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In last twenty years, much work has been done to study the
aerodynamics and energetics of insect flight, and
considerable progress has been made in these areas (e.g.
Dudley and Ellington, 1990a,b; Dickinson and Götz, 1993;
Ellington et al., 1996; Dickinson et al., 1999; Wang, 2000;
Sun and Tang, 2002; Usherwood and Ellington, 2002a,b).
The area of insect flight stability has received much less
consideration, however. Recently, with the current
understanding of the aerodynamic force mechanisms of insect
flapping wings, researchers are beginning to devote more
effort to understanding this area.

Thomas and Taylor (2001) and Taylor and Thomas (2002)
studied static stability (an initial directional tendency to return
to equilibrium after a disturbance) of gliding animals and
flapping flight, respectively. They found that flapping did not
have any inherently destabilizing effect: beating the wing faster
simply amplified the existing stability or instability, and that
flapping could even enhance stability compared to gliding
flight at a given speed.

Taylor and Thomas (2003) studied dynamic flight stability
in the desert locust Schistocerca gregaria, providing the first
formal quantitative analysis of dynamic stability in a flying

animal (the dynamic stability of a flying body deals with the
oscillation of the body about its equilibrium position following
a disturbance). A very important assumption in their analysis
was that the wingbeat frequency was much higher than the
natural oscillatory modes of the insect, thus when analyzing its
flight dynamics, the insect could be treated as a rigid flying
body with only 6 degrees of freedom (termed rigid body
approximation). In the rigid body approximation, the time
variations of the wing forces and moments over the wingbeat
cycle were assumed to average out; the effects of the flapping
wings on the flight system were represented by the wingbeat-
cycle average aerodynamic forces and moments that could vary
with time over the time scale of the flying rigid body. In
addition, the gyroscopic forces of the wings were assumed to
be negligible. It was further assumed that the animal’s motion
consists of small disturbances from the equilibrium condition;
as a result, the linear theory of aircraft flight dynamics was
applicable to the analysis of insect flight dynamics. The authors
first measured the aerodynamic force and moment variations
of the tethered locust by varying the wind-tunnel speed and the
attitude of the insect, obtaining the aerodynamic derivatives.
Then they studied the longitudinal dynamic flight stability of
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The longitudinal dynamic flight stability of a hovering
bumblebee was studied using the method of computational
fluid dynamics to compute the aerodynamic derivatives
and the techniques of eigenvalue and eigenvector analysis
for solving the equations of motion.

For the longitudinal disturbed motion, three natural
modes were identified: one unstable oscillatory mode,
one stable fast subsidence mode and one stable slow
subsidence mode. The unstable oscillatory mode consists
of pitching and horizontal moving oscillations with
negligible vertical motion. The period of the oscillations is
0.32·s (approx. 50 times the wingbeat period of the
bumblebee). The oscillations double in amplitude in 0.1·s;
coupling of nose-up pitching with forward horizontal
motion (and nose-down pitching with backward
horizontal motion) in this mode causes the instability. The
stable fast subsidence mode consists of monotonic pitching

and horizontal motions, which decay to half of the starting
values in 0.024·s. The stable slow subsidence mode is
mainly a monotonic descending (or ascending) motion,
which decays to half of its starting value in 0.37·s.

Due to the unstable oscillatory mode, the hovering flight
of the bumblebee is dynamically unstable. However, the
instability might not be a great problem to a bumblebee
that tries to stay hovering: the time for the initial
disturbances to double (0.1·s) is more than 15 times the
wingbeat period (6.4·ms), and the bumblebee has plenty of
time to adjust its wing motion before the disturbances
grow large.

Key words: dynamic stability, flapping flight, hovering, bumblebee,
insect, Navier–Stokes simulation, natural modes of motion,
bumblebee.
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the insect using the techniques of eigenvalue and eigenvector
analysis.

In the study of Taylor and Thomas (2003), the dynamic
stability of forward flight at high flight speed (the advance ratio
was around 0.9) was studied. Many insects often hover. In
hovering, unlike in forward flight, the stroke plane is generally
approximately horizontal, the body angel is relatively large and
the wing in the downstroke and in the upstroke operates
under approximately the same conditions. As a result, the
aerodynamic derivatives, hence the dynamic stability
properties of hovering, must be different from those of forward
flight. It is of great interest to investigate the dynamic flight
stability of hovering.

In the present paper, we study the longitudinal dynamic
flight stability in a hovering bumblebee. The bumblebee was
chosen because previous studies on bumblebees provide
the most complete morphological data and wing-motion
descriptions. In the study by Taylor and Thomas (2003), due
to the limits of the experimental conditions, the insect had to
be tethered and the reference flight might not have been in
equilibrium, so some derivatives could not be measured
directly. If a computational method were used to obtain the
aerodynamic derivatives, the above difficulties could be
solved. More importantly, the computational approach allows
simulation of the inherent stability of a flapping motion in
the absence of active control. This is very difficult or
impossible to achieve in experiments using real insects, as
was done by Taylor and Thomas (2003). In the present study,
we used the method of computational fluid dynamics (CFD)
to compute the flows and to obtain the aerodynamic
derivatives. First, conditions for force and moment
equilibrium were determined. Then, the aerodynamic
derivatives at equilibrium flight were computed. Finally, the
longitudinal dynamic flight stability of the hovering
bumblebee was studied using the techniques of eigenvalue
and eigenvector analysis.

Materials and methods
Equations of motion

Similar to Taylor and Thomas (2003), we make the rigid
body approximation: the insect is treated as a rigid body of 6
degrees of freedom (in the present case of symmetric
longitudinal motion, only three degrees of freedom) and the
action of the flapping wing is represented by the wingbeat-
cycle average forces and moment (in addition, the gyroscopic
effects of the wing are assumed negligible). This model of the
hovering bumblebee is sketched in Fig.·1A.

Let oxyz be a non-inertial coordinate system fixed to the
body. The origin o is at the center of mass of the insect and
axes are aligned so that the x-axis is horizontal and points
forward at equilibrium. The variables that define the motion
(Fig.·1B) are the forward (u) and dorso-ventral (w) components
of velocity along x- and z-axes, respectively, the pitching
angular-velocity around the center of mass (q), and the pitch
angle between the x-axis and the horizontal (θ). oExEyEzE is a

coordinate system fixed on the earth; the xE-axis is horizontal
and points forward.

