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Introduction
Animal movement arises from the complex interplay of

sensory information processing, appendage actuation and
force generation. In flight, wings move in ways that may
permit hovering, forward, or even maneuvering flight. The
various patterns of wing motions follow from the sensory cues
involved in flight control (position and orientation along with
their velocities and accelerations) and lead to the forces and
torques that underlie different flight behaviors. There are
potentially many ways in which wings could be actuated to
generate a particular flight behavior, such as maintaining a
fixed position and orientation. The extent to which such
multiple realizations of actuator motions may satisfy the
requirements for a given flight behavior remains unexplored.
In this study we treat flight control as an inverse problem and
examine the set of kinematic inputs capable of generating a
specific flight behavior (hovering) in the hawkmoth Manduca
sexta L.

Hawkmoths, like all flying insects, generate locomotor

forces by activating the flight muscles to move their wings
through the air, generating aerodynamic forces and torques,
which support and propel them. Variation in these inputs allows
the moth to express many flight behaviors including fast
forward flight, odor plume tracking, hovering in front of and
feeding from flowers, decelerating upon approach and
compensating for any slight perturbations to its position or
orientation (Stevenson et al., 1995; Willis and Arbas, 1991).
Although these hovering flights are readily expressed by
laboratory reared hawkmoths feeding from artificial flowers
positioned in a flight arena, the kinematic and actuator variation
used by the moths to establish and maintain position and
orientation are unknown. Moreover, the set of possible patterns
of variation is also unknown, increasing the difficulty of
making specific, a priori predictions of expected kinematic
variation and its likely aerodynamic consequences. In our
treatment of hovering flight as an inverse problem, a system
with known outputs (hovering flight) but unknown inputs (wing
movements), we sought different sequences of wingbeats and

The inverse problem of hovering flight, that is, the range
of wing movements appropriate for sustained flight at
a fixed position and orientation, was examined by
developing a simulation of the hawkmoth Manduca sexta.
Inverse problems arise when one is seeking the parameters
that are required to achieve a specified model outcome. In
contrast, forward problems explore the outcomes given a
specified set of input parameters. The simulation was
coupled to a microgenetic algorithm that found specific
sequences of wing and body motions, encoded by ten
independent kinematic parameters, capable of generating
the fixed body position and orientation characteristic
of hovering flight. Additionally, we explored the
consequences of restricting the number of free kinematic
parameters and used this information to assess the
importance to flight control of individual parameters and
various combinations of them.

Output from the simulated moth was compared to
kinematic recordings of hovering flight in real hawkmoths;
the real and simulated moths performed similarly with

respect to their range of variation in position and
orientation. The simulated moth also used average
wingbeat kinematics (amplitude, stroke plane orientation,
etc) similar to those of the real moths. However, many
different subsets of the available kinematic were sufficient
for hovering flight and available kinematic data from real
moths does not include sufficient detail to assess which, if
any, of these was consistent with the real moth.

This general result, the multiplicity of possible hovering
kinematics, shows that the means by which Manduca sexta
actually maintains position and orientation may have
considerable freedom and therefore may be influenced by
many other factors beyond the physical and aerodynamic
requirements of hovering flight.

Supplementary material available online at
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types of kinematic variation that allowed simulated hovering
hawkmoths to maintain their position and orientation,
mimicking the feeding behavior of these animals.

Inverse problems are defined in opposition to forward
problems, where forward problems are the computation of an
output from known inputs. For example, computing the
maximum elevation reached by a cannon ball of known mass
fired with a known trajectory and initial velocity is a forward
problem. The reverse of this, computing the initial velocity of
the cannon ball from its maximum elevation (along with its
mass and initial trajectory) is an inverse problem. These
definitions for forward and inverse problems rely on the notion
of a process or system, usually time related, that converts inputs
to outputs. In the earlier example the process is gravity. In the
inverse problem of hovering, the process is the aerodynamic
forces generated by the motion of wings in the fluid. The inputs
are therefore the wing motions and the output changes in
position and orientation. Inverse problems, including the
inverse problem of hovering flight, are often ill-posed. Ill-posed
problems are defined in opposition to well-posed problems,
where well-posed problems meet the following criteria: (1) a
solution exists, (2) the solution is unique and (3) the solution
depends continuously on the data (Hadamard, 1902). Ill-posed
problems fail to meet one or more of the three conditions. For
example, the inverse problem of the cannonball’s initial
velocity described earlier is ill-posed if the mass and initial
trajectory are not known.

While inverse problems and inverse approaches are common
in some fields of biology, especially metabolic and gene
network analysis (e.g. Holter et al., 2001), application to
biomechanics has largely been limited to inverse dynamics
analyses of legged locomotion (e.g. Winter, 1990). Those
studies of terrestrial locomotion seek to reconstruct joint
torques, muscle forces and even neural inputs from whole limb
or whole body ground reaction forces and typically reach a
single solution. Models incorporating neural inputs are
particularly prone to becoming ill-posed (Hatze, 2000), but any
system with more degrees of freedom in the inputs than the
outputs will likely result in an ill-posed inverse problem.

In some cases ill-posed problems can be made well posed
via regularization, a process for adding assumptions about the
solution (Tikhonov, 1963). For example, a recent study of
simulated bipedal running and walking reduced a multiplicity
of solutions for each locomotor speed to the solution that
minimized energy use (Srinivasan and Ruina, 2006). While
there are myriad constraints one could imagine that may be
brought to bear on such ill-posed problems (e.g. energy, target
position and its derivatives, stability to perturbations, ranges of
acceptable solutions, evolutionary history), the logical first step
is to examine the simplest problem of target tracking in flight
control. We anticipated that the inverse problem of hovering
would have multiple solutions and that there may be many
different sequences that would suffice, even sequences that
change different aspects of the simulated moth’s wingbeat
kinematics. However, the factors that have led Manduca sexta
to use some limited portion of this set are unknown and cannot

be considered without some knowledge of the larger realm of
potential solutions.

We examined the inverse problem of hovering by
constructing a redundantly actuated (more kinematic
parameters than may be needed) mathematical model of
Manduca sexta, computing the aerodynamic forces and torques
that arise from wing motions and applying these forces to the
instantaneous centre of mass of the animal. Wing and
abdominal motions were specified by ten independent
parameters. We then used a microgenetic algorithm (�GA, see
Materials and methods) minimization approach to find
individual sequences of parameters, and thus wing motions,
that allowed the simulated moth to satisfy our definition of
adequate hovering by maintaining position and orientation
within specified bounds. The overall flight performance of
these simulations was then compared to that of several
hawkmoths feeding from artificial flowers in a laboratory flight
chamber. Given the redundantly actuated nature of the moth
simulation, we expected that many different combinations of
wingbeat kinematic parameters would allow the simulated
moths to achieve hovering performance that met or exceeded
that of the laboratory moths, although the number of
combinations and the number of free parameters necessary to
achieve performance equivalent to the real moth was not
known. After this initial examination of redundantly actuated
simulations, we restricted the simulation to fewer free
kinematic parameters, moving from redundantly to fully
actuated (a sufficient number of free kinematic parameters) and
underactuated (an apparently insufficient number of free
kinematic parameters) cases to assess the relative importance
of different kinematic parameters and reveal different
combinations that might be employed by real moths. We also
extended the simulation to level, forward flight at 3·m·s–1 to
assess whether the relative importance of different kinematic
parameters varies with flight behavior and find the degree of
kinematic flexibility required to shift between behaviors.

