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Path integration (PI) is part of the navigational repertoire of
a wide range of animals, including mole rats (Kimchi et al.,
2004), hamsters (Etienne et al., 2004), humans (Mittelstaedt
and Mittelstaedt, 2001), crabs (Layne et al., 2003a,b), ants
(Wehner, 2003), bees (Dyer et al., 2002) and spiders (Moller
and Görner, 1994; Ortega-Escobar, 2002). PI is the same
method of navigation that was employed by sailors, under the
name of dead reckoning, and functions without the need for
landmarks, requiring only a compass and odometer to monitor
the path the animal travels. This information is continuously
integrated during a journey to give a running estimate of the
current position relative to a fixed point, usually the animal’s
nest or refuge. This accumulated information is referred to as
the home vector (HV).

The current paper addresses the possible neural mechanisms
responsible for PI and deals in a new way with the question of
how the HV may be stored and processed in the brain. We
focus on the behaviour of Cataglyphis fortis (Forel) ants,
whose PI behaviour has been extensively studied (Wehner,
2003) and modelled (e.g. Müller and Wehner, 1988, 1994).
Neural models of C. fortis PI were presented by Hartmann and
Wehner (1995) and Wittmann and Schwegler (1995). Both are
based on different methods of encoding the HV chosen by the
modeller, since no neurophysiological data are available to
suggest the actual mechanism employed. We show that it is
possible to produce neural PI models without imposing a
particular HV representation in advance, by using a genetic
algorithm (GA) to generate networks automatically. We also

explore the advantages of producing a complete model (Chiel
and Beer, 1997) that includes an explicit representation of the
animal’s behaviour in its environment.

In common with many other species (Maurer and Séguinot,
1995), systematic PI navigation errors are observed in C. fortis
when it is forced to walk along L-shaped paths (Müller and
Wehner, 1988). Ants leaving the L shape turn too much, and
the degree of inaccuracy in the homing direction is a function
of the shape and size of the L-shaped outward journey. Errors
are not seen when the outward path is straight, unless it is very
long (Sommer and Wehner, 2004). Assuming the errors are not
an artefact of the experimental manipulation, there are several
possible explanations, including at least: (1) the ant has an
accurate PI system but deliberately deviates from the direct
homeward path under certain conditions, (2) the system only
approximates accurate PI, and the degree of error depends on
factors such as the journey’s size and shape and (3) the ant has
a PI system that sometimes operates in an accurate fashion and
sometimes does not. In (2) and (3), the properties of the ants’
homing errors might be used to infer some information about
the PI mechanism, although (3) may give misleading results
since the mechanism is changeable. Explanation (1) cannot
readily reveal anything about the underlying PI mechanism but
can still produce homing errors that vary systematically with
the journey shape.

One question is whether, as (1) and (3) above require, our
current understanding of information processing in neurons
suggests they are capable of performing accurate PI given the
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We use a genetic algorithm to evolve neural models of
path integration, with particular emphasis on reproducing
the homing behaviour of Cataglyphis fortis ants. This is
done within the context of a complete model system,
including an explicit representation of the animal’s
movements within its environment. We show that it is
possible to produce a neural network without imposing a
priori any particular system for the internal
representation of the animal’s home vector. The best
evolved network obtained is analysed in detail and is
found to resemble the bicomponent model of Mittelstaedt.

Because of the presence of leaky integration, the model
can reproduce the systematic navigation errors found in
desert ants. The model also naturally mimics the searching
behaviour that ants perform once they have reached their
estimate of the nest location. The results support possible
roles for leaky integration and cosine-shaped compass
response functions in path integration.
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resources available in a C. fortis ant’s brain. If they are not, then
the errors show a basic limitation of the ant’s brain, and (1) and
(3) above are rendered unlikely. If we believe they are capable,
we still have options (1), (2) and (3) available: (2) cannot be
ruled out since selection may still only have produced an
approximate system, provided it is sufficiently good.

Wittmann and Schwegler (1995) present a system that can
perform accurate PI using only simple and relatively few
model neurons, suggesting that the reason is not a limitation
of neural processing. Kim and Hallam’s neural PI model
supports this conclusion (Kim and Hallam, 2000). The model
employs a different mechanism but is also capable of
accurate PI. The Wittmann–Schwegler model can reproduce
the ants’ homing errors if the PI process is assumed to start
only after the ant has travelled a certain distance from the
nest, making it a type (3) model dependent on when PI
begins to operate.

Müller and Wehner (1988) suggest an algorithm that
performs an approximation of PI such that, after L-shaped
journeys, the ants’ errors are reproduced, but under normal
foraging conditions navigation is suitably accurate, making it
a type (2) model. This represents an hypothesis that the
foraging and PI systems have coevolved such that efficient
navigation is achieved without the need for exact PI. The
mathematical algorithm is argued to be more simple than an
exact one. Hartmann and Wehner (1995) present a neural
network PI model that shares the property of only producing
observable errors after certain journey shapes. However, now
that the system is built using neurons, the model is no longer
any simpler than an exact PI system (Wittmann and Schwegler,
1995).

Mittelstaedt’s bicomponent PI model is a mathematical
description of accurate PI and, as such, does not generate
systematic errors (Mittelstaedt, 1962, 1985). This feature has
been criticised (Hartmann and Wehner, 1995), since the model
cannot explain systematic errors or produce any deviations
from accurate navigation. This model has not previously been
implemented using model neurons. The results presented here
show that a neural implementation is possible and that the ants’
systematic navigation errors are then generated in a
straightforward way using it. Our model has an integrator time
constant parameter that can be tuned to accurate or erroneous
PI, making it a type (3) model.

Modelling path integration

Mathematically, PI on a flat two-dimensional surface is
easily expressed in terms of the operations required to update
the HV (Benhamou and Séguinot, 1995; Maurer and Séguinot,
1995) and can be expressed in several alternative forms (see
Fig.·1), including using a rectangular (Cartesian) or polar
coordinate system and using an egocentric or a geocentric
system. For example, Mittelstaedt’s bicomponent model
(Mittelstaedt, 1985) is in rectangular geocentric form:

dx/dt = s cos �·,

dy/dt = s sin �·, (1)

where s is the animal’s speed, � is its compass heading, (x,y)
is its geocentric rectangular HV and t is time. In polar
geocentric form, we have:

dr/dt = s cos (� – �)·,

d�/dt = (s/r) sin (� – �)·, (2)

where r is the animal’s distance and � is its bearing from the
origin. Under a geocentric system, the HV expresses the
animal’s position relative to a fixed reference point (e.g. its
nest) that forms the origin of the coordinate system. An
egocentric system expresses the reference point’s coordinates
relative to the animal’s position and orientation, such that the
HV changes even if the animal is rotating on the spot (see
Fig.·1).

Homing

Many species use PI as a means of returning as rapidly as
possible to their nest or refuge. In an open environment, this
naturally corresponds to a straight path home from the current
location. This can be formalised using an equation describing
the animal’s rate and direction of rotation during homing as a
function of the HV. The form of this equation depends on the
type of HV used. Mittelstaedt’s bicomponent model
(Mittelstaedt, 1962, 1985), a geocentric rectangular
description, uses:

d�/dt = (x sin �) – (y cos �)·. (3)

We can plot x sin � and y cos � against �, holding (x,y)
constant (see Fig.·2A). d�/dt will be positive where x sin �>y
cos � and negative where x sin �<y cos �, telling us whether
the animal will turn anticlockwise or clockwise, respectively,
and shows that there are two equilibrium values of � provided
the HV is not (0,0). One equilibrium is stable and points
towards home, the other is unstable and points directly away
from home. Fig.·2A also shows that the animal will always turn
to face home efficiently, i.e. through the smallest of the two
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Fig.·1. The four main classes of possible home vector. Left, geocentric
rectangular (x,y) and polar (r,�); right, egocentric rectangular (x�,y�)
and polar (r�,��). N is the nest position, A is the animal’s position, the
short arrow indicating its orientation. We use the convention of
measuring angles as positive anti-clockwise from the x-axis or from
the animal’s body axis.
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possible angles. The equivalent description using a geocentric
polar HV (see Fig.·2B), which is very similar to the scheme
used by Hartmann and Wehner (1995), is:

d�/dt = r sin (� – �)·. (4)

Although these formal descriptions may be of some help
classifying any proposed neural implementation of the same
process, several caveats should be borne in mind. Firstly, the
simplicity of a mathematical description does not guarantee
simplicity when the same processes are carried out or
approximated by neurons (Maurer and Séguinot, 1995).
Secondly, even the classes of description may change when
implementing a model neurally. Wittmann and Schwegler
(1995) note how their geocentric polar HV, represented in
their network using a sinusoidal array (see below), becomes
equivalent to Mittelstaedt’s geocentric Cartesian
bicomponent model (Mittelstaedt, 1985) for a specific set of
parameters.

The mathematical description of homing is dependent on the
form of the HV; similarly, the neural homing mechanisms will
be dependent on the neural HV representation. A parsimonious

neural PI model should therefore give equal weight to homing
as to updating the HV. A feature of C. fortis PI is that the HV
continues to be updated during the homeward journey,
allowing the animal to detour around obstacles (Schmidt et al.,
1992). Thus, HV updating and homing together constitute a
feedback process. A description of the behaviour of the animal
is not properly defined until both systems are in place. The
present paper is concerned with producing a complete
description of this type. The task consists of an arena devoid
of landmarks (in keeping with the salt pan habitat of C. fortis),
such that PI is the only available strategy for homing. The
agent’s (the model animal’s) locomotion is restricted to the
usual foraging behaviour of the ant, i.e. walking only forwards,
not sideways or backwards, and employing the same class of
sensory cues, namely an allothetic compass (Wehner, 1994)
and idiothetic odometer.

