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There are a variety of gaits used by terrestrial animals to
locomote. Different gaits involve fundamentally different
mechanics: forces, energies, metabolic and mechanical power
requirements are all gait-dependent. Terrestrial gaits have been
broadly classified as walking gaits or running gaits. Walking
gaits are often modelled as an inverted pendulum where the
centre of mass (COM) vaults over a relatively rigid leg and thus
the kinetic energy and potential energy of the COM are out of
phase (Cavagna et al., 1977; Lee and Farley, 1998; Donelan et
al., 2002). Running is profoundly different: usually the
trajectory of the COM decreases in both vertical height and
horizontal speed from foot-on to midstance, before being
accelerated forwards and upwards so that at foot-off an aerial
phase is produced. Therefore kinetic and potential energies are
in phase. Here, we compare a simple, reductionist technique for
describing the mechanics of running gaits with measured data
and numerical solutions. In the future, this will provide
theoretical and experimental approximations for limb forces,
and consequences in terms of mechanical energies. Throughout,
we consider the limb of a running animal to act like a linear
compression spring. During stance, the decrease in vertical

height of the COM is achieved through flexion of the joints,
which stretch the spring-like musculo-tendinous structures that
span the joints (Taylor, 1985; Farley and González, 1996;
Seyfarth et al., 2002), storing elastic strain energy (Taylor,
1985; Cavagna et al., 1988; Farley and González, 1996; Kram
and Dawson, 1998; Seyfarth et al., 2002).

The spring-mass model has been shown to be an accurate tool
for modelling trotting, running and hopping over a range of
species differing dramatically in terms of body size and shape,
including cockroaches, quail, dogs, humans, horses and
kangaroos (McMahon and Cheng, 1990; Alexander, 1992;
Blickhan and Full, 1993; Bullimore and Burn, 2002). Although
the simplicity of the spring-mass system suggests that the
mathematics of its mechanics would be straightforward, this is
not the case: the motion is complex and cannot be solved using
a simple analytical solution. Horizontal and vertical COM
deflections, velocities and accelerations interact to make
analytical solutions very difficult to describe. Indeed, the
situation is formally classed as a ‘non-integrative Hamilton
equation’, which indicates that an explicit analytical solution does
not exist (Whittackler, 1904; Schwind and Koditschek, 2000).
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The spring-mass model is often used to describe
bouncing gaits. Although at first inspection the mechanical
system appears simple, the solution to the motion cannot
be derived easily. An analytical solution would provide a
fast and intuitive method to determine the kinetic and
kinematics of the centre of mass of terrestrial animals
during over-ground steady state locomotion. Here, an
analytical approximation using sine wave simplifications
for the motion is presented. The analytical solution was
almost indistinguishable from the numerical solution
across initial leg angles of 17.5–30°; percentage differences
between the analytical solution and the numerical solution
were less than 1% for total mechanical energy, centre of
mass position, total limb compression and centre of mass
velocity and less than 2% different for resultant limb force

and vertical acceleration of the centre of mass. The
solution matched the relationship between stance time and
speed collected from a trotting racehorse and accurately
characterised previously published biological data. This
study has shown that a simple analytical solution can
predict the kinetics and kinematics of a spring-mass
system over the range of biologically relevant sweep angles
and horizontal velocities, and could be used to further
understanding of limb deployment and gait selection.
Using this analytical solution not only the force profile but
also the changes in mechanical energy can be calculated
from easily observed morphological and kinematic data.
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A number of approximations to the spring-mass system have
been made. Schwind and Koditschek conducted a thorough
mathematical investigation of this system and produced
complex estimates of COM position in a two degrees of
freedom monopod. Simpler analyses included consideration of
specific points in the stance phase (Farley et al., 1993; Ferris
et al., 1998), small angle sweep assumptions (Geyer et al.,
2005) and numerical iterations that search for a symmetrical
solution in terms of motion of the stance phase (Blickhan,
1989) or mapping of successive maximum heights (Seyfarth et
al., 2002). Numerical step-by-step solutions, although
computer-intensive, do generate accurate answers. However,
they do not provide an intuitive relationship between the five
input variables. The advantage of an analytical solution is that
it is fast and intuitive; it also allows the inter-relationships
between variables to be immediately identified.

A relatively simple solution that can elegantly predict the
COM trajectory and limb kinetics produced by the spring-mass
model is desirable. Arguably an exact answer is not required,
as in the real world limbs are obviously not mass-less, perfectly
elastic springs of fixed stiffness – even in steady, level
locomotion, muscles are required to provide power to replace
energy dissipated because of hysteresis in tendons or other
loaded structures. The leg is not necessarily the same effective
length (i.e. the length between the hip and the toe) at foot-on
to foot-off due to plantar flexion at the end of stance. Therefore,
we are interested in determining whether a simple spring-mass
model and related mathematical approximations are adequate
in modelling running in real animals.

