
Erratum

Pilla, R. S., Kitska, D. J. and Loader, C. (2005). Statistical analysis of modified complete randomized designs: applications to
chemo-orientation studies. J. Exp. Biol. 208, 1267-1276.

The following typographical errors appeared in both the on-line and print versions of this paper. 

On p. 1270, second column, second paragraph, the first line is missing a model number and should read:
It is important to emphasize that the model under which the simulated data is generated is different from the model (1). 

On p. 1272, second column under ‘Results’ section, in the first paragraph, the last sentence contains errors with reference to Table
1 and P-value. The sentence should read:
However, the scientific interest is usually in treatment effects and the analysis in Table·2 incorrectly finds a highly significant
treatment effect (P=2.533�10–5), while failing to detect the real... 

On p. 1274, first column, first paragraph, the P-value, to match the value in Table·3, should be: P=0.0307.

We apologize to authors and readers for any inconvenience these errors may have caused.
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In designed experiments, one measures responses on
multiple experimental subjects with the goal of analyzing the
effect of changes in controlled experimental conditions, or
treatments, on the responses of different subjects. In laboratory
experiments, one controls for extraneous conditions, to ensure
each experimental run is conducted under similar conditions,
so that one is reasonably confident that consistent differences
in response are caused by the treatments. However, it is not
always possible to ensure that all extraneous conditions are
properly controlled. To reduce the effects of extraneous
conditions, two techniques are commonly employed:
randomization and blocking.

Blocking refers to the division of experimental runs into
smaller sub-groups, or blocks. Each treatment is applied
randomly to a number of subjects within each block. This
design, known as a Randomized Complete Block Design
(RCBD), is commonly employed in biological experiments,
where, for example, experimental runs on a given day may be

treated as a block (Sokal and Rohlf, 1981). The randomization
protocol reduces any bias in favor of particular treatments,
while the blocking enables extraneous variation to be absorbed
into block effects. Consequently, one obtains better estimates
of treatment effects and more powerful tests for treatment
differences (Cochran and Cox, 1957).

In the RCBD, the application of treatments to subjects
within a block must be completely randomized. If a treatment
is applied to five subjects within a block, then the subjects
are chosen randomly within the block. However, in many
experimental designs, practical constraints prevent this ideal
situation from being realistic. The motivation for this research
arises from insect pheromone-tracking studies, where a
pheromone plume is generated at one end of a wind tunnel. An
insect begins at the other end of the tunnel and is challenged
to track the plume to the pheromone source. The goal is to
detect differences in the response of an insect to different types
of plumes or treatments (Willis and Baker, 1984; Linn et al.,
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Often experimental scientists employ a Randomized
Complete Block Design (RCBD) to study the effect of
treatments on different subjects. Under a ‘complete
randomization’, the order of the apparatus setups within
each block, including all replications of each treatment
across all subjects, is completely randomized. However, in
many experimental settings complete randomization is
impractical due to the cost involved in re-adjusting the
device to administer a new treatment. One typically
resorts to a type of ‘restricted randomization’, in which
multiple subjects are tested under each treatment before
the apparatus is re-adjusted. The order of the treatments
as well as the assignment of subjects to each block are
random. If the data obtained under any type of restricted
randomization are treated as if the data were collected
under an RCBD with complete randomization within each
block, then there is potential to increase the risk of false
positives (Type I error). This is of concern to animal
orientation studies and other areas such as chemical
ecology where it is impractical to reset the experimental

device for each subject tested. The goal of the research
presented in this article is twofold: (1) to demonstrate the
consequences of constructing an F-statistic based on a
mean square error for testing the significance of treatment
effects under the restricted randomization; (2) to describe
an alternative method, based on split-plot analysis of
variance, to analyze designed experiments that yield better
power under the restricted randomization. The statistical
analyses of simulated experiments and data involving
virgin male Periplaneta americana substantiate the
benefits of the alternative approach under the restricted
randomization. The methodology and analysis employed
for the simulated experiment is equally applicable to any
organism or artificial agent tested under a restricted
randomization protocol.

Key words: analysis of variance, false positive, false negative, mean
square error, olfaction, pheromone, randomized complete block
design, restricted randomization, split-plot, type I error.
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1988a,b; Mafra-Neto and Cardé, 1998; Zanen and Cardé, 1999;
Cardé and Knols, 2000; Dekker et al., 2001; Willis and
Avondet, 2005). The effect of various types of formulated
synthetic pheromone on different species of walking and flying
insects has been studied by various researchers (Linn et al.,
1988a,b; Willis and Arbas, 1991; Linn et al., 1996; Cardé et
al., 1998; Willis and Avondet, 2005).