Materials and methods
We examined the inverse problem of hawkmoth flight by

creating a forward dynamic differential equation model of the
moth with ten different wing and body control parameters then
finding parameter sequences that allowed a simulated moth to
match the flight behavior of a hawkmoth flying under
laboratory conditions. A forward dynamic model computes the
state at a specific future time from a set of initial conditions
and parameters. In this case, our model computed the simulated
moth’s instantaneous linear and rotational position, velocity
and acceleration from the initial value of those variables and
the ten kinematic parameters. We generated individual
parameter sets with a microgenetic algorithm (�GA, see
below), which broadly searched the available parameter space
and identified local minima with sufficient precision to allow
a simulated moth to maintain the specified flight behavior. We
subsequently computed a large library of parameter sequences
by running the simulation with different initial values for the
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random number generator that underlies the �GA search
algorithm. Each different initial value potentially results in a
different output from the search process, depending on the
number of different acceptable solutions. Finally, we restricted
the number of free parameters in the simulation by replacing
specific parameters with their mean value from the initial
results library and holding these values fixed. We then
computed a second library with all possible combinations of
free and restricted parameters. At all stages we compared the
model’s performance with that of real hawkmoths flying in
laboratory conditions.

Hovering in Manduca sexta

The performance of real hawkmoths was characterized by
analysis of high-speed video recordings taken from three
individuals hovering in front of and feeding from an artificial
flower. The moths were from a colony maintained at the
University of Washington and from the same population used
to provide the morphological data given below. The flower was
positioned in an infra-red illuminated 86·cm�53·cm�87·cm
flight chamber and a lateral view of the flight recorded with a
high speed video camera (Troubleshooter, Fastec Imaging, San
Diego, CA, USA) operating at 250·Hz. We selected a minimum
of 1.8·s of particularly steady hovering from the records for
each moth, digitized the eye and the tip of the abdomen in each
video frame, and then used the two points to calculate pitch.
We then assumed that the centre of mass was positioned at a
point on the body one third of the distance from the eye to the
tip of the abdomen (see below, calculations of moments of
inertia), and characterized overall flight performance by the
average distance from the centre of mass to its mean location
for the entire trial. This simple analysis provided sufficient
information to compare the overall performance of the
simulated and real moths. A kinematic study detailed enough
to record flight kinematics at the same level of detail as the
simulation, which uses ten independent parameters to describe
each wingbeat, was well beyond the scope of this study.

Model Manduca sexta morphological parameters

The morphological parameters employed in the simulation
were gathered from 10 adult individuals taken from a colony
maintained in the Department of Biology at the University of
Washington. The values collected from this individual were
similar to those reported in prior studies (e.g. Willmott and
Ellington, 1997a). We assumed that thickness and density were
constant throughout the wing and that moths are bilaterally
symmetric.

Coordinate systems

The simulation used three coordinate systems, beginning
with a wing coordinate system XwYwZw with the origin at the
wing root, +X in the anterior direction, +Y lateral to the left and
+Z upwards (Fig.·1). Wing positions were first computed in the
wing coordinate system according to non-dimensional stroke
time (see below), then translated into an anatomic coordinate
system XbYbZb with the origin at the moth’s centre of mass
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(computed from body segment and wing position, see below),
+X in the anterior direction, +Y to the left and +Z upwards.
Finally, the simulated moth was positioned in an inertial
coordinate system XYZ, a right hand, Earth-fixed system with
+Z upwards.

Kinematic model

Our model specified wing and abdominal motions with
respect to a non-dimensional time parameter t (0�t�1), which
denotes a fraction of the wingbeat cycle. The flapping motion
of a moth’s wing was prescribed by three angles: azimuthal or
elevation (�), sweep (�) and rotation (�) about an axis running
along the wing (span axis, Fig.·1). Azimuthal and sweep angles
were specified as sinusoidal functions with a mean value,
amplitude and phase:

�t = �Asin(2�t+	�) + �·, (1)

�t = �Asin(2�t+	�) + �·,· (2)

where �t is the azimuthal angle at non-dimensional time t, �A

is the azimuthal amplitude, � is the average azimuthal angle,
	� is the azimuthal phase, �t is the elevation angle at non-
dimensional time t, �A is the sweep amplitude, � is the mean
sweep angle and 	� is the sweep angle phase. Note that these
angles describe wing position in the wing coordinate system,
an anatomic reference frame, and are not in relation to any
overall stroke plane angle.

The span axis wing rotation angle was specified as:

�t = �Atanh[(�/2)sin(2�t+	�)] + �·, (3)

where �t is the wing rotation angle at non-dimensional time t,
�A is the amplitude, 	� is the rotation angle phase offset and �
is the mean rotation angle during the stroke. A rotation angle
of 0° would place both the leading and trailing edges of the
wing in the horizontal plane of the body coordinate system
XbYbZb with the trailing edge posterior. An angle of 180° would
place the trailing edge anterior to the leading edge. The span
axis rotation angle matches the longitudinal rotation angle �sp

used in a prior kinematic study of freely flying Manduca
(Willmott and Ellington, 1997a). The �/2 term in Eqn·3
allowed the hyperbolic tangent function to more closely match
the wing rotation patterns observed in that study.

Since the values of the various control parameters may vary
between successive wingbeats, it is important to insure
continuity of motion between wingbeats with different
kinematic parameters. Such continuity was enforced by
combining the current and prior wingbeats with a hyperbolic
tangent function, smoothing the transition between strokes:

Pt = Ptntanh(2�t) + Ptn–1[1–tanh(2�t)]·, (4)

where Pt is the final computed value of one of the wing
kinematic parameters defined in Eqn·1–3, Ptn–1 is the specified
value of the parameter in the prior wingbeat and Ptn is the
specified value for the current wingbeat. The choice of
smoothing function is rather arbitrary as there are many
possible forms such as such as Bezier, NURB or other splining
methods. It is also possible to enforce continuity by
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constraining the position and derivatives to identical values for
the start and end of each stroke (e.g. Deng et al., 2003), but this
approach reduces the range of motion available to the
simulation. The hyperbolic tangent has the advantage of an
easily controlled decay about the transition point and is also
differentiable. An example of the need for, and consequences
of, such smoothing is seen in a plot of the temporal pattern wing
elevation as the mean of the elevation parameter varies between
two successive strokes (Fig.·2). The absence of smoothing
leads to a significant discontinuity, making the motion
physically and physiologically less reasonable.

The abdomen of hawkmoths constitutes a significant fraction
of the total mass of the animal and visually-mediated
abdominal flexion reflexes may shift the moment generated by
wing forces. Thus our model also included variation in the
angle between the thorax and abdomen (Fig.·1A). Abdominal
angle was specified as:


t = 
n–1 + t(
n–
n–1)·, (5)

where 
t is the abdominal angle at non-dimensional time t, 
n–1

is the final abdominal angle from the previous wingbeat, and

n is the final abdominal angle for the current wingbeat.

The instantaneous centre of mass of the moth was calculated
from the position of the head, thorax, abdomen and wings. The
head and thorax were modeled as spheres, the abdomen as an
ellipsoid; wing moments were determined empirically from the
mass and shape of a whole wing, assuming constant thickness
and density. The moment of inertia about the pitch axis, Itot,
was computed as the sum of the moment of inertia of the body
segments and wings:

Ihead = (w-™ Mheadr2
head) + (MheadD2

head)·, (6)

Ithorax = (w-™ Mthoraxr2
thorax) + (MthoraxD2

thorax)·, (7)

Iabdo = [q-™ Mabdo(a2
abdo+b2

abdo)] + (MabdoD2
abdo)·, (8)

Iwing = �Mwing,iD2
wing,i·, (9)

Itot = Ihead + Ithorax + Iabdo + 2Iwing·, (10)

where M is the mass of the specified body segment, r is the
radius of the head or thorax as indicated by subscripts, aabdo

and babdo are the semi-major and semi-minor radii of the
abdomen, and D is the distance from the centre of mass of a
segment to the whole body centre of mass. Values for the
various masses and dimensions are in Table·1.

