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The occurrence of flow configuration (shape, structure) is a
phenomenon so universal that it unites the natural with the
engineered, and the animate with the inanimate. From 1996,
constructal theory has shown that flow architectures such as
trees and round tubes can be deduced from a single law of
maximization of access for currents (Bejan, 1996, 1997a,
2000). If this law is correct, then how do we account for the
occurrence of configurations that obstruct the flow of currents?
Hair and fur prevent the flow of heat from the body of the
animal to the ambient surroundings. Pairs of blood vessels in
counterflow serve a similar insulation function in the tissue
under the skin. Insulation technologies are everywhere in
engineering. Much more obvious examples come from the flow
of fluids: impermeable walls are everywhere, in fact, without
them there would be no ‘streams’. How can we reconcile such
obvious contradictions with the maximization of flow access?

Even if the configurations that maximize flow access could
be put with those that obstruct flow under the same theoretical
tent, it would cover only flow systems. So how can we account
for the occurrence of refined mechanical (non-flow) structures
such as the skeletons of animals and the frames of aeroplanes?
Principles of maximum stress uniformity and minimum weight
have been invoked to account for the generation of architecture

in mechanical support structures. How can such ‘static’
principles be reconciled with the principle that unifies flow
systems?

In this paper I answer these questions by reviewing a series
of recent developments based on constructal theory, where
geometry is the big unknown — the mechanism by which the
global performance of the flow system is maximized. The
argument goes as follows: ‘what’ flows (fluid, heat, electricity,
goods, people) is not as important as ‘how’ the flow derives its
architecture from the competition between objectives and
constraints. The maximization of ‘access’ means many things,
depending on what flows; for example, the minimization of
flow resistance and pumping power in fluid flow (from blood
vessels to atmospheric circulation), the minimization of
electrical resistance and Joule heating in all electrical networks
(computers, power grids), and the minimization of travel time
and cost in transportation and business (the Fermat principle
of urban design and economics). In isolated thermodynamic
systems, it means the acceleration of mixing en route to
equilibrium and no flow.

In engineering, where the heat engine was the stimulus for
the discovery of thermodynamics, the constructal law delivers
precisely what Sadi Carnot called for: the minimization of
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The constructal law is the statement that for a flow
system to persist in time it must evolve in such a way that
it provides easier access to its currents. This is the law of
configuration generation, or the law of design. The
theoretical developments reviewed in this article show that
this law accounts for (i) architectures that maximize flow
access (e.g. trees), (ii) features that impede flow (e.g.
impermeable walls, insulation) and (iii) static organs that
support flow structures. The proportionality between body
heat loss and body size raised to the power 3/4 is deduced
from the discovery that the counterflow of two trees is
the optimal configuration for achieving (i) and (ii)
simultaneously: maximum fluid-flow access and minimum
heat leak. Other allometric examples deduced from the

constructal law are the flying speeds of insects, birds and
aeroplanes, the porosity and hair strand diameter of the
fur coats of animals, and the existence of optimal organ
sizes. Body size and configuration are intrinsic parts of the
deduced configuration. They are results, not assumptions.
The constructal law extends physics (thermodynamics) to
cover the configuration, performance, global size and
global internal flow volume of flow systems. The time
evolution of such configurations can be described as
survival by increasing performance, compactness and
territory.
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friction and shocks in fluid flow, and the avoidance of large
temperature differences in heat flow. Such thermodynamic
‘imperfection’ cannot be avoided, because of size and time
constraints. Resistances will always be present. As Poirier
(2003) put it recently, the only way up on the ‘staircase to
heaven’ envisioned by Sadi Carnot is by arranging and
balancing the resistances against each other. To arrange and to
distribute is to make the drawing, to deduce what was missing
— the architecture. Optimal distribution of imperfection is the
constructal law of geometry generation.

Natural flow systems exhibit the same tendency. The largest
engine on earth — the wheels of atmospheric and oceanic
circulation — achieves the same objective as birds, aeroplanes,
and many other blobs of organized material movement
(‘streams’) such as eddies of turbulence: to facilitate the
movement of matter all over the globe, i.e. to maximize the
mixing of the matter that is the globe. River basins are trees,
in accordance with the constructal law of maximization of flow
access. River cross-sections have a universal proportionality
between width and depth, which can be deduced from the
constructal law.

