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Maximal metabolic rate (MMR) is elicited by a well-
defined dominant process: the energy needs of locomotor
activity at its sustainable maximum during a run. In contrast,
other forms of MR have a more complex origin. Basal
metabolic rate (BMR) reflects the lowest need of energy at rest
in a postprandial state under thermoneutral conditions. It is the
energy used to run basic cell functions in a large variety of
organs, such as maintaining cell potentials, driving the heart
and circulation, synthetic and housekeeping functions of all
sorts, and maintenance of body temperature. BMR and MMR
thus define the span over which the metabolic rate of the
organism can vary. Their definitions are unambiguous and, as
such, they are reproducible. They reflect the performance of
the organism under these specific test conditions, but are not
conditions that occur usually in life. Natural forms of MR are
intermediate. Field metabolic rate (FMR) reflects the time-
averaged MR elicited by all possible organismic functions at
variable levels of activity, such as foraging or hunting for
food, or digestion, and is commonly found to be about 4 times
BMR. What is termed sustained MR refers to the metabolic

rate that allows for maintaining body mass over longer time;
it is a form of FMR mostly related to nutrient supply.

Whereas BMR appears to depend essentially on body
mass, MMR shows large inter-individual and inter-species
variability, related to the degree of work or exercise capacity.
It is typically about tenfold higher than BMR. Well-trained
human athletes can achieve MMR up to 20 times higher than
their BMR. Even greater variation is found in animals. Athletic
species such as dogs or horses increase their MR by 30-fold
from rest to maximal exercise, and in race horses this factor
can rise to 50, as in the pronghorn antelope, the world’s top
athletic mammal.

MMR reflects the limitation of oxidative metabolism of
muscle cells. It is not sustainable for more than a few minutes
because, under these limiting conditions, the incipient aerobic
energy deficit must be covered by anaerobic glycolysis, which
leads to lactate accumulation in the blood and thus to cessation
of exercise.

All forms of MR in mammals and other taxa show some
scaling with body mass Mb according to the allometric
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The logarithmic nature of the allometric equation
suggests that metabolic rate scaling is related to some
fractal properties of the organism. Two universal models
have been proposed, based on (1) the fractal design of the
vasculature and (2) the fractal nature of the ‘total effective
surface’ of mitochondria and capillaries. According to
these models, basal and maximal metabolic rates must
scale as M3/4. This is not what we find. In 34 eutherian
mammalian species (body mass Mb ranging from 7·g to
500·kg) we found VO∑max to scale with the 0.872 (±0.029)
power of body mass, which is significantly different from
3/4 power scaling. Integrated structure–function studies
on a subset of eleven species (Mb 20·g to 450·kg) show that
the variation of VO∑max with body size is tightly associated
with the total volume of mitochondria and of the
locomotor musculature capillaries. In athletic species
the higher VO∑max is linked to proportionally larger
mitochondrial and capillary volumes. As a result, VO∑max is
linearly related to both total mitochondrial and capillary

erythrocyte volumes, as well as to their surface areas.
Consequently, the allometric variation of maximal
metabolic rate is directly related to the scaling of the total
effective surfaces of mitochondria and capillaries, thus
confirming the basic conjecture of the second fractal
models but refuting the arguments for 3/4 power scaling.
We conclude that the scaling of maximal metabolic rate is
determined by the energy needs of the cells active during
maximal work. The vascular supply network is adapted to
the needs of the cells at their working limit. We conjecture
that the optimization of the arterial tree by fractal design
is the result rather than the cause of the evolution of
metabolic rate scaling. The remaining question is why the
energy needs of locomotion scale with the 0.872 or 7/8
power of body mass.

Key words: metabolic rate, scaling, locomotor muscle, aerobic
capacity, mitochondria, capillary, fractal design, vascular supply
network, energy demand.
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equation MR�aMb
b. One of the tasks of experimental biology

is to sort out the effects of body size and of other determinants,
such as athletic prowess, on this relationship, separating
variations in the exponent b and in the coefficient a. This will
be considered in setting up models for this analysis.

Models and hypotheses of MR scaling
When Max Kleiber stated that the standard metabolic rate of

mammals scaled ‘close to the three-fourth power of body mass’
(Kleiber, 1947), he argued on the basis of empirical studies in
which he had first found a scaling exponent of 0.739±0.03
(Kleiber, 1932), and later one of 0.756±0.004. He suggested
that 3/4 would be easier to remember. This was not meant to
be ‘Kleiber’s law’, as it is now often called, but rather an
empirical observation that was confirmed repeatedly and
eventually broadly accepted as a fact (Schmidt-Nielsen, 1984).
Kleiber, however, attempted no mechanistic explanation of the
3/4 power exponent.

