an AxioVision camera
connected to a Zeiss Stemi SV11 dissecting microscope and
illuminated with a Zeiss KL1500 light (Zeiss, Oberkochen,
Germany). Length measurements were later calculated from
the digital photos using ImageJ software (Version 1.24, NIH).
From 73·d.p.f. through 141·d.p.f., length was measured using
calipers (precision ±0.05·mm). At 141·d.p.f., fish were
sacrificed (MS222; 250·mg·l–1·H2O), and the right side of the
body of each fish was photographed using an AxioVision
camera attached to a dissecting microscope. At this time, we
visually assessed the presence or absence of the paired pelvic
fins and photographed the pelvic region of each fish’s body for
documentation. Digital photographs were then used to quantify
body size (SL), relative head size (head length measured from
tip of the retracted premaxillaries to the posterior edge of
opercle/SL), relative eye size (diameter of eye/SL), and relative
body depth (depth of body at posterior end of opercle/SL) using
ImageJ Software. Morphological data is presented as ratios
normalized to body length in order to make comparisons with
published descriptions of the morphology of C. diabolis in
Devil’s Hole and the refuges (Wales, 1930; Miller, 1948;
Williams, 1977). 

Whole-body T4 radioimmunoassay

To determine whole-body concentrations of the thyroid
hormone thyroxine (T4), each fish was homogenized (polytron
PT Kinematica GmbH, Kriens-Luzern, Switzerland) with
1.2·ml ice-cold 100% ethanol containing 1·mmol·l–1 5-propyl-
2-thiouracil (ETOH-PTU). To determine extraction efficiency,
50·�l (~22·000·c.p.m.) of I125-labeled tri-iodothyronine (T3)
(Perkin-Elmer, Wellesley, MA, USA) were added to each
homogenate, and the proportion of I125-T3 extracted was later
measured in duplicate at the time of T4 radioimmunoassay. The
homogenate was sonicated (Sonifier 450, Branson, Danbury,
CT, USA) and centrifuged (1409·g) for 20·min at 4°C. The
supernatant was then removed and saved for T4 measurement.
The tissue pellet was then resuspended in 0.3·ml ETOH-PTU,
centrifuged again, and supernatant was removed and combined
with supernatant from the first centrifugation. The supernatant
was dried under nitrogen gas, and then resuspended in 100·�l
of ice-cold sodium barbital buffer (pH 8.6) containing 0.5%
bovine �-globulin (Sigma) and 1·mmol·l–1 PTU.

T4 was measured by radioimmunoassay as described
elsewhere (Dickhoff et al., 1982). Samples (10·�l) of extract
were incubated for 2·h at 37°C in sodium barbital buffer with
anti-L-T4 antiserum (1:5000; Accurate Chemical & Scientific
Corp., Westbury, NY, USA) and I125-labeled T4 (Perkin-
Elmer). Sodium barbital buffer containing 20% polyethylene
glycol was then added to each sample, and samples were
centrifuged (1409·g) for 20·min at 4°C. The supernatant was
removed to separate free and bound hormone, and the
remaining pellet was assayed for radioactivity (Cobra II gamma
counter, Packard, Downer’s Grove, IL, USA). T4 standards
from 1.25 to 60·ng·ml–1 defined the sensitivity of the assay. All
samples were run in duplicate, and the intra-assay coefficient
of variation was 13.4%. 

Extraction efficiency (mean ± s.e.m.) of I125-T3 from pupfish
bodies was 61.4±4.3%. We found that extraction efficiency
was negatively associated with body mass [extraction
efficiency=0.922–1.798(body mass); r2=0.86, F1,21=131.9538,
P<0.0001], and since mean body size differed among food
ration treatments (Fig.·1), extraction efficiencies varied among
treatments (ANOVA, F2,20=41.3110, P<0.0001). Given these
effects of body size on extraction efficiency, we corrected
measurements of whole-body T4 levels by the extraction
efficiency for each fish.