Whenever the complete randomization protocol is violated,
we refer to the corresponding design framework as ‘restricted
randomization’. One such type is illustrated in Fig.·1. For
instance, in chemo-orientation studies, changing the treatment
typically involves dismantling and reconfiguring the
experimental device, which is often not practical after each
experimental run. A more practical approach often undertaken
by experimental scientists is: within each block, multiple
subjects are challenged to a single treatment before changing
the device to administer the next treatment. Only the order
in which the treatments are applied is randomized. By
considering subjects in groups, the experiments could be

conducted in a relatively short time span. This
randomization protocol is a type of restricted
randomization as illustrated in Fig.·1. We
demonstrate the effects of a restricted
randomization on the analysis and scientific
conclusions using a computer-simulated
experiment and data involving virgin male
Periplaneta americana.

Analysis of variance (ANOVA) is the
fundamental tool for analyzing data from
designed experiments (Cochran and Cox, 1957;
Searle, 1971). Chapter 8 of Sokal and Rohlf
(1981) emphasizes that ANOVA, while being
an effective tool for any modern biologist, may
create artificial constructs in the mind of a
scientist that could lead to misleading
conclusions. In subsequent sections of this
article, this is demonstrated in the context of
restricted randomization.

In many of the animal chemo-orientation studies published
over the past two decades (see for instance, Table·1), an RCBD
or a related design was employed to analyze experimental data
obtained under the restricted or other modified randomization
protocols. One such modified experimental design was
employed by Linn et al. (1988a), in which some treatment
effects were confounded with block effects. This might be one
of the reasons for obtaining non-significance of the treatment
effects. In a flight tunnel experiment, Linn et al. (1988b)
challenged 5–10 males of each species of Trichoplusia ni and
Pseudoplusia includens to the treatments at one of the two
dosages. From their experimental design description it appears
that there were multiple levels of blocking and a type of
restricted randomization. They analysed the data using a one-
way ANOVA, however, ignoring the block effects and
restriction in randomization.

Mafra-Neto and Cardé (1998) utilized an RCBD to test the
effect of treatments; however, it is not clear from the ‘Materials
and methods’ section whether their experimental design indeed
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Table·1. A summary of several experimental studies conducted by various researchers on chemo-orientation studies

Authors (Year) Journal Experimental subject or organism (Analysis)

Baker et al. (1984) Physiol. Entomol. G. molesta (RCBD)
Cardé and Knols (2000) Physiol. Entomol. L. dispar (RCBD)
Linn and Roelofs (1983) Physiol. Entomol. G. molesta (ANOVA and regression)
Linn et al. (1988a) Physiol. Entomol. G. molesta and P. gossypiella (ANOVA)
Linn et al. (1988b) J. Chem. Ecol. T. ni and P. includens (ANOVA)
Mafra-Neto and Cardé (1998) J. Comp. Physiol. A Cadra cautella (RCBD)
Vickers (2002) J. Chem. Ecol. H. subflexa (RCBD)
Willis and Baker (1984) Physiol. Entomol. G. molesta (RCBD) 
Willis and Baker (1987) J. Insect. Physiol. G. molesta (RCBD)
Willis and Cardé (1990) J. Comp. Physiol. A L. dispar (RCBD)
Willis and Arbas (1991) J. Comp. Physiol. A Manduca sexta (RCBD)

In these cases, the original experimental design did not have a complete randomization, but the analysis was conducted under such an
assumption. In particular, some of these analyses were carried out under the RCBD framework ignoring a certain restriction in the
randomization protocol that was inherent in these experimental design structures.

Fig.·1. A design layout under a type of restricted randomization for three blocks, in
which multiple subjects were challenged to a single treatment before administering the
next treatment. The order of the treatments as well as the assignment of the subjects
within each block were randomized.
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satisfies the complete randomization protocol. From the
‘Materials and methods’ section of Linn et al. (1996), it
appears that they do not have a complete randomization
protocol; however, they analysed their experimental data using
an ANOVA (although not clear whether it was a one-way or
two-way). The effect of light levels and plume structure on the
orientation maneuvers of male Lymantria dispar (gypsy
moths) flying along pheromone plumes has been studied by
Cardé and Knols (2000). They used the flight tracks of 20
males per treatment (a total of six treatments), tested in a
complete randomized block design. The goal was to study the
effects of odor plume structure on the orientation maneuvers
of different species of walking and flying insects (Willis and
Baker, 1984; Baker, 1990; Cardé and Knols, 2000). Justus et
al. (2002) employed an ANOVA; however, they do not state
the details of the experimental design and the statistical
analysis employed such as a one-way ANOVA or an RCBD.
Vickers (2002) considered male Heliothis subflexa, which were
flown in a wind tunnel to a variety of combinations of synthetic
pheromone components admixed on a filter paper disk. Their
experimental design violated the complete randomization
protocol since groups of 3–5 males were flown under each
treatment on any given day; however, they analysed the
experimental data using an RCBD ANOVA.