The logarithmic nature of the allometric equation
logB=(3/4)logMb+loga, where B=metabolic rate, suggests that
it may be based on some scale-invariant or self-similar features
of the organism, and therefore it appeared attractive to search
for the possibility that some fractal properties of the organism
were related to metabolic rate scaling. This possibility was first
suggested and explored by West et al. (1997). In an attempt to
explain the ‘1/4 power law’ from first principles they proposed
two different models.

In their first model (West et al., 1997) they considered the
fractal design of the network for nutrient and O2 supply, the
vascular system, and introduced two premises: (1) that blood
vessels form a self-similar fractal network with the volume of
blood Vbl proportional to body mass: Vbl�Mb; and (2) the
capillaries as the terminal units of this network are invariant of
fixed size whereas their number (N(cap)) is proportional to the
metabolic rate B of the cells with which they interact:
N(cap)�B�Mb

b. Applying the principles that (a) the network is
volume-filling and (b) the energy needed to transport nutrients
and O2 is minimized, they derived that the conditions were
fulfilled by b=3/4. This model has recently been criticized by
Kozlowski and Konarzewski (2004), primarily on the basis of
the internal inconsistency of the premises.

The second model of West et al. (1999) considers the fractal
nature of the structural surfaces across which metabolic
activity takes place: the capillaries and the mitochondria. The
authors conjecture that metabolic rate B is limited by the
geometry and scaling behaviour of what they call the total
effective surface of the organism, a, which they take to be
either the total capillary surface or the total mitochondrial
surface (probably the area of their inner membranes where
oxidative phosphorylation takes place). Their prediction that
B�a thus assumes that metabolic rate scales like the capillary
and the inner mitochondrial surface areas. This tacitly implies
that the rate of ‘specific activity’ of these membranes is size-
independent. 

The scaling argument for B against body size runs as

follows. If the effective surfaces were built on Euclidean
geometry their surface area would scale with body volume V
or body mass Mb as:

a � V2/3 � Mb
2/3·. (1)

Assuming that these surfaces show fractal design, however, the
scaling exponents must be modified to include a factor related
to the fractal dimension of the structure so that:

a � V(2+εa)/(3+εa+εl) � Mb
(2+εa)/(3+εa+εl)·, (2)

where 2+εa is the fractal dimension of the surface whereby
0<εa<1; εa=0 means Euclidean surface, whereas εa=1 is a
space-filling fractal surface. West et al. (1999) also considered
the fractal nature of the containing volume and of body mass
with the result that the exponent of the volume takes the form
3+εa+εl, where εl is a fractal dimension factor for the linear
vascular tree. This new model is linked to the first one by two
assumptions: that the terminal capillary units are invariant of
fixed size across the size range of species, and that the vascular
tree is fractal in nature. The authors then conjecture that
organisms have evolved to maximize the scaling of the total
effective surface a, which is achieved when εa=1 and εl=0. On
these premises one finds:

a � Mb
3/4 � B·, (3)

‘regardless of the details of branching architecture and
dynamics governing the metabolic process and distribution of
resources’ (West et al., 1999). This then is the basis of the
‘universal scaling law’ that holds for mammalian organisms,
cells, mitochondria, and molecules (West et al., 2002). This is
because ‘although living things occupy three-dimensional
space, their internal physiology and anatomy operate as if they
were four-dimensional’ (West et al., 1999).

It appears to us that this model development is mistaken on
two counts. (1) The volume containing the effective surface a
is a real world volume of dimension 3, and therefore the
denominator in Equation·2 should be 3 without fractal
complement; and (2) in the real world, ‘fractal surfaces’ are
geometric properties of membranes, physical structures of
finite thickness that function in conjunction with other
structures (in this case the mitochondrial matrix), and it is
therefore questionable whether they can be totally space-
filling, i.e. of dimension 3. If it is justified to consider inner
mitochondrial membranes as fractals then their fractal
dimension should be 2<Df<3. Considering this, the area-to-
volume relationship of mitochondrial membrane surfaces
becomes a�VDf/3. If the exponent 3/4 should be explained by
fractal properties of the effective surface its fractal dimension
could be Df=2+εa=2.25. This discussion will be resumed
below.

These attractive models have been criticized on several
grounds, but largely with the argument that fractal geometry is
not necessary to explain the 3/4 power scaling of metabolic
rate. Alternative explanations are found in network structures
(Banavar et al., 1999), quantum mechanics (Demetrius, 2000)
and topology (Bejan, 2000). It has also been pointed out that
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the metabolic rate of an organism is not a simple coherent
process, but rather appears as the sum of many partial
contributions of various compartments and steps that may
show very different scaling behaviour under different
functional conditions (Darveau et al., 2002; Hochachka et al.,
2003).