Inhibition of thyroid hormone production

In the second experiment, we examined how the
pharmacological inhibition of thyroid hormone production
affected morphological development. At 15·d.p.f., larval
Amargosa River pupfish were assigned to 2-liter buckets, at a
density of four pupfish per bucket. These buckets were then
divided into three treatments. One treatment was administered
0.03·mmol·l–1 methimazole (Sigma), a second group received
0.01% KClO4 (potassium perchlorate; Sigma), and the third
group served as a control. Methimazole and KClO4 are
established pharmacological inhibitors of thyroid hormone
production from the thyroid gland (Wolff, 1998; Roy et al.,
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2004). Pupfish were treated with methimazole and KClO4 by
dissolving these compounds in water and adding them to the
rearing buckets. Water in all treatment buckets was changed
every other day. All treatments (N=8 for control and KClO4

treatments, N=7 for methimazole treatment) were fed the 100%
daily rations of brine shrimp and spirulina flake foods as
described above, and maintained at 33.04±0.19°C (mean ±
s.e.m.; range, 30.59–34.75°C) and 0.4·p.p.t. At the beginning
(15·d.p.f.) and end (68·d.p.f.) of the experiment, all fish were
photographed digitally with an AxioVision camera connected
to a Zeiss Stemi SV11 dissecting microscope, and
morphological measurements were later made from these
images using ImageJ software.

Statistical analyses

We used a repeated-measures ANOVA model to examine
the effects of treatment and measurement day on the standard
length of pupfish in the low, medium and high food treatments.
We then used Tukey HSD tests (overall �=0.05) to calculate
multiple paired comparisons among the three growth
treatments for each measurement day. Given that
morphological values were percentages, we arcsine
transformed morphological data from the food ration and
goitrogen experiments prior to analysis. A two-factor ANOVA
model was used to determine whether there were effects of
feeding amount and rearing temperature on head size, eye size,
body depth, and on the percentage of fish with pelvic fins.
When the model revealed a significant treatment effect,
multiple pairwise comparisons among the three treatments
were calculated using a Tukey HSD test. We tested for

differences in whole-body levels of thyroid hormone (T4)
among growth rate treatments using a one-factor ANOVA
model followed by a Tukey HSD multiple pairwise
comparison.

For the goitrogen experiment, we first used a one-factor
ANOVA model to determine if there were any initial
differences in standard length among treatments at the start
of the experiment. We also used a two-factor ANOVA to
determine whether there were effects of treatment and rearing
temperature on standard length when the experiment was
terminated. We then used a Tukey HSD test for pairwise
comparisons among treatments. Two-factor ANOVAs were
used to examine how treatment and temperature affected head
size, eye size, body depth and pelvic fin development.
Multiple pairwise comparisons among treatments were then
calculated using Tukey HSD tests. All statistical tests were
two-tailed and performed using JMP 4.0.2 software (SAS
Institute, Inc.).

We present and analyze morphological values as ratios
normalized to body length to compare with the original
description of C. diabolis and background literature on
morphology of this species, which describes the morphology
as normalized ratios (Wales, 1930; Miller, 1948; Williams,
1977). Such normalized ratios, however, can introduce biases
that confound statistical analyses and result in erroneous
conclusions (Packard and Boardman, 1999). For the food ration
and goitrogen experiments, we therefore performed a second
set of analyses on absolute measurements of head size, eye size
and body depth using ANCOVA models with treatment, water
temperature, body length and their interactions as factors. Only
the statistically significant interactions of these models are
presented. These secondary analyses provided an important
confirmation of the conclusions drawn from statistical analysis
on the ratio values. 

Results
Food ration and growth rate affect morphological

development

Food ration levels generated significant differences in
growth rates (Fig.·1; repeated-measures ANOVA, treatment
effect, F2,17=157.663, P=<0.0001; water temperature effect,
F1,17=1.055, P=0.319; treatment�temperature interaction,
F2,17=0.007, P=0.9932; time effect, F6,12=9.021, P=0.0007).
Pairwise comparisons among treatments on each sampling day
showed no difference among treatments on the day when fish
were initially assigned to treatments (15·d.p.f.). However, body
sized differed on all subsequent sampling days. 