Existing neural models

We now briefly introduce two existing neural models of
C. fortis PI behaviour.

The Hartmann–Wehner model

This model (Hartmann and Wehner, 1995) uses neural
chains to store and manipulate the HV. A neural chain is a
linear or circular chain of neurons whose pattern of firing
represents a linear or circular variable, respectively, in this case
primarily the distance and angular components of a geocentric
polar HV. Each chain neuron has two supporting neurons to
allow the activity pattern to be stabilised or modified. The
distance chain (called the r-chain) works like a thermometer.
Each chain neuron can be either fully activated or fully
inactivated. Activity spreads from one end of the chain to the
other as the value increases, and recedes back again as it
decreases. Only the position of the boundary of the active
region encodes information. The angular chain (called the �-
chain) works similarly, except that the chain is circular and
contains a group of adjacent active neurons. The number of
active neurons is fixed, but the activity can shift clockwise or
anticlockwise around the circle to represent changes to the
stored value. The model has five more circular chains. One, the
�-chain, represents the ant’s current compass heading. The
final four chains, called C+, C–, S+ and S–, are needed to
calculate the value of �–� and apply approximations of the
trigonometric functions cosine and sine to them. Chains S+ and
S– provide a homing signal. For further details, see Hartmann
and Wehner (1995).

The model reproduces the systematic navigation errors
displayed by C. fortis (Müller and Wehner, 1988) by nature of
the approximate PI mechanism it instantiates. Nine free
parameters of the model, controlling the relative phases and
widths of the activity regions on chains � and �, and thus the
approximation of cos and sin functions, are used to fit the
model to the data. It is also possible to make the model produce
more accurate PI behaviour by choosing different values for
these parameters (Wittmann and Schwegler, 1995).

Since the model separates the polar HV into distance and
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Fig.·2. Dynamics of homing using (A) Eqn·3 and (B) Eqn·4. The
horizontal axis shows the animal’s orientation, �; the vertical axis
shows the animal’s rate of turn d�/dt, where (x,y) is the geocentric
rectangular home vector (HV) and (r,�) is the geocentric polar HV
(see Fig.·1). This example shows the case where (A) x>0, y=2x and,
in equivalence, (B) �=tan–12=1.107. Both schemes lead to one stable
and one unstable equilibrium heading with the same respective
values.
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angular components, a potential discontinuity in � (the angular
HV component) arises at the HV zero point: if the animal were
to pass over its estimate of the home location, the angular
component of the HV would have to jump by 180°. This might
cause problems if the network were employed to model the
ant’s systematic search behaviour, since PI must continue
during searching, which involves regularly returning to the HV
zero point (Wehner and Srinivasan, 1981).

Chapman (1998) reports implementing and testing the
model on a mobile robot, using approximately 900 simulated
neurons. Flaws in the r-chain and homing mechanisms are
reported. After modifying the model to correct these flaws, the
robot was able to navigate successfully. This result shows that
the basic mechanisms employed by the model are valid and
can accomplish PI outside of a simulation.

The Wittmann–Schwegler model

This model (Wittmann and Schwegler, 1995) uses a
sinusoidal array to represent its geocentric polar HV as a
phasor. The distance and angular HV components [called
(r,�)] specify the amplitude and phase, respectively, of a
sinusoidal wave, which is represented spatially along a circular
neuronal array. Using N array neurons, the activity of neuron
i is k0[rcos(�+2�i/N)]+b0, where k0 and b0 are positive
constants. The animal’s compass heading is assumed to be
available as a symmetrical single-peaked activity pattern on
another circular array of neurons. Connections from the
compass array to the HV array, modulated by the animal’s
current speed, convert the compass information into the same
phasor representation as the HV. Simple element-wise addition
is then enough to update the HV correctly. Recurrent
connections within the HV array act as a memory and stabilise
the shape of the sine wave. Homing is achieved by comparison
of the current compass and HV arrays. For full details, see
Wittmann and Schwegler (1995).

The ease of performing vector addition with a sinusoidal
array is stated to justify its usage in PI. Touretzky et al. (1993)
implement a sinusoidal array using a spiking neuron model.
The array is a redundant encoding where each unit of the array
is made up of 100 spiking neurons, where a high precision can
be attained even if each neuron has relatively few
distinguishable firing rates and is subject to noise. However
Touretzky et al. state that the sinusoidal array has no advantage
over a Cartesian encoding unless its ability to perform vector
rotation is used, which the Wittmann–Schwegler model does
not employ.

Like the Hartmann–Wehner model, Wittmann and
Schwegler fit their model to the data from C. fortis (Müller and
Wehner, 1988). The fit is visually as good as the former
model’s. Since the network performs exact, error-free PI, an
extra parameter and mechanism were introduced specifically
to produce errors. Whilst fitting to data using a single
parameter is arguably stronger evidence for a model than fitting
with nine parameters, the model does not generate navigation
errors as a result of its fundamental PI mechanism, as the
Hartmann–Wehner model does.

Evolving neural models

Both the Hartmann–Wehner and Wittmann–Schwegler
models are built around neural representations of the HV that
were chosen on the basis of robustness. The HV representation
cannot be based on experimental findings, since no relevant
data exist. The big differences between the models, and the
relatively large number of neurons used, suggest that many
such PI networks of similar competence could be constructed
using various mechanisms.

We approach the problem of the neuronal mechanisms of PI
here without making any a priori assumptions about the way
the HV is encoded but rather use an automated network
generation technique, the GA, to explore a set of possible
networks that enable an agent to home using PI after an
excursion. This procedure permits a less-biased exploration of
possible neural mechanisms and also has other advantageous
features for system design. We must fully and explicitly
specify the sensory and locomotory capabilities of the agent,
the information-processing capabilities of individual neurons
and synapses, the sources of noise present and the behaviours
we wish the agent to display before we can use the GA. The
simulation code must explicitly generate the behaviour of each
candidate PI model and agent in order to evaluate it. This
reduces the chance of producing a flawed or fragile model. The
GA is also able to prune the evolving networks to favour
simplicity of neural structures. Finally, we can readily have the
GA produce models under variations of the assumptions, such
as the class of network model or the nature of the animal’s
internal compass representation.

The GA is not intended to closely model evolution by
natural selection but it does capture one feature of PI systems,
namely the potential chicken-and-egg problem of HV
maintenance and HV-mediated homing. Unless both of these
capabilities arise at the same time there is no selective
advantage for either in isolation, at least in terms of PI
navigation. A human-designed system need not suffer from
this problem since both systems are constructed
simultaneously and in their full complexity. The GA must
develop and improve both capabilities at the same time for the
system to operate, resulting potentially in a better mutual
adjustment between them.

Evolved networks are often too complicated to understand
using purely analytical methods. Consequently, we may not be
able to concisely state the behavioural properties of an evolved
PI system and may have to take a more investigative approach,
similar to that used in real-world biological systems (Peck,
2004; Di Paolo et al., 2000).

Neural mechanisms

The goldfish oculomotor neural integrator (Major et al.,
2004) is a mechanism that shares some properties with the HV
in PI and is better neurophysiologically characterised. These
neural integrators perform temporal integration of incoming
velocity signals to track the position of the fish’s eyes. It is not
yet known whether this is carried out at the single neuron level
(Shen, 1989; Loewenstein and Sompolinsky, 2003) or using
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carefully tuned positive feedback within a recurrent neural
circuit (Seung, 1996). Whatever the neural basis, functionally
the integrator can display leaky, stable or unstable behaviours
(Major et al., 2004). This suggests employing neural models
capable of readily evolving similar behaviour (at least as a
subset of their behaviour) in our PI investigations. Recent
experimental findings (Egorov et al., 2002) show that single
entorhinal cortex neurons are capable of performing temporal
integration of their inputs, expressed as persistent graded
changes in firing rate, at least over the course of tens of
seconds. Here, we use a standard leaky integrator firing rate
model, the continuous time recurrent neural network (CTRNN;
Beer, 1990; Dayan and Abbott, 2001; Koch, 1999). Unlike
traditional connectionist models, each neuron works in
continuous time and responds relatively faster or slower
depending on its time constant parameter.

Since CTRNN networks cannot easily perform
multiplication, we also use an augmented version, the modified
CTRNN (ModCTRNN), introduced here for the first time,
which allows multiplication via changes in synaptic strengths.
Multiplication may be an important mechanism for PI. Both
the Hartmann–Wehner and Wittmann–Schwegler models used
multiplicative or gating synapses to adapt PI to variations in
the animal’s speed. In his bicomponent model of PI,
Mittelstaedt (1962, 1985) used multiplication to generate
homing behaviour. Multiplication has been conjectured (Koch,
1999; Salinas and Abbott, 1996) and observed (Hatsopoulos et
al., 1995; Gabbiani et al., 1999; Anzai et al., 1999; Andersen
et al., 1985) to be carried out by many neural mechanisms. We
investigate whether the ModCTRNN model results in a
significant decrease in overall network complexity or an
increase in performance over the CTRNN model.