In steady state bouncing gaits such as running and trotting,
the motion of the COM can be described in two components.
In the vertical component, the downward vertical velocity
peaks at foot-on and gradually reaches zero by mid-stance. In
the second half of stance the velocity is reversed and peaks
again at foot-off. The differential of this motion, acceleration,
would approximate to a half sine wave. As acceleration is
directly proportional to force, then vertical ground reaction
force (GRF) can be approximated to a half sine wave (Cavagna
et al., 1964, 1977; Alexander et al., 1979; Full et al., 1991;
Farley et al., 1993; Witte et al., 2004). In the horizontal
component, the COM first decelerates from foot-on to a
minimum velocity at midstance before being accelerated
forward in the second half of stance. It is therefore reasonable
to consider the horizontal acceleration curve of the mass during
the stance phase as a full negative sine wave, since this
approximates the shape of the horizontal forces measured using
force plates.

We hypothesize that an analytical approximation to the
spring-mass model based on sine wave assumptions matches
both numerical solutions of the model across the biological
range and data collected from real animals.

In this paper, the accuracy of a number of analytical
solutions based on sine wave approximations is assessed in
three ways. Firstly, they are compared to a numerical solution
produced by a computer simulation. Secondly, they are
compared to data collected in this study from a Standardbred

racehorse trotting over a range of speeds. Thirdly, a
comparison is made with previously published data of a man
running, dog trotting and a kangaroo hopping from McMahon
and Cheng (1990) based on the data of Cavagna (1988). The
validity of the sine wave assumptions across the biologically
relevant parameter space are investigated.

Materials and methods
An analytical solution to the spring-mass model

A spring-mass model can simulate the movements of a multi-
legged animal if limbs are used simultaneously, as in trotting,
pronking, hopping and pacing, or separately as in bipedal
running. Only steady state locomotion on a level surface is
considered; this means that the horizontal impulse over the
stance period is zero. The motion of the mass is assumed to be
symmetrical about the vertical: the horizontal kinetic energy and
the potential energy of the COM (i.e. the height) are equal at
foot-on and foot-off, the vertical velocity is equal but opposite
at foot-on and foot-off, and the stance phase is symmetrical in
terms of leg orientation. Finally, the leg is treated as a mass-less,
perfectly elastic compression spring of unloaded length L0 that
occurs at foot-on and foot-off, and has stiffness k. The mass Mb

of the animal acting upon the limb is modelled as a point mass
at the top of the spring and is represented in Fig.·1 as a filled
circle. As the motion of the COM during the aerial phase is
ballistic then the duration of the aerial phase is solely dependent
on the vertical velocity at foot-off.

At foot-on the limb makes contact with the ground at
coordinate position (0,0) at an initial angle of –�0 to the
vertical. At this time the mass has a horizontal position (x) of
L0sin�0 and vertical position (y) of L0cos�0. The mass also has
initial velocities Vxi and Vyi in the horizontal and vertical
directions, respectively. The velocities change over time (a
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Fig.·1. Diagram of the model. The spring contacts the ground at the
origin of the coordinate system (0,0) at some angle �0 to the vertical.
At foot contact, represented as the spring on the far left, the point mass
(filled circle) has initial horizontal and vertical velocities Vxi and Vyi,
respectively. During stance phase the horizontal velocity of the mass
decreases to a minimum at midstance and then increases, whilst the
spring compresses and then extends as the mass sweeps over the foot,
moving from left to right. For an explanation of symbols used, see
list.
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positive value of Vx denotes a forward velocity and a positive
value for Vy denotes an upward velocity) and the spring
compresses and then extends as the mass pivots over the ‘foot’
until the spring loses contact with the ground at ‘foot-off’. As
the motion of the mass during flight is ballistic, and so
determined by the final horizontal and vertical velocities of the
stance phase, then only the stance phase needs to be considered
to determine the motion of the mass. For clarity the motion will
be first considered in the vertical direction (y) and then the
horizontal direction (x).

The vertical orientation

During the gait cycle in steady state locomotion, the impulse
due to gravity on the centre of mass (i.e. the product of body
mass m, gravitational constant g and stride time) is balanced
over the stride by the vertical impulse generated by the leg
during stance. If the vertical GRF of animals is modelled as a
half sine wave (Alexander et al., 1979), the vertical force
experienced by the COM can be calculated. The sine wave that
would represent the vertical GRF is of the form Fy

=Fmaxsin(at), where Fy is the vertical force, Fmax is the peak
force, t is time and 2�/a is the period of the wave. The area
under this curve, or the vertical impulse produced by the leg
during contact time, Tc, is therefore:

It follows then that:

This can be simplified as Tc and Tf (flight time) are related by
the duty factor, �:

So the vertical GRF in terms of time t is:

As force is the product of mass and acceleration (from
Newton’s second law of motion), the vertical acceleration of
our mass would be:

The integral of acceleration with respect to time is velocity.
Hence the vertical velocity (Vy) of the mass is:
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where C1 is integration constant. As Vy at time 0·s = Vyi (where
Vyi is the initial vertical velocity and has a negative value),
then:

and

The aerial phase can be derived from the vertical velocity at
foot-off (which is equal in magnitude but opposite in sign to
that at foot-on during symmetrical, steady state locomotion).
Therefore Vyi can be written in terms of Tf, Tc or � (which
are all inter-related; see Eqn·4) so Vyi is not a new term
but has been written in the above as a separate variable for
clarity.