Kinetic model

Our model included aerodynamic forces that arise from wing
translation, wing span axis rotation, wing added mass and body
drag. Wing forces were computed from a blade-element model
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Fig.·1. (A) A lateral view of the moth (courtesy Michael Tu) showing
the vertical (Z) and forward (X) axes in both the global and body-fixed
coordinate systems along with the abdominal (
) and pitch orientation
(�p) angles. (B) A rear view of the moth in the body coordinate system
showing the wing elevation (�) angle. (C) A dorsal view of the moth
showing the wing sweep (�) and span axis rotation (�) angles.

Fig.·2. Two successive wingbeats run continuously together as long
as none of the defining parameters change from wingbeat to wingbeat
(black line). However, changing parameters between wingbeats (� in
this instance) creates a discontinuity at the boundary from one
wingbeat to the next (cyan line). A hyperbolic tangent combines the
distinct second wingbeat with the prior wingbeat (Eqn·4, broken red
line) for a smooth transition.
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using experimentally derived force coefficients. Typical
simulation trials employed five elements per wing. To
determine the effect of the number of blade elements on the
simulation output we recomputed a typical wingbeat with 50
elements per wing rather than five. As expected, the
instantaneous forces and moments were slightly greater in the
50-element case; instantaneous moments differed by a
maximum of 3.0% and instantaneous forces by a maximum of
2.5%.

The magnitude of the translational force acting on the wing
was calculated as:

where � is air density (1·kg·m–3), U is the instantaneous
velocity of the flow across the wing (estimated from the
instantaneous velocity of the wing in the inertial frame), Cr is
the resultant force coefficient, r the non-dimensional radial
position along the wing (equal to the radial distance divided by
wing span), R is the wing length, c is the average chord length,
and c is the non-dimensional chord length (scaled to the

⌠
⎮
⌡

(11)
1

0
Cr(r)U2(r)rc(r)d(r) ,Ftrans = G�Rc

T. L. Hedrick and T. L. Daniel

maximum wing chord). The resultant force coefficient Cr was
calculated for each wing segment from:

Cr = {[1.5sin(2�–0.06) + 0.3cos(�–0.49) + 0.01]2 + 
[1.4sin(2�–0.14) + 0.3cos(�–1.33) + 1.5]2}G·, (12)

where � is the angle of attack of the wing in XYZ. Eqn·12 was
derived from lift and drag polar plots for low to medium
(150–8000) Reynolds number model flapping insect wings
(Dickinson et al., 1999; Sane, 2003; Usherwood and Ellington,
2002). The resulting large force coefficients and consequent
large Ftrans are the result of dynamic stall and formation of a
leading edge vortex on the translating wing (Bomphrey et al.,
2005; Ellington et al., 1996; Liu et al., 1998). Although these
effects are typically described as ‘unsteady’ in the sense that
they require wing motion and cannot be replicated by a wing
held steady in a constant flow, they do not depend on the time
history of stroke or of prior strokes and can therefore be
captured by ‘quasi-steady’ approximations such as Eqn·12.

The magnitude of the force due to rotation of the wing about
its span axis was computed from equation 12 in Sane and
Dickinson (Sane and Dickinson, 2002), reprinted here for
convenience:

where UT is the instantaneous velocity of the wing tip, � is the
wing’s instantaneous span axis rotational velocity, c is mean
chord length, R is the wing length and c is the non-dimensional
chord length (see Ellington, 1984).

The magnitude of the force due to added mass was computed
from Sane and Dickinson (Sane and Dickinson, 2002), equation
3 (with corrections to the sign of the final term and the shape
parameter in the final integral, personal communication, S.
Sane):

where � and � are the wing’s overall instantaneous angular
velocity and acceleration, � is the wing’s span axis angular
position, � is the wing’s span axis rotational velocity and � is
the wing’s span axis rotational acceleration.

All translational, rotational and added mass forces generated
by the wings were assumed to act normal to the upper surface
of the wing at a point s chord lengths behind the leading edge.
Our assumption of normal forces is well supported by results
from mechanical models of flapping flight at a Reynolds
number characteristic of Manduca flight (~8000) (Usherwood
and Ellington, 2002) as well as the lower Reynolds number
typical of Drosophila flight (~136) (Dickinson et al., 1999).
The assumption that the centre of pressure lies s chord lengths
behind the leading edge is long-standing (e.g. Milne-Thomson,

⌠
⎮
⌡

(14)

1

0
rc2(r)d(r)(�sin�+��cos�) ,Facc = 

��c2R2

4

⌠
⎮
⌡

1

0
c3(r)d(r)+ 

��Rc3�

16

⌠
⎮
⌡

(13)
1

0
rc2(r)d(r) ,Frot = 1.55�UT�c2R

Table·1. Morphological parameters for simulated and real
Manduca sexta

Model moth Day 3

Sex Female Male Female

Body
Mass (g) 1.923 1.620±0.334 2.1750±0.470
Length (mm) 46.60 45.45±3.25 47.08±3.32

Wing
Length (mm) 53.00 48.75±2.10 52.28±1.38
Area (mm2) 989.4 903.7±69.5 1053.8±41.8
Mass (g) 0.046 0.035±0.006 0.047±0.005

Head
Mass (g) 0.106 0.107±0.026 0.108±0.024
Radius (mm) 2.00 3.977±0.163 3.942±0.285

Thorax
Mass (g) 0.726 0.596±0.108 0.631±0.188
Radius (mm) 6.00 5.75±0.38 6.04±0.41

Abdomen
Mass (g) 0.999 0.818±0.231 1.291±0.227
Radius A (mm) 15.30 14.72±1.44 15.89±0.93
Radius B (mm) 5.50 5.87±0.24 6.07±0.64

Morphological parameters for the simulated moth were based on
measurements from a single female. For comparison we include
means ± s.d. for a population of moths taken from the University of
Washington colony 3 days after emergence (N=11 males and 4
females; numbers determined by the moths available for
measurement when the data were collected). 

Note that the simulated moth’s head was modeled as a sphere
while the actual moth heads were better represented as a cylinder.

The abdomen was modeled as an ellipsoid with major and minor
axis radii Radius A and Radius B, respectively.
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1973) and, although not directly validated in either mechanical
or computational fluid dynamic studies of flapping wings has
proved sufficient for estimation of torque asymmetries in a
mechanical flapper (Fry et al., 2003). Wing surface orientation
vectors were calculated by taking the cross product of a vector
along the X-axis and the Cartesian form of the elevation and
sweep angular position of the wing, then rotating that vector
about the wing axis by the span axis rotation angle �t. The
upper surface was designated as the wing surface with a normal
vector more than 90° offset from the mean flow vector. The
forces acting on each blade element (Ftrans, Frot and Facc) were
summed to calculate the total aerodynamic force (Ftot) acting
on the wings; this force was multiplied by the orientation unit
vector to create a force vector Fi for the ith element.
Instantaneous aerodynamic torques were then computed from
the position of each wing element and Fi :

τwing = �(xi,yi,zi) � Fi , (15)

where �wing is the net aerodynamic torque from the wing, (xi,
yi, zi) is the position of the ith element.