The flight behavior of mosquitoes in host-odor plumes and
the effects of the fine-scale structures of such plumes have been
studied by Dekker et al. (2001). They considered seven
treatments; each treatment had eight replicates and treatments
were randomized within each test day. Zanen and Cardé (1999)
applied an RCBD to test the treatments on a given day on male
L. dispar; however, they did not employ a two-way ANOVA
to analyse the resulting experimental data. Consequently, their
analysis does not match the design. Furthermore, it is not clear
whether their design satisfied a complete randomization
protocol.

All the above analyses lead to an important question: how
does violating the fundamental assumption of complete
randomization affect the interpretation of experimental results
or scientific conclusions? It is often very difficult (1) to assess
the consequences of subtle modifications of the design on the
resulting analysis and scientific conclusions and/or (2) to
identify an alternative method of analysis corresponding to the
randomization protocol scheme at hand by simply referring to
the statistical literature (Cochran and Cox, 1957; Searle, 1971;
Sokal and Rohlf, 1981).

The goals of this article are to provide insights into
the statistical analysis issues embedded within designed
experiments when practical constraints impose restrictions on
randomization of the treatments. The statistical analyses of
simulated experiments and data involving virgin male P.
americana demonstrate the consequences of overlooking the
restricted randomization on the scientific questions being
addressed as well as the analysis and interpretation of the
results. Our simulated experimental data, presented in the
‘Results’ section, demonstrate that the RCBD incorrectly finds
a highly significant treatment effect that was not present in the

model, while failing to find the real effect present in the model.
However, the risk of a false positive (Type I error) indication
of the treatment significance is substantially reduced under the
alternative analysis. In essence, by employing an RCBD when
the underlying assumption is not satisfied, we are more likely
to declare an effect exists when it does not. This has
implications for the understanding of experimental results as
well as the scientific conclusions. It is important to note that
the methodology and analysis employed for the simulated
experiment is equally applicable to any organism or artificial
agent tested under a restricted randomization framework.

Applying an appropriate model to account for the changes
in the design is relevant for two reasons. Violation of
assumptions in a particular design could result in (1)
underestimation of experimental error variance and (2)
obtaining false positives (Type I errors). These in turn, may
lead to incorrect results or invalidate the analysis employed
by a researcher. Therefore, it is important to choose an
appropriate model and error structure in considering designed
experiments.

Materials and methods
The effect of a restricted randomization on the analysis of

experimental data is best illustrated through a simulated
experiment. In general, if there is a restriction on
randomization at a given level in experimentation, there will
be a ‘split’ in the design, leading to a split-plot design nested
within an RCBD structure. There are two types of experimental
units: the larger units, the groups of subjects (for example,
insects), are called the whole-plots and the smaller ones,
individual subjects, the sub-plots. A split-plot design creates a
nesting within the design structure since the whole-plots are
nested within blocks and the sub-plots are in turn nested within
the whole-plots. The design structure for the whole-plot
experimental units is essentially an RCBD. A split-plot design
has two advantages over a simpler ANOVA: (1) if treatment
can be applied to the whole-plot at once, rather than separately
to sub-plots, this may reduce costs, and (2) because sub-plots
are usually more uniform, parameters measuring comparisons
among conditions may be estimated more precisely.

Several examples of split-plot designs can be found in the
biological literature. Linn and Roelofs (1983) considered a
total of 100 treatments in a 5�4�5 factorial design such that
two of the three factors were varied between days and one
factor was varied within days. This design has a split-plot
structure with days serving as whole-plots. The experiments of
Linn et al. (1988a) consider two species, Grapholita molesta
and Pectinophora gossypiella. They challenged 5–10 males to
each treatment per day, with a total of 70 males for each
treatment–temperature combination. Both the treatments and
temperatures were randomized over the experimental period.
This experimental design has a split-plot structure with
unbalanced data. In both of these examples, the analysis was
based on ANOVA and regression techniques, rather than a
split-plot analysis.
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Model for a hypothetical split-plot design

Every ANOVA is associated with a linear model specifying
the effects being considered. The linear model for a split-plot
ANOVA includes hierarchies of terms modeling both the block
effects and treatment effects. The key concept in constructing
models for split-plot designs is recognizing the different sizes
of experimental units and consequently identifying the
corresponding design structures and treatment structures.

Consider an experiment in which several treatments are
administered to different subjects and the experiment is
conducted over several blocks. Suppose that a biological
experiment consists of subjects of different ages, challenged to
various treatments such as pheromones on different blocks (for
example, days). The age factor may be included in the model
to determine the performance of behavior of an animal as
it develops over time. The split plot design originated in
agricultural field trials and, in this setting, one factor may be
fertilizer and another factor irrigation level.