The integral of velocity is position, so the vertical position
is:

where C2 is an integration constant and is equal to the vertical
height at foot-on, which occurs at y(0):

C2 = L0 cos�0 , (10)

and

The horizontal orientation

The slowing of the mass during the first half of stance in the
horizontal direction means that an analysis based on a constant
horizontal velocity will underestimate stance time and the
vertical impulse generated. The horizontal acceleration of the
mass can be shown to approximate to a full negative sine wave.
The horizontal velocity of the animal decreases from foot-on
until a minimum velocity is reached at midstance before
increasing throughout the second half of the stance phase. As
velocity is the integral of acceleration, this is consistent with a
full negative sine wave for acceleration. Since force is directly
proportional to acceleration, and the horizontal force trace
measured by a force plate during steady state locomotion
resembles a full negative sine wave with a total impulse of
zero, this also supports the approximation of the horizontal
acceleration of the COM to a full negative sine wave.

So, in our analytical approximation, the horizontal
acceleration trace in terms of time Ax(t) follows the curve:

Ax(t) = – D sin(Gt) , (12)

where D and G are constants. It follows then that the horizontal
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velocity in terms of time Vx(t) would be equal to the integral
of ax(t), i.e.

where C3 is an integration constant. Therefore horizontal
position in terms of time x(t) will follow:

where C4 is an integration constant. If we consider a horizontal
position-time trace, as shown in Fig.·2, then at time, t=0, the x
position is –L0sin�0 and the gradient at this point is the initial
horizontal velocity Vxi. At midstance, (t=Tc/2) the horizontal
position is 0 and the gradient at this point is at its shallowest
as here the minimum horizontal velocity is obtained. At foot-
off, t=Tc the x position is L0sin�0 and the gradient is again
equal to Vxi.

In addition to this, the area under the horizontal
velocity–time trace during stance phase will be equal to the
total horizontal distance travelled:

As the horizontal velocity at t=0 is Vxi, by substituting this into
Eqn·13, then:

As C3 is the gradient of the line connecting the horizontal
position at t=0 and t=Tc, then C3 is equal to:
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As 2�/G is the period of a full sine wave, then:

so D can be found by substituting G and C3 into Eqn·16:

D = G(Vxi–C3) , (19)

The constant C4 can be calculated as, when t=0, then x is equal
to –L0sin�0, hence:

C4 = – L0 sin�0 . (21)

These constants can now be incorporated to find the
relationship between horizontal (x) acceleration, velocity,
position and time:

Horizontal forces Fx can be calculated from horizontal
acceleration using Newton’s second law of motion, F=ma:

Fx(t) = mAx(t) . (25)

Therefore total resultant force (F), from the vector sum, is:

and total energy E is the sum of kinetic, potential and elastic
potential energy:

E(t) = [GmVx(t)2] + [GmVy(t)2] + mgy(t) + Gkc2 , (27)

where k is limb stiffness and c is limb compression, which can
be calculated by:

Thus mechanical energy (ME) is the sum of kinetic and
potential energies:

ME(t) = [GmVx(t)2] + [GmVy(t)2] + mgy(t) . (29)

(28)c(t) = L0 – x(t)2 + y(t)2 .�

(26)F(t) = Fx(t)2 + Fy(t)2 ,�

(24)

x(t) =

.

⎛
⎜
⎝

⎞
⎟
⎠

2�

Tc
tsin

+ t – L0 sin�0

⎛
⎜
⎝

⎞
⎟
⎠

VxiTc – 2L0 sin�0

2�

⎛
⎜
⎝

⎞
⎟
⎠

2L0 sin�0

Tc

(23)Vx(t) = ,
⎛
⎜
⎝

⎞
⎟
⎠

2�

Tc
tcos +

⎛
⎜
⎝

⎞
⎟
⎠

2L0 sin�0

Tc

⎛
⎜
⎝

⎞
⎟
⎠

2L0 sin�0

Tc
Vxi –

⎡
⎢
⎣

⎤
⎥
⎦

(22)Ax(t) = – ,
⎛
⎜
⎝

⎞
⎟
⎠

2�

Tc

2�

Tc
tsin

⎛
⎜
⎝

⎞
⎟
⎠

2L0 sin�0

Tc
Vxi –

⎡
⎢
⎣

⎤
⎥
⎦

⎧
⎨
⎩

⎫
⎬
⎭

(20)
2�

Tc
.D =

⎛
⎜
⎝

⎞
⎟
⎠

2L0 sin�0

Tc
Vxi –

⎡
⎢
⎣

⎤
⎥
⎦

(18)
2�

Tc
,G =

J. J. Robilliard and A. M. Wilson

Time

x 
po

si
tio

n

0.5 Tc0 Tc

–L0 sinθ0

L0 sinθ0

Fig.·2. Graph (based on the 10° simulation) to show the important
features of the horizontal or x position during contact time. The
deviation from the position that would result from constant velocity
(i.e. a straight line) has been magnified �15 to demonstrate the
fluctuation in speed through stance. The gradient of the line at times
0 and Tc are equal and the gradient is at a minimum at midstance.
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Production of numerical solutions to the planar spring-mass
model