Fish in the low ration treatment exhibited morphological
characteristics similar to C. diabolis in Devil’s Hole. Pupfish
reared in the low food treatment showed a proportionally larger
head size (F2,17=3.764, P=0.0443), larger eye diameter
(F2,17=5.822, P=0.0119), and shallower body depth
(F2,17=23.665, P<0.0001) than fish in the high and medium
food treatments (Fig.·2). We found no effect of water
temperature on head size (F2,17=2.255, P=0.1515), eye size
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Fig.·1. The growth rate of pupfish from the high food (100% rations),
medium food (50% rations), and low food (20% rations) treatments
differed (P<0.0001). Tukey pairwise comparisons showed no
difference (ND) in body length among the three treatments on the 1st
measurement day (15 days post-fertilization) when fish were initially
assigned to treatments. Body size deviated significantly by day 36 and
remained different among treatments through the conclusion of the
experiment on day 141. Values are means ± s.e.m. (N=7–8).

THE JOURNAL OF EXPERIMENTAL BIOLOGY



3503Pupfish morphological plasticity

(F2,17=1.822, P=0.1948) or body depth (F2,17=0.121,
P=0.7320). Significantly fewer fish in the low food treatment
(14%) developed pelvic fins compared to fish in the medium
food (66%) and high food treatments (78%) (Fig.·3A;
F2,17=7.446, P=0.0048). Fish from all three treatments
developed pelvic fins less often at warmer rearing temperatures
(Fig.·3B; F1,17=4.990, P=0.0392), and there was no interaction
between treatment and rearing temperature (F2,17=0.655,
P=0.5319).

The secondary analysis of the morphological results using
ANCOVA models similarly showed that food ration treatment
affected head size (r2=0.9867, treatment, F2,11=4.0055,
P=0.0493; body length, F1,11=33.2845, P=0.0001), eye size
(r2=0.9770, treatment, F2,11=7.1028, P=0.0105; body length,

F1,11=7.0300, P=0.0225), and body depth (r2=0.9929, water
temperature, F1,11=8.1175, P=0.0158; body length,
F1,11=3.1236, P=0.0001; water temperature�body length
interaction, F1,11=5.0161, P=0.0468; treatment�water
temperature�body length interaction, F2,11=4.4102,
P=0.0392). 

Food ration effects on whole-body T4

The amount of T4 per fish differed among food ration
treatments (Fig.·4; F2,20=43.8699, P<0.0001). The low ration
treatment had a mean (± s.e.m.) whole-body T4 level of
0.22±0.03·ng/fish, the medium ration treatment had
1.07±0.07·ng/fish, and the high ration treatment had
0.77±0.08·ng/fish. The amount of T4 in whole-body tissues was
also positively associated with body mass (F1,21=9.5307,
P=0.0056), which confounds interpretation of treatment
differences in whole-body T4 since body size also differed
among treatments (Fig.·1). 

Fig.·2. Relative (A) head size (P=0.0443), (B) eye size (P=0.0119)
and (C) body depth (P<0.0001) differed in pupfish from high food
(100% rations), medium food (50% rations), and low food (20%
rations) treatments. Values are means ± s.e.m. (N=7–8). Letters
indicate pairwise comparisons among groups (Tukey HSD test). SL,
standard length.

High       Medium        Low

High       Medium        Low

High       Medium        Low

B
od

y 
de

pt
h 

(%
 o

f 
SL

)

20

22

24

26

28

30

H
ea

d 
si

ze
 (

%
 o

f 
SL

)

28.0

28.5

29.0

29.5

30.0

30.5

31.0

E
ye

 s
iz

e 
(%

 o
f 

SL
)

9.0

9.5

10.0

10.5

11.0

a,b

a

b

a a

b

Head size

Eye size

Body depth

a

b

c

A

B

C

Fig.·3. Effect of food ration on pelvic fin development. (A) A
significantly smaller proportion of fish in the low food ration treatment
developed pelvic fins when compared to the medium and high food
treatments (P=0.0048). Values are means ± s.e.m. (N=7–8), and letters
indicate pairwise differences (Tukey HSD test). (B) In all treatments,
there was a trend toward a low proportion of fish with pelvic fins when
reared at higher temperatures (P=0.0392). Each data point represents
the mean of two replicated buckets per temperature value (except the
point indicated by asterisk, which represents a single bucket).