Consider a hypothetical design such that Yijk denotes a
response measured on a subject at the kth (k=1,…, n) age when
challenged to the jth (j=1,…, t) treatment in the ith (i=1,…, b)
block. The simplest possible model (1) can be written as

Yijk = µ + αi + βj + γij + δk + εijk

for i=1,…, b; j=1,…, t; k=1,…, n·, (1)

where µ represents the overall mean, αi is the block effect, βj

is the effect of the jth treatment applied at the whole-plot level,
γij is the whole-plot effect, and δk is the age effect. The term
εijk measures random error.

The scientific interest is in the treatment effect βj and the
age effect δk. The basic statistical problem is to detect the
significance of these effects and estimate the size of any effects
that are present. The effects βj and δk are treated as fixed effects
or parameters in the model. The block effect αi and the whole-
plot effect γij are of no inherent interest; however, these can
cause considerable variation from block to block and whole-
plot to whole-plot. Therefore, these effects are treated as
random. A typical assumption is that these effects follow
distributions N(0,σα

2) and N(0,σγ
2) respectively, where σα

2 and
σγ

2 are unknown variance components corresponding to the
block and whole-plot effects, respectively. The random errors
εijk are assumed to follow a N(0,σε

2) distribution.

Simulated experiment: generation of data

We demonstrate how to specify a model for split-plot design
and how to construct appropriate F-test statistics through
simulated experimental data. The design is generated as
follows:
(1) Sixteen runs, numbered 1 to 16, were performed for each
of five blocks.
(2) Each block was divided into four whole-plots of four
runs. The four treatments, such as pheromone plumes, were
randomly assigned to the four whole-plots.
(3) Four subjects, one of each age, are assigned in a random
order to the runs within each whole-plot.

The important feature of this design is that two factors,

treatment and age, are being varied across experimental runs.
The treatment is varied randomly at the whole-plot level, while
the age is varied randomly at the level of individual runs or
sub-plots.

After creating the experimental design, responses were
generated according to the following model (2):

Yijk = µ + αi + λirijk + δk + εijk

for i=1,…, 5; j=1,…, 4 k=1,…, 4·, (2)

where subscripts i, j and k denote the block, treatment and age,
respectively. (1) The overall mean is µ=100; (2) the block
effect αi has a normal distribution with mean zero and σα

2=25;
(3) the δk term representing the age effect takes values 1,…, 4
corresponding to subjects of four different age groups (for
example, insects of 10 days, 20 days, 30 days and 40 days old,
respectively); (4) the component λirijk represents drift of
experimental conditions over time, with rijk taking the run
number 1,…, 16 of the (j,k) treatment combination in the ith
block; (5) the coefficient λi follows a N(0,1) distribution; and
(6) εijk has a normal distribution with mean zero and σε

2=1.
That is, we assumed that different random effects contribute
differently to the level of variation in the final measurement of
Yijk. The statistical model used to generate the data includes an
age effect, a random block effect and a random drift effect
within the block. However, the model does not include
any treatment effect βi and, therefore, the responses are
independent of the treatment employed.

It is important to emphasize that the model under which the
simulated data is generated is different from the model. In
particular, the experimental drift in the model corresponding
to the simulation experiment does not match exactly the
assumption of the split-plot model. This effect was
intentionally introduced into the model, since in practice one
does not know the precise form of any uncontrolled variation.
It is important that the statistical analysis is robust to
misspecification of this term. The data was generated using the
statistical language S (Venables and Ripley, 2002) and the
model (2) was fitted using the lm() function in S. The model
fitting and data analysis can also be performed using R, a freely
available open source statistical language available from
http://www.r-project.org.

P. americana experiment

The P. americana experiment is an example of a split-plot
design, characterized by multiple levels of blocking. The
experiment involved 3–18 weeks old virgin males of P.
Americana, which were challenged to track wind-borne plumes
of (–)-periplanone-B 2·h into their scotophase (12·h:12·h L:D
cycle). The animals were video recorded as they tracked wind-
borne plumes of the female sex-pheromone (–)-periplanone-B
in a laboratory wind tunnel. Each videotaped walking path was
digitized using a computerized motion analysis system.