If animal design proceeds in accordance with the constructal
law, then the animal destroys less exergy (i.e. useful energy,
fuel) and requires less food. ‘Animal design’ means currents
that flow along maximum-access paths between organs,
currents that are guided by walls, not currents that leak directly
to the ambient. Fuel or food management means that the engine
and the animal must carry the optimal weight that makes the
whole animal efficient, not the individual organ. From this
comes the need to spread maximum stresses uniformly, and to
support the flow structure with a mechanical structure having
minimal weight. There is no contradiction between the
constructal law of flow architecture and weight (size) as a
constraint for the mechanical structure that supports the flow
structure.

Along this theoretical route the constructal law provides the
physics that is missing from the Darwinian principle of the
fittest animal being the one that survives. It provides the
physics definition of what is meant by ‘the fittest,’ or by its
equivalent ‘the survivor,’ not only in biology but also in
engineering, geophysics and economics, where selection and
evolution are also evident. According to constructal theory
therefore, animals, river basins and all of us — the ‘man +
machine species’ — are the same.

Constructal law
The constructal law was first published in 1996 in the

context of optimizing the access to flow between one point and
an infinity of points (area or volume, in two- or three-
dimensional systems, respectively), with application to traffic
(Bejan, 1996), the cooling of small-scale electronics (Bejan,
1997b), and living fluid trees (Bejan, 1997c,d):

‘For a finite-size open system to persist in time (to survive)
it must evolve in such a way that it provides easier and easier
access to the currents that flow through it.’

The constructal law is about the time arrow of the
phenomenon of flow architecture generation. It is a self-
standing law, distinct from the second law of thermodynamics
(see the concluding section of this article). Constructal theory
has been reviewed in books (Bejan, 1997a, 2000, 2004; Rosa
et al., 2004; Bejan et al., 2004) and in articles (Poirier, 2003;
Lewins, 2003; Torre, 2004; Guerreri, 2004).

According to the constructal law, in the case of a flow
between one point and an infinity of points, the flow path was
constructed as a sequence of steps starting with the smallest
building block, the size of which is fixed, and continued in time
with larger building blocks (assemblies, constructs). The mode
of transport with the highest resistivity (slow flow, diffusions,
walking and high cost) was placed at the smallest scale, filling
completely the smallest elements. Modes of transport with
successively lower resistivities (fast flow, streams, vehicles,
and low cost) were placed in the larger constructs, where they
were used to connect the area-point or volume-point flows
integrated over the constituents. The geometry of each building
block was optimized for area-point access. The architecture
that emerged was a tree in which every geometric detail was a
result — the tree, as a geometric form deduced from a single
principle.

A simple illustration of the discovery of the tree geometry
is in the minimization of travel time between an infinity of
points (area A) and one point (M, Fig.·1A). The deduction of
the flow architecture from the constructal law is atomistic:
from small to large, in time (see A1, A2, A3…; Fig.·1A). There
are at least two modes of locomotion: slow (walking, speed
V0), and fast (vehicles, V1<V2<V3,...). The construction starts
with the smallest elemental area, A1=H1L1, where the A1 size
is fixed but the shape H1/L1 may vary. The elemental size A1

is dictated by the land property and culture of those who live
on A1.

The minimization of the travel time between all the points
of A1 and the boundary point M1 generates four geometric
features: (i) the V1 street is placed on the longer axis of the
H1L1 rectangle; (ii) the slow movement covers A1 entirely, i.e.
every inhabitant of A1 must first walk before reaching the
street; (iii) the rectangle shape H1/L1; and (iv) the approach
angle α1. For example, when V1>>V0, the optimal design of the
elemental area is H1/L1=2V0/V1 and α1=0.

Interesting is that the optimal A1 configuration can be
deduced in two ways (Bejan, 1996, 1997a). One is the
altruistic approach, in which the inhabitant with the worst
geographical position is considered (point P, Fig.·1B–D), and
the travel time from P to M1 is minimized. The other is the
egotistical approach, where the travel time of every inhabitant
of the white area is calculated, averaged over A1, and then
minimized. Both methods yield the same geometry. The
architecture that is good for the most peripheral member
of the assembly is good for the assembly as a whole: the
urge to organize is an expression of selfish behavior. We
return to this important aspect of the theory in the discussion
of Fig.·6.

The opportunity to optimize geometry continues at
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progressively larger scales. As shown in Fig.·1, a first assembly
(A2) consists of a number (n2) of optimized elements (A1). The
new street of speed V2 (>V1) collects or distributes the traffic
that covers the elements. The minimization of travel time
between the area A2 and the point M2 calls for placing the V2

street on the axis of A2, touching every point of A2 with slow
movement, and optimizing two geometric features, the shape
H2/L2 (or n2) and the approach angle α2.