The equations of motion are intrinsically non-linear, but may
be linearized by approximating the body’s motion as a series
of small disturbance from a steady, symmetric reference flight
condition. The linearized equations (see Etkin, 1972; Taylor
and Thomas, 2003) are:

where Xu, Xw, Xq, Zu, Zw, Zq, Mu, Mw and Mq are the
aerodynamic derivatives [X and Z are the x- and z-components
of the total aerodynamic force (due to the wing and the body),
respectively, and M is the aerodynamic pitching moment (due
to the wing and the body)]; m is the mass of the insect; g is the
gravitational acceleration; Iy is the pitching moment of inertia
about y axis; ‘.’ represents differentiation with respect to time
(t); xE and zE represent the xE- and zE-component of the velocity
of the mass center of the insect, respectively; the symbol δ

wz δ=δ E (6),

ux δ=δ E (5),

qδ=θδ (4),

IqMIwMIuMq /// qwu y y yδ+δ+δ=δ (3),

mqZmwZmuZw /// qwu δ+δ+δ=δ (2),

δθ−δ+δ+δ=δ gmqXmwXmuXu /// qwu (1) ,
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Fig.·1. (A) A sketch of the rigid body approximation. (B) Definition
of the state variables u, w, q and θ. The bumblebee is shown during
a perturbation (u, w, q and θ are zero at equilibrium).
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denotes a small disturbance quantity. At reference flight
(hovering), u, w, q, θ are zero (θ is zero because the x-axis is
aligned with horizontal at reference flight), and X=0, Z=–mg
and M=0 (the forces and moments are in equilibrium).

In deriving the linearized equations (Equations·1–6), the
aerodynamic forces and moment (X, Z and M) are represented
as analytical functions of the disturbed motion variables (δu, δw
and δq) and their derivatives (Etkin, 1972; Taylor and Thomas,
2003), e.g. X is represented as X=Xe+Xuδu+Xwδw+Xqδq, where
the subscript e (for equilibrium) denotes the reference flight
condition. In so doing, the effects of the whole body motion on
the aerodynamic forces and moment are assumed to be quasi-
steady (terms that include δu, δw, etc. are not included). The
whole body motion is assumed to be slow enough for its
unsteady effects to be negligible.

Let c, U and tw be the reference length, velocity and time,
respectively [c is the mean chord length of the wing; U is the
mean flapping velocity at the radius (r2) of the second moment
of wing area, defined as U=2Φnr2 (Φ and n are the stroke
amplitude and stroke frequency, respectively); tw is the period
of the wingbeat cycle (tw= 1/n)]. The non-dimensional forms
of Equations·1–6 are:

where A is the system matrix:

where am=0.5ρUSttw, aI=0.5ρU2Stctw2 and ag=U/tw, and the
non-dimensional forms are: δu+=δu/U, δw+=δw/U, δq+=δqtw,
X+=X/0.5ρU2St (ρ denotes the air density and St denotes the
area of two wings), Z+=Z/0.5ρU2St, M+=Z/0.5ρU2Stc, t+=t/tw,
δxE

+=δxE/U and δzE
+=δzE/U (using the flight data given below,

am, aI and ag are computed as am=1.96·mg, aI=0.233�
10–9·kg·m2, ag=710.9·m·s–1; ρ is 1.25·kg·m–3 and g is
9.8·m·s–2).

Flight data and non-dimensional parameters of wing motion

Flight data for the bumblebee are taken from Dudley and
Ellington (1990a,b). The general morphological data are as
follows: m=175·mg; wing length R=13.2·mm; c=4.01·mm,
r2=0.55R; area of one wing (S) is 53·mm2; free body angle (χ0)
is 57.5°; body length (lb) is 1.41R; distance from anterior tip
of body to center of mass divided by body length (l) is 0.48lb,
distance from wing base axis to center of mass divided by body

length (ll) is 0.21 lb; pitching moment of inertia of the body
about wing-root axis (Ib) is 0.48�10–8·kg·m2. Assuming that
the contribution of the wing mass to the pitching moment of
inertia is negligible (the added-mass on the wings has been
included in the CFD model), Iy, the pitching moment of
the bumblebee about y-axis, can be computed as
Iy=Ib–l12m2=0.213�10–8·kg·m2. Taylor and Thomas (2003)
estimated the wings’ contribution to the pitching moment of
inertia for locusts and showed that the wings’ contribution,
which is proportional to the ratio of wing mass to the total body
mass, was small, less than 3.5% of the pitching moment of
inertia. The wings of locusts comprise around 4% of the total
body mass; for the bumblebee, the wings comprise only 0.52%
of the total body mass (Dudley and Ellington, 1990a).
Therefore, the above estimation of Iy should be sufficient.

The wing-kinematic data are as follows: Φ=116°; n=155·Hz;
β=6°; χ(body angle)=46.8°. U is computed as U=4.59·m·s–1.

Determination of the equilibrium conditions and computation
of the aerodynamic derivatives

The wing, the body and the flapping motion

In determining the equilibrium conditions of the flight, we
need to calculate the flows around the wings (at equilibrium,
the body does not move); to obtain the aerodynamic
derivatives, we need to compute the flows around the wing and
around the body. In the present CFD model, it is assumed that
the wings and body do not interact aerodynamically, neither do
the contralateral wings, and the flows around the wings and
body are computed separately. It is also assumed that the wing
is inflexible. The wing planform used (Fig.·2A) is
approximately the same as that of a bumblebee (Ellington,
1984a). The wing section is a flat plate with rounded leading
and trailing edges, the thickness of which is 3% of the mean
chord length of the wing. The body of the insect is idealized
as a body of revolution; the outline of the idealized body
(Fig.·2B) is approximately the same as that of a bumblebee.
Neglecting the axial asymmetry of the bumblebee can cause
some differences in the computed body aerodynamic force.
However, near hovering, the body aerodynamic force is much
smaller than that of the wings (i.e. the aerodynamic force of
the insect is mainly from the wings), and a small difference in
the body aerodynamic force may not affect the aerodynamic
derivatives greatly (see below).

The flapping motion of the wing (Fig.·3) consists of two
parts: the translation (azimuthal rotation) and the rotation (flip
rotation, or rotation around an axis along the wing). The
velocity at the span location r2 due to wing translation is called
the translational velocity (ut). The azimuth-rotational velocity
of the wing (φ) is related to ut: φ(τ)=ut/r2, where τ is non-
dimensional time. For the bumblebee, on the basis of data
given by Dudley and Ellington (1990a), ut is approximated by
the simple harmonic function:

where the non-dimensional translational velocity ut
+=ut/U, non-

( )ct ππ/π2sin5.0 π=+u (11),
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dimensional time τ=tU/c, and τc is the non-dimensional period
of a wingbeat cycle. The geometric angle of attack of a wing
is denoted by α. On the basis of flight data (Dudley and
Ellington, 1990a; Ellington, 1984b), time variations of α are
approximated as follows. α takes a constant value except at the
beginning or near the end of a half-stroke. The constant value,
called as mid-stroke angle of attack, is denoted by αd for the
downstroke and αu for the upstroke. Around stroke reversal,
the wing flips and α changes with time. The angular velocity
(α) is given by:

where the non-dimensional form α+=αc/U, α0
+ is a constant, τr

is the non-dimensional time at which the flip rotation starts,
and ∆τr the non-dimensional time interval over which the flip
rotation lasts. In the time interval of ∆τr, the wing rotates from
α=αd to α=180°–αu. Therefore, when αd, αu and ∆τr are
specified, α0

+ can be determined (around the next stroke
reversal, the wing would rotate from α=180°–αu to α=αd, the
sign of the right-hand side of Equation·12 should be reversed).
∆τr is termed flip duration. It is assumed that the axis of the
pitching rotation is located at 0.3c from the leading edge of the
wing.