Plume structure

For this experiment, four different plume structures were
constructed by varying the size, shape and orientation of the
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pheromone source (Fig.·2). The point source plume was
constructed using a 0.7·cm diameter circular filter paper disk
(Whatman No. 1, Eastbourne, East Sussex, UK) held
perpendicular to the airflow with an insect pin (Fig.·2A). A
ribbon plume with a chemical source 0.05·cm wide was
constructed by rotating the 0.7·cm filter paper disk 90°, so that
the disk shape was parallel to air flow in the wind tunnel,
resulting in a very narrow plume (Fig.·2B). The third plume
was created by increasing the surface area of the source by ca.
25 times while also proportionally increasing the dosage of
pheromone solution applied to the source. The wide plume
treatment source was 14.3·cm wide�0.7·cm tall (Fig.·2C). The
cylinder plume structure was generated by placing a Plexiglas®

cylinder (81.28·cm tall�7.62·cm diameter) 5·cm upwind of the
0.7·cm diameter circular filter paper disk held perpendicular to
airflow (Fig.·2D). The reader is referred to Willis and Avondet
(2005) for further details on the materials employed in
conducting this experiment.

The aim of this experiment was to test the hypothesis that
male cockroaches steer their walking while tracking female
pheromone using a chemotactic strategy characterized by
counter turning (turning-back) when they experience a sharp
pheromone-clean air edge (Willis and Avondet, 2005).

Measurements

Response variables measured from the digitized insect
movement tracks included: track angle (degrees), track width
(cm), ground speed (cm·s–1), body axis (degrees), net velocity
(cm·s–1), inter-turn duration (s), the number of times each
animal stopped, and the duration of each stop (s). For the
purposes of the analysis, Willis and Avondet (2005) considered

(1) a turn as the location at which the head reached a local
maximum or minimum value with respect to the lateral frame
of reference of the wind tunnel, and (2) an animal to be in
stopping position if there was no movement between two
sequential positions of the head point. Measurement of these
response variables from one animal was considered as one
trial. The response variable is the average of the measurements
for an entire walking track of a single animal.

The animals are expected to have peak response during a
specific period in each scotophase, and only a limited number
of experimental runs can be performed each day. The
experiment was therefore carried out over 5 days. The design
can be summarized is as follows:
(1) The experiment was run over 5 days.
(2) Each day was divided into four whole-plots. Each of the
four pheromone treatments were randomly assigned to one of
the whole-plots.
(3) Within each whole-plot, five animals were tracked. Each
animal or sub-plot representing the smallest experimental unit.

This gives a total of 100, corresponding to 5�4�5
experimental runs. Three animals did not respond when
challenged with the experimental conditions so that 24
observations in total were completed for each treatment, except
for the second treatment which yielded 25. The analysis
therefore includes a total of 97 observations.

Split-plot model for the P. americana experiment

The key feature of the P. americana design is that the
treatments (the pheromone plumes) were varied at the level of
whole-plots, and not at the level of individual experimental
runs. In the simulated experimental data described above, a

Wide

RibbonPoint sourceA B

D

50 cm

CylinderC

Fig.·2. An illustration of P. americana males tracking female pheromone upwind (right to left) in a laboratory wind tunnel, containing the time-
averaged plume boundaries of titanium tetrachloride smoke plume in 25·cm·s–1 wind. Each circle represents the body position at every 0.083·s.
(A) Point source plume, 2.4·cm wide at the source spreads to 7.7·cm wide at the downwind end. (B) Ribbon plume, 1.5·cm wide at the source
spreads to 6.1·cm wide at the downwind end. (C) Wide plume, 17·cm wide at the source spreads to 26.5·cm at the downwind end. (D) Cylinder
plume, 7.6·cm wide at the source spreads to 68.1·cm at the downwind end.
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second factor of age was varied at the level of an experimental
unit; however, in the P. americana experiment, this second
factor is absent.

Since the treatments were applied to groups of animals
within each apparatus setup, the treatments must be associated
with the whole-plot part of the design. Therefore, in order to
make an appropriate inference regarding treatments, the F-
statistic denominator must include the random variation
between the whole-plots.

In the context of the P. americana experiment, the response
Yijk in model (1) represents the ground speed (cm·s–1) averaged
over different time points; αi and γij are the day and whole-
plots effects, respectively; βj is the effect of the jth pheromone
applied at the whole-plot level and δk is the effect of the
treatment applied at the subject level. However, since no factor
was varied at the subject level in this experiment, the δk term
is absent in the model.

Appropriate F-test statistics

The analysis involves computing the sums of squares (SS)
and mean squares (MS) due to each of the terms in the model;
see Sokal and Rohlf (1981) and Searle et al. (1992) for the
partitioning of the SS. In order to test for the significance of
treatment effects, one forms an F-ratio using the treatment MS
(MStrt) and the error MS as:

F = MStrt / MSE·, (3)

where the mean square error (MSE) is an unbiased estimator
of the error variance σε

2, the variation between subjects within
groups. The above F-statistic is an appropriate one to employ
when the only source of random variation in the estimated
treatment effects are the random errors. This is the case for the
age effect δk term in the model (1). Since each age occurs once
in each whole-plot, any block effects must influence all
treatments equally. Consequently, the presence of block effects
does not inflate the treatment MS.