Materials and methods
Genetic algorithm

A GA (Goldberg, 1989) with a population of 30 genotypes
was used, each encoding a neural network. Each genotype was
evaluated in 10 independent trials per generation. Each trial,
the agent, controlled by the encoded network, was required to
perform the PI tas, and was assigned a fitness value. The
genotype’s overall fitness was the mean fitness over the 10
trials. The fittest five genotypes were retained unmodified in
the population each generation. Each was also copied five
times to produce 25 new genotypes, which were mutated and
used to replace the 25 least fit genotypes. As well as mutating
the parameter values of the network, the GA could also change
the number of neurons and synapses, referred to as links here,
present in the network (see Appendix·1 for more details). There
is no special significance in this selection scheme and we
expect a number of similar GA schemes to work just as well.

The path integration task

For each trial, the agent started at the nest with a random
orientation and was presented with a series of between one and
three visual beacons that it was required to visit (defined as

approaching to a distance of 0.01 or less) by phototaxis. Each
beacon was immediately removed when the agent reached it,
and the next one activated. Beacons were placed by selecting
a random distance from the nest in the range [0.5,1.0] and
random angle from the nest in the range [0,2�]·radians, except
the last beacon’s angle, which was selected using a stratified
random scheme that divided [0,2�] into 10 equal-sized blocks,
one for each trial, thus ensuring a more even coverage of final
HVs per evaluation. After the last beacon was removed, the
agent’s orientation was randomised (to prevent it homing by
simply turning through �·radians for a one-beacon trial) and it
was required to return to the nest (again defined as approaching
within 0.01 distance units) using only its compass sensors,
speed sensor and internal state, i.e. the nest could not be
directly detected by the agent. During a given generation, all
30 agents were presented with the same 10 sets of beacon
locations and given the same initial orientations at the nest and
were subjected to identical noise. This made fitness
comparisons less subject to noise.

Each experiment was initially performed with the agent’s
speed fixed at maximum, so that a solution could evolve
without requiring the speed sensor. If the GA produced a
satisfactory solution, the experiment was repeated with the
agent’s speed no longer restricted to maximum. The agent was
now also held captive (stationary) for a randomly selected time
drawn from [0,0.5] upon reaching the last beacon before being
allowed to attempt homing. If this task was solved, the
experiment was continued with an increase in the level of noise
on the motor outputs (see below), so forcing the agent to take
full account of the speed sensor in order to perform accurate
PI.

Calculating fitness

The fitness assigned for each trial is calculated by one of
four equations depending on how many phases of the task were
completed by the agent. The overall fitness is always between
zero and one, and the fitness for reaching each new phase is
equivalent to achieving optimal fitness in all previous phases.
Firstly, if the agent failed to reach the first beacon within twice
the time it would have taken to visit all of the trial’s beacons
by a direct course at maximum speed the trial was ended and
the fitness was 0.25/(1+	B), where 	B is the time integral of the
agent’s Euclidean distance from the first beacon over the trial
(a measure of the average distance from the beacon). Secondly,
if the agent reached the first beacon but failed to reach all
subsequent beacons within the above time limit, the trial was
ended and the fitness was 0.25+0.25
visited/total. These two
criteria simply facilitate the evolution of phototaxis. Thirdly,
if the agent visited all beacons but failed to reach the nest
within three times the minimum time required from the
location of the last beacon at full speed, the trial ended and the
fitness was 0.5+0.25/(1+	N), where 	N is the integral of the
Euclidean distance of the agent from the nest starting from the
moment it arrived at the last beacon until the end of the trial.
If the agent returned to the nest, its fitness was
0.75+0.25/(1+tN), where tN is the time taken to complete the
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entire trial; thus, the fittest possible agent would visit all
beacons and then return to the nest using straight, direct paths
for all legs of the journey and travel at full speed. Owing to
sensor noise, cumulative navigation errors would arise,
meaning that an ideal agent would also search efficiently for
the nest after reaching the HV zero point until it found the nest
or until the trial timed out.

The agent

The agent was modelled as having a position (xA,yA) on an
unbounded two-dimensional plane, with orientation �A radians
measured positive anticlockwise from the x-axis (or ‘east’; all
angles are defined positive anticlockwise from the x-axis or
sometimes from the agent’s body axis). The origin (0,0) of the
plane was defined as the nest location. One distance unit was
defined as the maximum distance the agent was ever required
to travel from the nest. Maximum speed was also unity; the
agent therefore took at least one time unit to reach maximum
distance from the nest. The agent had two beacon sensors (for
phototaxis), two (sometimes more) compass sensors, one speed
sensor, one food sensor, two rotation motors and one forward
motor. The agent’s motion was restricted to rotation and
forward translation. No backward or sideways movement was
allowed, in keeping with the usual behaviour of foraging ants.
The agent was assumed to have low inertia; motor output
therefore specified forward speed and rotation directly, rather
than supplying forces. Speed was controlled by the forward
motor neuron firing rate (firing rate is defined in the next
section), F, and rotation by the two opposing left and right
rotation motor neuron firing rates, RL and RR:

d�A/dt = 150 (RL – RR)·, (5)

giving a maximum rate of turn of 150·radians per time unit,
and maximum speed of 1 distance unit per time unit. This
scheme was chosen, rather than simply simulating a two-
wheeled robot, so that the agent’s speed could be easily fixed
at maximum without preventing it from steering.

The agent’s body, consisting of sensors, motors, neurons and
links, was constrained to bilateral symmetry. Aside from
single-copy components such as the speed sensor and forward
motor neuron, all components were created as symmetrical
pairs, including all other neurons, sensors and links.

Compass sensor neurons had an activation function, f, which
responded maximally to a particular agent orientation, �A=a,
and declined in a symmetrical way either side of this value.
Each pair of compass sensor neurons had complementary
values such that if one responded maximally at �A=a, the other
responded maximal to �A=–a. This could be considered as the
response of light sensors to a distant light in the east. All
activation functions define the stimulus–response properties of
the sensory neuron in terms of its firing rate (see next section).
The function f was varied between experiments and was mostly
based on the cosine function (see Fig.·3). As can be seen, some
functions have negative as well as positive firing rates. This
unbiological feature can be removed by replacing each
compass sensor with two sensors, each giving a

complementary half-wave rectified output (see Discussion).
Negative values were used to simplify the analysis of the
evolved networks. The agent was either given one pair of
compass sensors with maximum responses set to �A=±�/4 or
had an evolvable number of sensor pairs with evolvable
maximum response parameters. The pair of beacon sensor
neurons was defined as having activation [cos(�B–�/2)/2]+0.5
for the left sensor and [cos(�B+�/2)/2]+0.5 for the right, where
�B is the angle to the current beacon from the agent’s body axis
(the activation is therefore independent of distance to the
beacon). Additionally a ‘food’ sensor neuron was used: its
activation was 0 before reaching the final beacon (where the
agent might be imagined to have collected an item of food to
motivate its return to the nest) and 1 thereafter (this sensor was
ignored by most of the evolved networks). The speed sensor
neuron gave a proprioceptive measure of the agent’s current
speed, including motor noise, linearly mapped to the range
[0,1]. Noise was applied to all initial neuron states (vt=0),
sensors and motors by adding a uniformly distributed random
offset in the range [–�,�]. The offsets for sensors and motors
where held constant across multiple numerical integration
steps (see Appendix·1); changes in value were triggered using
a Poisson process rate r (the average number of events per unit
time) to calculate the time of the next value change:
tchange=[–ln(1–x)/r]+t, where x is a uniformly distributed
random value drawn from the interval [0,1], and t is the current
time. This scheme makes noise effectively independent of the
numerical integration step size used. The values of � and r
could be set for each sensor/motor type; �=0.01 and r=20.0
were used initially for all sensors and motors; for some
experiments, this was increased part way through for the
forward motor neuron to �=0.7, r=2.0 and for the rotation
motor neurons to �=0.1, r=20.0 in order to impose large long-
lasting variations in the agent’s velocity. Overall, the presence
of noise in the simulation is intended to promote the evolution
of robust PI solutions and to cause small cumulative navigation
errors, as occur in natural PI.

R. J. Vickerstaff and E. A. Di Paolo
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Fig.·3. The four compass activation functions used. From the bottom:
cosine, positive cosine, piecewise linear approximation of cosine,
head direction cell. Plot of sensor output (y-axis) against �A–a (x-
axis), where �A is the agent’s current orientation and a is the sensor’s
preferred direction.
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Neural networks

The control network used was either a CTRNN (with fixed
weights) or a ModCTRNN (with modifiable weights, allowing
multiplication). The overall network architecture was always
bilaterally symmetrical but was not otherwise constrained. It
was not prevented from forming recurrent connections or
forced to be fully connected. The GA fully determined which
components were linked to which other components. This had
the advantage of allowing a form of stochastic evolutionary
pruning to remove redundant components where the GA was
left running with its addition operator disabled but deletion
operator enabled (see Appendix·1 for details).