In the flapping motion described above, the mid-stroke
angles of attack (αd and αu), the flip duration (∆τr), the flip
timing (τr), the period of flapping cycle (τc), the mean
positional angle (φ) and the stroke plane angle (β) must be
given. The Reynolds number (Re), which appears in the non-
dimensional Navier–Stokes equations, is defined as Re=Uc/ν
(ν is the kinematic viscosity of the air). The non-dimensional
kinematic parameters are computed below.

U has been computed above. Re and τc are computed as
Re=1326 and τc=7.12. On the basis of the flight data in Dudley
and Ellington (1990a), the flip duration (∆τr) is set to 0.22τc

and the flip rotation is assumed to be symmetrical (thus the flip
timing τr is determined in terms of ∆τr). αd, αu and φ are yet
to be specified.

The flow solution method and evaluation of aerodynamic
forces and moments

The flow equations (the Navier–Stokes equations) and the
solution method used in the present study are the same as those
described in Sun and Tang (2002). Once the flow equations are
numerically solved, the fluid velocity components and pressure
at discretized grid points for each time step are available. The
aerodynamic forces and moments acting on the wing (or the
body) are calculated from the pressure and the viscous stress
on the wing (or the body) surface.

Resolving resultant aerodynamic force of the wing into the
z1- and x1-axes, we obtain the vertical (Lw) and the horizontal
(Tw) forces of the wing, respectively (see Fig.·3B,C; note that
when computing aerodynamic derivatives with respect to q, the
stroke plane and x1- and z1-axes rotate about the center of mass
of the insect, Lw is not in vertical direction and Tw not in

horizontal direction). Let my1,w be the moment about the y1-
axis (which passes the wing root). The pitching moment about
the center of mass of the insect due to the aerodynamic force
of the wing (my,w) can be calculated (see Ellington, 1984a) as:

The lift (Lb) and drag (Db) of the body are the vertical (z1

direction) and horizontal (x1 direction) components of the
resultant aerodynamic force of the body, respectively. The
pitching moment of the body (my,b) is the moment about the
mass center due to the aerodynamic force of the body. The
above forces and moment are non-dimensionalized by
0.5ρU2St and 0.5ρU2Stc, respectively. The coefficients of Lw,
Tw, my,w, Lb, Db and my,b are denoted a CL,w, CT,w, CM,w, CL,b,
CD,b and CM,b, respectively.

Force and moment equilibrium

As seen above, the kinematic parameters of the wing left
undetermined are the mid-stroke angles of attack (αd, αu) and
the mean positional angle of the wing (φ). In the present study,
αd, αu and φ are not treated as known input parameters but are
determined in the calculation by the force balance and moment
balance conditions, i.e. the mean vertical force of the wings is
equal to insect weight, the mean horizontal force of the wings
is equal to zero, and the mean pitching moment of the wings
(about the mass center) is equal to zero. The non-dimensional
weight of the insect is defined as mg/0.5ρU2St, and its value is
computed as 1.25. The mean vertical force coefficient of the
wing needs to equal 1.25.

Aerodynamic derivatives

Conditions in equilibrium flight are taken as the reference
conditions in the aerodynamic derivative calculations. In order to
estimate the partial derivatives Xu, Xw, Xq, Zu, Zw, Zq, Mu, Mw and
Mq, we make three consecutive flow computations for the wing:
a u-series, in which u+ is varied whilst w+, q+ and θ are fixed at
the reference values (i.e. w+, q+ and θ are zero), a w-series, in
which w+ is varied whilst w+, q+ and θ are fixed at zero and a q-
series, in which w+, q+ and θ are fixed at zero (in all the three
series, wing kinematical parameters are fixed at the reference
values); similar flow computations are conducted for the body.
Using the computed data, curves representing the variation of the
aerodynamic forces and moments with each of the w+, q+ and θ
variables are fitted. The partial derivatives are then estimated by
taking the local tangent (at equilibrium) of the fitted curves.

Solution of the small disturbance equations

After the aerodynamic derivatives are determined, the
elements of the system matrix A would be known. Equation·7
can be solved to yield insights into the dynamic flight stability
of the hovering bumblebee.

The general theory for such a system of linear equations is
in any textbook on flight dynamics (e.g. Etkin, 1972); a concise
description of the theory can be found in Taylor and Thomas
(2003). Only an outline of the theory is given here. The central
elements of the solutions for free motion, i.e. of the dynamic

) .cos()sin( 0101w,ywy, 1
χ−χ+χ−χ. .+= lTlLmM ww (13)

]}/)(2cos[1{5.0 rr0 τ∆τ−τπ−α=α ++ ;

( )rrr τ∆+τ≤τ≤τ (12),
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stability problem, are the eigenvalues and eigenvectors of A.
In general, a l�l real matrix has l eigenvalues (λ1, λ2,… λl)
and l corresponding eigenvectors; an eigenvalue can be a real
number (the corresponding eigenvector is real) or a complex
number (the corresponding eigenvector is complex), and the
complex eigenvalues (and eigenvectors) occur in conjugate
pairs. A real eigenvalue and the corresponding eigenvector (or
a conjugate pair of complex eigenvalues and the corresponding
eigenvector pair) represent a simple motion called natural
mode of the system. The free motion of the flying body after
an initial deviation from its reference flight is a linear
combination of the natural modes. Therefore, to know the
dynamic stability properties of the system, one only needs to
examine the motions represented by the natural modes. In a
natural mode, the real part of the eigenvalue determines the
time rate of growth of the disturbance quantities and the
eigenvector determines the magnitudes and phases of the
disturbance quantities relative to each other. A positive real
eigenvalue will result in exponential growth of each of the
disturbance quantities, so the corresponding natural mode is
dynamically unstable (termed unstable divergent mode). The
time to double the starting value is given by:

A negative eigenvalue will result in exponential decay of the
disturbance quantities and the corresponding natural mode is
dynamical stable (termed stable subsidence mode). The time
to half the starting value is given by:

A pair of complex conjugate eigenvalues, e.g. λ1,2=n±ωi, will
result in oscillatory time variation of the disturbance quantities
with ω as its angular frequency; the motion decays when n is
negative (dynamical stable; termed stable oscillatory mode)
but grows when n is positive (dynamical unstable; termed
unstable oscillatory mode). The period (T) of the oscillatory
motion is:

and the times to double or half the oscillatory amplitude are

See fig.·10 of Taylor and Thomas (2003) for sketches of the
four types of solution to the small disturbance equations.