We created simulations using a computer software model
(MSC visualNastran4D, MSC.Software, California, USA run
through Matlab via Simulink, The MathWorks Inc, MA, USA).
The simulation consisted of a mass above a perfect linear
spring tethered to the ground at coordinates (0,0). The
simulation starts with the same initial conditions as for the
above mathematics and stops when the tension in the spring
returns to zero at the end of stance phase. Adjustments were
made to spring stiffness or horizontal velocity until the
simulation produced a symmetrical trajectory for the mass. The
resulting stance time was used as the input for the
mathematical calculations. All simulations were run at an
integration rate of step size 0.0002·s. Halving the step size to
0.0001·s did not change the required spring stiffness or
horizontal velocity, expressed accurate to 4 decimal places.

Comparison of the analytical and numerical solutions

Absolute and relative differences for all kinematic variables
(horizontal and vertical position, velocity and acceleration) as
well as resultant leg force and mechanical energy were
compared between 17 numerical simulation solutions and the
corresponding analytical solutions. For the computer
simulations, and those obtained from the biological data, the
same initial leg length, mass, leg stiffness and initial vertical
velocity were used. Initial leg angle was varied from 2.5° to
60° and the required initial horizontal velocity was found so
that a symmetric solution was produced. The inputs for the
analytical solutions were the constant input parameters stated
above and initial horizontal velocity and contact times that
were obtained from the output of the computer simulations.

To compare the results of the analytical and numerical
solutions across the biologically relevant limb angles (15–30°),
each variable was plotted with respect to stance time, where
zero represents midstance.

Percentage differences for each variable were calculated
using [1–(variableanalytical/variablenumerical)]�100, where the
values for each variable were either the maximum values
(cases Vy, Ax, Ay, F) or minimum values (cases y, Vx). In the
case of x position and total mechanical energy, this value was
calculated for every time point and the maximum value was
taken.

Vertical stiffness, Kvert, was calculated by:

Comparison to biological data

To determine how accurately the analytical and numerical
solutions reflect biology, data were collected from one trotting
Standardbred racehorse. Data collection took place during an
exercise session on a training track, with the horse pulling an
exercise sulky driven by an experienced driver. Data were
collected across a range of trotting speeds. Footfall data (foot-

(30).Kvert =
Fy,peak

hpeak

on and foot-off events) were measured using ±50·g solid-state
capacitive accelerometers (ADXL150, Analog Devices,
Norwood, MA, USA) as described in Witte et al. (2004). Each
accelerometer was encased with epoxy-impregnated Kevlar
fibres (total mass 2·g) and attached to the dorsal midline of the
hoof of each forelimb using hot glue (Bostik Findley Inc.,
Stafford, UK) so that the sensitive axis was in the proximo-
distal direction. Each accelerometer was attached to a
telemetry transmitter and battery via a short fatigue-resistant
cable. The transmitter and battery were securely attached over
a protective pad over the lateral aspect of the third metacarpal
bone using a custom modified exercise bandage. Output signals
were telemetered using custom programmed FM radio
telemetry devices (ST/SR500, Wood and Douglas Ltd.,
Tadley, Hampshire, UK) and logged at 1000·Hz via a 12-bit
A/D converter and PCMCIA card (DAQcard 700, National
Instruments, Austin, TX, USA) into a laptop using custom-
made software (Matlab, Natick, MA, USA). Speed was
measured using a WAAS-enabled GPS receiver (G30-L,
Laipac Technology, Richmond Hill, Ontario, Canada) attached
to the sulky and sampled at a frequency of 1·Hz. This system
is accurate to within 0.2·m·s–1 for 57% of all samples, as
described in Witte and Wilson (2005).

Forelimb leg length was measured using a tape measure and
recorded accurate to the nearest cm. Limb length
measurements were taken when the horse was standing square.
Forelimb length was taken as the vertical distance between the
ground and the approximate insertion of serratus ventralis.
When standing the limb is loaded to approximately 30% body
weight. This loading introduces a small error that is not
significant.

Foot-on angle for each stride was calculated by assuming
symmetry of the stance phase about the vertical in terms of leg
length (leg length) and angle, such that foot-on angle, �0 is:

where Vx,stride is the horizontal velocity of the stride and Tc,stride

is the contact time for the stride.
Trot is a symmetrical ‘2 beat’ gait where the diagonal limbs

can be considered to operate as a single virtual leg. A computer
simulation was made by using average input variables for the
horse trotting at 7·m·s–1. The input variables were Vxi, Vyi, �0,
mass and leg length. The spring stiffness was adjusted using a
custom made software (MSCvisualNastran4D run through
Matlab via Simulink) until a symmetrical stance phase was
produced in which the final force in the leg spring was 0·N and
the vertical height of the COM was equal at foot-on and foot-
off. The resulting calculated spring stiffness represents the
combined leg stiffness of the fore and hindlimb.