The generation of geometry continues with assemblies of
progressively higher order and larger size. Every feature of the
emerging drawing is the result of invoking one principle: the
maximization of access for traffic that connects one point with

the infinity of points that make up the area. Nothing is assumed,
postulated or copied (modeled) from nature.

The optimized features of constructs of higher order (Ai, i>2
in Fig.·1D) fall into a pattern that can be summarized as a
simple algorithm. If these theoretical recurrence formulas were
to be repeated ad infinitum, only then would the resulting
image be a fractal (Bejan, 1997a; Avnir et al., 1998). The
image of Fig.·1 is not a fractal. In other words, constructal
optimization of volume-to-point accounts for why natural
structures look like images generated by fractal algorithms
truncated at a small but finite length scale, why such a cut-off
scale exists, and why in a natural structure the algorithm breaks
down in the steps situated close to the smallest scale (e.g. step
i=1 in Fig.·1B).

Three-dimensional volume-to-point access has been
optimized in the same manner, and the result is a tree
architecture (for reviews, see Bejan, 1997a, 2000). In fluid
trees, the structure is visible as channels and ducts if the flow
possesses at least two regimes with dissimilar resistivities, high
and low. The high-resistivity regime (e.g. viscous diffusion,
Darcy flow) covers most of the space, as it fills the interstices
formed between the smallest channels. The channels and
streams are characterized by much lower resistivity (e.g. flow
in ducts and streams). The structure is not visible — it is not
even an issue — when only one flow regime (viscous
diffusion) is present.

In the constructal fluid tree the dimension changes settle
into a pattern (e.g. dichotomy) after the order of the volume
construct becomes high enough. Dichotomy is not an
assumption — it is an optimization result deduced from the
constructal law (Bejan et al., 2000). Furthermore, the
optimized diameter factor obeys Murray’s law (Di+1/Di=21/3)
after the second construct (Murray’s law was originally
derived for fully developed laminar flow; the corresponding
result for turbulent flow is discussed in Bejan et al., 2000).
The step factor for tube lengths Li+1/Li exhibits a cyclical
pattern for each sequence of three construct sizes, provided
that i>2. The theoretical tree has a definite (finite, known)
beginning: the smallest scale and the optimized first
construct. The geometry and finite size of this beginning
distinguish this theoretical construction from the algorithms
assumed and used in fractal geometry. The inner cut-off, and
the breakdown of the algorithm at small-enough scales, are
as important as any other geometric feature. The flow through
the arms of the tree is as important as the invisible flow across
the armpits.

The formulae that accompanied the fluid tree construction
were the minimum necessary for making the drawing, and are
tabulated in Bejan (1997a,c). As shown in Bejan (2000), more
information can be obtained from the tables, for example, the
total volume, the total internal surface of all the tubes (A), the
volume-averaged porosity, the total mass (Mb) and the cross-
sectional area of the tree root. Interesting relationships emerge
when these quantities are plotted against each other, for
example, the near-proportionality between A and Mb (see
Eqn·9 below).
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Fig.·1. (B–D) The constructal sequence for the minimal-time route
between one point and the infinity of points A1, A2 and A3 of a finite-
size area (A) (Bejan, 2000).
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Heat loss vs body size
Constructal theory predicted the proportionality

between metabolic rate and body mass raised to the
power 3/4, by invoking the constructal law twice (cf.
the introductory section of this article): in the
minimization of body heat loss, and the minimization
of blood pumping power (Bejan, 2000, 2001). The
minimization of pumping power yields the constructal
fluid tree (Bejan, 1997a,c): this can be derived more
succinctly by optimizing a plane construct consisting
of a plane T-shaped junction (Bejan et al., 2000;
Fig.·2A). For simplicity, assume right angles and
Hagen–Poiseuille flow with constant properties in
every tube. The stream mi encounters the flow
resistance of two Li+1 tubes in parallel, which are
connected in series with one Li tube. When the
resistance is minimized by fixing the total tube
volume, we find Di+1/Di=2–1/3, which is independent
of the tube lengths (Li, Li+1) and the relative position
of the three tubes. Next, we optimize the lengths when
the space allocated to the construct is fixed,
2Li+1Li=constant. This yields the optimal ratio
Li+1/Li=f=2–1/3, where the smallest length scale is
labeled i=n, and largest i=0.