Temperature (°C)

32.25 32.50 32.75 33.00 33.25 33.50 33.75 34.00 34.25

Pr
op

or
tio

n 
w

ith
 p

el
vi

c 
fi

ns

0

0.2

0.4

0.6

0.8

1.0
High food (100%)
Medium food (50%)
Low food (20%)

High           Medium            Low
0

0.2

0.4

0.6

0.8

1.0

a

a

b

B

A

*

THE JOURNAL OF EXPERIMENTAL BIOLOGY



3504

Goitrogens alter morphology

Fish that received known goitrogens (inhibitors of thyroid
hormone production) developed larger heads (Fig.·5; F2,17=7.404,
P=0.0053) and eyes (F2,17=10.353, P=0.0013), but a smaller
body depth (F2,17=7.542, P=0.0049) compared to control fish.
Temperature did not affect relative head growth (temperature
effect, F1,17=0.724, P=0.4075; temperature�treatment
interaction, F2,17=0.099, P=0.9056). Elevated rearing
temperature did, however, generate fish with a larger relative eye
size (Fig.·6A; temperature effect, F1,17=11.739, P=0.0035;
temperature�treatment interaction, F2,17=1.090, P=0.3600) and
smaller relative body depth (Fig.·6B; temperature effect,
F1,17=6.419, P=0.0221; temperature�treatment interaction,
F2,17=0.329, P=0.7246). A second analysis of morphological data
using ANCOVA models likewise showed that treatment with
goitrogens influenced head size (r2=0.9598, treatment,
F2,11=5.4024, P=0.0232; body length, F1,11=27.0258, P=0.0003)
and body depth (r2=0.9578, treatment, F2,11=5.9448, P=0.0178;
body length, F1,11=13.1662, P=0.0040; water temperature�body
length interaction, F1,11=5.4475, P=0.0396). There was not,
however, an effect of goitrogen treatment on eye size when the
data was analyzed using an ANCOVA model (r2=0.6664,
treatment, F2,11=3.1809, P=0.0813).

Pupfish in goitrogen treatments showed a reduction in pelvic
fin development when compared to control fish (Fig.·7A;
F2,17=10.863, P=0.0009). We also found that higher water
temperatures inhibited fin development (Fig.·7B; F1,17=6.640,
P=0.0196). There was no significant interaction between
treatment and temperature (F2,17=0.242, P=0.7874).

Overall, these shifts in body proportions did not appear to be
caused by a general inhibition of growth. Mean body length of
pupfish among treatments was similar at the beginning of the
experiment (F2,20=2.843, P=0.0819). At the end of the
experiment, treatments still did not differ in body length
(F2,17=1.815, P=0.1930), indicating that goitrogens did not alter

growth rate. Elevated water temperature, however, resulted in a
reduction in body size in all treatments (F1,17=41.630,
P<0.0001). There was no interaction effect of treatment and
temperature on body size (F2,17=0.018, P=0.9825). 

Discussion
In this study, we tested whether simple manipulations of

growth rate via diet could influence morphological
development in Amargosa River pupfish. Our results show that
low food availability can developmentally generate a dwarfed
morphological phenotype that resembles that of C. diabolis in

S. C. Lema and G. A. Nevitt

Body mass (g)

0      0.05    0.10    0.15    0.20   0.25    0.30    0.35    0.40    0.45

T
4 

le
ve

l (
ng

)

0

0.25

0.50

0.75

1.00

1.25

1.50

High food (100%)
Medium food (50%)
Low food (20%)

Fig.·4. Food ration treatments differed in whole-body levels of the
thyroid hormone T4 (P<0.0001). T4 levels are plotted against body
mass (g) for each treatment bucket.