One important critique is that 3/4 power scaling is not a
general or universal law (Darveau et al., 2002; Weibel, 2002).
It is rather a frequently occurring empirical result pertaining to
measurements of ‘standard’ or perhaps ‘basal’ metabolic rates
in mammals of varying body size. But different scaling may
be obtained if the conditions of basal metabolic rate are tightly
applied (White and Seymour, 2003), or when the effects of
intra-specific size variations are considered (Heusner, 1984).
Even though approximate 3/4 power scaling may be
‘preponderant’ when considering the metabolic scaling under
resting or field conditions (Nagy et al., 1999; Savage et al.,
2004) there are consistent deviations from 3/4 power scaling.
One case of special interest is the maximal metabolic rate,
MMR, or VO∑max, which was repeatedly found to scale with a
power larger than 3/4 (Koteja, 1987; Taylor et al., 1988;
Bishop, 1999).

There has been less effort towards deriving a theory for the
scaling of MMR. Some early studies had suggested that MMR
achieved in exercise was about 10 times BMR and would
therefore scale also with Mb

0.75 (Hemmingsen, 1960; Pasquis
et al., 1970; Lechner, 1978), so that no special consideration
of this condition seemed warranted. There were, however,
some observations that suggested the possibility of a different
scaling of MMR induced by locomotion. Taylor et al. (1980)
estimated the energetic cost of generating muscular force by
running animals on a treadmill with or without a load of up to
27% of body mass and found that O2 consumption increased
in direct proportion to the mass supported by the muscles

(Fig.·1). This observation suggested that VO∑max should scale
with Mb

1. One of the main differences between BMR and
MMR is that the latter is a limiting condition and may depend
on O2 supply from the lung and circulation of blood (Fig.·2).
Studies on the design of the pathway for oxygen have shown
that the pulmonary diffusing capacity, the potential limit for
O2 uptake, scales in fact with Mb

1, thus differently from BMR
(Weibel, 1972, 1973). With these two observations in mind
Taylor and Weibel (1981) undertook a study on the allometry
of the respiratory system with the hypothesis that VO∑max�Mb

1,
on the grounds that the cost of running was proportional to Mb

and that the design of the O2 cascade is matched to the maximal
energy demands of the organism, thus introducing the
hypothesis of symmorphosis.

This latter argument preceded one of the central statements
of the universal model, namely that ‘the economy of design
…[is such that] … structures and functions tend to just meet
maximal demands’ (Brown et al., 2000), the essential postulate
of symmorphosis (Taylor and Weibel, 1981; Weibel et al.,
1991, 1992). This means that maximal metabolic rate, i.e. the
condition under which the resource distribution network as
well as the total effective surfaces must meet maximal
demands, must abide to the universal scaling law and scale as
Mb

3/4.
There is, however, no a priori reason why MMR should

scale the same way as BMR with body size. There are distinct
differences in the performance of the system under the two
conditions. (1) At BMR, O2 is consumed in all cells of the body
mainly for maintenance of cell polarity, protein synthesis etc.;
at MMR, over 90% of O2 is consumed in a single organ system,
the locomotor muscles, for ATP resynthesis related to work
output (Fig.·2). (2) At BMR, blood flow is distributed equitably
through the (fractal) vascular tree to all organs of the body; at
MMR, over 90% of blood flow is directed to contracting

Fig.·1. Oxygen consumption in mammals carrying different loads.
From Taylor et al. (1980).
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muscle tissue in response to increased energy demand. (3)
Among species with similar BMR, there are great differences
in the capacity to increase MR in support of exercise, e.g. in
athletic vs sedentary species (Taylor et al., 1987; Jones et al.,
1989).

In this paper we shall first critically review the existing data
base for MMR scaling in mammals. From the systems
physiology point of view, we then ask what factors may be
determining MMR and how this will cause the scaling of MMR
to be different from that of BMR. An important characteristic
of this analysis is that body size is considered as only one of
several factors determining MR.

We defined MMR as VO∑max estimated by the accepted
standardized method, which is to run animals on a treadmill at
varying work intensity (speed and incline) measuring VO∑ and
plasma lactate concentration when steady state is achieved
(Seeherman et al., 1981); for this, speed is kept constant during
each run but varied between runs. Under such experimental
conditions VO∑max is achieved when a further increase in work
output does not cause VO∑ to rise further but the additional
energy is provided by anaerobic metabolism, as reflected by an
increase in plasma lactate concentration.