The state equation used here for a CTRNN neuron is:

�i (dvi/dt) = –vi + 
j wjzj·, (6)

where i indexes all neurons, j indexes all links inputting to
neuron i (which may be an empty set), �i is a time constant, vi

is the neuron state (analogous to a membrane potential), wj is
the link weight and zj is the activation of the sensor or neuron
attached to link j. For a neuron, zj=1/{1+exp[–(vj+bj)]}, where
bj is a bias parameter. For a sensor, zj is the current activation.
The initial value of the membrane potential, vi,t=0, was also
encoded for each neuron. z represents a dimensionless firing
rate, i.e. a firing rate divided by its maximum possible rate.
Since the model does not generate explicit spikes, it could
alternatively be considered to represent the dimensionless
membrane potential of a non-spiking neuron. Synaptic
weights, w, in the CTRNN model are fixed, having no
dynamics or plasticity of any kind.

The ModCTRNN uses the same state equation for its
neurons but also applies an additional analogous leaky
integration equation to its weights, changing them from fixed
parameters into potential variables. This is achieved by
allowing links to point to other links and input a signal that can
modify the target link’s weight:

�1 (dwi/dt) = –wi + �i + 
j wjzj·, (7)

where i indexes all network weights, j indexes all links
inputting to weight i (which may be an empty set), � is a time
constant, � is a bias term, wj is a link weight and zj is the firing
rate of the neuron or sensor attached to link j. All weights wi

are initialised to �i, therefore any weights that receive no inputs
remain constant at this value throughout a trial. A link acting
to modify the weight of another link can itself be the target of
modification, and so on, allowing an arbitrary degree of higher-
order weight changes to take place, limited only by the number
of links available to the GA. See Appendix·1 for the parameter
ranges allowed. The ModCTRNN equation is capable of
producing effects similar to synaptic depression or facilitation
but should not be considered as a detailed realistic model of
synaptic plasticity.

Experiments
Experiment 1A

The agent was given one pair of compass sensors giving a
cosine-shaped response (see Fig.·3). The CTRNN model was

used. The agent always moved at its maximum speed. Once
the agent had evolved to solve the task reliably, the GA was
run in pruning mode until the size of the genotypes stabilised,
indicating that most or all network redundancies had been
removed.

Experiment 1B

As experiment 1A except that the agent’s speed was not
fixed at maximum and the agent was held stationary for a
random interval at the final beacon.

Experiment 2A

As experiment 1A except that the ModCTRNN model was
used.

Experiment 2B

As experiment 2A except that the agent’s speed was not
constant and the agent was held captive for a time at the last
beacon. Once the agent had evolved a good fitness, a further
perturbation was introduced by setting �=0.7, r=2.0 for the
forward motor neuron (forcing large long-lasting changes to
the agent’s speed via the noise offset mechanism) and �=0.1
for the rotation motor neurons. Most of the Results section is
dedicated to an in-depth analysis of the network evolved in this
experiment.

Experiment 3A

As experiment 2A except that compass sensor responses
were of the ‘linear cosine’ type (see Fig.·3) and the number
and maximum response direction of the compasses were
allowed to evolve (up to a maximum of 10 compass pairs).

Experiment 3B

As experiment 3A except that the agent’s speed was
variable, as in experiment 1B.

Experiment 4

As experiment 3A except that the compass sensor response
was the ‘head direction cell’ type (see Fig.·3), intended to
model the response properties of head direction cells in rats
(Taube, 1997).

Experiment 5

As experiment 3A except that the compass sensor response
was the ‘positive cosine’ type (see Fig.·3).

Three replicates were performed for each experiment.
Results are described for the most successful of the three runs.

Results
See Table·1 for a summary of the results.

Experiment 1A: CTRNN constant-speed PI

The fittest agent after approximately 67·000 generations
returned to the nest within the time limit in 989 of 1000 test
trials. The bilaterally symmetrical network (see Fig.·4)
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contained 12
2 links (of which two pairs share the same
source and target and so are not visible in the figure) and 3
2
interneurons. The shape of the return journey was highly
dependent on the bearing to the nest from the last beacon and
was generally not straight or direct (see Fig.·5 for one example)
but usually consisted of two or more phases characterised by
different patterns of oscillation in four of the neurons (shown
in white in Fig.·4; Fig.·6 shows the neural dynamics), resulting
in various looping and zigzagging behaviours. The non-
oscillatory neurons act as integrators of the compass sensor
inputs. Their output and the current compass sensor output
feeds into the oscillatory group. A plot of fitness against the
angle to the beacon from the nest for 360 single beacon trials
(data not shown) showed a clear sinusoidal-shaped

relationship, caused by the agent taking longer to return to the
nest from some regions than others. This was clearly a
suboptimal solution that did not home as C. fortis does in a
straight line. This network was therefore not analysed in any
further detail.

Experiment 1B: CTRNN variable-speed PI

This experiment failed to produce any successful agents
after running three independent populations for 35·000
generations. Seeding the GA with the fittest genotype from
experiment 1A also failed for three populations after 65·000
generations.

Experiment 2A: ModCTRNN constant-speed PI

Experiment 2A produced good results and, although evolved
independently, produced a very similar network to the 2B
experiment. The 2A results are not presented in any further
detail here, since they do not add anything to the 2B results.

The 2A experiment was also repeated using the same
settings except the maximum time constant values (� and �)

R. J. Vickerstaff and E. A. Di Paolo

Table·1. Summary of results

Network Compass Returns 
Expt model* Speed† response‡ (%)§ Size¶

1A C Const. Cos 98.9 6,24
1B C Var. Cos 0.0 –
2A M Const. Cos 90.4 0,8
2B M Var. Cos 99.2 0,12
3A M Const. Lin. cos 39.9 0,6
3B M Var. Lin. cos 8.2 0,8
4 M Const. HD cell 5.6 0,12
5 M Const. Pos. cos 0.0 –

Results shown are for the best network obtained from three
replicate experiments.

*Network model used: C, CTRNN; M, ModCTRNN. 
†Speed during trial: Const., constant; Var., variable.
‡Compass response function (see Fig.·3): Cos, cosine; Lin. cos,

linear approximation of cosine; HD cell, head direction cells; Pos.
cos, positive cosine.

§Percentage of successful returns to nest out of 1000 test trials.
¶Number of interneurons and links.

Fig.·4. Experiment 1A CTRNN network solving the constant speed
path integration task. BL/R, left/right beacon sensor; CL/R, left/right
compass sensor; RL/R, left/right rotation motor neuron; NL/R,
interneurons. Arrows are directional weighted links; double-headed
arrows indicate two links running in opposite directions. Open circles
are neurons involved in the oscillations responsible for generating the
various modes of behaviour seen in this agent during its return journey
(see Fig.·5).

CL CR

BL BR

RL RR

NL1 NR1

NL2 NR2NL3
NR3

Nest

B1

0.1

Fig.·5. Experiment 1A CTRNN agent performing the constant speed
path integration task. B1 indicates the single beacon. Beacon and nest
are drawn as circles of radius 0.01.

Fig.·6. Experiment 1A CTRNN network dynamics during the return
phase of the journey (see Fig.·5). Plots are of neuron firing rates; the
y-axis runs from 0 (bottom) to 1 for each. B1 and nest indicate the
time of arrival at the beacon and the nest, respectively (the nest is
reached at the very end of the trial). NL3/R3 and RL/R are as in Fig.·4.

B1

NL3

NR3

RL

RR

Nest
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allowed were 0.01, thus preventing neurons and weights from
acting individually as integrators, but the GA failed to find any
solutions.

Experiment 2B: ModCTRNN variable-speed PI

Since this experiment provided the most interesting and
complete set of results, a detailed and extensive analysis is
presented in this section. The results for the remaining
experiments follow after. The fittest agent after about 35·000
generations returned to the nest within the time limit in 992 of
1000 test trials. The network contained six link pairs and no
interneurons. The return journeys were approximately straight
(see Fig.·7) considering the level of motor noise.

To test for artefacts resulting from numerical integration,
500 trials were performed using an integration step size of
0.001 (as during evolution) and 500 more with 0.0001; the
agent reached the nest in 488 and 489 trials, respectively, a
non-significant difference (�2=0, P>0.1; chi-squared test).

To test whether the ModCTRNN network was significantly
better able to evolve solutions to this task than the CTRNN
model, five more replicates of experiments 1B and five of 2B
were performed for 60·000 generations each, evolving the
ability to return home from a single randomly placed beacon
with full motor noise applied. None of the 1B runs produced
an agent that returned to the nest in any of 1000 test trials, but
for all 2B runs (some of which were stopped early when it
became clear PI had evolved) the agent returned home in
greater than 50% of 1000 test trials. Taking a random course
from the beacon would result in between 1.6 and 3.2 returns
to the nest per 1000, therefore zero is worse and 500 much
better than this random strategy. Five failures for the CTRNN
and five successes for the ModCTRNN is a statistically
significant difference (P<0.01; Fisher’s exact test).

Following Mittelstaedt’s bicomponent model (Mittelstaedt,
1985), this experiment assumed a sinusoidal compass sensor
response function. The two compass sensors (CL and CR; later
abbreviated as CL/R) gave responses of cos(�A+�/4) and
cos(�A–�/4), respectively, where �A is the agent’s heading
anticlockwise from the x axis. Taking �=�A+(�/4), we obtain
CL=cos� and CR=sin�, exactly as Mittelstaedt used. It is

therefore sufficient to integrate these values, multiplied by the
agent’s speed, to obtain an HV in geocentric rectangular form
(see Eqn·1), and this is exactly what the network does (see
Fig.·8; Table·2). Links wL3/R3 integrate CL/R, respectively, and
store the values contralaterally in the values of weights wR2/L2,
respectively. Since weights wL3/R3 are themselves governed by
the speed sensor, via links wL4/R4, their value is the agent’s
speed multiplied by the value of wL4/R4 and they act to multiply
the compass values by the current speed before they are
integrated to the HV.