B
od

y 
de

pt
h 

(%
 o

f 
SL

)

26

27

28

29

30

Control  Methimazole   KClO4

Control  Methimazole   KClO4

Control  Methimazole   KClO4

E
ye

 s
iz

e 
(%

 o
f 

SL
)

10.0

10.2

10.4

10.6

10.8

11.0

H
ea

d 
si

ze
 (

%
 o

f 
SL

)

29.5

30.0

30.5

31.0

31.5

a

b

a

Eye size

Head size

a

a

a

Body depth

a

b
b

A

B

C

b

Fig.·5. Effect of goitrogen treatment on pupfish morphology. Relative
(A) head size (P=0.0053), (B) eye size (P=0.0013) and (C) body depth
(P=0.0049) of pupfish varied significantly among the methimazole,
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depth are presented as percent of standard length (SL). Values are
means ± s.e.m. (N=7–8). Letters indicate pairwise comparisons among
groups (Tukey HSD test).
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Devil’s Hole. Pupfish reared under low food ration developed
larger head and eye sizes, shallower bodies, and failed to
develop paired pelvic fins. Post hoc analysis of variation in
rearing temperature revealed that elevated temperature also
reduced the percentage of individuals developing pelvic fins.
This effect was apparent even though rearing tanks only
differed slightly in water temperature (<2°C), and suggests that
even small temperature differences can generate significant
morphological variation in developing pupfish. 

We also found that low food ration was associated with a
reduction in whole-body levels of the thyroid hormone T4,
suggesting that morphological changes associated with low food
ration may have occurred in part via changes in thyroid hormone
homeostasis. Supporting this idea, larval pupfish given
goitrogens to block endogenous thyroid hormone production
developed larger heads and eyes and shallower bodies. Also,
fewer fish in the goitrogen treatments developed pelvic fins.
Further analysis revealed that elevated rearing temperature
caused pupfish to develop larger eyes and shallower body depth.

Taken together, these results indicate that elevated temperatures
and reduced food intake can developmentally generate a
morphological phenotype similar to that expressed by C. diabolis
in Devil’s Hole, and that these morphological changes may occur
in part through changes to thyroid hormone physiology.

The morphological plasticity in pupfish seen here strongly
suggests that habitat differences in food availability and
temperature contribute to the morphological differences seen
between C. diabolis in the refuges and Devil’s Hole. This
plasticity may mediate the increase in body size, reduction in
head and eye size, and increase in body depth seen in all refuge
populations of this species. One of the primary concerns in C.
diabolis management has been whether pupfish from the
refuges could be successfully reintroduced into Devil’s Hole.
The altered morphology of refuge fish might preclude their
survival upon release into the energetically challenging (high
temperature, low food) environment of Devil’s Hole. However,
if the morphological deviations of refuge populations are due

Fig.·6. Elevated rearing temperature increased (A) relative eye size
(P=0.0035) and decreased (B) relative body depth (P=0.0221) in the
methimazole, KClO4 and control treatments. Each data point represents
the mean of two replicated buckets per temperature value (except the
point indicated by asterisk, which represents a single bucket).
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Fig.·7. Effect of goitrogen treatment on pelvic fin development. (A) A
significantly smaller proportion of fish in the methimazole and KClO4

treatments developed pelvic fins when compared to the control
(P=0.0009). Values are means ± s.e.m. (N=7–8) and letters indicate
pairwise differences (Tukey HSD test). (B) The proportion of fish with
pelvic fins plotted against rearing temperature for each treatment.
Elevated rearing temperatures resulted in a lower proportion of fish
developing pelvic fins (P=0.0196). Each data point represents the
mean of two replicated buckets per temperature value (except the point
indicated by asterisk, which represents a single bucket).
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to developmental plasticity, as suggested here, then
these deviations might be reversed by altering
rearing conditions. Eggs or newly hatched larvae
transferred from the refuges to Devil’s Hole might
still develop the Devil’s Hole morphology. This
prediction could be tested by rearing refuge larvae
under conditions that more closely resemble those
of Devil’s Hole.