The scaling of MMR
In an extensive review of the literature, Weibel et al. (2004)

found 57 estimates of VO∑max conforming to the above-stated
conditions, representing 34 mammalian species ranging in
body mass from the pigmy mouse at 7·g to the horse at over
500·kg. It includes a representative range of mammalian
species, wild and domesticated. The data set covers five orders
of magnitude and therefore encompasses the vast majority of
terrestrial mammalian species.

In Fig.·3, VO∑max is plotted against body mass on a double-
logarithmic scale. The power law regression calculated for the
entire data set is:

VO∑max = 118.2Mb
0.872±0.03 (4)

This slope is significantly different (F=17.472, d.f.=1, 64,
P<0.01) from 3/4 that characterizes BMR and it is also
different from 1.

Fig.·3 also reveals the great variability of VO∑max in relation
to body mass. For example, in the size class of 25·kg the range
of VO∑max is almost one order of magnitude between the goat
on one hand and the pronghorn antelope on the other. This is
related to differences in the aerobic exercise capacity of
different species, which is higher in athletic mammals, such as
horse, dog and pronghorn, compared to the majority of
‘normal’ or more sedentary species (Taylor et al., 1987; Jones
et al., 1989; Lindstedt et al., 1991). These athletic species are
marked by large, open triangles whereas small, filled triangles
mark the ‘normal’ species; the separation is made on the
grounds of a high mass-specific VO∑max of athletic species.

Could the slope be steeper than that of BMR because of the
presence of athletic species, which are prevalent in the larger
size classes? In Fig.·3 the scaling of athletic and ‘normal’

species is also plotted. We find the regression for the non-
athletic species alone to be:

VO∑max = 93.4Mb
0.849±0.024·, (5)

with 95% confidence limits CL=0.799–0.899. The coefficient
a is lower by 20% but the slope b is not different from that of
the overall population (F=0.265, d.f.= 24, P=0.609). From this
we conclude that the difference between the power law slopes
of BMR and VO∑max is not due to the inclusion of athletic
species.

The MMR of athletic species scales according to:

VO∑max = 191Mb 
0.942±0.024·, (6)

which is significantly different from the non-athletic regression
both with respect to the coefficient a and the exponent b (95%
CL for b=0.889–0.995).

A steeper allometric slope of VO∑max compared to BMR
suggests that larger mammals have a greater relative capacity
to increase metabolic rate above the resting state than small
mammals. Weibel et al. (2004) estimated the so-called
factorial aerobic scope (fAS), the ratio of VO∑max to BMR, to
be on the order of 6–10 for normal species and 10–60 for
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Fig.·3. VO∑max plotted against body mass Mb for the 34 mammalian
species separated into athletic (open triangles) and non-athletic (filled
triangles) species. The heavy line represents the allometric regression
for all animals with a slope of 0.872±0.029 (95% confidence limits
0.813, 0.932. F=890, d.f.=1,32, P<0.00001). The mass exponent of
the allometric regression of athletic species (thin solid line) is 0.942
(95% confidence limits 0.889, 0.995, F=1609, d.f.=1,?; that of non-
athletic species (broken line) is 0.849 (95% CL 0.799, 0.900; F=1231,
d.f.=1,21), P<0.00001 for both. The slope of athletic species is
significantly larger than that for the non-athletic species (F=38.3,
P<0.00001). Data from Weibel et al. (2004). For reference, the curve
for BMR or VO∑bas (blue line) is plotted after Kleiber (1947).
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athletic species; it also increases with body mass, particularly
in athletic species where it scales in proportion to Mb

0.18. The
fAS is therefore related both to body mass and to aerobic
capacity, and the range is greater in large than small
mammals, potentially giving large animals an evolutionary
advantage.

VO∑max and muscle mitochondria
One of the reasons for the conjecture that MMR may scale

differently from BMR was the fact that the energetic cost of
muscle activity increased linearly with load (Fig.·1). Since
MMR as here defined reflects VO∑max as elicited by muscle
work, we must first look for characteristics of the locomotor
muscle system that could cause the variation of VO∑max to be
partly independent of BMR. Essential factors to consider are
muscle mass and aerobic capacity of muscle fibres.