Comparison to previously published data

The mathematical results were compared to previously
published data of Cavagna et al. (1988) published by
McMahon and Cheng (1990). These consisted of a step cycle

(31)�0 = sin–1 ,
⎛
⎜
⎝

⎞
⎟
⎠

Vx,stride � Tc,stride

2 � leg length
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from a running man, a hopping kangaroo and a trotting dog.
Absolute and percentage differences between the numerical
and analytical solutions are reported for peak vertical force,
peak h (decrease in vertical height from the foot-on position)
and k. The analytical solutions were also superimposed over
the original data of Cavagna et al. Data from the analytical
solutions were normalised using the same method as
McMahon and Cheng: vertical accelerations were normalised
by dividing by accelerations due to gravity (9.81·m·s–2) and
forces divided by body weight to obtain dimensionless
horizontal force (Fx/mg) and dimensionless vertical force
(Fy/mg). Dimensionless time was calculated as �0t where
�0=(vertical leg stiffness/m)0.5.

Results
Comparison of the numerical and analytical solutions

The required initial horizontal velocity (Vxi) and resulting
stance time (Tc) for each of the computer simulations are
shown in Fig.·3. In addition Kvert for the numerical and
analytical solutions are shown. Kvert increased markedly at
higher contact angles. From 15° to 30°, values increased from
131·kN·m–1 to 812·kN·m–1 for the numerical solution and from
130·kN·m–1 to 808·kN·m–1 for the analytical solution.

Fig.·4 shows the results for the numerical (blue line) and
analytical solutions (red line) (the same colour coding will be
used throughout) for �0 of 15°, 20°, 25°and 30° (i.e. the angles
typically used by animals) to show how x, y, Vx, Vy, Ax, Ay, F
and ME change throughout the stance phase for each condition.
Here the stance phase has been adjusted so that midstance
occurs when time is zero. The analytical and numerical
solutions are indistinguishable for position data, vertical
velocity, vertical acceleration and resultant force as the red line
superimposes on the blue line. Slight differences are seen for
total mechanical energy, horizontal velocity and horizontal
acceleration between the numerical and analytical solutions,
especially at the higher contact angles. As the analytical
solution considers the vertical and horizontal components
separately, total energy is not required to be constant, unlike
the numerical solution that is based on Newtonian mechanics.

To compare the analytical and numerical solutions,
histograms were constructed for all simulations to show the
percentage difference in positions, velocities, accelerations and
resultant leg force (Fig.·5). The analytical solutions are most
similar to the numerical solutions for initial leg angles between
15° and 30° (shown by grey bars), which correspond to limb
angles commonly used by animals (the solutions outside that
range are shown by black bars). Within this range the
maximum difference between the analytical and numerical
solutions in x position was 0.17%, y position 0.01%, total leg
compression 0.34%, Vx 0.40%, Vy 0.56%, Ax 30.75%, Ay

1.95%, F 1.18% and ME 0.03%.

Comparison to experimental data from a trotting horse over a
range of speeds

The mass of the horse was 427·kg. The forelimb leg length

was 1.43·m. At 7·m·s–1 the average Tc for the forelimb was
158·ms and the average Tf was 139·ms (duty factor=0.36).
This flight time would require a final vertical velocity of
0.68·m·s–1. A spring stiffness of 80.9·kN·m–1 was required for
the numerical simulation to produce a symmetrical stance
phase.

Fig.·6 show that the simulations very closely matched the
stance time and initial contact angle data obtained from the
racehorse over the entire speed range.

Comparison to previously published data

The analytical and numerical approximations produced
results that were very similar to previous published results for
man. Fig.·7 show the solutions of McMahon and Cheng’s
method and the analytical solution for normalised vertical
acceleration, dimensionless horizontal force and dimensionless
vertical force. The two solutions are almost identical for
normalised vertical acceleration against vertical displacement
and very similar for dimensionless force against dimensionless
time. Peak forces differed by less than 2% between the
analytical and numerical solutions to the published data
(analytical solution=1986·N, numerical solution=2022·N,
published result=2020·N). The vertical drop in height h was
nearly identical for all methods, 6.25·cm for the analytical and
numerical solutions vs 6.24·cm for the published data. Leg
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stiffness was also very similar (less than 2% difference); k for
the analytical solution was 10740·N·m–1, 10930·N·m–1 for the
numerical solution and 10950·N·m–1 for McMahon and
Cheng’s simulation. Peak horizontal force only differed by
26·N (6.7% difference) and 0.5·N (0.5% difference) for the
analytical and numerical solutions respectively, and was
greater for the analytical solution (420·N) compared to the
published data (390·N).