The trees of blood vessels are an architectural
feature under the skin, but not the only one. The other
is the superposition of the arterial and venous trees, so
closely and regularly that tube i of one tree is in
counterflow with tube i of the other (Fig.·2C,D). This
is a thermal insulation feature.

The arterial stream is warmer than the venous
stream: heat flows transversally, from stream to
stream. Because the enthalpy of the warmer stream is
greater than that of the colder stream, the counterflow
convects longitudinally the energy current
qi=micp∆Tt,i, where cp is the specific heat of blood, and ∆Tt,i is
the stream-to-stream temperature difference at level i. It was
first shown in heat transfer (Bejan, 1979) and later in
bioengineering (Weinbaum and Jiji, 1985), that such a
counterflow sustains a longitudinal temperature gradient,
∆Ti/Li, and that the convective energy current is proportional
to this gradient:

where hi is are the overall stream-to-stream heat transfer
coefficient and pi is the perimeter of contact between the two

(1)
∆Ti

Li

(micp)2

hipi
qi = ,

⎡
⎢
⎣

⎤
⎥
⎦

streams. The stream-to-stream thermal resistance hi
–1 is the

sum of two resistances: the resistance through the fluid in the
duct (~Di/kf, where kf is the fluid thermal conductivity), plus
the resistance through the solid tissue that separates two tubes
(~ti/k, where Di is diameter and k is the tissue thermal
conductivity; ti is defined in Fig.·2D: ti is the average thickness
of the tissue that separates two adjacent Di tubes). Even when
the tubes touch, ti is of the same order as Di. In addition,
because kf~k, we conclude that hi~k/Di, and Eqn·1 becomes:

(2)
qiLik

mi
2cp

2
∆Ti ~ .
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Fig.·2. The construction of the tree of convective heat
currents: (A) the constrained optimization of the geometry
of a T-shaped construct; (B) the stretched tree of optimized
constructs; (C) the superposition of two identical trees
oriented in counterflow, and (D) the convective heat flow
along a pair of tubes in counterflow (Bejan, 2000). For a
detailed explanation, see text.
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The double-tree fluid structure is a single tree of convective
heat leakage with zero net mass flow. The convective tree
stretches from the core temperature of the animal (at i=0) to
the skin temperature. The latter is registered in many of the
elemental volumes (i=n) that are near the skin. The many
counterflow pairs of the two fluid trees sustain the overall
temperature difference ∆T:

In going from Eqn·2 to Eqn·3, we used the continuity relations
for fluid flow (Nimi=m0, constant) and heat flow (Niqi=q0,
constant). Recalling the Li+1/Li constant f, we substitute Li=L0fi,
Ln=L0fn and Ni=2i into Eqn·3:

The right side has quantities that are constant, and quantities
that depend on n (the number of construction steps). The ratio
q0/m0 is independent of body size (n) because both q0 and m0

are proportional to the metabolic rate.
The volume inhabited by the tree is estimated by considering

the stretched tree as a cone in Fig.·2B. The base of the cone
(at i=n) has an area of size NnLn

2~2nLn
2. The height of the cone

is of the same order as the sum of all the tube lengths,
L0+L1+...+Ln=L0(1–fn+1)/(1–f), and the volume scale is:

The relationship between metabolic rate and total volume is
obtained by eliminating n between Eqns·4 and 5. The result is
visible in closed form if n is sufficiently large so that
(2f)n+1>>1 in Eqn·4, and fn+1<<1 in Eqn·5. In this limit q0 is
proportional to 2n, and V to (2/f)n. From this follows:

q0 = (constant)V3/4·. (6)

It can be verified numerically that Eqn·6 also holds for small n.
In conclusion, the proportionality between metabolic rate and
body size raised to the power 3/4 is predictable from pure theory.