Weibel et al. (2004) report the results of a series of in-depth
studies where correlated data were obtained on VO∑max and
muscle structure in a set of mammals ranging from the
woodmouse of 20·g to the horse and steer of 500·kg. The
characteristic of these studies was that VO∑max, whole body
muscle mass and the complete morphometry of locomotor
muscle, as well as lung morphometry, were estimated on the
same animals (Hoppeler et al., 1987). It was first found that
muscle mass, Mm, constituted 36% of body mass Mb on
average, ranging from 25% in the goat to 45% in the
pronghorn, with athletic animals having a larger muscle mass,
but without any dependence on body size as Mm scales with
Mb

1.01 (r2=0.997). Interestingly, the smallest animal, the
(athletic) woodmouse, had one of the highest relative muscle
masses, 42%.

It has been noted for a long time that the higher aerobic
capacity of athletes is related to a higher mitochondrial
content of the locomotor muscles, both in humans (Hoppeler
et al., 1973) and in athletic mammals (Hoppeler et al., 1987).
This suggests the hypothesis that the mitochondria of muscle
could also determine VO∑max with respect to allometric
variation. To test this hypothesis requires a study design where
the physiological and morphometric measurements are
congruent, i.e. relate to the same compartment and are
obtained on the same animals. In quadrupedal mammals
running at VO∑max, almost the entire muscle mass is engaged
and oxidative phosphorylation accordingly occurs in all
muscles, which may be different in humans using bipedal
locomotion (Hoppeler, 1990). The estimate of muscle
mitochondrial content must therefore reflect the musculature
of the whole body.

Estimates of whole body muscle mitochondrial volume V(mt)

have been obtained in 11 mammalian species, for which VO∑max

was also estimated on the same animals (Weibel et al., 2004).
Fig.·4 shows these data in a log-log plot against body mass.
We note that VO∑max and V(mt) are proportional in all instances,
i.e. the overall regression lines have identical slope of 0.96
(F=0.168, d.f.=1, P=0.683), and the data points for athletic
species are consistently higher in both data sets.

VO∑max and capillary blood supply
Mitochondria can only perform their high rate of oxidative

phosphorylation if they receive an adequate supply of O2

from capillary blood (Fig.·5). This can be a limiting factor
for aerobic metabolism. We must therefore ask whether
the design of muscle microvasculature is matched to the
varying demands observed in large and small mammals.
In previous studies comparing athletic with sedentary
mammals whose VO∑max differs by a factor of 2.5, it was
found that the volume of the capillary network was higher
in the athletic species, but only by a factor of 1.7. However,
athletic species have a 1.8 times greater hematocrit (Conley
et al., 1987; Kayar et al., 1994) so that, as a consequence,
the volume of capillary erythrocytes in the musculature is
2.5 times larger in athletic species, and hence matched to
their higher VO∑max (Weibel et al., 1991). This is also seen in
Fig.·6, based on the same animals as for the study of
mitochondria (Fig.·4): the data points for capillary volume
show the same distribution with respect to the regression
line as those of VO∑max. We note that the scaling exponent
of capillary volume of 0.98 does not differ from that
of VO∑max, nor from that of the volume of muscle
mitochondria.
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Fig.·4. VO∑max (triangles) and morphometric estimate of total volume
of muscle mitochondria V(mt) (circles) in 11 species based on whole
body sampling. The slope is 0.962 for VO∑max (95% CL=0.829–1.096;
F=265, d.f.=1,9, P<0.00001), and 0.956 for V(mt) (95%
CL=0.846–1.066; F=388, d.f.=1,9, P<0.00001); the two regressions
are identical (r2=0.168, d.f.=1, P=0.683). Numbers at the bottom
identify species: 1, woodmouse; 2, mole rat; 3, white rat; 4, guinea
pig; 5, agouti; 6, fox; 7, goat; 8, dog; 9, pronghorn; 10, horse; 11,
steer. From Weibel et al. (2004).
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Structures of aerobic capacity and VO∑max

The large scatter of data points observed in Figs·4 and 6
results from the fact that aerobic capacity is determined by two
properties, body size and athletic prowess. These affect VO∑max

and the morphometric characteristics of muscle, in parallel. If
VO∑max is plotted against V(mt) it becomes evident that the two
variables are tightly associated (Fig.·7). The ‘noise’ in the
allometric relations due to the presence of athletic and
sedentary species in all size classes (Fig.·4) disappears and all
data points lie tightly around the linear regression

VO∑max = 4.876V(mt)
1.01·. (7)

VO∑max and V(mt) show a high positive association (Spearman
R=0.909, t=6.547, d.f.=9, P<0.001), independent of their
relationship to Mb. This result also means that, in all
mammalian species considered, whether athletic or sedentary,
whether small or large, 1·ml mitochondria consumes
4.9±0.43·ml·O2·min–1 at VO∑max, confirming the observation of
Hoppeler and Lindstedt (1985).