The solution process of the present problem is summarized
as follows. The eigenvalues and eigenvectors of A in
Equation·7 are calculated, giving the natural modes; analyzing
the motions of the natural modes gives the dynamic stability
properties of the hovering bumblebee.

doublet or nt ˆ/693      ..0half = (17)

ω ,π= ˆ/2T (16)

λ= \693.0halft ( 0<λ ) . (15)

(14)λ= /693.0doublet ( 0) .>λ

A

B

Fig.·2. (A) Portions of the grid for the bumblebee wing. (B) The
bumblebee body planform and a portion of the grid.
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Results
Code validation and grid resolution test

The code used for the flow computations is the same as that
in Sun and Tang (2002) and Sun and Wu (2003). It was tested
in Sun and Wu (2003) using measured unsteady aerodynamic
forces on a flapping model fruitfly wing. The calculated drag
coefficient agreed well with the measured value. For the lift
coefficient, the computed value agreed well with the measured
value, except at the beginning of a half-stroke, where the
computed peak value was smaller than the measured value.
The discrepancy might be because the CFD code does not
resolve the complex flow at stroke reversal satisfactorily. There
is also the possibility that it is due to variations in the precise
kinematic patterns, especially at the stroke reversal. Wu
and Sun (2004) further tested the code using the recent
experimental data by Usherwood and Ellington (2002b) on a
revolving model bumblebee wing. In the whole α range (from
–20° to 100°), the computed lift coefficient agreed well with
the measured values. The computed drag coefficient also
agreed well with the measured values except when α is larger
than approximately 60°.

In the above computations, the computational grid was of
the O-H type and had dimensions 93�109�78 in the normal
direction, around the wing section and in the spanwise
direction, respectively. The normal grid spacing at the wall was
0.0015. The outer boundary was set at 20 chord lengths from
the wing. The time step was 0.02. A detailed study of the
numerical variables such as grid size, domain size, time step,
etc., was conducted and it was shown that the above values for
the numerical variables were appropriate for the calculations.

In the present study for the wing, we used similar grid
dimensions as used in the test calculations (Wu and Sun, 2004);
for the body, the grid dimensions were 71�73�96 in the
normal direction, along the body axis and in the azimuthal
direction, respectively (tests have been conducted to show
that these grid dimensions are appropriate for the present
computations).

The equilibrium flight

For different set of values of αd, αu and φ, the mean vertical
and horizontal forces and mean pitching moment of the wings
would be different. αd, αu and φ are determined using
equilibrium conditions. The calculation proceeds as follows. A
set of values for αd, αu and φ is guessed; the flow equations
are solved and the corresponding mean vertical force (CL,w),

mean horizontal force (CT,w) and mean moment (CM,w)
coefficients of the wing are calculated. If CL,w is not equal to
1.25 (the non-dimensional weight), or CT,w is not equal to zero,
or CM,w is not equal to zero, αd, αu and φ are adjusted; the

M. Sun and Y. Xiong 

∆X+

∆Z+

∆M+

A

B

∆X
+
, ∆

Z
+
, ∆

M
+

–0.1 0 0.1
–0.3

–0.2

–0.1

0

0.1

0.2

0.3

∆q+

∆X
+
, ∆

Z
+
, ∆

M
+

–0.1 0 0.1
–0.3

–0.2

–0.1

0

0.1

0.2

0.3

∆w+

C

∆X
+
, ∆

Z
+
, ∆

M
+

–0.1 0 0.1
–0.3

–0.2

–0.1

0

0.1

0.2

0.3

∆u+

Fig.·4. The u-series (A), w-series (B) and q-series (C) force and
moment data. ∆X+ and ∆Z+, non-dimensional x- and z-components of
the total aerodynamic force, respectively; ∆M+, non-dimensional
pitching moment; ∆u+ and ∆w+, non-dimensional x- and z-components
of velocity of center of mass, respectively; ∆q+, non-dimensional
pitching rate (the equilibrium value is subtracted from each quantity).

Table·1. Non-dimensional aerodynamic derivatives

Xu
+ Zu

+ Mu
+ Xw

+ Zw
+ Mw

+ Xq
+ Zq

+ Mq
+

–0.785 –0.031 2.389 0.050 –1.033 –0.190 –0.090 –0.031 –0.883

Xu
+, Zu

+ and Mu
+, non-dimensional derivatives of the x- and z-component of the aerodynamic force and aerodynamic moment, respectively,

with respect to the x-component (u+) of the non-dimensional velocity; Xw
+, Zw

+ and Mw
+, non-dimensional derivatives of the x- and z-component of

the aerodynamic force and aerodynamic moment, respectively, with respect to the z-component (w+) of the non-dimensional velocity; Xq
+, Zq

+

and Mq
+, non-dimensional derivatives of the x- and z-component of the aerodynamic force and aerodynamic moment, respectively, with respect

to the non-dimensional pitching rate (q+).
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calculations are repeated until the magnitudes of difference
between CL,w and 1.25, between CT,w and 0 and between CM,w

and 0 are less than 0.01. The calculated results show that when,
αd=27°, αu=21° and φ=1°, the equilibrium conditions are
satisfied.

The aerodynamic derivatives

As defined above, X+ and Z+ are x- and z-components of the
non-dimensional total aerodynamic force due to the wing and
the body and M+ is the corresponding non-dimensional
pitching moment. After the equilibrium flight conditions have
been determined, aerodynamic forces and moments on the
wing and on the body for each of u, w and q varying
independently from the equilibrium value are computed. The
corresponding X+, Z+ and M+ are obtained. In Fig.·4A–C, the
u-series, w-series and q-series data, respectively, are plotted (in
the figure the equilibrium value has been subtracted from each
quantity). X+, Z+ and M+ vary approximately linearly with u+

w+ and q+ in a range of –0.1≤∆u+, ∆w+ and ∆q+≤0.1, showing
that the linearization of the equations of motion is only justified
for small disturbances. (In the computations, we found that the
aerodynamic forces and moment of the body are negligibly
small compared to those of the wing; this is because the relative
velocity that the body sees is very small.) The aerodynamic
derivatives Xu

+, Zu
+, Mu

+, Xw
+, Zw

+, Mw
+, Xq

+, Zq
+ and Mq

+, estimated
using the data in Fig.·4, are shown in Table·1.

