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The observation that the metabolic rate of individual
organisms changes with body mass either ontogenetically or
phylogenetically has its roots in the early literature. In 1883,
Max Rubner reported that the relationship between the change
in body mass (Mb) and ‘basal’ metabolic rate of mammals
scaled with 2/3 (see, for example, White and Seymour, 2003).
The first tentative explanation for this relationship had its
basis on the proportion between body volume and surface
area, thus giving a geometric perspective to the problem, and
some support for the 2/3 scaling parameter. A few decades
later (ca. 1924), Huxley (see Prothero, 1986; Klingenberg,
1998) proposed a more general perspective to scaling
problems and set the foundations of what became known as
‘allometry’. The formulation of Huxley is of the type
f(Mb)=f1Mb

a, where f is the trait associated with the changing

size, has been the subject of vivid disagreement in the
scientific literature. Whereas for some “The use of power laws
in biology is so well established that these are called
allometric equations …” (Brown et al., 2000), others state that
“It is well known that the allometric equation of Huxley does
not have a solid theoretical basis …” (Slack, 1999).
Additionally, the debate was heated by new insights into the
geometric view of Rubner, including the addition of a physical
perspective to the issue. D’Arcy Thompson, for example,
formulated problems relating ‘Growth and Form’ based on an
energy minimisation principle (Thompson, 1942; Goodwin,
1999).

Within the specific field of metabolic physiology, the basis
of current thought originated from the data compilations and
analyses of Kleiber (1932, 1961), Brody (1945; see, for
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The allometric scaling exponent of the relationship
between standard metabolic rate (SMR) and body mass
for homeotherms has a long history and has been subject
to much debate. Provided the external and internal
conditions required to measure SMR are met, it is tacitly
assumed that the metabolic rate (B) converges to SMR. If
SMR does indeed represent a local minimum, then short-
term regulatory control mechanisms should not operate to
sustain it. This is a hidden assumption in many published
articles aiming to explain the scaling exponent in terms of
physical and morphological constraints. This paper
discusses the findings of a minimalist body temperature
(Tb) control model in which short-term controlling
operations, related to the difference between Tb and the
set-point temperatures by specific gains and time delays in
the control loops, are described by a system of differential
equations of Tb, B and thermal conductance. We found
that because the gains in the control loops tend to increase

as body size decreases (i.e. changes in B and thermal
conductance are speeded-up in small homeotherms), the
equilibrium point of the system potentially changes from
asymptotically stable to a centre, transforming B and Tb in
oscillating variables. Under these specific circumstances
the very concept of SMR no longer makes sense. A series
of empirical reports of metabolic rate in very small
homeotherms supports this theoretical prediction, because
in these animals B seems not to converge to a SMR value.
We conclude that the unrestricted use of allometric
equations to relate metabolic rate to body size might be
misleading because metabolic control itself experiences
size effects that are overlooked in ordinary allometric
analysis.

Key words: control, body temperature, metabolic rate, allometry,
dynamic system.

Summary

Introduction

Review

Control of metabolic rate is a hidden variable in the allometric scaling of
homeotherms

José Guilherme Chaui-Berlinck1,*, Carlos Arturo Navas1, Luiz Henrique Alves Monteiro2 and
José Eduardo Pereira Wilken Bicudo1

1Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão tr. 14, 321, CEP:
05508-900, São Paulo/SP, Brazil and 2Departamento de Telecomunicações e Controle, Escola Politécnica da

Universidade de São Paulo and Pós-Graduação, Engenharia Elétrica, Universidade Presbiteriana Mackenzie, Rua
da Consolação 896, CEP:01302-907, São Paulo/SP, Brazil

*Author for correspondence (e-mail: jgcb@usp.br)