The F-statistic in Equation·(3) is no longer valid when one

is testing for the treatment effects applied at the whole-plot
level, the βj term in model (1). In the P. americana experiment,
there may be additional whole-plot variation due to differences
in responsiveness of animals during the scotophase, or due to
any random variation in resetting the experimental device. The
MSE estimates only the subject-to-subject variation while
ignoring these other potential sources of random variation.
Therefore, the F-statistic in Equation·(3) corresponding to the
treatment effects is biased upwards, leading to false indications
of significant treatment effects (Type I error).

The split-plot analysis overcomes this difficulty by
modeling whole-plot variation by the random γij term. The
appropriate denominator for the F-ratio is the MS attributed to
γij; i.e. MSintr. Consequently, the F-ratio becomes:

F = MStrt / MSintr·.

Results
We demonstrate the consequences of the randomization

protocol on the analysis of experiments and scientific
conclusions using the simulated and real data.

Comparison of the RCBD and split-plot analyses: simulation
experiment

In terms of the practical significance, the main findings from
our simulation experiment are summarized in Tables 2 and 3.
Table·2 presents the results of an RCBD ANOVA, which
assumes complete randomization as illustrated in Fig.·3. The
analysis shows a highly significant block effect (P<0.00001).
However, scientific interest is usually in treatment effects and
the analysis in Table·1 incorrectly finds a highly significant
treatment effect (P=2.533�105), while failing to detect the real
age effect (P=0.2919). The restricted randomization in this
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Animal 1, TRT A

Animal 2, TRT B

Animal 3, TRT B

Animal 4, TRT D

Animal 5, TRT C

Animal 6,   TRT B

Animal 7,   TRT D

Animal 8,   TRT B

Animal 9,   TRT B

Animal 10, TRT C

Animal 11, TRT D

Animal 12, TRT D

Animal 13, TRT A

Animal 14, TRT A

Animal 15, TRT A

Animal 16, TRT A

Animal 17, TRT C

Animal 18, TRT C

Animal 19, TRT D

Animal 20, TRT C

Fig.·3. A completely randomized design
layout for a single block in which every
subject and every treatment were
individually randomized.

Table·2. ANOVA under the RCBD for the simulated
experimental data assuming the complete randomization
within each block, such as day, while treating the block

effect as fixed

Source of variation d.f. MS F-statistic P-value

Block 4 1553.9 60.8653 <0.00001
Treatment 3 241.9 9.4756 0.00002
Age 3 32.4 1.2688 0.29190
Residual 69 25.5
Total 80

Table·3. ANOVA under a split-plot design for the simulated
experimental data assuming the restricted randomization

Source of variation d.f. MS F-statistic P-value

Whole-plots (groups of subjects)
Block for groups (Day) 4 1553.9 11.9941 0.00040
Treatment 3 241.9 1.8673 0.18890 
Residual (Treatment-by-block) 12 129.6
Sub-total 19

Sub-plots (Individual subjects) 
Age 3 32.4 8.9233 0.00006 
Residual (Subjects within 57 3.6

groups)
Total 80
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design has led to both false positive
(Type I error) and false negative (Type
II error) results.

The restricted randomization means
that the treatments are submitted in
whole-plots of four runs, and for the
purpose of analyzing treatment effects,
the correct analysis is to treat these
four runs as a single experimental unit.
This leads to the split-plot ANOVA.
The results of applying the split-plot
analysis to the simulated experimental
data are shown in Table·3. This
analysis correctly identifies that there
is no significant treatment effect
(P=0.1889) and that the age effect is
highly significant (P=6.126�10–5).
Therefore, the risk of a false positive
indication of the treatment significance
is substantially reduced under the split-
plot design. In essence, by employing
an RCBD when the underlying
assumption is not satisfied, we are
more likely to reject a true null
hypothesis. This has implications to
the understanding of experimental
results as lack of treatment effect
would be expected to be of relevance.

Comparison of the RCBD and split-
plot analyses: the P. americana

experiment

We present the analysis of the data
from the P. americana experiment
using RCBD and split-plot models to
demonstrate when and how likely false
positives can occur and their
consequences on the biological
questions. This illustrates how
violations of the underlying
assumption for the RCBD leads to
underestimation of the error variability
and inflating the statistical significance
of the treatment effects.

The response variable, ground speed
(cm·s–1), is shown in Fig.·4 sorted first
by day and next by pheromone, and in
Fig.·5 sorted first by pheromone and
then by day. It is clear that the
pheromone D (cylinder source) is
behaving differently. It also appears that treatments behave
differently on different days. For example, a comparison of
pheromone A (point source) vs pheromone B (ribbon source)
shows that animals are responding more rapidly to the point
source on days 2 and 4 and more rapidly to the ribbon source
on days 1 and 5.