Constructal theory also anticipates the proportionality
between breathing (or heartbeating) time and body size raised
to the power 1/4 (Bejan, 2000). In one of the first constructal
papers (Bejan, 1997d), it was shown that the pumping power
required by the heart for blood circulation and the thorax for
breathing is minimal if (a) the flow is intermittent (in and out,
on and off), and (b) the ‘in’ time interval (t1) is of the same
order of magnitude as the ‘out’ time interval (t2). Features (a)
and (b) come from pure theory (the constructal law), not from
observations. The optimal time scale (t1,2~t) is:

(7)
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where A is the total internal contact area of all the tubes of the
tree, D is the mass diffusivity, ∆C is the concentration
difference that drives the mass transfer process, and m is the
total mass flow rate of the tree (blood, air). The flow rate m is
proportional to the metabolic rate of the animal. Eqn·7 shows
that in order to predict t as a function of body mass (Mb) we
need expressions for m(Mb) and A(Mb). From the optimized
tree of convective currents we obtained Eqn (6), or:

m ~ Mb
3/4·. (8)

To predict the relationship A(Mb), we argue that the thickness
of the tissue penetrated by mass diffusion during the breathing
or heartbeating time t is proportional to t1/2. The body volume
(or mass) of the tissue penetrated by mass diffusion during
this time obeys the proportionality relationship Mb~At1/2.
Eliminating t between Mb~At1/2 and t~(A/m)2, and using Eqn·8,
we conclude that the contact area should be almost
proportional to the body mass:

A ~ Mb
7/8·. (9)

Finally, the proportionalities in Eqns·8 and 9 and Eqn·7 mean
that:

t ~ Mb
1/4·. (10)

This allometric law is supported convincingly by the large
volume of observations accumulated in the physiology
literature (Schmidt-Nielsen, 1984).

The constructal law for body heat loss vs size, Eqn·6, stands
out on the background provided by the history of the
theoretical attempts to predict this relationship. The earliest
was Rubner’s heat transfer model: because the convective heat
loss is proportional to the body surface, the metabolic rate must
be proportional to the length scale (V1/3) squared, i.e. the body
mass or volume raised to power 2/3. The heat transfer model
was discredited by more recent observations of birds and
mammals, which suggest an exponent closer to 3/4 than 2/3.
Because of such observations, heat transfer was not included
as a feature in recent fluid mechanics tree network models (e.g.
West et al., 1997), which, by the way, is a good illustration of
why modeling is empiricism. We return to these models in the
concluding section.

Why should anyone question the currently accepted models
by resurrecting heat transfer? First, and this is key, modeling
is not theory. Models are simplified descriptions (facsimiles)
of objects observed in nature. Second, the minimization of
pumping power, which is invoked by modelers, is the
constructal law, because less pumping power means less
exergy [useful (liberated) energy; see below] destruction, and
less food for the animal to survive. But, a lower heat leak also
means less food and less exergy destruction. This is why the
minimization of pumping power goes hand-in-hand with the
old heat-loss doctrine, not against it. Minimum pumping power
consumption and minimum loss of body heat are parts of the
same constructal law — how to be constructed to be the fittest
(the survivor), how to perform best, how to flow best.

Additional support for the constructal theory of body heat
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loss comes from the allometric laws of the design of the hair
coats of animals, such as the proportionality between the hair
strand diameter and the animal body length scale raised to the
power 1/2 (Fig.·3). This allometric law was predicted (Bejan,
1990a,b) by minimizing the body heat loss through the hair
coat, and is reviewed in the book by Nield and Bejan (1999).
The 1/2 exponent was predicted for both natural convection
and forced convection.

Another common feature of animal hair coats is the porosity,
which is high and nearly constant (between 0.95 and 0.99) for
all animal sizes (Bejan, 1993). This feature was predicted by
minimizing the combined heat loss by conduction and
radiation through the hair air coat. This analysis and the most
recent design applications of the constructal law are reviewed
in Bejan et al. (2004).

Constructal theory predicts not only the 3/4 exponent for
Eqn·6, but also the gradual decrease of this exponent as the
body size decreases. The 3/4 exponent is valid at the limit where
the body heat loss is impeded primarily by the convective
resistance posed by the blood counterflow of perfectly matched
tube pairs (Fig.·2B). As shown in Bejan (2000, 2001), heat-loss
paths in general are more complicated. The convective thermal
resistance posed by the trees in counterflow (R1) resides inside
the animal. This resistance runs in parallel with a second
internal resistance (R2) associated with the conductive heat leak
through the tissue. On the outside of the animal the heat current
flows through the convective resistance (R3) associated with the
body surface exposed to the ambient (air, water). The
conductive resistance R2 is proportional to the body length scale
V1/3 divided by the body surface scale V2/3; hence R2~V–1/3. The
convective tree resistance R1 is proportional to V–3/4. The ratio
R2/R1~V5/12 shows that R2 becomes progressively weaker (i.e.
the preferred path) as the body size decreases. At that limit the
exponent in the power law between heat loss and body size
becomes 1/3. In other words, from constructal theory we should
expect a gradual decrease in the power-law exponent as the
body size decreases.