It is important to note that, although
environmental conditions generated a morphology
similar to that seen in Devil’s Hole, we did not
recreate the natural phenotype of C. diabolis in
Devil’s Hole. For instance, relative head length was
quantified as 33.5–37.5% (mean, 35.4%) of standard
length in C. diabolis from Devil’s Hole (Miller,
1948). Yet, head length only increased from 29.0%
(high food ration) to 30.5% (low food ration) in the
experimental C. n. amargosae fish shown here.
Environmental conditions can thus developmentally
shift Amargosa River pupfish toward a Devil’s Hole
morphology, but do not seem to have replicated that
phenotype. Even in the refuge populations, Williams
found a reduction of relative head length in C.
diabolis to ~32% (means for males, 31.6%; females,
33.4%) (Williams, 1977), indicating that the
morphology of fish in the refuges is closer to fish in
Devil’s Hole than are the experimental Amargosa
River pupfish presented here. 

Ecophysiology of morphological change

Based on our results, we propose a model for how
environmental differences may have caused
morphological shifts among populations of C.
diabolis (illustrated in Fig.·8). Stepping through this
figure, our model suggests that the elevated water
temperature of Devil’s Hole combined with low
availability or quality of food resources leads to a
reduction in growth rate and depression of thyroid
hormone status in juvenile C. diabolis. This
combination of low growth and reduced thyroid
hormone levels during the developmental transition
from larval to juvenile morphologies generates the
neotenous or ‘dwarfed’ morphology typical of C. diabolis in its
native habitat. Applying this model to our study system, the
refuge habitats are generally lower in temperature and higher in
food resources (i.e. algae, invertebrates) than Devil’s Hole
(Wilcox, 2001; Karam, 2005). Thus, for C. diabolis in the
refuges, the lower temperature combined with the greater
abundance of food facilitates the development of a morphology
typical for other pupfish species. This morphology (larger and
deeper body, smaller head and eyes) is a deviation from the
Devil’s Hole phenotype.

To understand this model, we must clarify the links between
water temperature, food availability and thyroid hormone
physiology. First, with respect to temperature, in desert
pupfishes as in other fishes, it is well established that elevated

water temperatures result in increased metabolic demands
(Brett and Groves, 1979; Peck et al., 2005). For example, Salt
Creek pupfish (C. salinus salinus) from the Death Valley clade
have higher metabolic rates, with higher temperatures in both
freshwater and g seawater (Stuenkel and Hillyard, 1981). What
is more, desert pupfish (C. macularius) acclimated to higher
temperatures ingest more food than those acclimated to lower
temperatures due to an elevated metabolic rate and a depressed
assimilative efficiency for food (Kinne, 1960). It follows that
C. diabolis occupying the high thermal environment of Devil’s
Hole (~33–34°C) likely have elevated food and oxygen
consumption rates to meet the increased cellular nutrient
demands of this elevated temperature environment.

As temperatures become elevated, metabolic demands
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Fig.·8. Morphological plasticity in pupfish may be driven by differences in
environmental conditions that affect thyroid hormone physiology and,
subsequently, morphological development. This model illustrates a possible
scenario where high water temperatures elevate metabolism and cause a suite of
physiological changes in the thyroid hormone system that are dependent on food
availability and quality. If food resources are abundant or high in nutritional quality,
pupfish develop a normal morphology with small head and eye sizes, a deep body,
and pelvic fins (possibly occurring in the refuges for C. diabolis). If food resources
are scarce or of low quality, however, thyroid hormone production may be inhibited
resulting in development of the neotenous morphology (large head and eye sizes,
small body depth, lack of pelvic fins) typical of C. diabolis in Devil’s Hole.
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increase. If food resources in a high temperature habitat are
abundant or of high quality, Devils Hole pupfish can acquire
sufficient nutrients to maintain their elevated metabolism and
still grow rapidly. However, in habitats where food resources are
of low quality or where competition for limited resources is high,
pupfish may have difficulty obtaining enough food to meet
elevated metabolic demands while providing for growth and
reproduction. Some of the refuges have standing algal crops that
are considerably higher than Devil’s Hole (Karam, 2005), which
may be related to differences in solar insolation between habitats.
Devil’s Hole receives direct sunlight for only a few hours each
day during summer, while the refuges receive year-round sun
exposure. The species composition of food resources also differs
between the refuges and Devil’s Hole (Williams, 1977; Karam,
2005). This variation in food resources may generate population
differences in energy allocation and growth for C. diabolis.