Accepted 30 November 2005

THE JOURNAL OF EXPERIMENTAL BIOLOGY



1710

example, Calder, 1996) and Hemmingsen (1960; see, for
example, Calder, 1996), who reported what they interpreted
as a scaling rule of the basal metabolic rate that was
characterized by an exponent of 3/4 instead of the proposed
2/3. Additional questions were then raised concerning the
appropriate interpretation of the 3/4 exponent (e.g.
Bertalanffy, 1968; Heusner, 1982; Dodds et al., 2001; White
and Seymour, 2003; Hochachka et al., 2003; Kaitaniemi,
2004) and there has been much discussion since on the
possible ‘causes’ of such an exponent, including the elastic
energy scale of McMahon (1973), the similarity principles of
Gunther (1975), the heterogeneous catalytic bioreactor of
Sernetz et al. (1985), the constructal law of Bejan (1996,
2000); the fractal similitude of West et al. (1997), the
similitude in cardiovascular systems of Dawson (2001), the
central source and distribution of sinks of Dreyer (2001), and
the fluid dynamics approach of Rau (2002) and Santillan
(2003). A common trait of most of these postulates is that they
rely on the same principles as Rubner and Thompson, i.e., a
geometric/physical law leading to an energy minimisation or
constraint.

From the above discussion it must be clear that the validity
of the allometric approach, and the values, causes and
consequences of its associated exponents in energy
metabolism, merits examination. It is not surprising, then, that
certain characteristics of the metabolic rate of animals, which
appear to be specific to given size ranges, have been rather
overlooked in the literature. In contrast to the common
tendency to pool animals along a size continuum Bertalanffy
(1968), for example, divided rats in two size groups
(animals weighing more or less than 110·g) because a 110·g
body mass “corresponds to many physiological modifications”.
Along the same lines, McNab (2002) pointed out some
important metabolic differences occurring in medium-sized
(100·g<Mb<2·kg) homeotherms due to highly different patterns
in thermal conductance, and claimed that these differences are
related not only to body mass but to food availability and
climate as well.

These problems are particularly evident when the subjects
of study are very small endotherms. Besides food and climate
effects on the scaling of metabolism, analysis of data sets
revealed that the pattern of this scaling is different for small
and large masses (for a detailed study of this subject, see
McNab, 1983). Additionally, Schuchmann and Schmidt-
Marloh (1979) reported an unusual pattern of body
temperature (Tb) control and oxygen consumption in two
species of Jamaican hummingbirds, for which they described
a fairly large thermoneutral zone (20–29°C). Within this
temperature range, Tb was constant, but metabolic rate was
twice the minimum recorded. Our own studies of
hummingbirds in an open-respirometry system designed for
the fast acquisition of metabolic rate data also revealed
unusual features (Chaui-Berlinck et al., 2002a): the birds did
not show a steady-state condition of Tb and metabolic rate.
Time-series analysis revealed that the observed oscillatory
pattern of metabolic rate exhibited long-range correlation, an

observation that is compatible with the existence of control
mechanisms operating to maintain such a pattern. Regarding
very small mammals, it has been long recognised that some
shrews maintain a body temperature and metabolic rate much
higher than would be expected with the 0.75 allometric
scaling rule as the null hypothesis (e.g. Gehr et al., 1980;
Sparti, 1990; Brown et al., 1997). Moreover, the body
temperature of these animals is highly variable (e.g. Nagel,
1991; Brown et al., 1997). Some bats also seem to have both
low and variable body temperatures, instead of the
‘homeothermic’ condition they supposedly share with other
mammals (e.g. Chappell and Roverud, 1990; Hosken and
Withers, 1997; Bartels et al., 1998). The metabolic pattern
observed by Bartels et al. (1998) in 14·g bats suggests an
absence of steady-state conditions, a result compatible with
that of Corp et al. (1997) who detected remarkable variation
in both Tb and metabolic rate in supposedly euthermic wood
mice. Variations around 4°C in ‘euthermic’ body temperature
also occur in elephant shrews (Macroscelidea), small
mammals of body mass 40–60·g (Lovegrove et al., 2001).
Finally, it is noteworthy that even size inheritance in
mammals weighing less than 18·g might operate differently,
as suggested by Smith et al. (2004). The authors argue that
this is probably due to biomechanical and thermoregulatory
problems in such small animals.