Our model also included force and torque from drag acting
on the moth’s body. The moth’s body was modeled as a
cylinder of diameter 1.1·cm and length 4.6·cm with both linear
and rotational motion and, like the wing, divided into a series
of individual elements. The magnitude of this drag was
calculated as:

Dbody = G�Cd�Sb,iU2
b,i , (16)

where Cd is the coefficient of drag (Willmott and Ellington,
1997b), Sb,i is the surface area of the ith body segment normal
to the estimated incurrent flow and Ub,i is the magnitude of the
flow past of the ith segment, estimated from the body’s
rotational and translational velocity. Body drag was directed
opposite the velocity vector of each segment giving a drag
vector Di; torque from body drag was calculated from the cross
product of the Di and the position of each body segment relative
to the instantaneous centre of mass:

τbody = �(xi,yi,zi) � Di , (17)

where �body is the net torque generated by drag on the body,
(xi,yi,zi) is the position of the ith body segment. The wing and
body torques were summed to give the net torque.

τtot = 2τwing + τbody . (18)

Body and wing forces were similarly summed to give Ftot.
The instantaneous forces and torques were combined with

Newton’s laws of motion to form a set of coupled ordinary
differential equations describing the changes in rotational and
translational momenta:

(20)= χ̈ = + g
dχ̇
dt

Ftot

M

(19)= χ̇
dχ
dt

where χ is the moth’s position vector in the global coordinate
system XYZ, χ̇ is the moth’s velocity vector, χ̈ is the moth’s
acceleration and g is the gravitational acceleration vector
(0,0,–9.81), M is body mass, ω is the vector of orientation
angles vector, ω̇ is the orientation angular velocity and ω̈ the
orientation angular acceleration. In this study the simulated
moth’s wing kinematics were symmetric about the Xb axis,
restricting it to three degrees of freedom: movement along the
X and Z axes and changes in pitch orientation. Thus we only
solve a system of equations consisting of two translational and
one rotational degree of freedom.

Although our simulation of hawkmoth flight makes many
simplifying assumptions, especially in the calculation of
aerodynamic forces, recent experiments conducted on
mechanical models of flapping flight (e.g. Dickinson et al.,
1999; Sane and Dickinson, 2002; Usherwood and Ellington,
2002) support the expectation that it provides a reconstruction
of the aerodynamic forces adequate to the task at hand.
Specifically, our simulation does not incorporate aerodynamic
forces due to wing–wake interaction or wing–wing interaction
(clap and fling), or consider the impact of flexible wings. As
Manduca are rarely observed to execute a clap and fling type
wingbeat, the absence of wing–wing interaction forces is
unlikely to influence our results. While forces generated by
flexible wings interacting with the fluid may be substantial
(Daniel, 1988; Daniel and Combes, 2002), there is no direct
evidence that they contribute to the forces supporting or
propelling flying insects. Furthermore, there is evidence that
much of the visible bending in Manduca wings is due to inertial
forces and not interaction with the fluid (Combes and Daniel,
2003). Finally, forces attributable to wing–wake interactions
likely occur in hovering hawkmoths as the absence of forward
body motion provides greater opportunity for the wings to
interact with their own wake. However, experiments with a
mechanical flapper show that although the wing–wake
interaction forces have a large magnitude at certain points in
the wingbeat, their overall contribution to the lift and drag
impulses is less than that contributed by the forces due to wing
translation and rotation (Sane and Dickinson, 2002). As such,
although our simulation would not doubt benefit from the
inclusion of wing–wake interaction forces, a quasi-steady
formulation for these effects has yet to be developed. All of
these forces could be calculated with a full Navier–Stokes
computational fluid dynamics model similar to several others
published recently (e.g. Liu et al., 1998; Ramamurti and
Sandberg, 2002; Wu and Sun, 2004). However, this would also
require many orders of magnitude more computational time,
precluding its use in a parameter search study such as this one.
On the whole, we found that the quasi-steady model using

(22)= ω̈ = 
dω̇
dt

τtot

Itot

(21)= ω̇
dω
dt
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experimentally derived force coefficients for forces due to wing
translation and rotation, along with added mass and body drag,
incorporated sufficient aerodynamic detail to generate flight
behavior and kinematics quite similar to those recorded from
real moths.

Optimization techniques

The flight path tracking simulation functioned by comparing
the moth’s current location with the desired location at the end
of each wingbeat. A microgenetic algorithm (�GA) was used
to find wingbeat parameter sets that minimized the difference
between the actual and desired locations (Krishnakumar,
1989). Genetic algorithms are a class of biologically inspired
algorithms that use the familiar concepts of selection, mutation
and recombination to broadly search a parameter space for
minimum (or maximum) values. Micro genetic algorithms
rapidly reintroduce genetic variation following a selective
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sweep. As shown in Fig.·3, the �GA functioned by taking an
initial population of potential wingbeats (determined by the
parameter sets), generated from random permutation of the
prior wingbeat, computing their outcome using the forward-
dynamics model outlined above, then scoring each individual
wingbeat parameter set based on adherence to some
predetermined general performance criteria (movement toward
the target point in this case). After the individuals are scored,
those that most successfully met our selection criteria were
used as a basis for the next generation. This generation is
created by recombination (taking individual parameters from
wingbeats that scored well and combining them to create a new
parameter set) and by mutation (randomly changing some of
the parameters of high scoring individuals). This new
population is then fed back into the loop. We ran the genetic
algorithm for 50 generations with 20 individuals each
generation, then took the final best available parameter set and
applied the Nelder–Mead simplex search algorithm (Nelder
and Mead, 1965) to the �GA output to further refine it. While
the �GA is capable of moving from a poor local peak to a better
one, the simplex algorithm is an efficient method for finding
the best local result. Appending the simplex search to the �GA
output ensures that the combined algorithm reaches the local
minima in the region identified by the �GA, a point that the
�GA may not reach in a finite number of generations. The
combined �GA and simplex search process uses random
mutation and recombination to find a good result. Therefore,
running the search twice will not always result in the same
answer, especially when there are many answers of similar
quality available.

We implemented the �GA by modifying a portion of the
MATLAB R14sp3 (Mathworks, Natick, MA, USA) genetic
algorithm toolbox to follow microgenetic methods, detecting
and removing premature fixation of parameters in the
population (Krishnakumar, 1989). Parameter mutations were
uniformly distributed within interval defined by the value of
the parameter in the prior wingbeat ± g the distance from
minimum to maximum value for that parameter. For example,
the bounds of the wing sweep angle offset were –�/4 and �/4,
so if the prior value of the sweep angle offset was 0, mutations
would be uniformly distributed within the interval –�/8 to �/8.
In each generation, four of the 20 individuals were mutants of
the best individual from the prior generation. Within each
mutant, each parameter had a 50% chance of mutation. These
�GA parameters reflect a broad search strategy that is
relatively slow to improve upon an already good solution.
However, incorporating the simplex search ensures that it will
find the best local solution. We found that parameters rarely
changed at the maximum allowed rate.

The core differential equations describing the simulated
moth’s change in position and orientation from wingbeat to
wingbeat (eqn·17–22) were solved at each step via the
MATLAB ode45 function, an implementation of an 8th order
Dormand–Prince ordinary differential equation solver with the
absolute error tolerance set to 1e–6, approximately 0.003% of
the typical value of the smallest of the motion parameters. 

Fig.·3. (A) Outline of the steps that make up the microgenetic
algorithm (�GA), starting from an initial population. We terminated
the �GA after 50 generations and used a simplex search algorithm
follow the gradient from the best �GA result to the local maxima. (B)
How the combination of a �GA and simplex search might operate in
a two-dimensional parameter space defined by the function z=f(x,y).
The �GA searches broadly, improving slightly with every generation,
while the simplex algorithm proceeds from the best �GA result to the
local maximum. Note that although the example here shows a search
for a maximum for ease of illustration, the moth simulation searches
for a minimum using an otherwise identical procedure.
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Constraints to the parameters prescribing the moth’s wing
movements were implemented at two levels. Those operating
on a single parameter, such as the allowable range for one of
the kinematic parameters, were enforced within the �GA
mutation and population selection functions by avoiding
parameter sets that violated the constraints. A further constraint
preventing the intersection of the left and right wings operated
within the simulation program, detecting flagging violations for
removal.