Weight values wR2/L2 therefore constitute the HV, but they
have a sufficient degree of leakiness over the agent’s journey
that significant homing errors would occur if nothing acted to
compensate. Their time constants are 8.44, much less than the
maximum allowed value during evolution of 1000.
Compensation is achieved by normalising the values of wL4/R4

Nest

B1

B3
B2

0.1

Fig.·7. Experiment 2B agent (see Fig.·8) performing the variable-
speed path integration task. B1,2,3 indicate the order the beacons were
presented in. Beacons and nest are drawn as circles of radius 0.01.

BL BRCL CRS

RL RRF

wL1

wR2wR3

wR4

wR1

wL2
wL3

wL4

wL5 wR5

wL6 wR6

Fig.·8. Experiment 2B ModCTRNN network solving the variable-
speed path integration task. BL/R, left/right beacon sensor; CL/R,
left/right compass sensor; RL/R, left/right rotation motor neuron; S,
speed sensor; F, forward motor neuron. Arrows are directional
weighted links; double-headed arrows are two links going in opposite
directions between the same end points. Lines ending in small squares
are links that modify other links. wL1/R1…wL6/R6 are weighted links
(synapses). See Table·2 for parameter values.

Table·2. Parameter values of the evolved network from
experiment 2B (see Fig.·8)

Component Parameter values

wL1/R1 w=12.0720
wL2/R2 �=8.4355, �=0.0001
wL3/R3 �=0.0123, �=2.0477
wL4/R4 �=5.1753, �=–98.7613
wL5/R5 w=65.9304
wL6/R6 w=–3.5159
F �=0.0489, v0=38.2195, b=42.8689
RL/R �=0.0106, v0=–3.6629, b=0.2994

Abbreviations: F, forward motor neuron; RL/R, left/right rotation
motor neuron; wL1/R1...wL6/R6, weighted links (synapses); �, weight
time constant; �, weight bias; �, neuron time constant; b, neuron
bias; v0, initial neuron potential (when t=0).
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to approximately match the amount of leakage that wR2/L2 have
undergone since the start of the journey. This is a simple, fixed-
rate exponential decay function, visible in Fig.·9 in the values
of wL4/R4 and wL3/R3, and is caused by the fixed output of the
forward motor neuron via fixed weights wL5/R5 acting to reduce
the magnitude of weights wL4/R4.

Once the last beacon is reached, the beacon sensors become
inactive, phototaxis ceases and the HV is free to control the
agent’s behaviour. The HV causes the agent to turn towards
home using an instantiation of, once again, Mittelstaedt’s
bicomponent model (Mittelstaedt, 1962; Eqn·3), where the two
speed-weighted compass sensor integrals (i.e. the HV) are
multiplied by the current value of the contralateral compass
sensor. These values are fed into the two opposing rotation
motors, RL/R, by links wL2/R2. The agent’s rotation is the
difference between these two motor outputs, completing the
instantiation of Mittelstaedt’s homing model.

The initial phototactic stage of the agent’s journey is
achieved by ipsilateral links wL1/R1, which cause positive
phototaxis (Braitenburg, 1984). These links feed into RL/R

with higher weight values than wL2/R2 and so suppress homing
behaviour until the last beacon disappears. Thus, homing
begins immediately and automatically as soon as the last
beacon disappears, without any further trigger (the network
ignores the food sensor). When the home vector becomes
very large, phototactic suppression of homing may be
incomplete and noise can cause positive phototaxis to be
temporarily lost before the beacon is reached. The agent
adopts a negative phototactic or sometimes homeward
trajectory (see Fig.·10) before returning to positive
phototaxis. This shows an interaction between the agent’s
two main modes of behaviour, which, we speculate, could be

selected for to allow the agent to ignore beacons that were
too far from its nest.

Simplified analytic model

A simplified analytic model (SAM) of the evolved network
was used to compare its behaviour with that of C. fortis (see
Appendix·2 for full details). All internal stateful dynamics of
the network were removed except for the leaky integration of
the HV. The leakage normalisation mechanism was removed
(provisionally justified by assuming it approximates the
behaviour of an unnormalised but less leaky network). The
SAM also assumes that the agent travels in straight lines to
visit all the beacons in turn before turning immediately to
adopt the homing direction determined by the homing
mechanism and the HV state. The SAM then produces a
straight run to the point where the HV is zero. As the
integrator time constants are increased, the system converges
on an accurate PI system. For smaller values of the time
constant, the HV no longer defines a fixed point on a fixed
geocentric coordinate system. We can say rather that the agent
has reached its estimate of home when the HV has reached
zero (the ‘HV zero point’) and that the location of this point
is a function of the agent’s outward journey shape and its
speed during both exploration and homing. Information stored
in the HV for longer has undergone more decay, giving rise
to systematic errors returning from straight and L-shaped
journeys that closely resemble the systematic errors seen in C.
fortis ants once the SAM’s integrator time constant, �, has
been fitted to the data.

L-shaped routes

Müller and Wehner (1988) conducted an extensive series of
experiments testing the homing behaviour of C. fortis after L-
shaped outward excursions. They showed that the error in the
heading of the ant’s homeward run (i.e. its angular deviation
from a direct homeward path) varied systematically with
features of the outward journey, specifically the length of the
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Fig.·9. Experiment 2B network performing the variable-speed path
integration task. Plot shows link weights (y-axis; see Fig.·8) over the
whole trial (x-axis; see Fig.·7). B1,2,3 show the approximate time of
arrival at each beacon (the nest is reached at the very end of the trial).
From ~2 time units into the trial until 3 time units, a large change in
the values of wL3/R3 reflects noise applied to the forward motor output,
as detected by the speed sensor. The second abrupt change in these
values reflects the period of enforced captivity of the agent at the last
beacon before homing begins.
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0.1

Fig.·10. Experiment 2B agent showing transient negative phototactic
behaviour (loops) near the limit of the ‘foraging’ range selected for
during evolution. Here, the agent twice turns away from the beacon
(marked B1) before finally reaching it and homing normally.
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first straight section, the angle turned moving from the first to
the second section and the length of the second straight section.
The data are reproduced in fig.·11a–c from Hartmann and
Wehner (1995) and were used to fit the SAM’s � time constant
parameter to the behaviour of C. fortis (see Fig.·11). � was
fitted to the first of the three experiments, and the remaining
experiments were used to check the model’s generalisation.
The fit is visually as good as that achieved by both the
Hartmann–Wehner and Wittmann–Schwegler models. It
should be borne in mind that the former was designed from the
outset to mimic the data it was fitted to and that the latter was
modified from its original form also specifically to fit the data.
The SAM, however, was derived from a network evolved
under selection for optimal PI and had all but one free

parameter removed before fitting it to the C. fortis data. This
makes leaky integration a strong candidate for a mechanistic
explanation of the observed errors.

Long straight routes
Sommer and Wehner (2004) showed that, on straight

journeys, C. fortis tends to underestimate the length of the
return leg as an increasing function of the outward journey
length. They fitted several models to this ‘error function’ and
concluded that a leaky integrator function was one of the best
fits (the other was a logarithmic function). The leaky integrator
equation fitted to the data was:

y = � (1 – e–�x)·, (8)

where x is the length of the outward journey to the feeder, y is
the centre of the ant’s search pattern at the end of the return
journey and � and � are free parameters. This is similar to the
model presented in Mittelstaedt and Glasauer (1991). We now
present a slightly different model (which can be derived from
the SAM model simplified for straight journeys), which fits the
data equally well. We assume the ant’s speed is constant
throughout the journey and that it does not stop or search at
the feeder for any significant length of time. The simplest leaky
integrator model has only one parameter that influences the
error function, namely its time constant (see Appendix·3),
giving an error function of:

y = � [1 – e–(x/�)]·. (9)

Eqn·9 corresponds to the integrator state upon reaching the
feeder or to the assumption that the ant measures the outward
journey using a leaky integrator but turns the leak off for the
return journey. It is known, however, that in the species being
modelled, PI continues during the return journey, due to the
behaviour of C. fortis after forced detours (Schmidt et al.,
1992). In keeping with this result, we assume that integrator
leak is constant throughout both legs of the journey, giving us
a single parameter error function of (see Appendix·3):

y = � ln [2 – e–(x/�)]·. (10)

This model can be obtained by reducing the SAM to the case
of a straight journey at constant speed and is similar to the
neural model evolved by GA in Vickerstaff (2003). Once
leakage is assumed to be constant, we still have at least two
options for a PI system: continuous and discontinuous (Collett
and Collett, 2000). The continuous model leads to Eqn·10. In
the discontinuous model, the integrator state at the feeder is
stored, then zeroed. The compass response function is then
inverted, and the ant navigates towards the point where its
integrator state is the same as the stored value. This leads to a
prediction of y=x (no systematic error) regardless of the value
of the integrator time constant. The shape of the
Sommer–Wehner data clearly favours the continuous model
over the discontinuous model under the leaky integrator model
presented here. Fig.·12 shows Eqns·9 and 10 fitted to the data,
plotted alongside Eqn·8. The three models are visually
indistinguishable. Once again, the model presented here
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Fig.·11. The simplified analytic model (SAM) fitted to data (Müller
and Wehner, 1988) taken directly from figs·11a–c in Hartmann and
Wehner (1995). The ants walked along a channel from the nest, turned
through an angle A, walked along a second channel before being
released on a test field. The lengths of the channels were (A) 10·m
and 5·m, (B) 5·m and 10·m and (C) 10·m and 10·m, respectively. �
shows the ants’ homing direction (diamonds). In each graph, the top
line shows the SAM using a time constant of �=18.38; the lower line
shows the correct homing angle.
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contains fewer parameters but fits equally well compared with
existing models that were explicitly designed [in the case of
Sommer and Wehner’s model by a process of searching for the
best model from a set of four candidates (Sommer and Wehner,
2004)] to fit the data. The � time constants arrived at for the
L-shaped (18.38) and straight journeys (193.6) are clearly very
different (see Fig.·12); consequently, if we wish to use the
same model to explain both data sets, we must propose that the
effective integrator time constant can vary according to some
unknown factor(s). This is in keeping with a type (3) model
(see Introduction) but also reduces the model’s parsimony
unless there is a natural reason for such a variation to occur.