The purpose of this paper is to investigate whether very
small homeotherms constitute a special case regarding the
control of body temperature, and the extent to which this
situation would lead to unexpected problems in the search for
a causative explanation to the k allometric exponent based
on geometric (morphological) and physical factors. We first
analyse what is meant by the concept of standard metabolic
rate and discuss the assumptions that this concept carries with
it. Then, we outline a minimalist control system of body
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Fig.·1. Standard metabolic rate concept. There are internal and
external conditions that once met supposedly lead the metabolic rate
B of a homeotherm to the SMR. This is, thus, a local minimum of B
(δB=0). See text for further discussion.
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temperature, assuming that the parameters of the model
follow scaling rules. From the effects of these scaling rules
in the behaviour of the system we verify whether the
assumptions implied by the standard metabolic rate concept
can be fulfilled over the entire range of homeotherm body
mass.

The definition of the metabolic rate and what this implies
To measure standard metabolic rate (SMR) as defined by the

IUPS Thermal Commission (2003), ‘The specified standard
conditions are usually that the organism is rested (or as near
to rested as is possible), fasting (if possible), awake, and in a
thermoneutral environment’. The definition excludes torpor
and other metabolic depressed states, as well as the
reproductive phase (McNab and Brown, 2002). Thus SMR is
a function of external (i.e. surrounding ambient) and internal
(i.e. organismic) environmental conditions. Considering that
once these conditions are met SMR is the minimal energetic
situation, it is tacitly assumed that the function B (the
metabolic rate of a homeotherm) converges to SMR. Standard

metabolic rate is, then, a local minimum of B and thus, at the
SMR, δB=0 (δ indicates infinitesimal variation; see Fig.·1). A
corollary of this first assumption is that when an animal is in
the SMR condition, the short-term control mechanisms that
maintain body temperature (Tb) do not operate, since δB is
zero. This hidden assumption must be satisfied if a scaling rule
is settled in terms of physical and morphological causes.
Otherwise, the SMR scaling rule would be subjected to the
‘volition’ of metabolic controllers and physical/morphological
arguments would no longer make sense. In engineering terms,
this is equivalent to operating in an open-loop system.

A minimalist Tb control system and its analysis
Body temperature control in homeotherms is hierarchical,

the major control centre being the hypothalamus (Boulant,
2000). This organ receives and integrates information from
peripheral and core temperature sensors and modulates a
number of responses, including motor outputs modifying
metabolic rate (shivering and non-shivering processes) and
changes in the thermal conductance through skin and

peripheral blood flow, fur/feather
positioning, etc (Graener et al.,
1984; Gordon, 1986; Boulant,
2000; Cooper, 2002). Empirical
evidence to date indicates that the
control law is proportional to the
error between Tb and a reference
temperature (Graener et al., 1984;
Gordon, 1986; Webb, 1995;
Hexamer and Werner, 1996;
Boulant, 2000; Cooper, 2002).
Fig.·2A illustrates the biological
basis of the process described
above. Thus a very simple control
system of Tb in homeotherms
should comprise three dimensions:
(1) body temperature, (2) metabolic
rate and (3) thermal conductance.
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Fig.·2. (A) Biological basis of Tb control. am, metabolic proportionality
factor; endoc. law, endocrine controllers law; shiv, shivering
thermogenesis; non-shiv, non-shivering thermogenesis. These four blocks
constitute the metabolic rate controller/process in our model (see B).
Behav. law, posture controllers law; aK, proportionality factor for non-
evaporative heat transfer; aEHL, proportionality factor for evaporative heat
transfer; shape, body positioning; vasomotor: peripheral blood perfusion;
S/P, sweating and panting. These six blocks constitute the thermal
conductance controller/process in our model (see B). HP, heat production;
HL, heat loss; TC/S, core and skin temperatures. The thermal characteristics
of the body correspond to the thermal inertia and ‘disturbances’ to TA in
our model. Notice that our model does not take into account local loops
and other central nervous system areas interfering in the control. (Scheme
based on fig.·2 of Cooper, 2002). (B) Schematic representation of the Tb