After using the combined �GA and simplex search
algorithms to compute a parameter set for an individual
wingbeat, the simulation solved the system of differential
equations describing angular and translational momenta, and
moved on to the next wingbeat, recalculating the difference
between actual and desired locations and searching for the next
wingbeat. The final parameter set from the prior wingbeat was
used as the starting parameter set for the next wingbeat.

Simulations conducted

We first used the simulation to examine steady hovering at
a target location with a constant pitch angle, much like the
behavior associated with nectar feeding. The initial conditions
of the simulation placed the moth at the target location but with
a forward velocity of 40·cm·s–1, a downward velocity of
5·cm·s–1 and an upward pitching velocity of 180°·s–1. For each
trial the simulation ran until the moth either left the target
region (a cube with 16·cm edges centered on the target
location) or completed 41 wingbeats. We built an initial library
of trials with 10 free parameters from a set of 30 simulations,
each started with a different initial random seed. We then
examined the effect of the number and identity of the free
parameters by running three simulations for each possible
combination of restricted and unrestricted parameters (210–1
combinations), fixing restricted parameters at their mean value
in the initial library of trials with 10 free parameters. Although
the ill-posed nature of the inverse problem of hovering
precludes traditional sensitivity analysis, these parameter
restriction trials provide some of the same information.

We also simulated a 3·s long forward flight at 3·m·s–1 with
an initial forward velocity of 300·cm·s–1, a downward velocity
of 5·cm·s–1 and an upward pitch velocity of 180°·s–1. As before,
we first computed an initial library of 30 trials with all
parameters free and then the set of restricted parameter sets
with three or fewer free parameters. Restricted parameters were
fixed to their mean value in the unrestricted trials. Simulations
were distributed over a 16-processor computer cluster via the
MATLAB Distributed Computing Engine.

Results
Results from animals

We found that hovering hawkmoths maintained their
position within a sphere of 0.65·cm radius (and centered on
their average location) during the recorded hovering sequences.
During these sequences, pitch angle was 41.1±5.8° (mean ±
s.d.). One of the sequences recorded in this analysis is

reproduced in Fig.·4 for comparison with the simulated moth
results. 

Results from simulations

Flight kinematics from the simulated hawkmoth generally
match those of a real moth; an animation of the simulated moth
is visually similar to high speed video recordings of a real moth
(supplementary material, movie 1). The simulated hawkmoths
for which all 10 control parameters were available also
performed well; their average position was 2.62·cm from the
target location during the thirty 1.5·s simulated hovering bouts.
Their average body angle deviated by 1.2° from the overall
mean of 33.8° (Fig.·5A). The simulations also made use of all
available free kinematic parameters, although some differences
in the rate and magnitude of variation are apparent upon visual
inspection (Fig.·5B). Moreover, the simulations maintained
adequate hovering performance with a wide variety of
parameter sequences and combinations (Fig.·6), showing that a
large range of parameter combinations can give rise to a similar
behavior. The differences between the parameter sequences
shown in Fig.·6 arise from the random nature of the �GA
combined with the redundantly actuated nature of the
simulation with ten free parameters. Each of the simulations
started with the same initial conditions and even the same set
of kinematic parameters that were used to seed the first
generation in the �GA. Different parameter sets arise when the
�GA encounters different parameter combinations with similar
outputs, leaving the exact combination chosen open to
influence by the slightly random nature of the �GA search.
Some effects of this are apparent; several kinematic parameters
(including 	�, �A and 	�) follow broadly similar patterns for the
first few seconds of flight where presumably there are few
adequate parameter sets. However, even these similarities

Fig.·4. The measured position and orientation of a real hawkmoth
hovering for 3.5·s in front of an artificial flower. The moth’s estimated
centre of mass position differed by an average of 0.29·cm from its
overall mean location and the moth maintained a body angle of
34.3±3.3°. Body position and orientation were drawn for every 0.044·s
of flight.
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disappear within a few wingbeats. Because the simulation
follows the �GA with a simplex minimizer, each of these
parameter sets represents a local minimum, so the different
sequences reached by the simulation represent different local
minima, each one adequate for hovering flight.

The simulation does vary all of the available kinematic
parameters, but it is not clear from these results which
parameters are most important for hovering flight and which
are superfluous. To examine this question we restricted
variation in some of the kinematic parameters, fixing them at
their average values from the unrestricted trials whose results
are shown in Fig.·6. We systematically examined the effects
of restriction by running three simulations for each possible
combination of restricted and free parameters; performance
under these varying conditions is summarized by the number
of restricted parameters in Fig.·7. This slowly shifted the
simulated moth from what we term a ‘redundantly actuated
animal’ (all parameters), to one that is fully actuated (a
sufficiently large subset of the parameters for successful

T. L. Hedrick and T. L. Daniel

flight), to an under-actuated one (too few to represent
successful flight). As before, performance was quantified by
the average distance from the simulated moth to the target
point. In some cases the simulated moths also failed to stay
within the volume we used to define successful hovering and
we also quantified performance by the number of wingbeats
prior to any departure from this volume. As Fig.·7B shows,
removing just one of the parameters was sufficient to
compromise flight performance, increasing the simulated
moth’s average distance from the target and reducing the
number of successful wingbeats. However, these results also
show that the simulation is able to maintain hovering for the
full 1.5·s in an under-actuated case with up to eight restricted
(and two free) kinematic parameters. The minimum average
distance from the target point was similar for all redundantly
and fully actuated cases, those with up to seven restricted
parameters (Fig.·7B). These results could be explained by the
presence of a few crucial parameters, whose absence greatly
impacts on performance even if all other parameters are

Fig.·5. Output from a typical
simulation showing both the position
and orientation of the moth every 1.6
wingbeats (A) and the variation in time
for each of the kinematic parameters
(B). The Y-axis scales in B extend to
the minimum and maximum values
allowed for each kinematic parameter.
Wing parameters are � (azimuthal
angle), � (sweep angle) and � (span
axis rotational angle), each of which
has an amplitude (subscripted A),
phase (	) and mean (bar over). 
 is the
abdominal angle.
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available for control, but whose presence is sufficient for
adequate flight. To explore this possibility we collected all
successful simulated flight bouts for fully and under-actuated
trials and from the systematic parameter restriction data set

shown in Fig.·7, a set of 21 different combinations, then
ranked them by their distance from the target point (Table·2).
We found that several kinematic parameters were particularly
important to hovering: the sweep angle phase was free in 17
of the 21 successful parameter sets, the mean azimuthal and
rotation angle phase were both free in 9 of the 21.
Additionally, we found that, as suggested by the change in
minimum mean distance between 7 and 8 restricted parameters
in Fig.·7B, several of the fully actuated combinations perform
better than the only successful under-actuated combination.
However, we also found that some of the parameters were
completely ineffective: the rotation angle phase and abdominal
angle were only valid when matched with the pair that made
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Fig.·6. Kinematic parameter variation for 30 redundantly actuated trials, coded by color. Each trial begins with the same initial conditions and
all trials met our definition of adequate hovering (remaining within a 4096·cm3 volume for the duration of the trial). Actual performance greatly
exceeded this definition of adequate; the mean distance from the center of the volume to the moth was 2.6·cm. The Y-axes are identical to those
in Fig.·5.
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Fig.·7. Changes in the performance of the simulated moth in hovering
flight as the number of free parameters is reduced (and the number of
fixed parameters increased). Performance was quantified by (A) the
number of wingbeats the model executed without leaving a 4096·cm3

volume, up to a maximum of 41 wingbeats (1.5·s of flight) and (B)
the mean distance from the moth to the centre of the volume. Note
that the model requires 5 wingbeats to fall from its initial position to
a location outside the target volume. Trends are shown as the mean ±
1 s.d., with the maximum and minimum values indicated by diamonds
and circles, respectively. N=4096 trials.
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up the under-actuated combination and did not improve
performance compared to the under-actuated case.