Search patterns

One notable feature of the homing equation (Eqn·3) is the
behaviour produced after reaching the HV zero point. If we
assume that the animal continues to move forward at a fixed
speed at all times, it will pass directly over its estimate of
home, thereby switching from the stable to the unstable
equilibrium of the equation since it will now be facing directly
away from the zero point. Any slight perturbation will turn it
back round onto a new stable homeward trajectory, causing it
to again cross over the home position and begin another
outward loop, and so on. The result is that it would continue
to loop around its current HV zero point. The exact behaviour
produced would depend on the amount of noise present and the
animal’s rate of turn but would consist roughly of a series of
equal-sized loops taking the animal away from and back
towards the HV zero point, very roughly as is seen in
Cataglyphis ants (Wehner and Srinivasan, 1981). Thus, the
homing equation itself appears enough to generate a crude
search behaviour when combined with a fully specified model
of the animal’s motion. Kim and Hallam (2000) have

suggested that the homing mechanism of PI might be enough
to also explain searching behaviour.

The trajectory of the 2B experiment agent is more complex
than the expected looping behaviour and shows little
dependence on the amount of noise present (Fig.·13). Thus, the
network appears to have evolved to produce a more noise
robust, and possibly more efficient, search behaviour. Since the
fourth fitness criteria rewards shorter total journey times, we
have been implicitly selecting for efficient search as well as
direct, rapid initial homing. Since the agent reaches home in
~99% of trials, the third fitness criterion, penalising higher
average distances from the nest during homing if the agent did
not reach home before the end of the trial, will not have been
significant during the final stages of the network’s evolution,
allowing broad search patterns to evolve if necessary.

To compare the experiment 2B agent’s search with that seen
in C. fortis, the average search density of 50 trials returning
from a beacon 0.75 distance units east was plotted (Fig.·14),
showing an approximately symmetrical bell shape. C. fortis
(Wehner, 1992) and other Cataglyphis species (Wehner and
Srinivasan, 1981) show a similar search profile. Additionally,
the ant performs a broader search pattern the longer the
preceding outward journey was (Wehner, 1992) and therefore
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Fig.·12. The top line represents y=x, i.e. the correct homing distance.
The middle line represents three leaky integrator models fitted to data
(diamonds) taken directly from fig.·2 of Sommer and Wehner (2004).
The models are Eqn·8 with �=98.27, �=0.0103 (taken from their
paper), Eqn·9 with �=103.2 and Eqn·10 with �=193.6 (fitted using
least squared error). The models are indistinguishable. Also shown as
the bottom line is Eqn·10 with �=18.38, the value obtained fitting the
simplified analytic model (SAM) to the L-shaped journey experiments
(see text), clearly a poor fit.
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Fig.·13. The experiment 2B agent’s behaviour if the nest is removed
(A) with all sources of noise removed and (B) with 1% sensor noise,
10% rotation motor noise and 70% forward motor noise (as during
evolution). A searching behaviour that does not rely on the presence
of noise is clearly visible and arises from the coupled dynamics of the
agent’s network and motion.
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the greater its uncertainty about the home location. Also,
during a single search, the ant gradually increases the width of
the pattern the longer it has been searching (Wehner and
Srinivasan, 1981). The 2B network effectively has a built-in
timer in the exponential decay of weights wL4 and wR4, which
influences the magnitude of its HV and which appears to be
the only mechanism that might influence the search pattern
width over time. In fact, the timer could roughly reproduce
both features of the ants’ search, provided only the search
width is inversely related to the magnitude of the decaying
weights, since lengthier journeys take longer to complete on
average. The ants’ search pattern stays centred on the same
location during a search (Wehner and Srinivasan, 1981) but
that of the agent may begin to drift around due to cumulative
HV errors, which must therefore also be accounted for when
characterising its search behaviour.

A plot was made of the average distance of the agent from
the fictive nest position during the return and search phases of
200 journeys where the agent was returning from a single
beacon 0.75 distance units away in a random direction,
(Fig.·15). The nest had been removed and each trial the agent
was allowed to search for three times as long as during
evolution. The agent’s HV error was also estimated during the
200 runs (1) by taking a running average of the agent’s position
over a time window long enough to contain multiple search
loops and (2) by using the SAM to derive the approximate
position where the agent’s HV (weights wL2 and wR2) would
be zero were it to move to that location in a straight line (see
Appendix·2). Since these were in good agreement (data not
shown), only the second estimate was used. On the plausible
assumption that the search efficiency cannot be increased by
deliberately introducing HV errors, only the agent’s distance
from its estimate of the nest location can be considered as
evidence of an evolved search behaviour similar to the ants.
This distance is obtained by subtracting the HV error vector
from the agent’s coordinates. The average distance from the

nest, the HV error and the agent’s distance from the HV zero
point all increase during the search period, suggesting that both
random and systematic increases in search width are at play
(see Fig.·15).

Plots of the agent’s initial search pattern width after
returning from beacons at different distances from the nest did
not show any trend towards an increase in relation to journey
length. This may be due to the relatively small range of journey
lengths used (0.5 to 1.0). The agent cannot readily be tested at
greater distances without being re-tuned by evolution, since its
homing becomes inaccurate beyond the foraging range it has
experienced during its evolution.

Adding long delays

C. fortis can retain some memory of its HV for long periods
(up to about four days) if forcibly held still (Ziegler and
Wehner, 1997). To test the agent’s ability to perform the same
task with its leaky integrators we further evolved the network
obtained in experiment 2B whilst subjecting the agent to a
gradually increasing holding time at the last beacon. Finally,
the agent was held for up to 50 time units (i.e. 50 times the
longest possible direct return journey). The fittest agent
returned to the nest within the time limit in 931 of 1000 test
trials.

The network had evolved to retain the same structure but had
increased the time constant on the HV storing weights wL2/R2,
from 8.44 to 113.8, and had also increased the magnitude of
weights wL4/R4 from approximately 100 to 153 (this was
achieved by adding a new pair of links with the same start and
end points, since the maximum allowed strength of any single
link was set to ±100). This modification is understandable since

Fig.·14. Experiment 2B search density of the agent when the nest has
been removed, averaged over the final 35% of 50 independent trials.
The agent is returning from a single beacon placed at a distance of
0.75 to the right in all trials. The white dot shows the fictive nest
position; the black bar shows the size of the nest (diameter 0.02).
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Fig.·15. Distances averaged over 200 trials where the agent has
returned from a beacon 0.75 distance units away to the fictive nest
position and is performing the search behaviour. Top line: average
distance of agent from the nest; linear regression fitted is
d=1.5820
10–6t+0.0519. Middle line: average distance of agent from
home vector (HV) zero point (see text); model fitted is
d=1.0598
10–6t+0.0496. Bottom line: average distance of HV zero
point from nest; linear regression model (not plotted) is
d=1.0484
10–6t+0.0091. The middle line, which increases during the
search behaviour, suggests the agent is ‘deliberately’ searching further
from the nest the longer it has been searching.
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increasing the time constant of the integrators leads to less
leakage (and so approximates perfect integration more closely)
but smaller HV values. Smaller values in turn reduce the agent’s
maximum rate of turn during homing, which influences the
straightness of its path under noisy conditions, and the shape of
its search pattern. Increasing the magnitude of wL4/R4

compensates by scaling the HV values back up.

Varying the compass sensor

All the remaining experiments consist of applying variations
to the shape of the compass sensor response function. This was
felt to be an important assumption to study since the ant’s
representation is not known (but see Labhart, 2000), and the
evolved solution may clearly be heavily influenced by the
choice made.

Experiment 3A: ModCTRNN constant speed with linear
cosine

The fittest agent used two pairs of compass sensors with
maximum responses set to approximately ±�/4 and ±3�/4, but,
since responses of sensors separated by �·radians are equal in
magnitude but opposite in sign, this was equivalent to a single
pair of sensors at ±�/4. Taking this into account, the network
had the same structure as that evolved in experiment 2B except
it lacked link pairs 4, 5 and 6 (see Fig.·8). The agent returned
to the nest in 399 of 1000 random independent trials. The SAM
was modified to model this network by changing the compass
response function to the linear cosine used here. The
systematic errors seen after L-shaped journeys are clearly a
much poorer fit to the data from C. fortis than those produced
by a cosine-shaped compass response (see Fig.·16) and are also
dependent on the angle to the compass cue relative to the L
shape (data not shown).