Let us examine the aerodynamic derivatives and discuss how
they are produced. First, we consider the derivatives with
respect to u+. As seen in Table·1, Zu

+ is almost zero, Xu
+ is

negative and Mu
+ is positive and large. Fig.·5 shows the

differences between CL,w, CT,w and CM,w at ∆u+=0.05
(∆u+=∆q+=0) and their counterparts at reference flight. For
convenience, we define a non-dimensional time, t, such that
t=0 at the start of the downstroke and t=1 at the end of
subsequent upstroke. Differences between CL,w, CT,w and CM,w

in some flight conditions and their counterparts at reference
flight are denoted as ∆CL,w, ∆CT,w and ∆CM,w, respectively. In
the reference flight (hovering), the stroke plane is almost
horizontal. When the insect moves forward with ∆u+, in the
downstroke, the wing sees a larger relative velocity than that
in the reference flight and its drag is larger than the reference
value (∆CT,w positive, see Fig.·5B), resulting in a decrease in
X+; in the upstroke, the wing sees a smaller velocity than that
in the reference flight and its drag is smaller than the reference
value (∆CT,w also positive, Fig.·5B), also resulting a decrease
in X+. This explains the negative Xu

+. As for the vertical force,
there is an increase in the downstroke and a decrease in the
upstroke compared to the reference value (see Fig.·5A),
resulting in little change in Z+, which explains the small Zu

+.
Since the wing is above the mass center, the decrease in X+

produces a nose-up pitching moment. From Fig.·5A, it is seen
that ∆CL,w in the second half of the downstroke (t=0.25–0.5)
is larger than ∆CL,w in the first half of the downstroke
(t=0–0.25), producing a couple–nose-up pitching moment;
similarly, ∆CL,w in the upstroke produces also produces a nose-
up pitching moment. This explains the large positive Mu

+.
Next, we examine the derivatives with respect to w+. Xw

+ and
Mw

+ are very small and Zw
+ is relatively large (Table·1). Fig.·6
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shows the differences between CL,w, CT,w and CM,w at
∆w+=0.05 (∆u+=∆q+=0) and their counterparts at reference
flight. When the insect moves with positive ∆w+, the wing sees
an upward velocity in both the down- and upstrokes, and the
lift, drag and moment of the wing in both the half-strokes
would be increased compared to those at reference flight. As a
result, ∆CL,w in both the down- and upstrokes is positive
(Fig.·6A), resulting in a relatively large decrease in Zw

+; ∆CT,w

in the downstroke has different sign from that in the upstroke
(Fig.·6B) and so does ∆CM,w (Fig.·6C), resulting in small
values in Xw

+ and Mw
+. This explains the relatively large Zw

+ and
small Xw

+ and Mw
+.

Finally, we examine the derivatives with respect to q+. As
seen in Table·1, Xq

+ and Zq
+ are very small and Mq

+ is relatively
large. Fig.·7 shows the differences between CL,w, CT,w and
CM,w at ∆q+=0.07 (∆u+=∆w+=0) and their counterparts at
reference flights. ∆CL,w and ∆CT,w are very small everywhere
in the downstroke and the upstroke (Fig.·7A,B), resulting in
the very small Xq

+ and Zq
+. ∆CM,w is small in a large part of the

downstroke or the upstroke but is relatively large near the end
of the half-stroke (Fig.·7C), resulting in the relatively large Mq

+.
Note that near the end of the half-strokes, ∆CL,w and ∆CT,w are
very small, whereas ∆CM,w is relatively large. This means that
the position of the action-line of the aerodynamic force of the
wing must be changed by the whole body rotation of the insect
(i.e. by the rotation of the stroke plane) near the end of the half-
strokes, when the wing is in flip rotation. We thus see that
although the whole body rotation of the insect could not change
the magnitude of the aerodynamic force of the wing greatly

from that of the reference flight, it changes the position of the
action-line of the aerodynamics force near the end of the half-
strokes, producing a pitching moment.

The eigenvalues and eigenvectors

With the aerodynamic derivatives computed, the elements
in the system matrix A are now known. The eigenvalues and
the corresponding eigenvectors can then be computed, and the
results are shown in Tables 2 and 3.

As seen in Table·2, there are a pair of complex eigenvalues
with a positive real part and two negative real eigenvalues,
representing an unstable oscillatory motion (mode 1) and two
stable subsidence motions (mode 2 and mode 3), respectively.
The period for the oscillatory mode and the tdouble or thalf for
the three modes, computed using Equations·14–17, are shown
in Table·4. Hereafter, we call modes 1, 2 and 3 unstable
oscillatory mode, fast subsidence mode and slow subsidence
mode, respectively.

As mentioned in Materials and methods, the eigenvector
determines the magnitudes and phases of the disturbance
quantities relative to each other. These properties can be clearly
displayed by expressing the eigenvector in polar form
(Table·5): since the actual magnitude of an eigenvector is
arbitrary, only its direction is unique, and we have scaled them
to make δθ=1.
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Table·2. Eigenvalues of the system matrix

Mode 1, Mode 2, Mode 3,
λ1,2 λ3 λ4

0.045±0.129i –0.197 –0.012

λ1,2, a pair of complex conjugate eigenvalues. λ3 and λ4, real
eigenvalues.

i, imaginary number.

Table·3. Eigenvectors of the system matrix

Mode 1 Mode 2 Mode 3

δu+ 0.035±0.091i –0.071 –0.079
δw+ –4.95�10–4±2.04�10–4i 2.29�10–4 0.995
δq+ 0.121±0.061i 0.193 –6.57�10–4

δθ 0.706±0.689i –0.979 0.057

δu+, δw+, δq+ and δθ, disturbance quantities in non-dimensional x-
component and z-component of velocity, pitching rate and pitch
angle, respectively. i, imaginary number.

Table·4. Non-dimensional time constants of the natural modes

Mode 1 Mode 2 Mode 3

Stability T tdouble Stability thalf Stability thalf

Unstable 48.7 15.4 Stable 3.5 Stable 57.8

T, non-dimensional period of the oscillatory mode; tdouble, non-
dimensional time for a divergence motion to double in amplitude;
thalf, non-dimensional time for a damped motion to halve in
amplitude.
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The unstable oscillatory mode

The non-dimensional period of the oscillatory mode is
T=48.7 and the non-dimensional time of doubling the
amplitude is Tdouble=15.4 (Table·4). Note that the reference
time used in non-dimensionalization of the equations of motion
is the period of wingbeat cycle. Thus the period of the insect
oscillation is about 49 times of the wingbeat period (the
wingbeat period is tw=1/n=6.4·ms), and the starting value of
the oscillation will double in 15 wingbeats.