control system modelled in Eq.·1–3. See text for details. Compare this
control system to the biological one presented in A.
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The time variation of Tb can be macroscopically described
by the relationship between heat input (metabolic rate) to and
heat loss (due to temperature difference) from the system (the
organism; e.g. Chaui-Berlinck et al., 2002a,b):

dTb / dt = b[B – W(Tb–Ta)]·, (1)

where B is the metabolic rate, W is the wet thermal
conductance, TA is the ambient temperature and b is the inverse
of the product body mass � thermal capacitance of the body.
The time variation of metabolic rate can be expressed, in our
minimalist model, as:

dB / dt = k1[Ts – Tb(t–τ1)]·, (2)

where k1 is the gain in the closed control loop and TS is the set-
point (or reference) temperature of the organism. In a simple
statement, metabolic rate B increases as the difference between
the set-point and the sensed body temperature increases. Notice
that the loop response undergoes a time delay t–τ1, as expected
in biological systems. The time variation in thermal
conductance is expressed as:

dW / dt = –k2[Ts – Tb(t–τ2)] – k3[W(t–τ3) – W0] , (3)

where k2 is the gain in the closed control loop of thermal
conductance in relation to Tb, k3 is the gain in a control loop
that tends to match W to a given thermal conductance W0.
This last term is a minimal value of thermal conductance
for a given organism. In contrast to what happens with
metabolic rate, the thermal conductance of the organism
is expected to decrease as the difference between the set-
point and the sensed body temperatures increases (hence
the minus signal in k2). Each loop has its own response
time delay. Fig.·2B illustrates the scheme of this control
system.

Steady-state conditions: equilibrium point of the system

Considering that the definition of SMR presumes steady-
state conditions of the organism, we searched for sets (Tb*, B*,
W*) of values that render all derivatives simultaneously equal
to zero. There is only one such set:

Tb* = TS , (4a)

W* = W0 , (4b)

B* = W0∆T , (4c)

where ∆T is the difference TS–TA. Notice that the decaying rate
of thermal conductance, –k3(W–W0) in Eq.·3, becomes a
‘forcing term’ for minimisation of energetic demand: the
animal tends to adjust its heat loss to as minimal a value as
possible, thus decreasing the metabolic rate B* associated with
a given ambient temperature. Loosely speaking, the model
satisfies a condition of energy minimisation.

Stability

The next step is to check the stability of the equilibrium
point (EP) in order to determine whether the system tends to
the EP once perturbed. In the analysis (e.g. Murray, 1993;

Monteiro, 2002), we obtain the characteristic polynomial of the
linearised system as:

λ3 + bW0λ2 + bk5eλτ5 + λb(k1eλτ1 + 
∆Tk2eλτ2 + W0k3eλτ3) + λ2k3eλτ3 = 0·, (5)

where λ represents an eigenvalue of the system, k5 is the
product k1k3 and τ5 is the sum τ1+τ3. In order to have an
asymptotically stable EP, all the three eigenvalues of the
system must have negative real part. Eq.·5 is a transcendental
equation and thus has no analytical solution, so insights into
the behaviour of the system can be obtained from a graphical
analysis. Before proceeding in this direction, however, we
must return to the original problem we are investigating.