The generality of the constructal deduction of the allometric
law of metabolism (Eqn·6) is due to the view that the flow
structure results from the clash between two objectives: the
need to carry certain substances from the core to the periphery
of the organism (e.g. nutrients, water, ions, waste products),
and the need to avoid the direct leakage of these substances
and energy (heat) into the ambient surroundings. All biological
flow architectures are results of this clash, from microbes to
plants and animals, including warm-blooded and cold-blooded
vertebrates. The regulated temperature difference between the
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body core and the ambient surroundings (large, or small) is not
the issue. According to constructal theory, the flow system (the
animal and its movement) must evolve like any other engine-
propelled body on the surface of the earth (e.g. Fig.·5), and this
means that the exergy derived from the food must be channeled
optimally through the motor (muscles), not dumped straight
into the ambient surroundings.

Flight and organ size
The design principle and results reviewed so far are relevant

across the board, from biology to engineering. This point is
pressed with vigor by the aircraft sketched in Fig.·4: if the word
‘fuel’ is replaced by ‘food’, then the same drawing is valid for
a bird, and reveals how the energy liberated by food is
destroyed by all the currents that flow around and through the
animal. The useful (liberated) energy is known as exergy in
thermodynamics (Bejan, 1997a), and as energy consumption
in biology. The food or fuel exergy is destroyed completely by
currents that overcome resistances.

The flying system becomes ‘more fit’ when the total
destruction of exergy is minimized: more body mass flown, to
longer distances. This is just like the Gulf Stream: more ocean
mass carried with less resistance, i.e. faster and for longer
distances. The mechanisms that destroy food exergy (e.g. air
friction) cannot be minimized individually and eliminated,
because each such mechanism serves the flying body as a

whole. This is illustrated in most general terms (Bejan, 2000)
by minimizing the sum (W) of the food exergies required by
air friction and lifting (supporting) the aircraft:

where D is the body linear dimension, V is cruising speed, g is
gravitational acceleration, ρa is air density and ρb is body
density (based on the total body mass scale Mb~ρbD3). The
terms on the right side of Eqn·11 cannot be eliminated. They
can be minimized together, thus:

when the cruising speed Vopt has the scale

Flying animals and machines are represented by the scales
ρb~103·kg·m–3 and ρa~1·kg·m–3, such that Eqn·13 becomes:

Vopt ~ 30Mb
1/6·, (14)

where Vopt is in m·s–1 and Mb is in kg.

(13)Vopt ~ ρb
1/3 Mb

1/6 .
g

ρa

⎛
⎜
⎝
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ρb
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Wmin ~ Mb
7/6 ,
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ρaV
W ~ ρaD2V3 + ,

Fig.·5. The flying speeds of insects, birds and aeroplanes, and their theoretical speed (Bejan, 2000).
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Fig.·5 shows this theoretical line next to flying speed data
taken from extensive compilations (Tennekes, 1996, and
references therein). The agreement between the line and the
data is remarkable, in view of the simplicity of the body model
with one length scale (D). Insects, birds and aeroplanes have
multiple length scales, and this may explain why some of the
data fall above or below the line.

Agreement over such a wide diversity of sizes and types of
flying flow systems shows that the constructal law — the
optimal distribution of imperfection — unites the designs of
all the flying systems, the animate with the engineered. This is
stressed by the additional features of Fig.·5. Small animals
(insects, hummingbirds) flap their wings all the time, and their
engine propellers (the wings) also provide the lift. In this limit
of small mass, the motor and the lift functions are performed
by a single structure: the wings. At the other end of the body
mass scale, large masses (aircraft) fly with separate motor and
lift structures. The lift is provided by the wings proper, and the
motor (thrust) by a different set of wings — the blades of the
turbofan engine.

Between the ‘fully integrated’ and ‘separate’ motor and lift
we find the ‘almost separate’ distribution of motor and lift
functions. We see this in the V-shaped flocks of migratory
birds. The goose is the motor when it flies at or near the tip of
the V; when it is not, the goose surfs on the waves generated
by the geese working in front. Pterosaurs are also in-between.
Their motor and lift functions were almost separate: they
flapped their wings rarely, and glided most of the time under
the hot sun (Frey et al., 2003).