As seen in Table·5, the unstable oscillatory mode is a motion
in which δq+, δθ and δu+ are the main variables (δw+ is smaller
than δq+ and δu+ by two orders of magnitude; δθ is seen to be
very large, but it is the result of δq+ and the long period).
δq+ represents pitching motion and δu+=δxE

+ (Equation·8)
represents horizontal motion. Thus, in this mode the
bumblebee conducts horizontal and pitching oscillations (it
should be pointed out that in general, the motion of the system
is a linear superposition of the simple motions represented by
the natural modes, but if the initial conditions are correctly
chosen, the motion represented by a natural mode can occur).
The characteristic transients of δu+ (δxE

+), δq+ and δθ in this

mode are plotted in Fig.·8A. It is seen that in a large part of a
cycle, the bumblebee pitches down while moving backwards
or pitches up while moving forward. The motion is sketched
in Fig.·8B. As discussed below, pitching down (or up) while
moving backwards (or forward) has a large destabilizing effect.

The fast subsidence mode

For the fast subsidence mode, thalf is 3.5 (Table·4);
disturbances decrease to half of the starting values in about
four wingbeats. As seen in Table·5, in this mode δq+, δθ and
δu+ are also the main variables (δw+ is smaller by 3 orders of
magnitude). δq+ and δθ are out of phase (they have opposite
signs); δu+ and δθ are in phase. That is, when δθ has a positive
initial value, so does δu+, but δq+ has a negative initial value.
The insect would pitch down (back to the reference attitude)
and at the same time moves forward (see the sketch in Fig.·9B).
Note that this is different from the case of the unstable
oscillatory mode, in which the insect pitches down while

Table·5. Magnitudes and phase angles of the components of each of the three eigenvectors

Mode δu+ δw+ δq+ δθ

Unstable oscillatory 1.0�10–1 (113.3°) 1.0�10–3 (156.7°) 1.4�10–1 (71.1°) 1 (0°)
Fast subsidence 0.7�10–1 (0°) 2.4�10–4 (180°) 2.0�10–1 (180°) 1 (0°)
Slow subsidence 1.4 (0°) 1.7�10 (0°) 1.2�10–2 (180°) 1 (0°)

δu+, δw+, δq+ and δθ, disturbance quantities in non-dimensional x-component and z-component of velocity, pitching rate and pitch angle,
respectively. 

Numbers in the parentheses are phase angles.
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moving backwards and pitches up while moving forward (see
Fig.·8B). The characteristic transients of δu+, δq+ and δθ are
plotted in Fig.·9A.

The slow subsidence mode

For this mode, thalf is 57.8 (Table·4); it takes about 58
wingbeats for the disturbance to decrease to half of its initial
value. Unlike the above two modes, in which δw+ is negligibly
small, this mode is a motion in which δw+ is the main variable
(Table·5); other variables are one order of magnitudes or more
smaller. Since δzE

+=δw+ (Equation·9), this mode represents a
descending (or ascending) motion, with the descending (or
ascending) rate decreasing relatively slowly [after 200
wingbeats, the descending (or ascending) rate decreases to 5%
of its initial value]. The characteristic transient of δw+ is plotted
in Fig.·10.

Discussion
Physical interpretation of the motions of the natural modes

The eigenvalue and eigenvector analysis of the longitudinal
small disturbance equations of the bumblebee has identified
one unstable oscillatory mode and two (stable) monotonic
subsidence modes. It is desirable to examine the physical
processes of the motions of the natural modes and interpret the
motions physically.

The unstable oscillatory mode

Let us examine the first cycle of the motion. For clarity, the
first half-cycle of the characteristic transients of δu+ (δxE

+), δq+

and δθ is replotted in Fig.·11. The physical process of the
motion is sketched in Fig.·12.

At the beginning of the cycle (t+=0; Fig.·11), δθ is at its local
minimum value, δu+ (δxE

+) is positive, and δq+ is zero; that is,
at the beginning the bumblebee has a negative δθ and is
moving forward with zero pitching rate. As seen in Fig.·12A,
the negative δθ tilts forward the resultant aerodynamic force
of reference flight (denoted as F0). The horizontal component
of F0 tends to accelerate the forward motion (increasing δu+).
The forward motion in turn produces a nose-up pitching
moment (denoted by ∆M+; ∆M+=Mu

+δu+ and Mu
+ is positive),

which would produce a nose-up pitching rate (δq+), making the
magnitude of δθ to decrease (δθ to increase).

When δθ has increased to zero at t+�10 (the bumblebee has
moved to the configuration shown in Fig.·12B), δq+ does not
reach its local maximum value, but continues to increase (see
Fig.·11). This is because at this time δu+ is still large and so is
the nose-up pitching moment (∆M+). As a result, δθ would
increase with time at a faster rate than when it is smaller than
zero, which would cause the amplitude of δθ to become larger
than that in the preceding quarter cycle. We thus see that the
combination of forward motion and nose-up pitching causes
the instability.

Now δθ has become positive and F0 is tilted backwards,
which would slow the forward motion. At t+�18, δu+

decreases to zero and changes sign (the bumblebee has moved
to the configuration of Fig.·12C). Then, the bumblebee moves
backward. The backward motion would produce a nose-down
pitching moment, reducing the nose-up pitching rate (δq+). At
t+�24, δq+ changes sign, δθ reaches its local maximum value
(the bumblebee has moved to the configuration of Fig.·12D).

In the next half-cycle, the above process repeats in an
opposite direction (Fig.·12D–A); here it is the combination of
backward motion and nose-down pitching that produces the
destabilizing effect.

The fast subsidence mode

In this mode, as seen in Table·5 and Fig.·9A, when δθ and
δu+ have positive initial values, δq+ has a negative initial value.
The positive δθ tilts F0 backwards, the horizontal component
of which tends to reduce δu+; the forward motion (δu+)
produces a nose-up pitching moment (∆M+�Mu

+δu+) that tends
to reduce the nose-down pitching rate (δq+); the nose-down
pitching rate (δq+) tends to reduce δθ. This results in the
monotonic decay of the disturbance quantities. (When δθ and
δu+ have negative initial values, δq+ has a positive one; the
motion can be explained similarly.)

The slow subsidence mode

In this mode, when the bumblebee descends initially due to
some disturbance (i.e. δw+ has a positive initial value), the
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descending rate will decrease with time (Fig.·10). A positive
δw+ produce a upward force (∆Z+�Zw

+δw+; Zw
+ is negative),

which tends to decrease the descending rate δw+, and the
decreased δw+ would in turn reduce the upward force, resulting
in the monotonic decay of the descending rate. (When δw+ has
a negative initial value, the corresponding motion can be
explained similarly.)