The scaling problem
There are several ‘scaling’ exponents that we should take

into account in the analysis. In the following relationships, the
subscript ‘1’ refers to a reference value of a ‘standard’
homeotherm of 1·kg. The first obvious exponent is the one
from the SMR scaling:

SMR = SMR1Mb
β·. (6a)

Another exponent is the one from the scaling of wet thermal
conductance. As shown in many reports (e.g. Schleucher and
Withers, 2001), W increases with body mass as:

W = W1Mb
α·. (6b)

Taking together Eq.·4c, 6a and 6b, a scaling in the temperature
difference ∆T emerges (see, for example, Schleucher and
Withers, 2001). However, with this approach, there is no need
to assume that body temperature is under control because only
the difference between the set-point and ambient temperatures
is taken into account. We do require that TS is an ‘un-scaled’
constant, i.e. that set-point temperature is a constant reference
value across the species under consideration. With this
important constraint, we obtain a scaling rule for the minimal
critical ambient temperature:

TA, min = TS(1–Mb
γ) + TA1Mb

γ·, (6c)

where γ=β–α, and TA1 is the minimal critical ambient
temperature for a standard homeotherm of 1·kg. Notice that
Eq.·6c is the one that preserves body temperature control in the
phylogenetic or ontogenetic scaling analysis.

The factor b, which represents the inverse of thermal inertia,
scales with the inverse of body mass. Considering thermal
capacitance due to tissue composition of the organisms as
roughly constant across species, we have:

B = b1Mb
–1·. (6d)

Finally we consider the gains and time delays in the control
loops. This is a relatively unexplored issue so we must trust a
sensible speculation. Some empirical findings suggest that the
gains in the loops in which we are interested increase as body
mass decreases. These come from data on rates of rewarming
after metabolic depression (Geiser and Baudinette, 1990; Stone
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and Purvis, 1992) and on the hypoxic respiratory ‘drive’
(Boggs and Tenney, 1984). Here, we generalise that the scaling
of a given gain is:

k = krefMb
ξ·,

where ξ <0 . (6e)

We also assume that time delays decrease as body mass
decreases, simply because size is reduced and thus the
distances between controllers and processes. We generalise the
scaling of a given time delay as:

τ = τrefMb
ζ·. (6f)

Let us summarize the scaling laws that will drive our
analysis, i.e. Eq.·6a–f. On the one hand, standard metabolic
rate, wet thermal conductance and time delays increase as body
mass increases. On the other hand, minimal critical ambient
temperature (the lower limit of the thermoneutral zone), the
inverse of thermal inertia, and the gains in the control loops,
decrease as body mass increases. Therefore, a large
homeotherm is subjected to a condition of low gains associated
with high thermal inertia, while a small homeotherm faces a
condition of high gains and low thermal inertia. Also, on a
mass-specific basis, wet thermal conductance is lower in large
homeotherms because α (Eq.·6b) is <1. We now return to the
problem of evaluating the stability of the system with time
delays, expressed in its full form in Eq.·5.

Scaling and stability
To explore the relationship between the scaling rules from

Eq.·6 and the behaviour of the equilibrium point (i.e. its
stability), it is convenient to first separate Eq.·5 into two main
components, a pure polynomial and one containing the
exponential terms of λ:

λ3 + bW0λ2 = 

–[bk5eλτ5 + λb(k1eλτ1 + ∆Tk2eλτ2 + W0k3eλτ3) + λ2k3eλτ3] .

The crossings of these two functions correspond to the
solutions of Eq.·5. Table·1 shows the numerical values we
employed in most of the graphical solutions and simulations.

Fig.·3A shows the general solution obtained for hypothetical
large homeotherms. We can identify three crossings between
the polynomial and exponential functions of λ, meaning that,
under the situation considered, the equilibrium point is an
asymptotically stable node. This situation extends to small
animals in the range of 100·g, but we can see that the
exponential part of the function exhibits an upwards shift in
relation to the polynomial part (Fig.·3B). The 50·g animal
represents a borderline situation. There is one crossing near the
region λ <≅0 and then the two functions touch each other at a
lower value of λ that represents a double root (Fig.·3C). The
system is still an asymptotically stable node at this situation,
but oscillations are about to emerge: a further decrease in body
mass leads to a single crossing between the functions
belonging to Im(λ)=0. The other two solutions have Im(λ)�0

and thus the system has an asymptotically stable focus.
Extending the decrease in body mass to even lower values, the
real part of the conjugate root may become positive, rendering
the system unstable (Fig.·3D). At this point, non-linearities in
both the control system and the process itself become
important and the oscillatory pattern would be sustained within
some boundaries. In other words, an unstable focus in the
minimalist system of body temperature control becomes a
centre in a more complete system due to non-linearities that
the minimalist system does not take into account. For instance,
in the simulations of the model, these other non-linearities
were represented by limited ranges of B and W, proportional
to values estimated by Eq.·6a,b. These simulations are shown
in Fig.·4.