Fig.·8 compared the normalised vertical acceleration against

displacement traces for the trotting dog and the hopping
kangaroo. There are small differences between the methods but
the results are very similar.

Unfortunately force data for the trotting dog, and force and
leg stiffness data for the hopping kangaroo, could not be
extracted due to the data presented from McMahon and Cheng
(1990); however h values could be measured from graphs.
Only an h and a leg stiffness value were extracted for the
trotting dog. There was a difference of less than 3·mm in h
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between the two solutions and the published result, as shown
in Table·1. The analytical solution produced a decrease in
height of 1.2·cm whereas the other study and the numerical
solution had h=1.3·cm (percentage difference of 7.7%).
Smaller percentage differences were obtained for total leg
stiffness; 1420·N·m–1, 1490·N·m–1 and 1490·N·m–1 for the

analytical, numerical and McMahon and Cheng’s solution,
respectively.

Only an h value was obtained for comparison with the
analytical and numerical solutions for the kangaroo. Values of
7.7·cm, 6.4·cm and 6.9·cm (difference from the published data
of 1.3·cm and 0.8·cm; 13% and 10.5% difference, respectively)
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were obtained for the published data, the analytical solution
and the numerical solution, respectively.

Discussion
The aims of this discussion are to explore the accuracy and

implications of using sine wave approximations for a spring
leg in terms of forces, energies and how these could contribute
to understanding gait selection criteria.

Sine wave approximations produce results similar to
numerical simulations and biological data

This study has shown that a simple analytical solution,
requiring a small number of easily measurable input values,
can predict the kinetics and kinematics of a numerical solution
to the planar spring-mass system over the range of biologically
relevant sweep angles and horizontal velocities. For initial leg
angles of between 17.5° and 30° the percentage differences
between the analytical solution and the numerical solution for
the majority of variables were less than 1% (total ME, COM
position, total limb compression and COM velocity) and a
difference of less than 2% was obtained for total limb force
and vertical acceleration of the COM. Less accurate results
were obtained for horizontal acceleration, with up to 31%
difference between the analytical and numerical solutions.

The analytical solution was most accurate for leg contact
angles of between 17.5° and 30°, which represent the range of

angles used by running animals including the racehorse in this
study (Fig.·6B). Running animals typically have an initial leg
angle of approximately 17.5–20° when they make the
transition from walking to running (Blickhan, 1989; Lee and
Farley, 1998), and a typical contact angle of 30–35° at their
maximum running speed (Farley et al., 1993; Alexander and
Jayes, 1983; Gatesy and Biewener, 1991).

The analytical and numerical solutions matched the data
obtained from our trotting racehorse across the whole
horizontal speed range. The racehorse in this study used
contact angles ranging from 15° at 3·m·s–1 to 32° at 11·m·s–1.
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Fig.·7. Comparison of the analytical approximation (red line) to
McMahon and Cheng’s outcome for a man running at
18.0·km·h–1 (black line; McMahon and Cheng, 1990) for (A)
Ay/g against vertical displacement (cm). The dotted line shows
the experimental results from Cavagna et al. (1988). (B)
Dimensionless horizontal force (Fx/mg) and (C) dimensionless
vertical force (Fy/mg) against dimensionless time (�0t) where
�0=(vertical leg stiffness/m)0.5.
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Stance time and duty factor data matched the predicted values.
The value of combined limb stiffness (i.e. the combined
stiffness of the forelimb and hindlimb) required for the
numerical calculations was 80.9·kN·m–1. McGuigan and
Wilson found an overall forelimb leg stiffness of 55·kN·m–1 in
horses of similar size to the one in this study (McGuigan and

Wilson, 2003). If 57% of the mass of the horse were carried
by the forelimb in a trot stance phase (Witte et al., 2004) then
the total forelimb and hindlimb stiffness would be 96·kN·m–1,
a value approximately 20% higher than the value used in this
study. However using the isometric scaling relationship of
kleg�Mb

0.67, where Mb is body mass (Farley et al., 1993), which
was based on number of species ranging from kangaroo rat
(0.112·kg) to horse (135·kg), the combined leg stiffness for the
racehorse in his study would be 57.9·kN·m–1. This is
approximately 30% less than the value than estimated in this
study; however, the horse used in this inter-species scaling
study was considerably smaller (135·kg vs 426·kg), had a
shorter leg length (0.75·m vs 1.43·m) and trotted at a slower
speed (approximately 3·m·s–1 against 7·m·s–1). Our estimate of
limb stiffness is therefore within the range of previously
published values.

Both analytical and numerical solutions predicted the
changes in biological vertical stiffness across the trotting speed
range. A change in leg angle from 25° to 30° results in an
increase in Kvert of 201%. This is of a similar magnitude to the
170% increase for a smaller trotting horse reported by Farley
et al. (1993). Therefore the analytical approximation not only
matches the numerical solutions, but can also represent the
mechanics of a complex biological system – the trotting horse,
and can be expected to be appropriate for other symmetrical
bouncing gaits.