Next, temperature and food resources alter the production of
thyroid hormones (Leiner and MacKenzie, 2003; MacKenzie
et al., 1998). In trout, elevated temperature increases the
degradation rate of the thyroid hormone T4 as well as the rate
of deiodinase conversion of T4 to triiodothyronine (T3) (Eales
et al., 1982; Johnston and Eales, 1995). Similarly, restricted
food intake can reduce plasma levels of T4 and T3 in fish (Eales
and Shostak, 1985; Eales, 1988; Power et al., 2000; Reddy and
Leatherland, 2003). Even food of low nutrient quality can
reduce growth rates and thyroid hormone production (Higgs
and Eales, 1979; Eales et al., 1993; MacKenzie et al., 1993).
Yet, what is not commonly appreciated in fish is that this
variation in thyroid physiology during early life may have a
dramatic impact on morphological development.

Thyroid hormones play a key role in mediating the larval to
juvenile transition in fishes (Inui and Miwa, 1985; Brown, 1997;
Trijuno et al., 2002). We propose that variation in thyroid
hormone physiology induced by temperature and food conditions
during this transition may generate morphological differences
among C. diabolis in Devil’s Hole and the refuges. For example,
zebrafish (Danio rerio) larvae treated with goitrogens have
smaller bodies, larger heads, and fail to develop pelvic fins
(Brown, 1997), but the addition of exogenous thyroid hormone
to the water prevents these changes. Goldfish (Carassius auratus)
larvae that receive supplemental thyroid hormone accelerate their
growth and show an earlier differentiation of fin development
(Reddy and Lam, 1992). Changes to thyroid hormone physiology
are also thought to mediate the neotenic morphology that typifies
some species. Adult ice gobies (Leucopsarion petersii) display
several morphological features, such as the absence of scales and
presence of reduced pelvic fins – characteristics that typify
juveniles in other gobies. The appearance of a thyroid gland in
the ice goby is also developmentally delayed, suggesting
that thyroid physiology, in part, mediates the neotenous
morphology of this species (Harada et al., 2003a; Harada et al.,
2003b).

Additional work is needed to test the model that we have
proposed here. Specifically, quantification of metabolic rates,
growth trajectories, and food consumption parameters for C.
diabolis in Devil’s Hole and the refuges is needed. As the model

is currently described, we address only two environmental
factors, temperature and food, which may generate the
morphological changes seen in refuge populations of C. diabolis.
Yet, other environmental factors could play a role in generating
these morphological shifts. For instance, mean dissolved oxygen
saturation is lower in Devil’s Hole (1–2·mg·l–1) than in the
refuges (4–5·mg·l–1) (Wilcox, 2001; Karam, 2005). Studies in
other fishes have shown that low dissolved oxygen can reduce
serum levels of thyroid hormone (Wu et al., 2003). It is also
possible that Devil’s Hole may have distinct water chemistry
characteristics that contribute to the dwarfed morphology of
pupfish in the habitat. While the water analyses that have been
conducted for Devil’s Hole do not present any obvious chemical
candidate that would cause pupfish in this habitat to show a
unique morphology compared to the other habitats occupied by
pupfish in the Death Valley region (i.e. Walker and Eakin, 1963;
Dudley, Jr and Larson, 1974), there are a number of chemicals
not measured in these analyses that are known to cause defects
in thyroid hormone production in vertebrates. For example,
iodine, selenium and lithium can all impact growth and
development by altering thyroid function, and future analyses
should quantify these compounds in Devil’s Hole water. Lastly,
while our current model focuses on how food resources change
thyroid hormone physiology, other metabolic hormones could
also alter morphological development. Nevertheless, the utility
of the model we propose is that it provides testable predictions
for the cause of morphological shifts among C. diabolis
populations and potentially other endangered fish species as well.

