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Movement is a pervasive feature of microbial and animal
biology, from bacteria moving over tiny distances to whales
migrating across hemispheres. This broad range of size,
mechanisms and ecology makes locomotion an attractive topic
for scaling studies (recent examples include Iriate-Diaz, 2002;
McHenry and Jed, 2003). Machines built by humans to create
motion also vary broadly in size and usage, and interest in
micro- and nanoscale machines (Ellington, 1999) is bringing
engineered motors into a size range more traditionally the
realm of biology. Interestingly, there are unanticipated
convergences in certain performance characteristics of all
types of motors (Fig.·1; Marden and Allen, 2002), which

suggests that biologists and engineers have much to share in
terms of data, analyses and insights.

To move, a body must produce a net directional force on
its surroundings. The resulting acceleration, equal to the ratio
of force to mass, is broadly relevant for biological events
whose outcome is determined by how well an organism can
change its speed (Marden, 1989; Wickman, 1992; Bowlin and
Winkler, 2004) or resist an external acceleration such as
gravity. Hence, examination of net force production in
relation to mass is one possible starting point for
understanding scale effects in locomotion. Here I present a
short review of what is known about the mass scaling of
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Biological and engineered motors are surprisingly
similar in their adherence to two or possibly three
fundamental regimes for the mass scaling of maximum
force output (Fmax). One scaling regime (Group 1: myosin,
kinesin, dynein and RNA polymerase molecules; muscle
cells; whole muscles; winches; linear actuators) comprises
motors that create slow translational motion with force
outputs limited by the axial stress capacity of the motor,
which results in Fmax scaling as motor mass0.67 (M0.67).
Another scaling regime (Group 2: flying birds, bats and
insects; swimming fish; running animals; piston engines;
electric motors; jets) comprises motors that cycle rapidly,
with significant internal and external accelerations, and
for whom inertia and fatigue life appear to be important
constraints. The scaling of inertial loads and fatigue life
both appear to enforce Fmax scaling as M1.0 in these
motors. Despite great differences in materials and
mechanisms, the mass specific Fmax of Group 2 motors
clusters tightly around a mean of 57·N·kg–1, a region of
specific force loading where there appears to be a common
transition from high- to low-cycle fatigue. For motors
subject to multi-axial stresses, the steepness of the
load–life curve in the neighborhood of 50–100·N·kg–1 may
overwhelm other material and mechanistic factors,
thereby homogenizing the mass specific Fmax of grossly

dissimilar animals and machines. Rockets scale with
Group 1 motors but for different mechanistic reasons;
they are free from fatigue constraints and their thrust is
determined by mass flow rates that depend on cross
sectional area of the exit nozzle. There is possibly a third
scaling regime of Fmax for small motors (bacterial and
spermatazoan flagella; a protozoan spring) where viscosity
dominates over inertia. Data for force output of viscous
regime motors are scarce, but the few data available
suggest a gradually increasing scaling slope that converges
with the Group 2 scaling relationship at a Reynolds
number of about 102. The Group 1 and Group 2 scaling
relationships intersect at a motor mass of 4400·kg, which
restricts the force output and design of Group 2 motors
greater than this mass. Above 4400·kg, all motors are
limited by stress and have Fmax that scales as M0.67; this
results in a gradual decline in mass specific Fmax at motor
mass greater than 4400·kg. Because of declining mass
specific Fmax, there is little or no potential for biological or
engineered motors or rockets larger than those already in
use.
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propulsive forces generated by both animate and inanimate
motors.

Motors and data included in this study

Data for this paper come primarily from a recent study of
the scaling of net force output as a function of motor mass for
a wide array of biological and engineered motors (Marden and
Allen, 2002; see that paper for data sources). Briefly, the data
set comprises the force output and motor mass of single
molecules (myosin, kinesin, dynein, RNA polymerase);
molecular motors (F0–F1 ATPase ion pump, Escherichia coli
flagella, mammalian sperm and the spasmoneme spring of the
protozoan Vorticella); muscle cells; whole muscles; flying
insects, birds and bats; swimming crayfish and fish; running
cockroaches, iguanas, kangaroo rats, dogs and humans; jet
engines; piston engines; rockets; linear electric motors
(including an artificial human heart); rotary electric motors;
winches and hoists; linear actuators; and materials testing
machines.

For each of these motors we were able to find data or
specifications reporting maximum force output and motor
mass. Force outputs are the net force vector that can be
maintained in a steady fashion, although not necessarily
indefinitely. Importantly, these data do not include
instantaneous peak forces. For example, data for running
animals comprise the time averaged net force vector from force
plate recordings obtained by integrating over one complete
stride cycle (including the interval between ground contact
phases). Force output of flying animals was determined from
maximum load lifting (i.e. an average over many complete
wingbeat cycles), whereas for swimming animals it was
calculated from body acceleration during fast starts that also
comprise several stroke cycles. Force outputs of machines are
the maximum steady-state thrust or pulling force. For machines
typically used to generate torque, the radius of the crankshaft
(piston engines) or the shaft that exits the motor (rotary
electrical motors) was factored out to derive net force output.
Because these measures all represent cycle-averaged net force

output, they are directly comparable. This makes it possible to
compare data from a wide array of biological and engineered
devices.