A similar association of functional and structural variables
is found for capillaries. What counts here, however, is the
volume of capillary erythrocytes that deliver O2 to the muscle
cells, which is the volume of capillaries times the hematocrit

or the cells’ volume fraction of blood. It is found that the
hematocrit is invariant with body mass, averaging 0.42, but it
is higher in the athletic species. We then find that the volume
of capillary erythrocytes and VO∑max are linearly related across
the entire size range as shown in Fig.·7.

We thus conclude that, in all mammalian species whether
small or large, athletic or sedentary, 1·ml of capillary
erythrocytes delivers 45·ml·O2·min–1 at VO∑max. We also note
that muscle tissue contains about 1·ml of erythrocytes in
capillaries for every 10·ml of mitochondria in the muscle
fibres. From this regression analysis we cannot decide whether
it is capillaries or mitochondria that set the limit for O2 flow
through the respiratory system.

MMR and the scaling of active surfaces
In the subset of correlated species we have shown that MMR

scales with the same exponent, 0.96, for both the mitochondrial
and capillary (or capillary erythrocyte) volumes that represent
the active surfaces of musculature. Is it justified to generalize
these findings obtained on a subset of species to the entire
range of mammals for which MMR was found to scale with
the 0.87 power of body mass? We believe so, for several
reasons. First, the scaling exponent of the subset is not
statistically different from that of the overall population.
Second, the subset is evenly distributed over nearly the entire

E. R. Weibel and H. Hoppeler

Fig.·5. Light micrograph of capillary network in muscle (A) with
arrow pointing to an erythrocyte in stained plasma. Electron
micrograph (B) shows path for oxygen from capillary erythrocyte to
mitochondria in muscle cell. From Weibel and Hoppeler (2004).
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size range, but it excludes the smallest species of the overall
set. Furthermore the subset includes both athletic and non-
athletic species, but with an overweight of athletic species in
the larger size classes. In addition, we have obtained
approximate estimates of muscle mitochondrial and capillary
volume in 10 additional mammalian species with a similar
result. We therefore conclude that the scaling of the aerobic
capacity of locomotor muscle is strictly proportional to the
scaling of VO∑max with a scaling exponent close to 0.87 for the
entire population.

This agrees in principle with the conjectures of the second
model of West et al. (1999) that the scaling of metabolic rate
is determined by the scaling of what they called the ‘active
surfaces’, specifically mentioning mitochondria and
capillaries. We found that MMR scales in parallel with the
mitochondrial and capillary (or capillary erythrocyte) volumes.

It must be noted that the active mitochondrial surface, the
inner mitochondrial membrane (Fig.·8), where oxidative
phosphorylation takes place, shows invariant density in
the mitochondria both with respect to body mass and
aerobic capacity (Hoppeler and Lindstedt, 1985;
Schwerzmann et al., 1989) so that the active surface is
directly proportional to mitochondrial volume. We
therefore conclude that MMR indeed scales with the
surface area of inner mitochondrial membranes such that
for each ml·O2 consumed per minute at VO∑max the muscle
contains 7·m2 of active membrane. The capillary volume
is essentially determined by the total length of the
capillary network; since the capillary diameter varies
weakly with body mass (�M0.01) the capillary surface
across which O2 is delivered also scales about in
proportion to VO∑max. This therefore suggests that the
conjecture of West et al. (1999) of a direct proportionality
between ‘active surfaces’ and MMR is correct, although
the scaling exponent is not 0.75 but 0.87.

Could this be explained if the fractal model was
corrected to account for the fact that the containing
volume has dimension 3 and the fractal surface is not
completely space-filling, so that Df<3, as mentioned

above? A scaling exponent b=0.87= Df/3 is obtained if Df =2.6.
Even though it is uncertain whether this is a realistic value for
the fractal dimension of the inner mitochondrial membrane
surface it may be interesting that Paumgartner et al. (1981)
estimated the fractal dimension of inner mitochondrial
membranes of liver cells at 2.54. This was a microscopic study
at the level of the liver cell and it is not really justified to extend
this to the fractal properties of the entire membrane system of
skeletal muscle.

However, it may be fundamentally problematic to invoke
fractal properties of real physical membranes in finding an
explanation for the scaling of metabolic rate. We have seen that
the surface density of membranes within the mitochondria is
invariant with body size, so the observed allometric variation
of aerobic capacity with VO∑max is fully explained by the
proportional variation of the volume of structurally and
functionally invariant mitochondria. It is thus not necessary to
involve fractal properties in this analysis. Nevertheless an in
depth study of the putative importance of fractal geometry in
setting up efficient functional systems at the organismic level
may be warranted.