The effects of the rate derivatives

In the preceding discussion, the effects of the rate
derivatives (Xq

+, Zq
+ and Mq

+) are not mentioned. Here we discuss

their effects on the motions. Since the reference
flight is hovering flight, the magnitudes of Xq

+ and Zq
+

are close to zero and Mq
+ (=–0.88) is relatively large

(see Table·1). It is expected that Mq
+ has provided

damping effect to the system; that is, without Mq
+, the

unstable oscillatory mode would grow faster and the
stable subsidence modes would decay more slowly.
In order to see this quantitatively, we set the rate
derivatives in A to zero and computed the
corresponding eigenvalues and eigenvetors. The
results are shown in Tables 6 and 7, respectively.
Comparing the results in Tables·6 and 7 with those
in Tables 2 and 5, we see that without the damping
effect, the growth rate of the oscillatory mode is 64%

larger and the decaying rate of the fast subsidence mode is 20%
smaller than those in the case with the damping effect. It is
interesting to note that the growth rate of the slow subsidence
mode is the same with or without the damping effect. This is
because in this mode, δq+ is negligibly small.

The rigid body approximation

Taylor and Thomas (2002) have discussed the constraints on
the rigid body approximation in detail. In general, the rigid
body approximation only works well if the wingbeat frequency
is at least an order of magnitude (10 times) higher than the
highest frequency of the natural modes. They reasoned, using
reduced order approximations to the natural modes of motion,
that this could be expected to be true in animal flight. In the
present study on the disturbed longitudinal motion of the
hovering bumblebee, the period of the oscillatory mode is
about 50 times the wingbeat period (see Table·4), which is
much more than 10 times larger than the wingbeat period.

It should be noted that in the fast subsidence mode, a
disturbance quantity varies from its initial (maximum) value to
half of the value in 3.5 wingbeats. Is this too short to apply the
rigid body approximation? To answer this question, let us look
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Table·6. Eigenvalues of the system matrix when the rate
derivatives are set to zero

Mode 1, Mode 2, Mode 3,
λ1,2 λ3 λ4

0.074±0.134i –0.158 –0.012

λ1,2, a pair of complex conjugate eigenvalues. λ3 and λ4, real
eigenvalues.

i, imaginary number.

Table·7. Magnitudes and phase angles of the components of each of the three eigenvectors when the rate derivatives are set to
zero

Mode δu+ δw+ δq+ δθ

Unstable oscillatory 0.9�10–1 (121.7°) 1.9�10–4 (64.6°) 1.5�10–1 (60.9°) 1 (0°)
Fast subsidence 0.9�10–1 (0°) 2.2�10–4 (180°) 1.6�10–1 (180°) 1 (0°)
Slow subsidence 1.4 (0°) 1.7�10 (0°) 1.2�10–2 (180°) 1 (0°)

δu+, δw+, δq+ and δθ, disturbance quantities in non-dimensional x-component and z-component of velocity, pitching rate and pitch angle,
respectively. 

Numbers in the parentheses are the phase angles.

THE JOURNAL OF EXPERIMENTAL BIOLOGY



458

at an oscillatory mode, in which a variable would usually vary
from a peak value to half of the value in a time 16% of its
period. For the rigid body approximation to be appropriate, as
stated above, the period should be at least 10 times as long as
the wingbeat period; then 16% of the period is at least 1.6
wingbeat period. We thus see that in the fast subsidence mode,
a variable decreasing from its initial value to half of that value
in 3.5 wingbeat periods is slow enough for the rigid body
approximation.

The above discussion shows that application of the rigid
body approximation in the present analysis is appropriate. The
result here provides an example that supports the reasoning of
Taylor and Thomas (2002) on the applicability of the rigid
body approximation to animal flight.

The inherent dynamic stability and the equilibrium flight

The present model simulates the inherent dynamic stability
of the bumblebee in the absence of active control. That is, in
the disturbed motion, the model bumblebee uses the same wing
kinematics as in the reference flight. A real bumblebee, if the
motion is dynamically stable and the disturbances die out fast,
might not make any adjustment to its wing kinematics, and
could return to the equilibrium ‘automatically’. In this case, the
disturbed motion history predicted by the model represents that
of the real bumblebee. In general, however, a real bumblebee
makes continuous adjustments to its wing kinematics in order
to keep to the reference flight, and the disturbed motion
predicted by the model would be altered at an early stage.

In the present study, some of wing kinematic parameters (n,
Φ, etc.) at reference flight are taken from or determined from
the experimental data of Dudley and Ellington (1990a) and
Ellington (1984b), and the others (αu, αd and φ) are solved
from the force and moment equilibrium conditions. Because
some simplifications are made in the model (e.g. the wing is a
rigid flat plate, the translational velocity of the wing varies
according to the simple harmonic function, etc.), the kinematic
parameters that have been solved are only an approximation to
those actually used by the bumblebee. Therefore, equilibrium
flight, the dynamic stability of which our model studies, is only
an approximation to the actual equilibrium flight of the
bumblebee. Here, we must assume that the stability properties
obtained by the model therefore only apply to the actual
equilibrium flight of the bumblebee.

The flight is unstable but the growth of the disturbances is
relatively slow

As mentioned above, in general the disturbed motion is a
linear superposition of the simple motions represented by the
natural modes. For the hovering bumblebee, when disturbed
from its reference flight, the disturbed motion is a linear
combination of an unstable oscillatory mode and two stable
subsidence modes. The growth of the disturbed motion is
determined by the unsteady oscillatory mode. The unstable
oscillatory mode doubles its amplitude in about 15 wingbeats
(Table·4), which is about 0.1·s (the wingbeat period is 6.4·ms).
To a person or a man-made machine, this growth rate is fast. But

to a bumblebee, which can change its wing motions within a
fraction of a wingbeat period, this growth rate might not be fast;
the insect, if wishing to keep to the reference flight, has plenty
of time to adjust its wing motion before the disturbances have
grown large. For example, in the forward moving phase
(Fig.·12A–C), the bumblebee might slightly decrease and
increase the angle of attack of the wings during the downstroke
and during the upstroke, respectively, from the equilibrium value
of the angle of attack, and in the backward moving phase
(Fig.·12D–F), the bumblebee might do the opposite. This would
produce effects on the lift and the drag opposite to those
produced by δu+, thus the destabilizing δM+ could be eliminated.