Mass of engineered motors is the mass of the motor with no
attached machinery and does not include the mass of fuel. The
one exception is rockets, which consume their mass in order
to generate force; we therefore included fuel in the estimates
of rocket mass. In a few cases where motor mass was not
reported, we were able to estimate motor mass based on
dimensional data and density (molecular motors) or on
approximate ratios of limb to total body mass (running
animals). Mass of animal motors is the total mass of the
muscles and limbs that created the net force measured during
flying or running. For swimming animals, published data for
motor mass include only total mass of the muscles involved in
swimming. It would be preferable to include the additional
mass of skeletal components of the swimming motor, but those
components are probably less then 10% of motor mass and
their omission has no meaningful impact on the results.

It is not a simple task to define precisely what constitutes a
motor, so to compile a broad and inclusive data set we adopted
a hierarchical approach. Included in the data are examples of
minimally functional motor units with no external levers
(molecules; individual muscles with no attached limbs; electric
and piston motors with no attached external gears or levers;
jets; rockets) along with devices in which lever systems are
closely integrated with the motive components (animal limb
systems; winches and hoists; electric motors with attached gear
boxes). In certain cases we treat separately data for different
hierarchical levels of a single motor. Such examples include
single muscles versus the whole limb systems in which they
operate, and electric winch motors versus whole winches.

Scaling of motor force output: fundamental scaling
regimes

These compiled data reveal two fundamental scaling
regimes for motor force output, and there may be a third
scaling regime for very small motors operating in the viscous
regime for which there are presently only scant data. These
regimes are described in the following paragraphs.

Group 1: translational motors whose maximum force output
scales as motor mass0.67

Motors that push or a pull a load in steady translational (i.e.
linear) motion have force outputs that scale as the two-thirds
power of motor mass (Fig.·2). This group of motors comprises
single molecules (myosin, kinesin, dynein and RNA
polymerase), muscle cells, whole muscles, winches, linear
actuators and rockets.

Group 2: motors whose maximum force output scales as
motor mass1.0

At sizes where inertial forces dominate (fruit fly size and
above), motors that cycle at a steady rate and are used to move
bodies in a fashion more complex than translation have
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Fig.·1. Cross section of a Drosophila melanogaster (fruit fly) thorax
(ca. 0.0003·g) and a diesel engine (118·681·kg). Along with
superficial shape similarities, vastly different motors have very similar
performance in terms of force output per motor mass. (Drosophila
image courtesy of R. Ordway.)
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maximal force outputs that scale as motor M1.0 (Fig.·3), with
motor mass-specific net force output averaging a relatively

invariant 57·N·kg–1 (Fig.·3 inset; standard deviation=
14·N·kg–1). This set of motors includes the locomotor
apparatus of flying birds, bats and insects, swimming fish,
running animals, piston engines, electric motors and all types
of jets.

Table·1 shows the scaling relationships within each of the
general types of Group 1 and Group 2 motors. Notably, both
the slopes and the intercepts tend to be quite similar to the
group means, i.e. the scaling regimes apply equally well for
motor types within groups.

Robustness of the data: comparisons with divergent
predictions

Maximal force outputs of the Group 2 motors shown in
Fig.·3 are clustered tightly around a single universal scaling
relationship. This is surprising considering the diversity of
materials and mechanisms and the widely different methods
used to determine Fmax. Equally surprising is that this
universality of specific force output escaped the notice of both
biologists and engineers until very recently (Marden and Allen,
2002). Thus, it is reasonable and appropriate to question the
validity of the result. I am asked frequently if we either
consciously or unconsciously filtered the data, excluding points
that did not fit the relationship and thereby to some extent
manufacturing the tight fit.

Our approach was to include all instances for which we
could find motor mass and a measure of maximal net force
output for a defined mechanical situation that measured a force
output vector that was either steadily maintained or averaged
over a number of cycles. We omitted biological data for which
muscle and limb systems were used in a fashion other than
simple translation, but not steady cycling. Examples are
cockroaches using their limbs to push against fixed objects
(Full et al., 1995) and human weight-lifting records. These
cases represent neither simple translation or multi-cycle
locomotion and the force outputs should be close to what
translational motors produce when attached to the lever

systems of animal limbs (i.e. a reduction
in translational force caused by levers
that amplify speed and distance). We also
omitted data for devices such as stepper
motors, whose specific force outputs
resemble translational motors at slow step
rates, but approach the specific force
outputs of Group 2 motors when used at
high step rates. In general, there are
potentially many force outputs by
translational motors used at intermediate
speeds or attached to force-reducing lever
systems (e.g. biting forces produced by
an animal jaw; Alexander, 1985) that fall
between the two fundamental scaling
relationships represented by our sample
in Groups 1 and 2.

Two recent research efforts provide
particularly good tests of the robustness
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Fig.·2. Maximum force output by translational motion motors (Group
1) as a function of their mass. The least squares fit (solid line) is:
Fmax=891 M0.67. The dashed line is the scaling fit for Group 2 motors
in which Fmax scales as M1.0 (Fig.·3). Maximum force output (N) and
motor mass (kg).
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Fig.·3. Maximum force output by Group 2 motors as a function of their mass. The least squares
fit (solid line) is: Fmax=55 M0.999. The dashed line is the scaling fit for Group 1 motors for
which Fmax scales as M0.67 (Fig.·2). Inset: the frequency distribution of mass specific force
output for all of the Group 2 motors on the main plot. Maximum force output (N) and motor
mass (kg).
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of the tight scaling fit for Group 2 motors, for in both instances
the authors hypothesized a different result. In the first case,
Dudley (2002) questioned the suitability of the load-lifting
technique that was used to obtain force outputs of flying
animals and stated that the scaling of force production for
flying animals is unresolved. Subsequently, Dillon and Dudley
(2004) used a different method to obtain the scaling of
maximal force output of flying euglossine bees, but they did
not compare their results with previous data. Here I have
converted their load lifting data into units of vertical force (N)
and motor mass (kg) and compare them (Fig.·4) with all of the
insect load lifting data from previous scaling studies (Marden,
1987; Marden and Allen, 2002). The two sets of data are
indistinguishable.