More recently, we showed that the minimized flood
consumption dictates the physical sizes of the various flow
components of a complex flying system (Bejan and Lorente,
2002). Consider the total food required for flying over a
distance L. This quantity is proportional to the total food
exergy that is destroyed, W~WminL/Vopt which, according to
Eqns·12 and 13, is proportional to body weight and distance:

W ~ MbgL·. (15)

In the aircraft industry this proportionality is known as the
‘take-off gross weight’ criterion: the fuel penalty associated
with placing a new component on board is proportional to
the mass of that component. Smaller flow components are
attractive. But, flow components function less efficiently when
their sizes decrease: they pose greater resistance to flows, they
destroy more exergy, and so the flying animal or machine
requires more food or fuel to carry such components.

Constructal theory accounts for the existence of
characteristic (proportionate) organ sizes, in animals and
engineering installations. The fundamental trade-off in body
size is illustrated in Fig.·6. The total food exergy required by
a flow component is the sum of the food exergy destroyed by
the component and the food exergy required by the flying
system to carry the component on board. There is an optimal
component size such that its impact (penalty) on the total food
required by the bird is minimum. This trade-off is fundamental:
it rules the optimization of organ sizes in every flow system,

animals and vehicles alike. A simple illustration of this basic
phenomenon is the optimization of the diameter D of a round
duct (pipe or blood vessel), when its mass flow rate m is
prescribed (Bejan and Lorente, 2002).

Survival by increasing performance, compactness and
territory

In constructal theory, body size, architecture and complexity
are results, not assumptions. They are intrinsic parts of the
drawing: the optimal configuration to which the flow system
tends in time, in accordance with the constructal law. This
tendency was recently put on an analytical basis, such that the
constructal law becomes a new extension of thermodynamics
— the thermodynamics of non-equilibrium (flow) systems with
configuration (Bejan and Lorente, 2004). This formulation is
condensed in Fig.·7. A flow system (e.g. a tree) has ‘properties’
that distinguish it from a static (non-flow) system. The
properties of a flow system are: (1) global external size, e.g.
the length scale of the body bathed by the tree flow, L; (2)
global internal size, e.g. the total volume of the ducts, V; (3)
at least one global objective, or performance, e.g. the global
flow resistance of the tree, R; (4) configuration, drawing,
architecture; and (5) freedom to morph, i.e. freedom to change
the configuration.

The flow systems covered by the constructal law stated at
the start of this article populate and move in the V=constant
plane shown in Fig.·7. This plane houses a Performance vs
Freedom diagram: in time, and if the architecture is free to
change, R decreases (i.e. performance increases) at constant L
and V. The configuration with the smallest R value represents
the equilibrium flow structure. The configurations that
preceded it are non-equilibrium flow structures.

At equilibrium the flow configuration achieves the most that
its freedom to morph has to offer. Equilibrium does not mean
that the flow architecture stops changing. On the contrary, it is
here at equilibrium that the flow geometry enjoys most

A. Bejan 
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Fig.·6. Minimization of the total food or fuel requirement associated
with one component in a complex flow system.
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freedom to change. Equilibrium means that the global
performance does not change when changes occur in the flow
architecture.

The evolution of configurations in the constant-V cut (also
at constant L, Fig.·7) represents survival through increasing
performance — survival of the fittest. This is the physics
principle that now underpins Darwin’s argument, the law that
rules not only the animate flow systems but also the natural
inanimate flow systems and all the man and machine species.
The constructal law defines the meaning of ‘the survivor’, or
of the equivalent concept of ‘the more fit’.

In the bottom plane of Fig.·7, the locus of equilibrium
structures is a curve with negative slope, (∂R/∂V)<0, because
of flow physics: the resistance decreases when the size of the
internal space inhabited by the flow increases. This slope
means that the non-equilibrium flow structures occupy the
hypersurface suggested by the three-dimensional surface
sketched in Fig.·7. The time evolution of non-equilibrium flow
structures toward the bottom edge of the surface (the
equilibrium structures) is the action of the constructal law.

The same time arrow can be described alternatively with
reference to the constant-R cut through the three-dimensional
space of Fig.·7. Flow architectures with the same global
performance (R) and global size (L) evolve toward
compactness — smaller volumes dedicated to internal ducts,
i.e. larger volumes reserved for the working ‘tissue’ (the
interstices). This is survival based on the maximization of the
use of the available space. Survival via increasing compactness
is equivalent to survival via increasing performance: both
statements are the constructal law.