Experiment 3B: ModCTRNN variable speed with linear
cosine

The fittest agent returned to the nest in only 82 of 1000 test
trials. The agent used one compass sensor pair with maximum
response angles of approximately ±�/4. The network had the
same architecture as experiment 3A, i.e. it did not take into
account information from the speed sensor, even though speed
was not constant in this experiment. This accounts for its much
poorer performance.

Experiment 4: ModCTRNN constant speed with head
direction cells

The fittest agent returned to the nest in only 56 of 1000 test
trials. The agent used three pairs of compass sensors with
maximum response angles set to approximately ±�/4, ±7�/12
and ±3�/4. The network structure was very different from
those evolved in the other experiments but, since the
performance was so poor, it cannot be considered a viable PI
model and will not be presented here.

Experiment 5: ModCTRNN constant speed with positive
cosine

This experiment failed to produce any successful agents.

Discussion
The GA successfully evolved a bicomponent model of PI

using very few neurons and links (synapses), provided the
neurons were given elaborate properties (the ModCTRNN
model). The architecture is probably the simplest
implementation of PI and was therefore easier for the GA to
discover and is modular in that the two components of the HV
do not have to interact in order to be correctly updated. The
imposition of bilateral symmetry and compass input and motor
output based on pairs of neurons probably also encouraged the
production of a bicomponent system. So far, only cosine-shaped
compass response functions have evolved to give successful
solutions, probably because this allows the sensor output to be
fed almost directly into the HV. Wittmann and Schwegler (1995)
show that any symmetrical unimodal compass response function
can be converted into a sinusoidal shape, but this requires extra
processing between the sensors and the HV accumulator, which
our experiments using non-cosine compasses failed to evolve,
although this could be due to the small number of replicates
performed. The compass representation we chose has negative
as well as positive values, which clearly cannot be interpreted
directly as a firing rate. However, each compass sensor could be
replaced with two sensors, each having only positive outputs,
one representing the positive half of the cosine shape, the other
the negative part. This solution closely resembles the
stimulus–response behaviour of four sensory interneurons of the
cricket cercal sensory system (Miller et al., 1991), which show
half-wave rectified sine waves. The evolved network is then
easily modified by the addition of further links and would retain
the same behaviour. The network then requires approximately
30 links in place of the original 12.

R. J. Vickerstaff and E. A. Di Paolo

Fig.·16. The simplified analytic model (SAM) modified to use a piece-
wise linear approximation of cosine (see Fig.·3) as the compass
response function (upper line) fitted using least sum of squared error
to data (diamonds; Müller and Wehner, 1988) taken from fig.·11a in
Hartmann and Wehner (1995). The lower line shows the correct
homing angle. The value of the time constant obtained is �=38.00.
The fit is noticeably poorer than that obtained with the cosine-shaped
compass sensor response function (see Fig.·11A). The axes are
labelled as in Fig.·11.
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An objection previously directed at the bicomponent model
is that it can only generate perfect, error-free PI. We have
shown that, if implemented using leaky integrators, the model
naturally generates errors that can quantitatively match those
seen in C. fortis, once the time constant has been set
appropriately (but can also still produce accurate navigation
using larger time constant values). This arises from a model
evolved only under selection for accurate, error-free navigation
that was not originally intended to mimic errors.

The model also automatically generates search behaviour at
the nest that is similar in some respects to the behaviour of
the ant. This was unexpected and not the result of any explicit
feature of the artificial selection scheme. It seems likely that
the Wittmann–Schwegler and Hartmann–Wehner models
could produce a similar behaviour. Indeed, Hartmann and
Wehner (1995) note that their homing mechanism has the
same two equilibrium states (one pointing home, the other
directly away from home) as the SAM but never show any
simulations of their agent’s behaviour near to the nest. Instead,
they assume that systematic search requires a separate control
system that the HV simply triggers when needed. Here, we
have shown that such an extra mechanism may be entirely
unnecessary. The agent’s search pattern produces a bell-
shaped density profile similar to Cataglyphis’. The search also
appears to get slightly wider over time, as does the ant’s,
although this is only detectable after averaging many searches
and cannot yet be assigned an adaptive role for the agent with
any confidence.

Clearly, our model is a simple one, particularly in the
reduced SAM form, and should not be expected to reproduce
all aspects of the ant’s behaviour, indeed it does not. The
SAM’s single time constant can be set to reproduce the
features of L-shaped journeys or long straight journeys, but
not both at once. The SAM contains only one time constant,
whereas in real systems, such as the goldfish oculomotor
neural integrator (Major et al., 2004), where the integrator
must respond rapidly to sacchades but decay only slowly
between them, significant dynamics can occur on multiple
time scales. The full dynamical model is needed to produce
search behaviour.

There appear to be many possible future applications of the
methodologies applied here for path integration and ant
navigation in general [indeed this is not the first evolved model
of insect navigation (Dale and Collett, 2001)]. In forthcoming
work, the present PI model will be subjected to a more-detailed
analysis. Follow-up experiments could also be aimed at
reproducing different features of desert ant behaviour, such as
the open-jaw learning experiments (Collett et al., 1999;
Wehner et al., 2002) or the interactions between PI and
landmark recognition (Collett et al., 2003). A further
interesting possibility would be an investigation of the
evolution of the dorsal rim area (DRA) of the ant’s compound
eye, which is able to detect the e-vector patterns of polarised
skylight. The system is well enough understood (Labhart,
1999, 2000; Lambrinos, 2003) to attempt evolving the number
and orientation of the DRA polarised light detectors within a

simulation of the e-vector patterns present over the ant’s desert
habitat.

Finally, we would like to note the benefits and versatility of
the modelling approach used in this paper, namely a whole
agent simulation where a neural model explicitly controls an
agent moving within a simple simulated world, in this case
constructed with the aid of a GA. This allowed a direct
comparison to be made between models evolved under
differing conditions and enabled us to forego the usually
unavoidable a priori assumptions concerning internal HV
representations. Perhaps contrary to expectation (and partly
due to the GA’s pruning ability), the best evolved network is
structurally simple and can be readily analysed. A whole-agent
approach naturally leads us to focus on the agent’s behaviour
rather than the network alone and has allowed us to uncover
unexpectedly rich behaviour with interesting parallels to the
real behaviour of the species being modelled.

Appendix 1: details of the genetic algorithm
The agent’s sensors, control network and motors were

encoded using a variable-length genotype. This allowed genes
to be added and deleted during mutation within defined
frequency ranges. Each genotype had a probability of 0.1 of
having its length changed per generation. This was chosen to
be a single gene addition or deletion with the ratio 3:5, except
when the genetic algorithm (GA) was in evolutionary pruning
mode, where the ratio was 0:1. Within each gene are the
parameters specifying the encoded component(s), each of
which was mutated with probability 0.05 per generation by
adding a random Gaussian value mean 0 standard deviation
0.02 multiplied by the maximum range of the parameter
(detailed below).

Out-of-bounds values were corrected by bouncing back
from the boundary or wrapping round to the other boundary
for circular parameters. Recombination was not used (i.e.
reproduction was asexual).

Gene parameters were mutated by the GA within the
following ranges: w,�	[–100,100], �,�	[–2,3] (but mapped
using 10x to [0.01,1000] before being used), b,v0	[–50,50]
where w is link (or synapse) weight, � is weight bias, � is
weight time constant, � is neuron time constant, b is neuron bias
and v0 is initial neuron potential (see Eqns 6, 7). Large
parameter ranges were selected since previous experience
(Vickerstaff, 2003) had lead us to expect the evolution of
integrative neurons with large time constants and large input
weights, since this is the simplest way for a CTRNN to
approximate temporal integration. Weights, biases and initial
cell potential values for newly created genes (where a new gene
was added to a genotype or a new population was created from
scratch) were set to zero rather than being selected at random
from the entire range, such that later creep mutations could
gradually increase or decrease the values. Large initial values
would have probably resulted in networks where most neurons
were saturated either fully on or off. A more general way to
avoid this problem is given by Mathayomchan and Beer (2002).
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Euler first-order method numerical integration was used for
all numerical integrate with a step size of 0.001; evolved
solutions were checked for artefacts by running with a step size
of 0.0001.

Appendix 2: simplified analytic model
This model is based on the network evolved in experiment 2B

(see Fig.·8), but the same basic mechanisms were also evolved
independently in experiments 2A, 3A and 3B. The network is
simplified as shown in Fig.·17 by the following assumptions: (1)
the agent performs perfect positive phototaxis (i.e. moves in
straight lines to visit all beacons) by a means that does not interact
with the path integration mechanism (including homing); (2) the
only network internal state is that held in the values of weights
wL2/R2 (referred to now as simply wL/R, i.e. the values of the
weights connecting the left and right compass sensors,
respectively, to their ipsilateral rotation motor neurons); all other
weights and the firing rates of the two rotation motor neurons are
assumed to have sufficiently small time constants that they reach
their equilibrium values immediately; (3) the agent’s rate of turn
is sufficiently fast that it reaches equilibrium immediately and (4)
there is negligible sensor and motor noise. We are thus ignoring
the dynamics of turning, which allow for the generation of the
search pattern at the nest location, and the leakage normalisation
mechanism (which we assume here has only the effect of
increasing the effective integrator time constants).