A second interesting case is that of the MIT Microjet, a tiny
turbine motor (0.002·kg mass) built from silicon wafers
(Epstein et al., 2000). In the planning and early fabrication
phases of this completely novel design, the microjet was
predicted to produce a thrust-to-weight ratio of about 100:1
(Epstein and Senturia, 1997), which is 1000·N·kg–1 thrust-to-
mass. This hypothesis was based on the assumption that force
output for all types of devices should scale with cross-
sectional area, which would radically increase the ratio of
thrust to mass for very small motors. Despite the goal and
prediction of a very high specific thrust, the finished microjet
produced a maximum thrust-to-mass of 55·N·kg–1 (Fig.·4),
which is almost exactly the average value of Dillon and
Dudley’s bees (57·N·kg–1) and the entire set of Group 2
motors shown in Fig.·3 (57·N·kg–1).

Group 3: Variable scaling in the transition between viscous
and inertial motors

For very small biological motors (N=3) that comprise more
than one or a few molecules, force output does not scale as

J. H. Marden

Table·1. Fitting terms from least squares linear regressions of log10 Maximum force output (N) as a function of log10 Motor mass
(kg) for different types of motors 

Motor type Intercept Slope r2 N S.E.M. slope Min mass Max mass

Group 1
Muscles 2.995 0.677 0.997 16 0.010 4.8�10–22 0.014
Rockets 2.737 0.719 0.988 19 0.019 0.0079 5.87�105

Winches 3.251 0.736 0.852 6 0.154 14.5 1361
Linear actuators 3.048 0.612 0.656 9 0.167 0.34 2587
Mean 3.008 0.686

Group 2
Running animals 1.703 0.949 0.998 5 0.023 0.00004 32.7
Swimming animals 1.672 0.924 0.992 8 0.033 0.0009 0.04
Flying birds 1.555 0.959 0.993 11 0.026 0.002 0.37
Flying bats 1.862 1.082 0.994 7 0.037 0.002 0.013
Flying insects 1.583 0.959 0.982 149 0.011 3.7�10–7 0.008
Turbines 1.811 0.963 0.993 21 0.018 0.002 4264
Turbofans 1.793 0.986 0.934 30 0.049 64 6804
Electric rotary motors 1.739 1.078 0.999 10 0.013 0.04 558
Linear induction motors 1.825 0.854 0.940 7 0.096 1.9 32.6
Piston engines 1.719 1.016 0.988 31 0.021 0.165 2744
Mean 1.726 0.977

N shows the sample size within each category of motor; S.E.M. is the standard error of the least squares regression slope. Minimum and
maximum motor masses (kg) are shown for each category. Single molecules that create translational motion (myosin, kinesin, dynein, RNA
polymerase) are included here with muscle cells and whole muscles (treating muscles alone yields a nearly identical scaling equation). Piston
engines greater than 4400·kg mass are excluded because they scale differently than smaller piston engines (see text and Fig.·10).
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Fig.·4. Maximum force output in relation to motor mass by a selection
of Group 2 motors (flying insects; Marden, 1987), along with data
from two studies that predicted either vastly different (microjet;
Epstein et al., 2000) or subtly different (euglossine bees; Dillon and
Dudley, 2004) results. These comparisons demonstrate the robustness
of the M1.0 scaling and a mean specific force of 57·N·kg–1 for these
types of motors. Maximum force output (N) and motor mass (kg).
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either M0.67 or M1.0 as it does in all of the other motors in this
survey (Fig.·5). This set of motors includes the E. coli
flagellar motor, the flagellar motor of mammalian sperm and
the helical spring of the protozoan Vorticella. These
organisms operate over a range of Reynolds numbers in a
fluid environment where the main resistive force is viscosity
and inertia is much less significant. From Stokes law, the
viscous force resisting movement at a given velocity scales
according to a linear body dimension. Therefore, the force
output would need to scale as approximately M0.33 to
overcome viscous resistive forces.

Because there are so few data points for this group of
viscous regime motors, Marden and Allen (2002) did not treat
them separately or estimate a scaling exponent. Throwing
such caution to the wind, an original hypothesis is presented
here. Reynolds numbers change continuously with increasing
size as the ratio of inertial to viscous forces increases. A
swimming bacterium operates at Reynolds numbers of about
10–6, compared with 10–2 for a swimming sperm (Vogel,
1988). The flight motor of Drosophila operates at a Reynolds
number of about 102 (Dickinson et al., 1999). Over the size
range from E. coli to Drosophila, we can predict that there
would not be a single scaling slope that accurately describes
force output, since the need to overcome viscous forces gives
way gradually to the need to overcome inertial forces. Rather,
there should be a gradual increase in the mass scaling
exponent of force output over this size range. Despite the very

small sample (N=4 when Drosophila is included), the data
support this hypothesis (Fig.·5), as the four log-log data points
can be fit quite precisely by a curve that has a first-order slope
of 0.51 and a second-order slope of 0.01. Thus, it appears that
the scaling of force output for this group of very small motors
falls between M0.33 and M1.0, with a gradual increase in the
scaling slope as viscosity gives way gradually to inertia as the
primary force resisting motion. More data in this size range
are required before this can be considered a well supported
result.