The scaling of the O2 supply cascade
In our concept of the pathway for oxygen (Taylor et

al., 1981; Weibel et al., 1991, 1992) VO∑max is the
functional parameter that defines the limiting flow rate
through all steps of the respiratory system, from the lung to
the muscle mitochondrial respiratory chain (Fig.·2; Table·1).
The flow rates are determined by the product of a stepwise
driving force and a set of design parameters that essentially
determine the conductance. We found that design parameters
of the last two steps in this cascade, the mitochondrial and
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Fig.·7. VO∑max plotted as function of total muscle mitochondrial volume
V(mt) (squares) and capillary erythrocyte volume (V(ec) (squares) in 11
species. The exponent for the regression to V(mt) is 1.009; 95%
CL=0.949,1.068, F=1463, d.f.=1,9, P<0.00001; that for V(ec) is 0.975; 95%
CL=0.893,1.074, F=604, d.f.=1,9, P<0.00001. Numbers at right identify
species, as in Fig.·4.

Fig.·8. Electron micrograph of muscle mitochondrion shows the
packing of inner mitochondrial membranes where oxidative
phosphorylation takes place.
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capillary volumes and surfaces, scale strictly in proportion
to MMR. What about the other two steps, the heart and the
lung?

We must first ask whether and how the functional and
structural properties of the heart are matched to the variation
in O2 supply to muscle microcirculation with variations in body
size. The two key parameters of blood flow, heart frequency
fH and stroke volume VS (Table·1, line 2), must be considered.
Stroke volume is proportional to heart size, which is known to
be larger in athletes but invariant with body mass (Prothero,
1979). In contrast, heart frequency depends on body size as it
is higher in small than in large species. At BMR, heart
frequency is found to scale with body mass to the power –0.25
(Fig.·9). Resting heart frequency therefore scales in parallel
with mass-specific basal metabolic rate. During exercise, heart
frequency increases to reach a maximum at VO∑max. We find
that maximal heart frequency scales with an exponent –0.15
(Bishop, 1999; Weibel and Hoppeler, 2004), which agrees with
the scaling of mass-specific MMR, for which we obtain an
exponent –0.13 from Fig.·1. It is thus evident that cardiac
output is adjusted to the needs of working muscle in animals
of varying body mass.

Such a close match is not easily found in the lung. This organ
at the interface to the environment maintains a variable excess
capacity for O2 uptake so that the scaling of its diffusing
capacity does not follow the simple relationship observed in
the internal parts of the respiratory pathway: the pulmonary
diffusing capacity scales linearly with body mass (Weibel et
al., 1991; Weibel, 2000). However, considering also the

structure of the pulmonary acinar airways that distribute O2 to
the alveolar surface, one finds that the scaling of the membrane
conductance is tightly associated with that of VO∑max, both with
exponents of 0.9. The effect of O2 screening in the acinar
airways reduces the effective conductance at rest to scale with
0.735, similar to the scaling of basal metabolic rate (Sapoval
et al., 2002).

Conclusions
Can we now attempt some conclusions on the mechanistic

explanation of the scaling exponents observed for MMR as
elicited by exercise? Two observations stand out.

The first is that scaling of MMR and BMR differs in three
respects: (1) the scaling exponent b for MMR of 0.87 differs
significantly from that of 0.75 for BMR; (2) the coefficient a
is larger in MMR than BMR by a factor of around 10 that
characterises the aerobic scope of ‘normal’ mammals; and (3)
this factor ranges from about 8 in small mammals to 50 in large
athletic mammals and thus causes the range of MMR to be
much larger than that for BMR. The factorial aerobic scope,
fAS, is thus also a function of body mass, varying with Mb

0.1

in normal and Mb
0.18 in athletic species. This means that MMR

can be expressed as a product of BMR and fAS such that
for normal species MMR�BMR·fAS�11.3Mb

0.75∗8.3Mb
0.1=

93Mb
0.85. For athletic species one will have to consider, in

addition, an ‘athleticity’ factor that also depends partly on Mb,
as larger species show a greater potential for athletic trait than
small species.