In the conditions depicted above, asymptotically stable
systems converge spontaneously on the metabolic rate
anticipated by the allometric scaling rule (Eq.·6a, with β=0.75).
Therefore, these organisms would fulfil the measuring
requirements of SMR, or, in other words, the metabolic rate
corresponds to the one where δB=0. Nevertheless, if the gains
of the control system change it to the unstable situation, the
saturation of the responses turns the system into a centre.
Under these circumstances, metabolic rate, body temperature
and thermal conductance oscillate continuously (Fig.·4C), and
the very definition of SMR no longer makes sense. Note that
the oscillatory behaviour of the system shifts upwards the mean
value of the metabolic rate in the function of its metabolic
scope under the experimental situation. This means that
measurements of metabolic rate of an animal of this type would
result in values higher than the one anticipated by the
allometric scaling rule.

Scaling TS

The previous analysis was based on the maintenance of the
set-point temperature across the size variation (see Eq.·6c).
This is a crucial assumption, as explained earlier, because it
would be pointless to group homeotherms of different body
temperatures to analyse ‘size effects’. However, body
temperature tends to decrease as size decreases, i.e. many small

Table·1. Values of the ‘standard 1·kg’ and scaling exponents
used in most of simulations

Variable Standard 1·kg value Scaling coefficient

B 6.4 β 0.75
W 0.8 α 0.60
TA,min 29 γ 0.15
b 1 –1
k1 0.0070 ξ –0.2
k2 0.0035 ξ –0.2
k3 0.0035 ξ –0.2
τ 4 ζ 0.33
TS 37 0

The γ exponent is the difference between β and α (see text for
explanation).
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homeotherms tend to have low body temperatures compared
with their larger-sized counterparts (e.g. White and Seymour,
2003).

When the term ∆T in Eq.·5 is diminished, a downwards shift
occurs in the descending portion of the exponential function,
approaching the polynomial and the exponential parts of the
characteristic polynomial (Eq.·5). This indicates a potential
change from the oscillatory behaviour to an asymptotically
stable focus, and so the metabolic rate measured would fall on
the expected by the allometric scaling rule. However, this
would occur due to changes operating at the controller
level and should not be considered as a pure law of
‘geometrical/physical optimisation or constraint’ alone.

Why maintain a system with high gains?

It is interesting to speculate on the putative reasons why a
small homeotherm should maintain high gains in the Tb

control system. We may first claim influences of the
phylogenetic history of the lineage, for example, a size
reduction over evolutionary time in which cladogenesis
involves the retention of key features related to temperature
control. This explanation, however, is not causal, and the
question of why a high gain trait would be retained through
evolution remains. An alternative or complementary, yet
tentative, explanation, arises from looking at the Tb control
system itself: the biological control system certainly has more
than one dimension (see above), and higher than first-order
systems exhibit a rich variety of behaviours, potentially
becoming oscillating when gains increase (Nise, 2000). These
fast-responding systems would cope well with a rapidly
changing external environment (inputs). For instance,
changes in ambient temperature would lead to changes in the
amplitude of the oscillations, but the mean Tb value would be
kept constant all the time. Conversely, a slow-responding
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Fig.·3. Exponential (exp; broken lines) and pure polynomial (poly; solid lines) parts of Eq.·5 plotted separately as functions of λ. The crossing
points between the functions are the solutions to the characteristic polynomial of the system. λ values are shown in the negative real axis portion,
thus, crossing points correspond to pure real negative λ and, therefore, asymptotically stable nodes in the corresponding eigenvector. Notice
that at λ=0, the polynomial part is zero and the exponential part is negative (–bk5). (A) A putative large homeotherm (>1000·g) is represented.
Notice the existence of three crossing points. (B) Small (≅100·g) homeotherm. (C) 50·g homeotherm, represents a putative limiting condition.
The functions touch each other just twice. Any further decrease in body mass would make the functions fall apart and two eigenvalues would
have imaginary parts, rendering the system a focus. The focus is asymptotically stable while the real part of each complex conjugate λ belongs
to the negative real axis. The focus would become unstable when the complex conjugate λ has positive real part. This potentially occurs when
the functions are ‘far away’ from each other, as depicted in (D), representing a 10·g homeotherm.
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system would experience a shift in Tb that would persist
for a period, depending on the change of the external
temperature.