One interesting and very different type of biological motor
in this size range that has not yet been examined for force
output is the molecular motor of the Apicomplexa, a phylum
of primarily unicellular parasites (~5000 species) that includes
medically important genera such as Plasmodium, Toxoplasma
and Cryptosporidium, along with gregarine parasites that are
prevalent in invertebrates. Apicomplexans move by
processive movement of F-actin in the plasma membrane. The
actin is attached via aldolase to a secreted adhesive complex
that sticks to the host cell surface (Sibley, 2004). Just inside
the plasma membrane are myosin molecules; these typically
move the more exteriorly located F-actins in a posterior
direction, although directionality is rapidly reversible. This
unusual form of actin–myosin interaction allows the parasite
to glide at slow speeds while they push past obstacles and
penetrate host cells (Dobrowolski and Sibley, 1996; Barragan
and Sibley, 2003).

The myosin-coated surface of apicomplexans appears at
first glance to be analogous to a muscle turned inside-out.
Note however some very important differences in
organization that strongly affect function. The apicomplexan
actomyosin motor is only a small layer of molecules around
the cell periphery rather than throughout the cross section as
occurs in muscle, so force output should scale with body
circumference (i.e. M0.33; this matches the scaling of resistive
forces in the viscous regime). In addition, they have no
lengthwise sarcomeric organization, which in muscles allows
units in a linear series to shorten simultaneously and attain
whole-muscle shortening speeds that are an approximately
constant number of muscle lengths per time (i.e. muscle
contractile speed scales as L1). Lacking any contractile ability
or appendages, apicomplexans can move only at the
processive speed of single myosin molecules, regardless of the
number of myosins acting in series (i.e. speed scales as L0).
As a result of these design factors, the larger apicomplexans
are very slow for their size. Small apicomplexans have been
reported to move at speeds of 1–10·µm·s–1 (Sibley, 2004) and
I have filmed large gregarines of 0.3·mm length gliding on
glass microscope slides at speeds up to 20·µm·s–1, less than
10–1 body lengths per second. This pales in comparison with
the roughly 102 body lengths per second flight speed of the
dragonflies that carry these gregarines. This example nicely
demonstrates that sarcomeres, by virtue of their volume-filling
design and in-series connection of contractile units, have
evolved to increase greatly both the speed and the force of
locomotion.
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Fig.·5. Force outputs of small Group 3 motors (red curve) that operate
in the viscous regime. For comparison, data are included for Group 1
motors, along with a dashed line representing Group 2 motors. The
scaling curve for Group 3 motors connects their performance with that
of the smallest Group 2 motor (fruit fly). Maximum force output (N)
and motor mass (kg).
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Hypotheses to explain these scaling regimes
An ultimate stress hypothesis for M0.67 scaling of Group 1

motors

Except for rockets (discussed separately below), the
maximum force outputs of Group 1 motors occur at conditions
where external motion has stopped (i.e. the motor force output
equals the resistive force of the load) and there is no internal
or external acceleration or mechanical power output. The
maximum force that can be generated by a motor designed to
generate large external forces at low or zero velocity is limited
by the failure point of the most critical element (i.e. the weakest
link). Optimal design in this context occurs when all
component parts are equally near their critical yielding or
breaking stress, no link is consistently the weakest and all parts
should fail nearly simultaneously (sensu Mattheck, 1998;
otherwise certain parts are either unnecessarily bulky or
excessively weak). Hence, for an optimally designed motor of
this type, we would expect that maximum force is close to
mechanical failure force, which for uniaxial stress occurs
across a critical plane (Norton, 2000). Load capacity should
therefore scale as approximately the cross sectional area of the
motor, or M0.67.

Maximum force generated by individual molecules such as
myosin occurs just prior to breakage of the molecular linkage
with the substrate (Finer et al., 1994); muscles and tendons
frequently tear during heavy exertion (Orchard, 2002); and the
maximal forces reported here for linear actuators and winches
is at or near the static force levels that cause mechanical
breakage. Thus, it appears that stress limitations are the
primary mechanism underlying the M0.67 scaling of maximal
force output by translational motors. This hypothesis explains
the scaling slope for Fmax for all of the Group 1 motors, but it
does not explain why the data can be described by a single
regression line rather than a family of parallel lines. Note
however that there is significant scatter around the line (an
approximate 10-fold range of variation at any given motor
mass) that presumably reflects differences in material
properties and mechanisms that affect stress resistance.

A fatigue-life hypothesis for M1.0 scaling and the tight
clustering of maximum specific force outputs of Group 2

motors around 57·N·kg–1

What explains the remarkably tight clustering (Figs·3, 4) of
maximum specific force output around a single M1.0 scaling
relationship for things as different as animals, piston engines,
electric motors and jets? The following paragraphs present a
novel hypothesis based on fatigue resistance and general
scaling principles to explain this surprising convergence of
motor performance.

Group 2 motors do not fail in the same way as do
translational motors. Rather than critical stress, failure in
Group 2 motors occurs primarily by factors such as
overheating, creep and either low- or high-cycle fatigue
(Norton, 2000), all of which are time-dependent (number of
cycles at a given load) and are exacerbated by complex

multiaxial stresses (pushes and pulls in a variety of directions
and phases) of the kind experienced by motors such as animal
limbs (Blob and Biewener, 2001), cycling pistons and high-
speed rotating turbines (Mattingly, 2002).

Materials science analyses that examine the relationship
between multiaxial stress and lifespan are gradually becoming
more common and sophisticated (Fischer et al., 1998; Sonsino,
2001; Niebur et al., 2002), but there is not yet an empirical or
theoretical understanding that specific load affects durability in
a common fashion across many different types of materials and
devices. I suggest that there is such a relationship and here I
present the few nuggets of information available to examine
this hypothesis.