The solutions were also similar to other previously
published models and kinetic and kinematic measurements.
Peak limb forces predicted by Alexander et al. (1979) were
very similar to the peak forces produced by the analytical and
numerical solutions. Our solutions have similar accuracy to the
analytical solution reported by Geyer et al. (2005), who report
a less than 1% error for total leg compression and 0.6°
difference for angular motion compared to a numerical solution
(based on a simulation with input consistent with a running
human). Our analytical solution produced errors of less than

J. J. Robilliard and A. M. Wilson

Table 1. Comparison of the analytical and numerical solutions to published data

McMahon and 
Cheng’s results Analytical solution Numerical solution

Values Values Difference (%) Values Difference (%)

Man
Max. force (N) 2020 1986 4.3 (1.7) 2022 1.5 (0.1)
h (cm) 6.24 6.25 0.01 (0.2) 6.25 0.01 (0.2)
k (kN·m–1) 10.9 10.7 0.2 (1.9) 10.9 0.0 (0.1)
Fx,peak (N) 391.3 418 26 (6.7) 391.8 0.50 (0.1)

Dog
k (kN m–1) 1.5 1.4 0.07 (4.7) 1.5 0.06 (0)
h (cm) 1.3 1.2 0.1 (7.7) 1.3 0.03 (2.3)

Kangaroo
h (cm) 7.7 6.4 1.3 (13.0) 6.9 0.81 (10.5)

h values for the kangaroo and dog for McMahon and Cheng’s data were measured from graphs. Differences between the analytical solution
and the numerical solution to McMahon and Cheng’s data are presented as absolute differences (percentage differences to 1 decimal place are
given in parentheses).

Fig.·8. Comparison of the analytical approximation (red line) to
McMahon and Cheng’s outcome (solid black line; McMahon and
Cheng, 1990) for (A) a trotting dog and (B) a hopping kangaroo. The
dotted line shows the experimental results from Cavagna et al. (1988).
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1% for total leg compression and a maximum difference in leg
angle less than 0.1° across the entire biological range; however,
our solution uses different assumptions and cannot be
considered an equivalent approach. Comparison of our
analytical and numerical solutions with the previously
published results of McMahon and Cheng based on the
biological data of Cavagna et al. showed that the solutions were
nearly indistinguishable for the running man: maximum force
and limb stiffness differed by less than 2% and vertical height
decrease (h) differed by 0.2%. The results for the dog were
similar: a difference of less than 5% in leg stiffness and a
difference of 0.1·cm for vertical compression (as measured
from their figure) were detected between the two methods and
the published result. The kangaroo data provided the poorest
fit both for McMahon and Cheng’s model and for the analytical
and numerical solution, and possible explanations are
discussed below.

While previous methods remain valuable, the advantages of
our analytical solution are twofold. Like, and indeed following,
Alexander’s sine wave approximation, which just considers
vertical GRF, it is very simple (Alexander et al., 1979), but our
addition of the horizontal component allows for calculation of
fluctuations in velocity and mechanical energies.

Limitations

Both the numerical and sine wave analyses are limited to
gaits that are similar to bouncing springs. In bipeds these are
hopping and running (not walking and probably not skipping).
In quadrupeds these are trot, pace and pronk (not walk and
possibly not gallop). Both analyses are more accurate if the
limbs behave as simple compression springs of constant
stiffness. In the numerical solutions the leg stiffness (the
gradient of the peak force against peak compression curve
shown in Fig.·9) remains constant for all simulations. For the
analytical solutions stiffness remains constant over the most of
the solutions and the range of angles used by animals and only
increases between the two most extreme initial conditions of
45° and 60° due to inaccuracies in peak force estimation at
these extreme contact angles (Fig.·9).

Hopping macropodids, whilst clearly bouncing, deviate
from our assumptions as the stance phase is decidedly
asymmetric: leg angle and leg length are much greater at foot-
on than at foot-off (McGowan et al., 2005), and the peak
vertical GRF is significantly greater (36%) than that predicted
using a sine wave (Kram and Dawson, 1998). In addition,
kangaroos use large contact angles. A leg angle of 53° (Farley
et al., 1993) has been measured. The angle of the virtual leg
(i.e. foot to COM) would be significantly less, since the COM
is cranial to the hip (McGowan et al., 2005). The required
coefficient of friction at the foot is the tangent of the contact
angle of the virtual leg. For instance a 45° contact angle would
require a coefficient of friction of 1; improbably high for
biological foot–ground interaction. Macropod locomotion
therefore requires further consideration and the approach used
here is not ideal for these species. Most animals bounce with
less extreme leg angles (McMahon and Cheng, 1990;

Alexander, 1992; Blickhan and Full, 1993; Farley et al., 1993);
those studied are well represented by compression springs and
would be modelled well by our analytical approach.

The analytical solution simplifies the motion of the spring
mass model by considering the horizontal and vertical
components of motion separately, thus the force vector does
not have to remain in line with the virtual leg. However, the
differences between the leg angles calculated using the
numerical solution and those calculated using the analytical
solutions were very similar across the biological range
(Fig.·10A), with a maximum difference of less than 0.10°. A
maximum difference in leg angle of less than 0.24° occurred
between the two solutions for all simulations across the entire
range of angles (Fig.·10B).