Analysis of the data was conducted using the SAS PROC
MIXED program (Littell et al., 1996). Table·4 presents a two-
way ANOVA for the response variable ground speed (cm·s–1).
While the usual analysis of an RCBD includes only main
effects for treatments and blocks, in the present experiment
there are multiple replications of the pheromones on each day.
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Therefore, we are able to include an interaction term between
the treatments and blocks. The table shows a highly significant
day and pheromone effects (P<0.0001) and a significant
pheromone-by-day interaction effect (P<0.0307). These results
are consistent with those obtained by Willis and Avondet
(2005).

How should the pheromone-by-day interaction effect be
interpreted? What are the consequences in terms of the
questions of biological interest such as responsiveness of
animals to different pheromone plumes? The pheromone-by-
day interaction effect means that the animals have responded
more to some plumes than others on different days. However,
the biological interest lies in the overall response to the
individual pheromones and there is no inherent interest in the
individual days. It is of little use to state that the animals
respond more rapidly to the ribbon source on day 1, and to the
point source on day 2, as the data here indicate.

The resolution to this paradox is to model the interaction
effect, the γij term in model (1), as a random effect, introduced
by the restricted randomization of the design. However, these
random effects influence estimates of the treatment means.
Therefore, the SS attributed to the pheromone effects in
Table·4 is inflated by these interactions. As a result, comparing
the pheromone MS (MStrt) with the MSE is inappropriate.

Table·5 presents the ANOVA using a split-plot model
for the P. americana experiment under the restricted
randomization while treating the block effects as random. The
point estimates of the variance components and the F-statistic
for the treatment effect in the table, were generated using the
SAS PROC MIXED program (Littell et al., 1996). The F-
statistic for the pheromone effect is now obtained as the MS
for pheromone (MStrt=424.3216) divided by the MS for
pheromone-by-day interaction (MSintr=52.2499).

The analysis in Table·5 is further complicated by the three
deleted observations, causing imbalance in the design (i.e.
nij�n for all i=1,…, b and j=1,…, t, where nij is the number of
observations in the ith block for the jth treatment). The
consequence is that a Satterthwaite approximation (p. 24 in
Milliken and Johnson, 1984) must be used for the degrees of
freedom (d.f.) of the F-statistic, namely the df2. Note that the
df1 is simply (t–1). The F-statistic is much smaller (8.18
instead of 16.63) under the split-plot analysis; however, the
treatment effect is still significant (P=0.003). The 95%
confidence intervals for the variance components were

generated by the lme() function in S-Plus (Pinheiro and Bates,
2000). The results presented in Table·5 confirm that both σα

2

and σγ
2, representing the day and whole-plot effects

respectively, are significant.

Pairwise comparisons

To further understand the treatment differences, we
performed pairwise comparisons of treatment means. The
analyses under RCBD and split-plot design in Table·6
correspond to the results in Tables 4 and 5, respectively. In
comparison with the RCBD, the split-plot analysis returns
larger standard errors and in turn, yields smaller T-statistics
and larger P-values. In fact, if we choose the level of
significance to be 0.01, then the pairwise difference of A vs D
(point source vs cylinder) is significant under the RCBD while
not significant under the split-plot analysis. Moreover, the P-
values corresponding to the pairwise differences of B vs D
(ribbon vs cylinder) and C vs D (wide vs cylinder) are closer
to 0.01 than to 0.0001. The RCBD analysis has substantially
overstated the statistical significance; see Curran-Everett and
Benos (2004) for a discussion of why choosing 0.01 for a
significance level is appropriate for certain situations.

The expected mean squares (Sokal and Rohlf, 1981; Searle
et al., 1992) may be used to determine how much the F-statistic
for treatment affects will be inflated, on average, when blocks
such as days are treated as fixed and the RCBD analysis is
employed for analysis as if the design is carried out under the
complete randomization protocol. In this scenario, the F-
statistic for treatment effects would use the MSE as its
denominator, which has an expected value of σε

2. However,
under the split-plot analysis with block effect treated as
random, the denominator would be MSintr, which has an
expected value of (tnσα

2+nσγ
2+σε

2). In the balanced case (i.e.
nij=n for all i=1,…, b and j=1,…, t), an approximate indication
of the inflation in the F-statistic is provided by the ratio: 

(nσγ
2+σε

2) / σε
2 , 

where σγ
2 and σε

2 are the estimators of σγ
2 and σε

2,

R. S. Pilla, D. J. Kitska and C. Loader

Table·5. ANOVA under the split-plot design for the
P. americana experiment assuming the restricted

randomization while day effect is treated as random for
the response variable ground speed (cm·s–1)

Fixed effect df1 df2 F-statistic P-value 

Pheromone 3 12.2 8.18 0.0030 

Variance components Value 95% C.I.