Load–life relationships (Norton, 2000) have the general
form for uniaxial loading, of

N = a (σult / σ)b , (1)

or for multiaxial loading, 

N = a (C / P)b , (2)

where N is lifespan (number of loading cycles) and a is a fitting
constant. When the load is along a single well defined axis such
as simple tension or compression, σult is the ultimate breaking
or yielding stress (force per cross sectional area) and σ is the
stress created by the applied load. For multiaxial loading, C is
the ultimate load where failure occurs in a single cycle or causes
a transition to rapid failure (i.e. low cycle fatigue, typically
manifested as overheating); and P is the applied load.
Simultaneous loading along multiple axes creates a critical
volume of material rather than a critical cross section, and for
that reason stress gradient (N·m–3) is emerging as an important
parameter in fatigue life studies in both biology (Chaudhry et
al., 1997; Tardy et al., 1997; Mulholland et al., 1999) and
engineering (Fouvry et al., 1998; Araujo et al., 2004). Notably,
for multiaxial fatigue life, the familiar engineering parameter of
stress is not an appropriate concept, although engineers typically
use an adjustment such as the von Mises method to calculate a
uniaxial stress that would create the same distortion energy as
the actual combination of applied stresses on multiple axes. The
practice of analyzing nearly all mechanical engineering
problems in terms of stress is convenient but has perhaps delayed
the realization that there are important relationships between
force and mass when loading is multiaxial.

The exponent b in the load–life equations is well known for
multiaxial loading of certain machine components such as steel
ball bearings, where the value is 3 (Norton, 2000). The most
thoroughly tested biological material is bone, which in uniaxial
tensile or compression shows a b of about 11 (calculated from
data in Pattin et al., 1996). Regardless of the material or the
precise value of b, reducing the load results in an exponential
increase in longevity.

To examine the implications of an exponential increase in
lifespan as a function of relative load, it is instructive to
consider load–life data for both motor components and whole
motors. Steel bearings serve as a good example of a motor
component, as they are strong, durable, simple in shape, and

J. H. Marden
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have been tested extensively. Using data from Norton (2000),
I calculated the lifespan of steel bearings ranging in mass from
0.06 to 26·kg for loads equal to the critical load C of the
smallest bearing (for bearings, C is the load at which lifespan
drops below 106 cycles; this represents the approximate
transition point to rapid breakdown). The resulting curve
(Fig.·6) shows how lifespan would increase if load is held
constant and bearing mass is increased. Only at loads less than
about 1000·N·kg–1 is lifespan acceptable for devices that rotate
at tens or hundreds of cycles per second (i.e. lifetime exceeding
tens of millions of cycles). Note that these lifespan estimates
are statistical properties of an average bearing; complex motors
that depend critically on many bearings would be expected to
undergo more rapid failure.

Fig.·6 shows also the only load–life data that I have
encountered for a whole motor. These data come from an
anonymous reviewer of a draft of Marden and Allen (2002),
who stated that: “In practice, a 50·MW gas turbine will weigh
4000·kg as an aircraft engine with a 8000·h life, 16·000·kg
when the design is adapted for ground power applications with
a 25·000·h life, and 100·000·kg when designed for baseload
electric generation with a 100·000·h life.” Assuming a specific
force output of 57·N·kg–1 for the aircraft engine and a constant
cycle frequency of 390·Hz, the curve in Fig.·6 shows how
lifespan increases as the turbine motor is made more massive
for applications other than locomotion. The pattern is similar
to that for ball bearings, but as expected for a complex structure
dependent on many critical parts each subject to stochastic
failure (and many parts where loads are concentrated and
therefore experience higher specific loads than the motor as a
whole), the curve is shifted toward lower specific loads. Fitting
a curve to these data predicts a 30% reduction in lifespan at
90·N·kg–1 and a 40% reduction at 120·N·kg–1 compared with
the lifespan at 57·N·kg–1.

It is possible to perform a similar load–life estimation for a
generalized motor based on the data presented in Fig.·2. At
1·kg motor mass, an average translational motor can create a
force output of about 890 N. If we assume that this is a critical
load (life=1 cycle), this provides the value for C in the load–life
equation. Assuming a value of 3 for the exponent b in Equation
2, one can predict the lifespan of a motor with these properties
that is cyclically loaded at levels less than 890 N. The resulting
prediction (Fig.·7) shows that lifespan is only 209 cycles at
100·N·kg–1, but rises to 5600 at 50·N·kg–1 and 45·000 at
25·N·kg–1. Quite obviously there is a large difference in the
utility of motors designed to operate over lifespans that would
yield only a few dozen versus many thousands of cycles and
it is the region between 25 and 100·N·kg–1 where this transition
occurs.

The load–life equations (Equations 1, 2) refer to loads that
cause high cycle fatigue (HCF). In theory, HCF results from
the gradual accumulation of very small damage during each
loading cycle until the cumulative damage results in failure
(Norton, 2000). What actually occurs in rapidly cycling
machinery is somewhat different because shape deformations
(residual strain) lead eventually to reductions in recovery of
elastic strain energy, increased friction and, ultimately, either
breakage or overheating. This type of failure, called low cycle
fatigue (LCF), can occur very rapidly once there is a certain
level of damage caused by HCF. Therefore, there are
transitions from the gradual decrease in lifespan with increased
loading due to HCF, to much more rapid transitions due to
LCF. There is no equation to model this process, but all
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manufacturers and users of motors understand that certain load
levels cause rapid failure.