Applications of the technique

Our findings extend Alexander’s simplification to obtain
vertical and horizontal forces and changes in mechanical
energy from body mass, leg length, foot timings and horizontal
velocity. This allows calculation of leg force and hence muscle
and tendon forces and limb elastic energy storage, and
mechanical work on the COM without the need for force plates
and high speed kinematics. These measurements will allow
novel insights into the compromises involved in locomotor
strategy. 

For instance, although the velocity amplitude through stance
is greater in the vertical than the horizontal components
(Fig.·4), the kinetic energy fluctuations are much greater in the
horizontal direction. This is because a small change in velocity
around a large mean velocity involves a large change in kinetic
energy as it is the difference in velocity squared. Therefore
horizontal components dominate changes in COM mechanical
energy during running. For an animal of a specific leg length
and mass using a simple bouncing gait the leg stiffness
determines the relationship between speed and initial leg angle.
High stiffness legs use small contact angles. Conversely, more
compliant limbs require larger contact angles. High stiffness
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Fig.·9. Maximum force (kN) against maximum leg compression (m)
for the analytical (squares, red dotted line) and numerical solutions
(blue, triangles) for contact angles between 2.5° and 30°. Leg stiffness
(the gradient) remains constant for the numerical solutions and is
indistinguishable from the stiffness for the analytical solutions.
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limbs are beneficial since they result in small changes in
mechanical energy and hence low hysteresis losses, since
biological springs do not return all energy stored in them (the
potential energy storage in the spring leg can be calculated as
0.5kc2, and can also be calculated using our method). Stiff legs,
however, result in brief contact times and high forces. These
high forces require a stronger leg (which may be difficult to
protract quickly) or a reduced safety factor and hence an
increased risk of injury. There may also be a detrimental effect
on locomotor and muscle efficiency due to shorter stance times
(Kram and Taylor, 1990). If maximum contact angle
determines maximum running speed then stiff legs will also
enable a higher maximum speed. This trade-off explains why,
in systems where force is a minor issue, high-stiffness,
vertically orientated limbs are preferred, whereas in biological
systems, where there is a structural and energetic cost to ‘force
generation’, the compromise solution tends towards a more
compliant limb. Therefore our simple analytical approximation
allows us to explore intuitively the consequences of observed
and postulated strategies of locomotion. Compliant limbs may,
of course, also carry benefits in control of locomotion under
variable conditions.

Future directions

Apart from using these methods to determine forces and
energies from the measurements as outlined above, we plan to
develop these approximations further to provide insight into
asymmetrical gaits, specifically skipping and galloping. We
foresee that these approaches will provide alternative but
convergent conclusions to the developing collision-based
models (Ruina et al., 2005). Although understanding of
galloping is improving quickly, the consequences and
desirability of this gait are certainly not yet fully understood.
Simple optimisations providing conclusions about gait
parameters including footfall sequences will have to take
account of both force and energetic costs. As discussed above,
energy loss minimisation and peak force minimisation have
quite different requirements. While collision-based models

may be effective in determining energetic consequences of
different gaits, spring-based models will be required if force
consequences are to be understood.

Conclusion

This study has shown that a simple analytical solution
matches the kinematics and kinetics of the motion of a spring-
mass system, accurately modelling the kinetics of running and
trotting. Limb force, leg stiffness and changes in mechanical
energy can be determined for these gaits from a few easily
obtainable, morphological and kinematic observations. This
will allow key energetic consequences of observed locomotion
to be determined in the field and without the need for force
plates. In addition this allows consideration of the
consequences of postulated morphologies and gait strategies.

The authors wish to thank Henry Wilson and Thilo Pfau for
their technical help, Jim Usherwood and Anna Wilson for
help with manuscript preparation. J.R. is a BBSRC funded
student and A.W. a BBSRC Research Fellow and holder of a
Royal Society Wolfson Research Merit award.

List of symbols
Ax horizontal acceleration (m·s–2)
Ay vertical acceleration (m·s–2)
c total limb compression (m)
COM centre of mass
E total energy (J)
F total resultant limb force (N)
Fmax peak force=peak vertical force
Fx horizontal force
Fy vertical force
g gravitational constant
GRF ground reaction force
h decrease in vertical height of the COM, relative to 

foot-on (m)
k leg stiffness (N·m–1)
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Kvert vertical stiffness (kN·m–1)
L0 initial leg length (m)
L leg length (m)
Lm leg length at midstance (m)
m mass (kg)
Mb body mass
ME mechanical energy (J)
t time (s)
Tc contact time (s)
Tf flight time (s)
Vx horizontal velocity (m·s–1)
Vy vertical velocity (m·s–1)
x horizontal position (m)
y vertical position (m)
�0 initial contact angle, relative to the vertical
�0 (vertical leg stiffness/m)0.5
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