Implications of phenotypic plasticity for management of
imperiled species

Management programs for imperiled species often
emphasize genetic health defined as maintaining a genetically
effective population size, preventing inbreeding and avoiding
artificial selection (Meffe, 1986; Philippart, 1995). Such goals
have been key considerations in the management of C. diabolis
(Baugh and Deacon, 1988; US Fish and Wildlife Service,
1990). It has been estimated that Devils Hole pupfish have been
naturally isolated for ~20·000 years (Miller, 1981), and
molecular evidence shows that the species is genetically
distinct from other pupfishes in the Death Valley clade (Echelle
and Dowling, 1992; Duvernell and Turner, 1998; Duvernell
and Turner, 1999; Martin and Wilcox, 2004). An initial
emphasis on maintaining the genetic integrity of the refuge
populations thus was fitting. Yet, the morphological shifts that
occurred in these populations illustrate how the developmental
effects of altered habitat conditions must also be considered
when managing species.

In the case of C. diabolis, the population in Devil’s Hole has
declined over the last few years to a precarious size, and a census
of Devil’s Hole in April 2006 recorded fewer than 50 individuals.
Artificial propagation is currently underway to ensure that the
species will not become extinct in the short term. These
propagation efforts include both the expansion of C. diabolis
populations in refuge habitats and a renewed attempt to spawn
and rear the species in captivity. Given the morphological
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plasticity documented here, it is crucial that environmental
conditions in these efforts are strictly managed to mimic the
conditions of Devil’s Hole and ensure that captively propagated
C. diabolis develop a morphology typical of the species in its
natural habitat. There is warranted concern that C. diabolis
showing a larger body size and altered morphology might have
difficulty obtaining sufficient food for routine body maintenance
and reproduction if reintroduced into Devil’s Hole. Careful
control over environmental conditions during artificial
propagation, however, should help avoid those potential pitfalls.

More generally, the consequences of environmentally induced
plasticity are only beginning to be recognized in conservation
biology even though plastic phenotypic shifts have been recorded
in imperiled species for many years. For instance, black-footed
ferrets (Mustela nigripes) bred and raised in captivity have
shorter-length bones in the forearms and rear legs, and these
changes appear to result from plastic responses to rearing
conditions (Wisely et al., 2005). Indeed many animals reared in
captivity show behavioral changes that impede the success of
reintroduction and supplementation programs (Snyder et al.,
1996; Wallace, 2000). For example, breeding large numbers of
fish in hatcheries has long been an approach to supplement and
restore wild populations; yet fish reared in hatcheries can show
behavioral differences from their wild counterparts, and many of
these behavioral changes can be attributed to their rearing
environments (Olla et al., 1994; Berejikian et al., 1996;
Braithwaite and Salvanes, 2005). Differences in brain size have
even been found between fish reared in hatcheries and the wild,
and these differences appear to be generated in part through
plastic developmental responses to the environment (Marchetti
and Nevitt, 2003; Lema et al., 2005; Kihslinger and Nevitt, 2006;
Kihslinger et al., 2006). While such plastic changes in brain and
behavior are not often taken into account in conservation,
neurobehavioral changes in altered environments might be more
widespread than commonly considered, given that laboratory
studies with mammals and fish provide abundant examples of
environmental influences on neural phenotype (i.e. Diamond et
al., 1993; van Praag et al., 2000; Lema, 2006).

Nevertheless, our understanding of the physiology and
mechanisms of phenotypic development is only beginning to
be incorporated into new solutions for conservation problems,
and many questions remain to be explored (Carey, 2005). Can
habitats be intentionally restored such that they take into
account the expression of phenotypes (Watters et al., 2003)?
Or, will plasticity bolster the survival of plant and animal
species as they face anthropogenic changes in their
environment? Answering these questions requires an increased
attention to the role of phenotypic plasticity in conservation
biology and could generate innovative approaches for
protecting imperiled species (e.g. Watters et al., 2003).
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