Despite common knowledge that certain motor loading
conditions cause a transition to LCF, it is very difficult to find
data showing mass-specific loads at which this occurs. The only
such data that I have found come from small electric motors used
for model airplane applications (http://www.gws.com.tw/
english/product/powersystem/eps-std.htm). These data show
how the thrust output of a series of motors (12–133·g) varies
across different combinations of propellers, gear ratios, voltage
and current. Not surprisingly, maximum specific thrust
averages 62·N·kg–1 (S.D.=12; N=15 motors). The data are
limited primarily to sub-maximal thrust and recommended
configurations near the maximal thrust. For three of the motors
there are also combinations of conditions creating overloads
indicated as ‘fatally damaging the motor’, i.e. low cycle fatigue.
A compilation of all of the specific thrust outputs at the different
combinations of propeller, gearing, voltage, and current for those
three motors shows that LCF tends to occur when specific thrust
reaches levels above about 60·N·kg–1 (dark bars in Fig.·8). The
fact that the recommended loads for these motors are very close
to their rapid failure point is quite interesting. It suggests that the
universal upper limit of specific force output for Group 2 motors
is the result of natural and human-imposed selection for motors
that can operate close to a transition between high cycle and low
cycle fatigue, which appears to occur at specific loads that are
generally between 50 and 100·N·kg–1 (Fig.·9).

Biological examples of a transition to LCF at a known
specific load are scarce, but the work of Chai and Millard
(1997) may be applicable. In that study, two species of
hummingbirds hovered with maximum muscle mass-specific
loads averaging 92–105·N·kg–1, but they could maintain that
level of performance for less than 0.5·s (about 15 wingbeat
cycles). Two smaller hummingbird species lifted specific loads
of 64–69·N·kg–1 for 0.65·s (38–40 wingbeat cycles). At

ordinary specific loads (about 33·N·kg–1 for
weight support by a hummingbird whose
flight motor is 30% of body mass),
hummingbirds fly for many thousands of
wingbeat cycles during a single day (10%
time in flight during an approximately 8·h
day; Schemske, 1975). Including these data
for ordinary flight with the data for maximally
loaded flight yields the hummingbird
load–life curve shown in Fig.·7, which agrees
reasonably well with the theoretical curve
derived above for motors exposed to cyclical
multi-axial stress.

Biological fatigue (e.g. insufficient fuel or
oxygen delivery rate) is not necessarily
equivalent to structural fatigue. However, it
makes sense for biological capacities to
evolve so that they match physical
constraints, such as the match between
hummingbird metabolic rate and their
anatomically constrained maximal wing beat
amplitude (Chai and Dudley, 1995). Hence, it
is reasonable to expect that biological fatigue
occurs at conditions close to structural
fatigue, which may explain why the rapid
failure load for biological motors is very
similar to what occurs in engineered motors.
This may explain why fruit flies (Drosophila
melanogaster) that were selected for 160
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generations for ability to fly into an increasingly strong
headwind showed a large increase in their mean flight velocity,
but showed no increase in maximum velocity (Marden et al.,
1997).

Equating muscle with machines in a discussion of structural
fatigue may seem questionable due to the self-repair capability
of muscle. However, muscle repair occurs on a time scale
(hours to days) that is probably not relevant to the time scale
over which low cycle fatigue occurs (seconds to minutes).
Anyone who has pulled a muscle during peak exertion is
unfortunately familiar with the consequences of this difference.

There is also a scaling argument (Table·2) to explain why
the force output of all Group 2 motors scales as M1.0. Motor
force outputs are opposed by the weight and inertia of the
devices that they are attached to, as well as the inertia of
their own accelerating parts; these forces scale as M1.0.
Accordingly, relative load (C/P) in the load–life Equation 2
scales as M–0.33 for motors in which Fmax scales as M0.67, but
is constant (M0) for motors in which Fmax scales as M1.0. The
value of b in the load–life Equation 2 should always be
positive (i.e. shorter lifespan at greater loading), which
therefore predicts negative scaling of total lifetime cycle
number for motors in which relative load (C/P) scales with a
mass exponent less than unity, as opposed to a constant
number of lifetime cycles for motors having relative loads that
scale as M1.0. Cycle frequency scales negatively with mass
(McMahon and Bonner, 1983) and, therefore, lifespan
measured in time rather than cycle number should scale
positively, with a mass exponent equal to the mass scaling of
cycle period, for motors in which force output scales as M1.0.
In accord with this hypothesis, animals show a mass-invariant
number of total lifetime cycles, positive mass scaling of
lifespan (time) and equal mass scaling exponents for cycle
period and lifespan (Schmidt-Nielsen, 1984; West et al.,
2002).

It should be noted that motors tend to be used most of the
time at levels well below their maximum load and, for this
reason, behavior has a large impact on motor lifespan. One
benefit of having a motor with a high Fmax is that it provides
capability that can be called upon for important transient

events. Using a motor near its peak load would sacrifice life in
a statistical fashion if used frequently, but certain brief events
require high performance (Marden and Chai, 1991) in order to
extend lifespan in an absolute fashion (i.e. escaping predators
or a human driver entering a busy highway) or to acquire things
of great value (i.e. mates; Marden, 1989). The ability to operate
for brief periods at specific loads near the transition between
HCF and LCF is probably a generally important ability for
animals and mobile machines.