List of symbols
A system matrix
c mean chord length
CL,w vertical force coefficient of wing
CL,w mean vertical force coefficient of wing
CM,w pitching moment coefficient of wing
CM,w mean pitching moment coefficient of wing
CT,w thrust coefficient of wing
CT,w mean thrust coefficient of wing
Db body drag
e reference flight condition
E earth
F0 aerodynamic force of reference flight
g the gravitational acceleration
i imaginary number, i=�–1––

Ib pitching moment of inertia of the body about
wing-root axis

Iy pitching moment of inertia about the y-axis of
insect body

l length
l distance from anterior tip of body to center of

mass divided by body length 
lb body length
ll distance from wing base axis to center of mass

divided by body length
lb body length divided by R
Lb body lift
Lw vertical force of wing
m mass of the insect
M total aerodynamic pitching moment about center

of mass
M+ non-dimensional total aerodynamic pitching

moment about center of mass
Mq

+ derivative of M+ with respect to q+

Mu
+ derivative of M+ with respect to u+

Mw
+ derivative of M+ with respect to w+

n stroke frequency
o, o′, o1, oE origins of the frames of reference
q pitching angular-velocity about the center of mass 
q+ non-dimensional pitching angular-velocity about

the center of mass
r2 radius of the second moment of wing area
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R wing length
Re Reynolds number
S area of one wing
St area of two wings
t time
tdouble time for a divergent motion to double in amplitude
thalf time for a divergent motion to half in amplitude
tw period of the wingbeat cycle
t non-dimensional time (t=0 at the start of a

downstroke and t=1 at the end of the
subsequent upstroke)

T period of the insect motion
Tw horizontal force of wing
u component of velocity along x-axis
u+ component of non-dimensional velocity along x-

axis
w component of velocity along z-axis
w+ component of non-dimensional velocity along z-

axis
ut translational velocity of the wing
ut

+ non-dimensional translation velocity of the wing
U reference velocity
x, y, z coordinates in the body-fixed frame of reference

(with origin at center of mass)
x′, y′, z′ coordinates in the frame of reference with origin

at wing root and z′ perpendicular to stroke
plane

x1, y1, z1 coordinates in the frame of reference with origin
at wing root and z1 in vertical direction

xE, yE, zE coordinates in a system fixed on the earth
xE xE-component of the velocity of the mass center

of the insect
X x-component of the total aerodynamic force
X+ non-dimensional x-component of the total

aerodynamic force
Xq

+ derivative of X+ with respect to q+

Xu
+ derivative of X+ with respect to u+

Xw
+ derivative of X+ with respect to w+

zE zE-component of the velocity of the mass center of
the insect

Z z-component of the total aerodynamic force
Z+ non-dimensional z-component of the total

aerodynamic force
Zq

+ derivative of Z+ with respect to q+

Zu
+ derivative of Z+ with respect to u+

Zw
+ derivative of Z+ with respect to w+

α geometric angle of attack of wing
α angular velocity of pitching rotation
α+ non-dimensional angular velocity of pitching

rotation
α0

+ a constant
αd midstroke geometric angle of attack in downstroke
αu midstroke geometric angle of attack in upstroke
β stroke plane angle
δ small disturbance notation (prefixed to a perturbed

state variable)

∆ increment notation
θ pitch angle between the x-axis and the horizontal
λ generic notation for an eigenvalue
∆λr duration of wing rotation or flip duration (non-

dimensional)
ρ density of fluid
τ non-dimensional time
τc non-dimensional period of one flapping cycle
τr non-dimensional time when pitching rotation

starts
ν kinematic viscosity
φ azimuthal or positional angle
φ mean positional angle
φ angular velocity of azimuthal rotation
φ+ non-dimensional angular velocity of azimuthal

rotation
Φ stroke amplitude
χ body angle
χ0 free body angle

We thank the two referees whose helpful comments and
valuable suggestions greatly improved the quality of the
paper. This research was supported by the National Natural
Science Foundation of China (10232010, 10472008).

References
Dickinson, M. H. and Götz, K. G. (1993). Unsteady aerodynamic

performance of model wings at low Reynolds numbers. J. Exp. Biol. 174,
45-64.

Dickinson, M. H., Lehman, F. O. and Sane, S. P. (1999). Wing rotation and
the aerodynamic basis of insect flight. Science 284, 1954-1960.

Dudley, R. and Ellington, C. P. (1990a). Mechanics of forward flight in
bumblebees. I. Kinematics and morphology. J. Exp. Biol. 148, 19-52.

Dudley, R. and Ellington, C. P. (1990b). Mechanics of forward flight in
bumblebees. II. Quasi-steady lift and power requirements. J. Exp. Biol. 148,
53-88.

Ellington, C. P. (1984a). The aerodynamics of hovering insect flight. II.
Morphological parameters. Phil. Trans. R. Soc. Lond. B 305, 17-40.

Ellington, C. P. (1984b). The aerodynamics of hovering insect flight. III.
Kinematics. Phil. Trans. R. Soc. Lond. B 305, 79-113.

Ellington, C. P., van den Berg, C. and Willmott, A. P. (1996). Leading edge
vortices in insect flight. Nature 347, 472-473.

Etkin, B. (1972). Dynamics of Atmospheric Flight. New York: John Wiley
and Sons, Inc.

Sun, M. and Tang, J. (2002). Unsteady aerodynamic force generation by a
model fruit fly wing in flapping motion. J. Exp. Biol. 205, 55-70.

Sun, M. and Wu, J. H. (2003). Aerodynamic force generation and power
requirements in forward flight in a fruit fly with modeled wing motion. J.
Exp. Biol. 206, 3065-3083.

Taylor, G. K. and Thomas, A. L. R. (2002). Animal flight dynamics. II.
Longitudinal stability in flapping flight. J. Theor. Biol. 214, 351-370.

Taylor, G. K. and Thomas, A. L. R. (2003). Dynamic flight stability in the
desert locust Schistocerca gregaria. J. Exp. Biol. 206, 2803-2829.

Thomas, A. L. R. and Taylor, G. K. (2001). Animal flight dynamics. I.
Stability in gliding fight. J. Theor. Biol. 212, 399-424.

Usherwood, J. R. and Ellington, C. P. (2002a). The aerodynamics of
revolving wings. I. Model hawkmoth wings. J. Exp. Biol. 205, 1547-1564.

Usherwood, J. R. and Ellington, C. P. (2002b). The aerodynamics of
revolving wings. II. Propeller force coefficients from mayfly to quail. J. Exp.
Biol. 205, 1565-1576.

Wang, Z. J. (2000). Two dimensional mechanism for insect hovering. Phys.
Rev. Lett. 85, 2216-2219.

Wu, J. H. and Sun, M. (2004). Unsteady aerodynamic forces of a flapping
wing. J. Exp. Biol. 207, 1137-1150.

THE JOURNAL OF EXPERIMENTAL BIOLOGY