We further investigated the validity of the apparently
successful under-actuated combination (	� and �A) by running
20 hovering simulations of 15·s each with these two free
variables and found that these two parameters were sufficient
for long duration hovering flight (Fig.·8). The position and
orientation of the moth in these trials varies more widely than
that of the unconstrained simulations (Fig.·8A): mean distance
from the target region was 3.16·cm while the mean pitch angle
was an average of 6.0° distant from its overall mean of 33.7°.
Both free parameters varied at a high frequency throughout the
simulation (Fig.·8B), while variation in velocity and orientation
vary at a lower frequency. Pitch angle and X-axis velocity
appeared to be well correlated, with the simulated moth
pitching downward while flying forward (Fig.·8C). A cross-
correlation analysis of the two confirmed a strong relationship
with changes in the pitch angle preceding changes in the X-axis
velocity by two wingbeats (peak cross-correlation of –0.807 at
a lag of –2; cross-correlations were calculated from mean
removed signals standardized to an autocorrelation of 1.0 at a
lag of 0).

Finally, while these results to this point show that there are
many parameter sequences and redundantly or fully actuated
parameter combinations that lead to similar outcomes and
adequate hovering performance; this is not necessarily the case
for other possible flight behaviors. To test the generality of our
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results we ran a series of 3·s long forward flight simulations,
targeting the moth to maintain a flight speed of 3·m·s–1 along
the X-axis. The general pattern of many solutions persists
(Fig.·9), although as might be expected the exact range of
parameters adopted and their rates of variation differ somewhat
from those used in forward flight (Fig.·5). We also ran three
simulations for each fully and under-actuated parameter
combination, analogous to the data presented in Table·2. As in
the hovering case, several parameters were especially
important and there was a single under-actuated combination
that met our standard for adequate performance (Table·3).
However, the set of important parameters for forward flight was
different from those for hovering; the sweep angle mean value
(�) increased greatly in importance while that of the sweep
angle phase (	�) declined somewhat. The successful under-
actuated combination also differed between the two activities.

Discussion
This study revealed many redundantly, fully and under-

actuated sets of kinematic parameters that allowed the
simulated hawkmoth to hover, maintaining position and
orientation despite an initial perturbation and the small scale
variation inherent in the �GA-driven simulation. In many of
these cases the simulated moth’s performance greatly exceeded
our definition of adequate performance and in some cases it
exceeded that of a real moth. This general result, the

Table·2. Free parameter sets for successful fully and under-actuated hovering trials

No. of complete Mean distance Free and restricted kinematic parameters

trials (max 3) from target (m) �A � 	� �A � 	� �A � 	� 
 No. free

3 0.001 – – – X X X – – – – 3
3 0.001 – X – – – X – X – – 3
3 0.008 – – – – X X X – – – 3
3 0.008 – X X – – – – X – – 3
3 0.009 – X – – X X – – – – 3
2 0.012 – – – – – X X X – – 3
3 0.012 – X – X – X – – – – 3
1 0.012 – X – – X – – X – – 3
1 0.015 – X – – – X X – – – 3
1 0.017 X X – – – X – – – – 3
3 0.020 – – X – – X X – – – 3
3 0.024 X – – – – X X – – – 3
2 0.026 – X X – X – – – – – 3
2 0.026 – – – X – X – X – – 3
3 0.027 – – – – – X X – – X 3
3 0.030 – – – – – X X – – – 2
3 0.030 – – – – – X X – X – 3
1 0.035 X X X – – – – – – – 3
1 0.035 X – – X – X – – – – 3
3 0.037 – – – X – X X – – – 3
1 0.042 – – – – X X – X – – 3

Count 4 9 4 5 6 17 9 6 1 1

Wing parameters are � (azimuthal angle), � (sweep angle) and � (span axis rotation angle), each of which has an amplitude (subscripted A),
phase (	) and mean (bar over). 
 is the abdominal angle. The single successful under-actuated trial is 6 rows up from the bottom of the table.
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multiplicity of possible hovering kinematics, shows that the
means by which Manduca sexta actually maintains position and
orientation may have considerable freedom and therefore may

be influenced by many other factors. These could include
suitability for many modes of flight or minimum deviation from
a single, basic wingbeat pattern. However, the simulation
results do offer considerable insight into the modes of
kinematic variation most likely to accompany hovering flight
and the benefits or lack thereof to redundantly, fully or under-
actuated control systems in animal flight. The modes of
kinematic variation available to real moths are unlikely to
precisely match any of the kinematic parameters used in the
simulation as the parameters were based on a set of orthogonal
axes with no special biological relevance beyond its association
with the body axes. Studies matching variation in the neural
inputs to the flight muscles, along with the resulting changes
in wing kinematics, typically show neural modulation
simultaneously influencing several kinematic parameters (e.g.
Balint and Dickinson, 2004; Kammer, 1971; Wolf, 1990). This
mismatch does not present a problem because the aerodynamic
effects of kinematic variation do not depend on their source,
only on the resulting motion. Moreover, the simulation
kinematics are rooted in anatomic coordinate system, so
changes to a particular parameter do not depend on body
orientation, flight speed or any other external factors and could
conceivably be the result of modulation of a small number of
neural inputs. Finally, no matter how many of the simulation
parameters a single neural input influences, one input can
represent only one degree of freedom from an actuation
perspective.

Redundantly actuated flight

As noted above and shown in Fig.·8 and Table·2, we found
many kinematic parameter combinations adequate to the task
of maintaining hovering flight with three degrees of freedom.
The existence of several different three-parameter
combinations adequate for hovering flight demonstrates that
the simulation with ten free parameters is redundantly actuated,
with more free kinematic parameters than degrees of freedom.
However, the degree to which it is redundantly actuated is not
clear because some of the kinematic parameters may not have
any effect, or may exactly duplicate the effects of other
parameters. Additionally, Fig.·8 shows that the average
performance of the simulated moth dropped with the change
from ten to nine free parameters. This suggests that either (1)
there is a benefit in this simulation to redundant actuation, such
as greater maximum changes in forces and moments or (2)
there exists a single, crucial parameter that uniquely actuates
one of the degrees of freedom important to hovering flight.
Because the minimum mean distance to the target (Fig.·8B)
does not change from ten to nine free parameters, and indeed
does not begin to change until the step from three to two free
parameters, we discount the first possibility mentioned above.
The second possibility, that of a single, crucial parameter
providing by far the best response in one of the simulation’s
degrees of freedom, was also poorly supported. Examination
of the data underlying Fig.·8 showed that only one of the 30
trials failed before completing the standard 41 wingbeats. The
restricted parameter in that case was �P, one of the most

Fig.·8. Results from an under-actuated hovering simulation with two
free parameters over a 15·s time span. (A) The location and orientation
of the moth through time with a stick-figure shown for every 5.6
wingbeats. The simulation does not control X-axis position as
precisely as in fully actuated cases. (B) Variation in the two free
parameters, the wing sweep angle phase and the wing rotation angle
amplitude, through time. The eight parameters not shown were fixed
at their average values (taken from the set of hovering trials with all
parameters free. The Y-axis scale for both variables reflects the limits
imposed by the model. (C) Variation in the simulated moth’s three
degrees of freedom when restricted to two free kinematic parameters.
There was a correlation between the pitch and X-velocity.
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important parameters for maintaining hovering flight (Table·2).
However, because restricting this parameter only led to failure
in one of the three trials, it is clearly not the only parameter
capable of influencing one of the degrees of freedom.
Guaranteed failure within the 41 wingbeat window does not
occur until three of the ten parameters were restricted. The sets
that then always led to failure were [�,�P,	�], [�,	�,�] and
[�,�,	�]. In most cases these parameters were also prominent
in the table of successful fully and under-actuated parameter
sets (Table·2), and may either provide the only means of
influencing one of the simulation’s degrees of freedom or be
particularly potent actuators along two or three of the degrees
of freedom.