How M1.0 scaling is achieved mechanistically: a case study
using dragonflies

An interesting feature of the fundamental scaling regimes
shown in Figs·2 and 3 is that some of the motors in one scaling
group are components of motors in the other group. For
example, electric motors have force outputs that scale
approximately as M1.0, yet the force output of whole winches
powered by electric motors scales as approximately M0.67. A
reverse example is that of muscles and animal motors.
Individual myosin molecules, muscle cells, and individual
muscles have force outputs that scale as M0.67, yet they are
major components of the animal motor systems whose force
outputs scale as M1.0. How the scaling of force output changes
from components to intact systems has been investigated in
running animals (reviewed in Biewener, 2005) and in the
dragonfly flight motor (Schilder and Marden, 2004), the latter
of which is discussed in detail below.

Like the other motors that show M1.0 scaling of force output,
the dragonfly flight motor contains levers that affect the
magnitude and scaling of force output. The basalar muscle in
the dragonfly thorax is connected to the wing in a fashion that
is readily understood in terms of the simple lever model for
conservation of torque,

F1 D1 = F2 D2 , (3)

in which F1 is muscle force output, D1 is the length of the
internal lever arm connecting the basalar muscle to the wing,
D2 is the distance along the wing where the mean aerodynamic
force acts, and F2 is the net aerodynamic force output.

Table·2. Illustrative example of the scaling of Group 1 and Group 2 motors

Device  Motor Motor force output (N) Relative load (C/P) Lifetime N cycles Lifespan (time)

mass (kg) mass (kg) Group 1 Group 2 Group 1 Group 2 Group 1 Group 2 Group 1 Group 2

1 0.25 353 15 353 15 44·061·784 3186 59·782·779 4323
10 2.5 1639 147 164 15 4405·976 3186 12·869·335 9307
100 25 7609 1472 76 15 440·577 3186 2770·359 20·035
1000 250 35·318 14·715 35 15 44·056 3186 596·370 43·132
10·000 2500 163·931 147·150 16 15 4405 3186 128·380 92·853
100·000 25·000 760·888 1471·500 8 15 441 3186 27·636 199·892
1000·000 250·000 3531·675 14·715·000 4 15 44 3186 5949 430·323

The scaling of motor force outputs, relative loads (in terms of the ratio of C and P from Equation 2 for the load–life relationship), lifetime
number of cycles to failure (using a value of 3 for b in Equation 2), and total lifespan (arbitrary units) for Group 1 motors (M0.67 scaling of
force output; Fig.·2) and Group 2 motors (M1.0 scaling of force output; Fig.·3).
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The scaling of the force output of the dragonfly basalar muscle
during maximally stimulated isometric tetanus is just as would
be expected for a translational motor; it scales as M0.67.
However, it is important to consider that during locomotion
muscles tend to be stimulated by one or a few nerve impulses,
their length changes in a cyclical fashion and they produce forces
less than maximal isometric tension. Thus, both the magnitude
and scaling of force output of muscles during locomotion may
be quite different from isometric tetanus. The mean force output
of dragonfly basalar muscles during workloop contractions
designed to approximate the in vivo stress–strain and stimulation
regime during maximal flight effort (F1 in the torque equation
for the dragonfly flight motor) scales as M0.83. This shift in the
scaling exponent is likely due to size-related changes in
shortening velocity and duty cycle for muscle activation.

The maximum load that dragonflies can lift scales as M1.03

(Marden, 1987; Schilder and Marden, 2004); this provides the
scaling of F2 in the torque equation. The length of the external
lever arm (D2 in the torque equation) is the distance between
the wing fulcrum and the second moment of area of the
forewing (i.e. the distance at which the mean aerodynamic force
acts upon the wing; Ellington, 1984). This distance scales as
M0.31, very close to the expected scaling slope for geometrically
similar dragonflies. The internal lever arm length, D1, is the
distance between the muscle apodeme (a tendon-like
connection from the top of the muscle to the wingbase) and the
fulcrum of the wing; it scales as M0.54, a strong departure from
geometrical similarity. It is this combination of the scaling of
force output by the working muscle (M0.83) and the internal
lever arm length (M0.54) that explains how the whole-motor
force output scales nearly as unity (M1.0) for dragonflies that
have geometrically similar wing lengths (M0.31). [In other
words, the sum of the scaling exponents on both sides of the
torque equation must be nearly identical (sampling error can
make them non-identical for empirical data) and in this example
requires F2 to scale as very nearly M1.0].

An interpretation of this result in the context of the
preceding discussion of motor lifespan is that the internal lever
arm length in dragonflies has evolved in such a fashion that

motor performance is maximized while rapid burnout is
prevented. As dragonflies evolved away from the size of their
common ancestor, they apparently evolved internal lever arm
lengths that maintained the M1.0 scaling of aerodynamic force
output and specific force output in the vicinity of 57·N·kg–1.
According to the hypotheses presented above, this represents
adaptation to three needs – the need for force outputs sufficient
to offset body weight and inertia (of both the body and the
motor’s moving parts), the need to avoid specific loads that
exceed a common threshold for LCF, and the need to maintain
a sufficiently long motor lifespan. These factors explain why
smaller dragonflies have not evolved flight motors that have
higher specific force outputs than M0.83 scaling of muscle
dynamic force would hypothetically allow.

Within all Group 2 motors there must be mechanisms that
adjust force output in this fashion, comprising some feature or
combination of features in a hierarchal system of linkages that
in biological motors might include molecular mechanisms,
neural patterns, dynamics of muscle activation, levers and so
forth, which together shift the underlying M0.67 scaling of muscle
tetanic force to M1.0 scaling of whole-motor force output in the
neighborhood of 57·N·kg–1 during rapid cyclical contraction.