σα
2 9.8372 (1.6579, 58.367)

σγ
2 5.5723 (1.1605, 26.757)

σε
2 25.4590 (18.575, 34.895)

The df1 is the numerator degrees of freedom that equals (t–1) and
df2 is the denominator degrees of freedom obtained via the
Satterthwaite approximation. The point estimates and the 95%
confidence interval estimates for the variance components are
provided.

Table·4. ANOVA under the RCBD for the P. americana
experiment assuming the complete randomization within each
day while treating day effect as fixed for the response variable

ground speed (cm·s–1)

Source of variation d.f. MS F-statistic P-value

Pheromone 3 424.3216 16.63 <0.0001
Day 4 241.7842 9.48 <0.0001 
Pheromone-by-day 12 52.2499 2.05 0.0307 
Residual 77 25.5112
Total 96
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respectively. Recall that γij is confounded with the setup
variation of the experimental device as well as any
potential treatment-by-block interaction under the restricted
randomization protocol and this combined variation is given
by σγ

2. The F-statistic given in Equation·(3) under an RCBD
does not include σγ

2 in its denominator and therefore ignores
the setup variation entirely. In other words, this F-statistic
ignores the ‘loss in efficiency’ when one cannot randomize
between individual subjects due to practical difficulties
involved in conducting an experiment.

The simulated experimental studies presented earlier
demonstrate the generality of these conclusions and are
consistent with our above treatment of the real data. Recall that
the simulation results show a change from highly significant to
non-significant treatment effects.

Discussion
A randomized complete block design is one of the most

widely used designs by experimental scientist in studying the
effects of treatments on subjects. Often, treatments are
replicated within each block to obtain separate estimates of
the error variance and any potential treatment-by-block
interaction. Experimental constraints can prevent complete
randomization within each block. Previous work in identifying
the statistical significance of treatment effects on the behavior
of response has used either a one-way ANOVA or an RCBD.
In this article, we have demonstrated that a split-plot model can
be applied to analyse data under a restricted randomization
protocol. Furthermore, we have demonstrated that overlooking
the effect of restricted randomization on inferences from
RCBD analyses can lead to various spurious interaction effects
as well as potentially serious Type I or Type II errors. In
particular, if the restricted randomization is ignored and an
RCBD analysis performed, then there is a risk of overstating
the significance of treatment effects. In contrast, the split-plot
analysis provides a powerful alternative to the analysis of data
collected under the restricted randomization protocol. The
proposed methods are illustrated using a real data from chemo-
orientation studies; however, they extend directly to other
studies where it is impractical to completely randomize the
treatments given to individual experimental subjects. The
techniques presented in this article can be implemented using
widely available statistical software.

Our findings clearly substantiate the consequences of
ignoring the restricted randomization and have the following
implications. (1) Under the restricted randomization (Fig.·1),
one has two sets of experimental subjects: (i) the subjects
nested within groups, which in turn serve as blocks for the
subjects, and (ii) groups nested within blocks. The appropriate
analysis is to employ a split-plot ANOVA by considering the
groups of subjects as the whole-plots and the individual
subjects as the sub-plots. (2) The expected mean squares
usually assume complete randomization. Under the restricted
randomization, one must be cautious in calculating the
expected mean squares. In particular, one cannot test the
treatment-by-block interaction through an F-statistic given by
F=MSintr/MSE, and it is possible only if experimental setups
are completely randomized between animals.

An important conclusion of our work is to demonstrate the
significance of describing completely the design employed and
statistical analysis performed on any experimental data. As we
have shown, small changes to the design protocol can have a
major effect on the validity of a statistical analysis. There
are many different types of ANOVA, and employing an
inappropriate analysis to a dataset, can result in incorrect
conclusions. The main function of the ‘Materials and methods’
section of a scientific article is to provide sufficient details and
information so that a knowledgeable reader with access to the
original data can verify and reproduce the reported results
(Curran-Everett and Benos, 2004). Our applications, as well as
the citation of the literature, have been limited due to
incomplete description of the experimental designs and
statistical methods employed in many of the articles we
reviewed, thereby making it difficult if not impossible to
replicate the experiments or the statistical analysis. Statistical
methods and analysis are inherent to many allied fields and
underpin the scientific discovery process. As stated eloquently
by Curran-Everett and Benos (2004), misunderstanding and
misuse of the statistical techniques as well as misinterpretation
of the analysis jeopardizes the scientific discovery process as
well as accumulation of scientific knowledge. We hope that
this article will serve to improve the caliber of statistical
information as well as the reporting and presentation of the
statistical techniques in allied scientific publications.
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