Conclusions
The present study is intended to offer a new perspective to

the relationship between body mass and standard metabolic
rate of homeotherms, a perspective in which body temperature
control acts on the metabolic rate of an endotherm. Our model
offers important support to the idea that size effects can modify
the intrinsic characteristics of the steady-state condition (i.e.
the equilibrium point of the system), potentially changing the
behaviour from asymptotically stable to a centre, generating a
situation where no steady-state conditions would apply. The
control system presented here is extremely simple but the
model is solid, to convey the main points discussed here. We
recognize that many possible non-linearities of the process and
of the controller have not been considered in the analysis.
Although we offered saturation of responses as an example, we
also acknowledge that a multiplicity of controllers, spatial
heterogeneities in temperature distribution, non-linearities in
the controllers themselves, and others (e.g. Gordon and Heath,
1983; Werner et al., 1989) would render the temporal patterns
of the system more realistic, yet much more complex. The
important point is that such temporal patterns would be more
distant from the well-behaved δB=0 of the classical
SMR. Therefore, terms of size–temperature covariance are
potentially more complicated than might be evident by treating
them as isolated sources of variance.

Finally, we argue that control loops operating to maintain a
stable elevated body temperature (homeothermy) must be
taken into account in the conundrum of metabolic rate scaling.
The operating status of the control system imposes another
facet to the issue, lying outside the realm of geometrical and
physical constraints. Ignoring the scaling of these control
mechanisms would be to mask the allometric phenomenon
itself, particularly at very small body sizes. Physical and
geometrical principles are classical and relevant causes in
scaling. However, control systems add a new dimension to the
problem that must be included in the guideline principles of
‘allometric scaling causes’.

List of abbreviations and symbols
B metabolic rate
b inverse of the product body mass � thermal 

capacitance of the body
∆T the difference TS–TA

EP equilibrium point
k gain in the control loop
Mb body mass
SMR standard metabolic rate
TA ambient temperature
TA,min minimum critical ambient temperature
Tb body temperature
TS set-point temperature
W wet thermal conductance
δ infinitesimal change
λ an eigenvalue of the system
τ time delay

A

B

37.25
6.42

6.41

6.40

6.39

37.00

36.75

36.50
0 10 20 30

Time

Large homeotherms (>1000 g)

~50 g

<10 g

40

B
M

R
0.705

0.703

0.701

0.699

0.697

0.695

B
M

R

0.2100

0.2095

0.2090

0.2085

0.2080

0.2075

B
M

R

T
b

37.05

37.00

36.95

36.85

36.90

36.80

36.75

T
b

37.50

37.25

37.00

36.75

36.50

T
b

50 60

0 10 20 30
Time

Time

40 50 60

C

750 760 770 780 790 800

Fig.·4. Temporal profiles of Tb and B in conditions representing a
large homeotherm (A), a homeotherm weighing a little less than 50·g
(B) and a 10·g homeotherm (C). Time in arbitrary units. Solid lines,
Tb; broken lines, B. Notice the asymptotically stable node in the large
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oscillations) in the ≅50·g condition, and the centre (sustained
oscillations) in the 10·g condition. Simulations were done in MatLab
6.1 and Simulink.
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