Rockets considered separately
Rockets do not push or pull against a fixed load or generate

a critical stress related to their cross sectional area as do other
Group 1 motors. Why then does the force output of rockets
also scale as M0.67? The answer is that the thrust produced by
a rocket is determined by the mass flow rate, which depends
on the cross sectional area of the throat and nozzle from which
gas is ejected (http://www.grc.nasa.gov/WWW/K-12/airplane/
rockth.html presents an explanation of the basic physics). Area
dependence of mass flow rate means that the maximum thrust
of rockets should scale as M0.67 just as it does in other types of
translational motors. Furthermore, rockets are used only once,
or at most a few times, and have burn times measured in
seconds or minutes. Their Fmax is therefore not subject to
fatigue or life span constraints.
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Maximum specific thrust of rockets is actually higher than
the values that we report because we use takeoff mass, which
includes all of the fuel. Thrust as a function of mass during the
course of a rocket burn can be complex, but for present
purposes it is sufficient to note that high values of thrust can
be generated when there is much less than a full load of fuel,
particularly for liquid fuel rockets that pump the fuel to the
ignition chamber. For this reason, the thrust values for rockets
in the data plotted here are conservative.

M0.67 scaling has some interesting consequences for
applications of rockets. At the lower end of the size range,
M0.67 scaling creates very high thrust-to-weight ratios (i.e.
acceleration) that allow small missiles to easily overtake jet
powered aircraft. This would not be possible for missiles
powered by anything other than small rocket engines, which
are the only motors that produce both exceptionally high
specific thrust and high speed. As mass increases, the specific
thrust at takeoff declines steadily to values as low as
15–25·N·kg–1 for the first stage of the Saturn and Titan
rockets and the solid rocket boosters of the Space Shuttle. At
least 9.8·N·kg–1 is needed to lift off from the ground, which
is why the payload is so small in comparison to the motor
size in these applications. These rockets use enormous size
rather than high specific performance to accomplish the job,
and there seems to be little potential for the size of rockets
useable for flight to increase substantially beyond these
extant designs.

Really big motors: what happens when major scaling
regimes collide

An interesting feature of the two distinct scaling
relationships shown in Figs·2 and 3 is that they intersect at a
mass of approximately 4400·kg. If the force output of Group
2 motors were to continue to scale as M1.0 at motor masses
greater than 4400·kg, they would need to produce more force
per cross sectional area than do Group 1 motors. This seems
unlikely, since the force output of Group 1 motors appears to
be limited by critical stress across their cross sectional area.
An axial stress strong enough to break a Group 1 motor should
also break a Group 2 motor. Therefore, the scaling of force
production by Group 2 motors should change from M1.0 to
M0.67 at motor masses greater than 4400·kg.

Marden and Allen (2002) tested this prediction by
examining data (Fig.·10) for piston engines ranging in size
from 0.17 to 1,901,000·kg (model airplanes to oil tankers;
Fig.·11 shows a cross section of one such very large motor).
The M1.0 scaling equation for all other Group 2 motors fits
precisely the sample of piston engines less than 4400·kg,
whereas the M0.67 scaling equation for Group 1 motors fits the
upper bound of force output for piston engines greater than
4400·kg. Analysis of covariance shows that separate regression
lines fit to these data for motors above and below 4,400·kg have
significantly different slopes (P<0.0001). The inflection point
at 4400·kg is even more pronounced for geometric data
(Fig.·10). A tight relationship that describes the mass scaling

of the ratio of total piston cross-sectional area to stroke length
(chosen because this index captures two geometric variables)
across four orders of magnitude up to a mass of 4400·kg does
not apply for larger engines, which show a great diversification
in their design.

As a result of the shift from M1.0 to M0.67 scaling of piston
engine force output in motors greater than 4400·kg, the
specific force of the largest piston engines is dramatically
reduced. The largest piston engine, the Burmeister & Wain
K98MC-C (Fig.·11; mass=1.9�106·kg), used to propel oil
tankers produces a specific force output of only 3·N·kg–1. An
important consequence of such low specific force output is
that it contributes (along with large payload) to the very slow
acceleration and deceleration ability of oil tankers and
increases their risk of collision with other ships and
obstacles. The pilot of an oil tanker must react to obstacles
with a tremendous amount of forethought because the inertia
of the vessel cannot be counteracted over a short time or
distance.

I thank the following colleagues for helpful discussions
regarding the data, concepts and ideas in this paper: A. Bejan,
A. Biewener, J. Cusumano, L. Mahadevan, A. Ruina, R.
Schilder, S. Vogel. Thanks also to the Company of Biologists
Limited for hosting the conference in Ascona, Switzerland,
where I found new ways to think about this work.

Fig.·11. Cross sectional schematic of one of the largest piston engine
(Burmeister and Wain K98MC-C) and three of its human operators.
The geometry of piston engines larger than 4400·kg departs radically
from what would be predicted from the scaling of smaller piston
engines; this departure begins at the crossing point of the scaling
relationships for Group 1 and Group 2 motors. Reproduced with
permission from B&W Engine Selection Guide, February 2000.
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List of symbols
M mass of a motor (kg)
Fmax maximum force output (N) by a motor
HCF high cycle fatigue
LCF low cycle fatigue
L length
N total number of cycles prior to failure, yield, or low 

cycle fatigue
N force (Newtons)
σult ultimate stress (N·m–2) prior to failure or yield
σ applied stress (N·m–2)
C ultimate load (N) prior to failure, yield, or low 

cycle fatigue
P applied load (N)
b exponent relating relative load to fatigue lifespan
F1 force output (N) by a muscle
F2 force output (N) by a wing
D1 distance (m) between a muscle and wing fulcrum
D2 distance (m) between a wing fulcrum and the wing 

second moment of area
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