Given the large number of independent control inputs
available to insects, redundant actuation is likely typical and
has been hypothesized to allow finer control (Taylor, 2001).
This hypothesis was not directly supported by our results,
which demonstrate equally fine control for fully actuated and
redundantly actuated systems (Fig.·8B). However, it is possible
that this would not be the case if our simulation enforced lower
rates of change in the different kinematic parameters. Our
comparison of hovering and forward flight showed that
redundant actuation may also allow greater flexibility in flight
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mode. The average kinematic parameters used by the
simulation in unconstrained hovering and 3·m·s–1 forward flight
simulations differ, implying that there is a performance benefit
to changing all parameters when switching between flight
modes. Moreover, the fully actuated parameter sets that led to
the best performance differ between the hovering and forward
flight cases (Tables 2 and 3). Because the utility of individual
kinematic parameters depends on flight mode, a redundantly
actuated flight apparatus may allow adequate performance in a
wider variety of flight behaviors. Redundant actuation may also
enhance performance in flight behaviors more challenging than
hovering and steady forward flight. For example, hawkmoths
not only feed from still flowers, they track the motion of
swaying flowers and cope with the changes in local flow
environment.

Fully actuated flight

We found twenty different fully actuated kinematic
parameter sets that led to adequate hovering flight (Table·2).
However, three of the ten kinematic parameters recur with high
frequency: �, �P and 	�, the mean elevation angle, sweep angle
phase and rotation angle amplitude, respectively. Each
successful set included either the mean elevation angle or the
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Fig.·9. Kinematic parameter variation for 20 forward flight trials plotted against time. Each trial begins with the same initial conditions and all
trials met our definition of adequate forward flight (remaining within 20·cm of a target traveling at exactly 3·m·s–1 along the X-axis). Y-axes are
identical to those in Figs·5 and 6.
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sweep angle phase. Increases in the mean elevation angle (�)
move the wing path up the Z-axis and tilt the overall stroke
plane slightly forward (Fig.·10) tending to generate additional
force along the X-axis, accelerating the moth forward without
changing the pitching moment or more than slightly reducing
the vertical force. Increases in the phase of the sweep angle (	�)
tilt the stroke plane without changing its centre (Fig.·10) and
generate a moderate amount of force along the X-axis,
accelerating the moth backward while generating a strong
upward pitching moment. The influence of the rotation angle
amplitude (�A) is difficult to perceive in the wing tip path, but
increases in its magnitude lead to little change in force along
the X-axis or pitching moment and an increase in force along
the Z-axis, accelerating the moth upward. Although either �
or 	� occurs in every successful three-parameter hovering
combination (Table·2), they do not allow generation of the
same suite of aerodynamic forces and torques and are not
directly interchangeable. Instead, they likely make other
kinematic parameters useful. For example, 	� generates a
strong upward pitching moment, which could counteract the
effect another parameter such as � that generates a downward
pitching moment in conjunction with additional upward force.
Finally, we note that there are influential parameters of every
type, including all three of the wing angles considered and the
three different types of angle specification: amplitude, mean
value and phase. All of these may be of interest in studies
measuring kinematic variation or changes in response to stimuli
in real animals.

Under-actuated flight

We found a single, under-actuated kinematic parameter set
that allowed the simulated moth to hover adequately, both
within the initial 41-wingbeat test and a longer 405-wingbeat
trial (Fig.·8). In this particular case the two parameters appear
to only directly influence the magnitude of the aerodynamic

force and torque, using changes in body pitch to orient the
aerodynamic force in the X–Z plane. While this did allow the
simulation to approximate hovering within the performance
bounds we defined, it also led to less accurate positioning
around the target point than observed in the actual hawkmoth
(Fig.·4). Although hand-tuning the under-actuated control
strategy discovered by the �GA might improve performance
somewhat, we do not believe that it could approach the
performance of the actual hawkmoth, given the very small
changes in pitch shown in Fig.·4. Although our simulation
approach cannot rule out under-actuated flight control in actual
hawkmoth hovering, we believe these results show it is an
unlikely possibility.

Comparison with experimental measurements

Several other researchers have made experimental
recordings of both wing kinematics and activation potentials
from a selection of the flight muscles in Manduca sexta (Frye,
2001; Kammer, 1971; Wendler et al., 1993). The most
complete set of wing kinematic results were reported by
Willmott and Ellington, who measured several of the kinematic
parameters described earlier on three hawkmoths flying at a
range of speeds from 0 to 5·m·s–1 (Willmott and Ellington,
1997a). They reported that hovering hawkmoths used a stroke
amplitude ranging from 106.5° to 123.6° with a mean of
116.3°; the average amplitude for the simulated moth in the
stroke plane coordinate system was 131.4°. Willmott and
Ellington reported that stroke plane angle for hovering moths
varied from 11.0° to 27.2° with a mean of 18.2°, the equivalent
average for the simulated moth was 22.4°. In the real moth,
stroke plane angle and body angle appear to vary inversely in
the actual moth and the variation in their sum is less than that
in either alone, ranging from 47.1° to 60.6° with a mean of
54.5°; the equivalent mean for the simulated moth was 56.2°.
The reported mean elevation and sweep angles convert to a �

Table·3. Free parameter sets for successful fully and under-actuated forward flight trials

No. of complete Mean distance Free and restricted kinematic parameters

trials (max 3) from target (m) �A � 	� �A � 	� �A � 	� 
 No. free

3 0.045 – X – – X X – – – – 3
2 0.060 – – – – X – X X – – 3
1 0.095 – – X – – X – X – – 3
2 0.099 – – – – X X – – – X 3
2 0.101 – X – – X – – – X – 3
1 0.102 – – – X X X – – – – 3
2 0.106 – X – – X – – – – – 2
2 0.126 – X – – X – – – – X 3
3 0.130 – X – X X – – – – – 3
3 0.131 – X – – – X X – – – 3
3 0.132 X X – – X – – – – – 3
1 0.142 X – – – – X X – – – 3

Count 2 7 1 2 9 6 3 2 1 2

Wing parameters are � (azimuthal angle), � (sweep angle) and � (span axis rotation angle), each of which has an amplitude (subscripted A),
phase (	) and mean (bar over). 
 is the abdominal angle. The single successful under-actuated trial is near the middle row of the table.
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and � of 9.5° and –6.6° for hovering, compared to the average
values of 8.7° and –9.9° adopted by the simulated moth. As a
reflection of these similarities, the wing tip path of the
simulated moth (Fig.·10) generally matches the path recorded
from an actual moth shown in fig.·7 of Willmott and Ellington.
Both the actual and simulated moths continually varied the
kinematic parameters in question, but it is not clear whether the
range of variation or its effects are similar between the two
circumstances. Willmott and Ellington do not report tabulated
data on the wing rotation angle, but visual inspection of their
figures suggests an amplitude ranging from 70° to 90°. The
wing rotation angles should be directly comparable between
studies, the simulated moth used an average rotation amplitude
�A of 62°. Phase relationships between the different wing
angles were not reported, though figs·8 and 10 in Willmott and
Ellington suggest that they vary with speed (Willmott and
Ellington, 1997a).