A third equivalent statement of the constructal law becomes
evident if we recast the constant-L design world of Fig.·7 in
the constant-V design space of Fig.·8. In this new figure, the
constant-L cut is the same Performance vs Freedom diagram

as in Fig.·7, and the constructal law means survival by
increasing performance. The new aspect of Fig.·8 is the shape
and orientation of the hypersurface of non-equilibrium flow
structures: the slope of the curve in the bottom plane (∂R/∂L)V

is positive because of flow physics, i.e. because the flow
resistance increases when the distance traveled by the stream
increases.

The world of possible designs (the hypersurface) can be
viewed in the constant-R cut made in Fig.·8, to see that flow
structures of a certain performance level (R) and internal flow
volume (V) morph into new flow structures that cover
progressively larger territories. There is a limit to the spreading
of a flow structure, and it is set by global properties such as R
and V. River deltas in the desert, animal species on the plain,
and the Roman empire spread to their limits. Such is the
constructal law of survival by spreading, by increasing territory
for flow and movement.

Overview: theory vs modeling
This article began with a broad view of how the constructal

law accounts for the generation of configuration everywhere,
from flow architectures to mechanical structures, and from
animate systems (biology), to inanimate systems (physics) and
man + machine species (engineering, economics, business).
The constructal literature listed in the References covers all
these domains: this literature is recommended to the readers
because, although known in engineering, it is largely unknown
in biology.

The applications of constructal theory are not limited to the
examples given in this article. In fact, the connections between
constructal theory and the large volume of observations
available in established fields such as biology are yet to be
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Fig.·7. Performance vs Freedom to change configuration, at fixed
global size L.
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Fig.·8. Performance vs Freedom to change configuration, at fixed
internal flow size V.
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made. They deserve to be explored to depths much greater than
in engineering books (Bejan, 1997a, 2000). In particular,
because this special issue focuses on allometric laws and body
size, it is important to see clearly the position of constructal
theory relative to the allometric model of West et al. (1997).

Constructal theory (Bejan, 1996, 1997a–c) predates the
model of West et al. (1997), and covers a physics that is much
greater than the allometric behavior correlated by the model. As
stated in the title of their paper, the work of West et al. is the
modeling of certain biological systems, which they observe and
then describe analytically. Modeling is empiricism, not theory.

The model of West et al. is based on at least three ad hoc
assumptions: (i) the existence of a ‘space-filling fractal-like
branching pattern’ (read: tree), (ii) the final branch of the
network is a size-invariant unit, and (iii) the energy required
to distribute resources is minimized.

These three features were already present in 1996 constructal
theory, not as convenient assumptions to polish a model and
make it work, but as invocations of a single principle: the
constructal law. Specifically, (iii) is covered by the constructal
law, (i) is the tree-flow architecture that in constructal theory is
deduced from the constructal law, and (ii) is the smallest-
element scale that is fixed in all the constructal tree
architectures. To repeat, in constructal theory the tree-shaped
flow is a discovery, not an observation, and not an assumption.

Because features (i–iii) are shared by constructal theory and
by the model of West et al., every allometric law that West et
al. connect to their model is an affirmation of the validity of
constructal theory. Every success of constructal theory in
domains well beyond the reach of their model (e.g. river basins,
flight, dendritic solidification, global circulation, mud cracks;
see Bejan, 2000) is an indication that animal design is an
integral part of a general theoretical framework — a new
thermodynamics — that unites biology with physics and
engineering.

Biology and ‘natural’ selection have just been made a part
of physics. There are two time arrows in this new
thermodynamics. The old is the time arrow of the second law,
i.e. the statement of irreversibility: everything flows from high
to low. The new is the time arrow of the constructal law, or
‘how’ everything flows: configurations morph toward easier
flowing architectures, toward animal designs that are more fit,
toward geophysical currents that flow along better paths, and
toward man + machine species that are more efficient. All these
macroscopic constructs mix the earth’s crust better and better,
that is much more effectively than in the absence of flow
architecture.

Constructal theory strikes a balance between determinism
and chance. In a constructal tree, for example, the position of
the branches can be predicted (e.g. Fig.·1), but nobody knows
exactly how the individual or the molecule will move across
the interstices. Likewise, it is not known exactly how (i.e. in
what vertical plane of Figs·7 and 8) a non-equilibrium flow
structure migrates toward equilibrium. Chance and additional
constraints will definitely play a role. There is no ambiguity,
however, about the direction of the migration, and about the

top performance level, which is achieved at equilibrium, where
imperfections are distributed optimally.
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