Is there an explanation for the scaling exponent of 0.87 for
MMR in contrast to 0.75 for BMR? The cascade model of
Darveau et al. (2002) and Hochachka et al. (2003) conceives
the scaling exponent of metabolic rate as a resultant of the
weighted partial scaling of the sequential functions that
determine metabolic rate and that this is different for BMR and
MMR. The problem is that a sum of power functions cannot
be converted into an overall power function. This is not so

E. R. Weibel and H. Hoppeler

Table·1. Model for structure–function relation in the
respiratory system

Function • Design

(1) VO∑max = (PAO∑–PbO∑) {tc,θO∑} • DLO∑ {SA,Sc,Vc,VV(ec),τhb}
(2) VO∑max = (σaPaO∑–σvPvO∑)fH • Vs {V(LV)}VV(ec)

(3) VO∑max = (PbO∑–PcO∑) {tc,θO∑} • DTO∑ {Sc,Vc,VV(ec)δ(c–mi)}
(4) VO∑max = vO∑ {mATP} • V(mt) {SV(im,m)}

The model relates VO∑max to functional and design variables for (1)
the pulmonary gas exchanger, (2) the heart, (3) muscle capillaries
and (4) muscle mitochondria.

The O2 flow rate VO∑ is expressed as the product of functional and
design parameters; parameters that affect these factors placed in
brackets {}. 

The functional parameters include: O2 partial pressures PO∑,
coefficients of ‘hematocrit-specific’ O2 capacitance σ, which depend
on O2-hemoglobin dissociation, O2 binding rate θ, heart frequency
fH, capillary transit time tc, and unit mitochondrial O2 consumption
rate as a function of ATP flux vO∑{mATP}. 

Design parameters include: diffusion conductances D of lung L

and tissue T gas exchangers, which depend on alveolar and capillary
exchange surface areas SA and Sc, respectively, capillary volumes
Vc, hematocrit VV(ec), harmonic mean barrier thickness τhb;
capillary–mitochondrial diffusion distance δ(c–mi) and mitochondrial
volume V(mi) with inner membrane surface density SV(im,m). 

Modified after Weibel et al. (1991).
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Fig.·9. Allometric plot of resting (circles) and maximal heart
frequencies (triangles) in mammalian species. From Weibel and
Hoppeler (2004).
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important, however, as we have shown here that the relevant
scaling exponents for all the steps involved (Table 1), except
the lung, are identical and the same as the scaling exponent for
VO∑max. Most significantly we have found that the scaling
of VO∑max is tightly correlated with the aerobic capacity of
the locomotor muscles determined by the complex of
mitochondria and capillary blood. These are stressed to the
limit at VO∑max. The heart also adjusts to the needs for oxygen
supply determined by this aerobic capacity of muscle: it does
so by increasing heart frequency in proportion to the factorial
aerobic scope of the animal, which is greater in large than in
small animals.

The mechanistic explanation of the scaling of MMR appears
easy because it relates to conditions where metabolism occurs
predominantly in one functionally homogenous compartment,
the locomotor musculature, which is dominant in the sense that
under these conditions this organ system receives 90% of the
blood flow and consumes over 90% of the oxygen taken up in
the lung. Further since the key elements of all the steps
between the lung and the muscle cells show tightly related
scaling relationship this may explain the observed scaling of
the overall MMR.

Interestingly, we found that the scaling of MMR could be
explained by the fractal nature of the effective active surface
according to the notions proposed by West et al. (1999), but
only after modifying their fractal model to account for realistic
conditions. On the other hand, we pointed out that it is
questionable to invoke fractal properties of real membranes,
and that this is not necessary to explain the association of
VO∑max and mitochondrial surface. We also found the
capillaries in muscle to scale the same as MMR and
mitochondria, but here it is particularly problematic to invoke
a fractal design of the capillary network as this is incompatible
with the structure of this network. Capillaries may be simply
adjusted to the demand of the mitochondria for O2 supply
(Vock et al., 1996), just as the heart adjusts its frequency to
meet the different demands in blood flow. By all that, however,
the fact that MMR, or the muscles capacity for aerobic work,
scale with 0.87 or 7/8 power of body mass rather than with Mb

1

is not explained.
We conclude that the scaling of maximal metabolic rate is

determined by the energy needs of the cells that are active
during maximal work, which determines the quantity of
oxidative enzymes and mitochondria as well as the capillary
volume and surface needed for energy supply. The terminal
units of the vascular supply network, the capillaries, are thus
not invariant structures but are rather quantitatively adapted
to the needs of the muscle cells at their working limit. This
leads us to suggest that the optimization of the supplying
vascular network, judiciously designed as a fractal tree,
occurs as an adaptation of the oxygen supply system to meet
the demands of working cells. It would thus be the effect
rather than the cause of the evolution of metabolic rate
scaling. Nevertheless, the question remains as to why the
energy needs of locomotion scale with the 0.872 or 7/8 power
of body mass.

This work was supported by grants of the Swiss National
Science Foundation and the Maurice E. Müller Foundation.
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