Abdominal flexion

Many authors have noted insects’ apparent use of changes in
the position and orientation of the abdomen during flight
maneuvers (e.g. Baader, 1990; Camhi, 1970; Götz et al., 1979).
These abdominal motions are visually mediated and have been
observed in Manduca sexta where there is a correlation between
body trajectory and abdominal flexion angle (Frye, 2001).
Functional explanations of these movements include changing

T. L. Hedrick and T. L. Daniel

in the position of the centre of gravity with respect to the wing
attachment points and modulating drag on the body. The
simulated moth included a hinge at the junction of the thorax
and abdomen and was capable of both changing the position of
the centre of gravity and the magnitude and moment arm of
drag, given a non-zero airspeed. However, the simulated
hawkmoth made little functional use of its abdomen (Tables 2
and 3). The aerodynamic forces and moments that result from
shifts in abdominal orientation are small in comparison with
those brought about by shifts in wing kinematics; this may
explain why the model did not make use of the abdomen, but
does not explain why actual moths appear to. It is possible that
use of the abdomen represents part of a hierarchical control
system that cannot be well captured by the �GA used by the
simulation to select adequate kinematic parameter sequences.
Thus, the abdomen might be used to impart a slight bias to the
net torque while variations in wing kinematics act to counter
higher frequency changes in orientation. This could allow the
abdomen to generate purposeful shifts in position while rapid
changes in wing kinematics help maintain position and
orientation. The abdomen may also be useful in reducing the
rate of pitch generated by wings when there are large vertical
excursions of the center of mass. In this case, ventral flexion of
the abdomen might be viewed more as an inertial rotational
brake than an instigator of pitch motions. Nevertheless, it is
clear that the abdomen is not among the few parameters in the
under-actuated cases. That said, we do not know the extent to
which it plays a role in the fully actuated cases.

A dilemma of delay

Our �GA/simplex algorithm used information about the
magnitude, first and second derivatives of body position and
angle of a prior wingbeat to guide parameter selections for each
successive wingbeat. This assumes that sensory information
processing is on the order of a singe wingbeat. Indeed, in work
elsewhere we suggest that such delays are problematic if all of
the sensory information is delayed by an additional wingbeat
(Nishikawa et al., 2006). Thus the potentially long delays in
visual motion sensing would lead to a compromised flight
performance. However, if pitch angular velocity is not delayed,
even though information about all other body kinematic
parameters is subjected to delay, the model recovers successful
hovering flight. Preliminary data on a potential gyroscopic
sensor in moths (Sane et al., 2004) suggest that rotational
motions may be encoded with very low (<10·ms) delays. The
extent to which sensory information delay interacts with
reductions in the number of control parameters remains
unexplored.

Inverse and ill-posed problems

Treatment of hawkmoth hovering as an inverse problem
demonstrated that, like many inverse problems in biology, it is
without a unique solution and by definition, ill-posed. Hovering
flight’s ill-posed nature appeared in our results at two levels.
Firstly, different sets of kinematic parameters were sufficient
for adequate hovering flight (Table·2). Secondly, even identical

Fig.·10. The 2-D projection of the paths of the right wingtip in the X–Z
plane with variation in kinematic parameters. Here we show the
standard wingbeat, the average kinematic parameter set adopted by
the simulated moth with all ten kinematic parameters free to vary
(solid black line), and two variations on this standard wingbeat. The
variations show the kinematic effect of changing two of the parameters
most clearly associated with maintaining hovering flight. The arrows
indicate the direction of wing motion along the wingtip path. Body
angle and centre of gravity location were recorded from the model.
Artwork courtesy of Michael Tu.
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sets of kinematic parameters result in slightly different
parameter time histories over the course of multiple simulation
trials. These arise because near identical solutions exist even
within the tightly restricted arena of three (or even two) free
kinematic parameters controlling the three degrees of freedom.
Although the existence of multiple adequate solutions appears
troubling at first glance, it should be taken as a reminder that
not all measurable differences propagate. The existence of
many functionally equivalent inputs, combinations of
kinematic parameters in this case, should be recognized as
a possible explanation of variation in experimental
measurements, along with the typical interpretations of
experimental error and functional difference. As demonstrated
in a similar study of human kicking (Hatze, 2000) this tendency
toward insensitivity to variation in the inputs becomes stronger
when attempting to move from nervous activation patterns to
muscle contractions and whole body kinetics.

List of symbols
aabdo semi-major radius of the abdomen
babdo semi-minor radius of the abdomen
c mean wing chord
c non-dimensional wing chord
Cd coefficient of drag of the moth’s body
Cr coefficient of resultant force for translational 

motion of the moth’s wings
Di drag vector for the ith body section
Dabdo distance from the centre of the abdomen to the 

centre of mass
Dbody magnitude of drag on the moth’s body
Dhead distance from the centre of the head to the centre 

of mass
Dthorax distance from the centre of the thorax to the 

centre of mass
Dwing,i distance from the centre of the ith wing section to 

the centre of mass
Fi aerodynamic force vector for the ith wing section
Facc aerodynamic force on the wings due to added 

mass
Frot aerodynamic force on the wings due to span axis 

rotation
Ftot total aerodynamic force on the wings
Ftrans aerodynamic force on the wings due to 

translation
Iabdo moment of inertia of the abdomen
Ihead moment of inertia of the head
Ithorax moment of inertia of the thorax
Itot whole body moment of inertia
Iwing moment of inertia of a wing
M whole body mass
Mabdo mass of the abdomen
Mhead mass of the head
Mthorax mass of the thorax
Mwing,i mass of the ith wing section
Pt arbitrary kinematic parameter value at time t

Ptn arbitrary kinematic parameter value from the 
current wingbeat at time t

Ptn–1 arbitrary kinematic parameter value from the 
prior wingbeat at time t

R wing length
r non-dimensional position along the span axis of 

the wing
rhead radius of the head
rthorax radius of the thorax
Sb,i surface area of the ith body segment
t non-dimensional time (fraction of a wing stroke)
U speed of the flow past the wing (estimated from 

the instantaneous velocity of the wing in the 
inertial frame)

Ut speed of the wing tip in the inertial frame
Ub,i speed of flow past the ith body segment 

(estimated from body velocity)
XYZ earth fixed inertial coordinate system
XbYbZb body coordinate system (origin at centre of mass)
xiyizi position of the ith wing or body section in the 

body coordinate system
XwYwZw wing coordinate system (origin at wing root)
� wing span axis rotation angle
� wing span axis rotation angular velocity
� wing span axis rotation angular acceleration
� wing angle of attack
� mean span axis rotation angle
�A amplitude of span axis rotation

 abdominal flexion angle

n abdominal flexion angle for the current wingbeat

n–1 abdominal flexion angle for the prior wingbeat

t abdominal flexion angle at time t
	� wing span axis rotation phase delay
	� wing sweep angle phase delay
	� wing elevation angle phase delay
� wing sweep angle
� mmean wing sweep angle
�A amplitude of the wing sweep angle
� air density
τbodc torque vector for forces applied to the body
τtot net torque vector
τwing torque vector for forces applied to a wing
� wing elevation angle
� mean wing elevation angle
�A amplitude of the wing elevation angle
�t wing azimuthal angle at t
� wing instantaneous velocity
� wing instantaneous acceleration
χ moth centre of mass position vector
χ· moth centre of mass velocity vector
χ̈ moth centre of mass acceleration vector
�P moth pitch
ω moth orientation vector
ω̇ moth rotational velocity vector
ω̈ moth rotational acceleration vector
�GA microgenetic algorithm
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