Having removed links wL5/R5, weights wL4/R4 are now
constant in value and are a parameter of the simplified model,
referred to below as k (see Fig.·17). Assuming that weights
wL3/R3 have small time constants, they will always be at
equilibrium value, namely kS by Eqn·7, where S is the agent’s
speed. We can now specify the behaviour of weights wL/R,
which store the HV, by integrating Eqn·7 under the assumption
that the agent’s velocity (speed and heading) is constant:

wL(t2) = k S CR + [wL(t1) – k S CR]e[–(t2–t1)]/�·, (11)

wR(t2) = k S CL + [wR(t1) – k S CL]e[–(t2–t1)]/�·, (12)

where CL/R are the compass sensor outputs, � is the time

constant of the integrators (another free parameter of the
model), t1 is the time that we start running the model, t2 is the
time we wish to know the HV state, and wL/R(t1) are the initial
values of the HV. We can therefore break any journey down
into a series of sections of uniform velocity and use Eqns·11
and 12 iteratively to determine the HV state at the end of an
arbitrary journey [the HV should be initialised to (0,0)].

Once the agent has reached the end of the outward journey,
we wish to determine where the homing mechanism will take
it. We do this by assuming that it will immediately turn to adopt
the stable equilibrium orientation as determined by Eqn·5 (see
Fig.·2 for the case where compass responses are cosine
shaped), such that RL=RR where RL and RR are the firing rates
of the left and right rotation motor neurones, respectively (see
Fig.·17). Assuming the rotation motor neurons have fast
responses, this is satisfied when their inputs are the same,
namely wLCL=wRCR, regardless of the precise compass
response function used.

We also wish to know where the agent will be when its HV
reaches zero, i.e. when (wL,wR)=(0,0), since this constitutes its
estimate of the nest location. We can ask what compass output
values CL, CR (i.e. which heading) are needed to bring both
(wL,wR) to zero at the same time. Taking wL(t1),wR(t1) to be the
HV state at the end of the outward journey, we set Eqns·11 and
12 equal to zero. Substituting for exp[–(t2–t1)/�] in Eqn·11
using Eqn·12 and simplifying, we find that wLCL=wRCR, as
before, indicating that the homeward journey will always be
straight. Eqn·11 gives:

t2 = –� ln{(k S CR)/[k S CR – wL(t1)]} + t1, (13)

where t2 is the time the agent will reach its estimate of home.
Note that there are two equilibrium values of the heading using
cosine response functions (see Fig.·2), but we can use Eqn·13
to determine which is the stable homeward one using the
condition t2�t1.

Using the case of experiment 2B, where CL=cos(�A+�/4)
and CR=cos(�A–�/4) (where �A is the agent’s heading), taking
�=�A+�/4, we get CL=cos�, CR=sin�, d�/dt=d�A/dt. To
determine which direction the agent will home in, we use
wLcos�=wR sin�, therefore:

�A = tan–1(wL/wR) – �/4·. (14)

To determine the distance the agent will travel, we find the
duration of the homeward journey using Eqn·13 and multiply
by the agent’s (constant) speed. If the value is negative, Eqn·14
is giving us the anti-homing value of �A and we correct this by
adding � to �A. We can use this method to determine the
homing errors predicted by the SAM under variations of
integrator leakiness (parameter �) and compass sensor
response function (CL/R).

Appendix 3: one-dimensional model
If we have an animal walking at a constant speed of 1 along

a straight path for a distance of x, how far will it walk on the
return journey, y, if we assume it uses a leaky integrator, w,
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Fig.·17. Network used to derive the simplified analytic model (SAM),
adapted from the network evolved in experiment 2B. See Appendix
2 for explanation.
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for measuring distance? We will assume that the integrator
input is k during the outward leg and –k during the return leg.
Since speed is unity distance from the start, x equals time from
the start t on the outward leg, and distance from feeder y equals
time from feeder t on the return leg.

Case 1: continuous PI

Integrator dynamics during the outward leg are
�dw/dx=(–w)+k and during the return leg are �dw/dy=(–w)–k
where � is the integrator decay rate. The animal stops when w
has reached zero again. This gives a predicted homing distance
of y=�ln[2–exp(–x/�)] (and is independent of k).

Case 2: discontinuous PI

Integrator dynamics during both legs are � dw/dt=(–w)+k.
At the feeder, the value of w is stored and w set to zero. The
animal stops when w has reached the stored value again. This
leads to a predicted homing distance of y=x regardless of the
value of �.

This work was financially supported by BBSRC grant
number 02/A1/S/08410. We wish to thank Thomas Collett
and Paul Graham for their many helpful suggestions and
comments during the preparation of this manuscript, and also
Kyran Dale and Matthew Quinn for their advice regarding
genetic algorithms. We thank both anonymous reviewers for
the additions and changes they suggested.

References
Andersen, R. A., Essick, G. K. and Siegel, R. M. (1985). Encoding of spatial

location by posterior parietal neurons. Science 230, 456-458.
Anzai, A., Ohzawa, I. and Freeman, R. D. (1999). Neural mechanisms for

processing binocular information i. Simple cells. J. Neurophysiol. 82, 891-
908.

Beer, R. D. (1990). Intelligence as Adaptive Behavior: An Experiment in
Computational Neuroethology. Boston: Academic Press.

Benhamou, S. and Séguinot, V. (1995). How to find one’s way in the
labyrinth of path integration models. J. Theor. Biol. 174, 463-466.

Braitenburg, V. (1984). Vehicles, Experiments in Synthetic Psychology.
Cambridge, MA: MIT Press.

Chapman, T. (1998). Human models of navigation in ants: testing the
Hartmann Wehner model. Göttingen Neurobiology Report 1998;
Proceedings of the 26th Göttingen Neurobiology Conference 1998, vol. I
(ed. N. Elsner and R. Wehner), p. 28. Stuttgart: Georg Thieme Verlag.

Chiel, H. J. and Beer, R. D. (1997). The brain has a body: adaptive behaviour
emerges from interactions of nervous system, body and environment. Trends
Neurosci. 20, 553-557.

Collett, M. and Collett, T. S. (2000). How do insects use path integration for
their navigation? Biol. Cybern. 83, 245-259.

Collett, M., Collett, T. S., Chameron, S. and Wehner, R. (2003). Do familiar
landmarks reset the global path integration system of desert ants? J. Exp.
Biol. 206, 877-882.

Dale, K. and Collett, T. S. (2001). Using artificial evolution and selection to
model insect navigation. Curr. Biol. 11, 1305-1316.

Dayan, P. and Abbott, L. F. (2001). Theoretical Neuroscience. Cambridge,
MA: MIT Press.

Di Paolo, E. A., Noble, J. and Bullock, S. (2000). Simulation models as
opaque thought experiments. In Artificial Life VII: Proceedings of the
Seventh International Conference on Artificial Life (ed. M. A. Bedau, J. S.
McCaskell, N. H. Packard and S. Rasmussen), pp. 497-506. Cambridge,
MA: MIT Press.

Dyer, F. C., Gill, M. and Sharbowski, J. (2002). Motivation and vector
navigation in honey bees. Naturwissenschaften 89, 262-264.

Egorov, A. V., Hamam, B. N., Fransen, E., Hasselmo, M. E. and Alonso,
A. A. (2002). Graded persistent activity in entorhinal cortex neurons. Nature
420, 173-178.

Etienne, A. S., Maurer, R., Boulens, V., Levy, A. and Rowe, T. (2004).
Resetting the path integrator: a basic condition for route-based navigation.
J. Exp. Biol. 207, 1491-1508.

Gabbiani, F., Krapp, H. G. and Laurent, G. (1999). Computation of object
approach by a wide-field motion-sensitive neuron. J. Neurosci. 19, 1122-
1141.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and
Machine Learning. Boston, MA, USA: Addison-Wesley Longman
Publishing

Hartmann, G. and Wehner, R. (1995). The ant’s path integration system: a
neural architecture. Biol. Cybern. 73, 483-497.

Hatsopoulos, N., Gabbiani, F. and Laurent, G. (1995). Elementary
computation of object approach by a wide-field visual neuron. Science 270,
1000-1003.

Kim, D. and Hallam, J. C. T. (2000). Neural network approach to path
integration for homing navigation. In From Animals to Animals 6:
Proceedings of the Sixth International Conference on Simulation of
Adaptive Behavior (ed. J.-A. Meyer, A. Berthoz, D. Floreano, H. L. Roitblat
and S. W. Wilson), pp. 228-235. Cambridge, MA: MIT Press.

Kimchi, T., Etienne, A. S. and Terkel, J. (2004). A subterranean mammal
uses the magnetic compass for path integration. Proc. Natl. Acad. Sci. USA
101, 1105-1109.

Koch, C. (1999). Biophysics of Computation. New York: Oxford University
Press.

Labhart, T. (1999). How polarization-sensitive interneurons of crickets see
the polarization pattern of the sky: a field study with an optoelectronic model
neurone. J. Exp. Biol. 202, 757-770.

Labhart, T. (2000). Polarization-sensitive interneurons in the optic lobe of the
desert ant Cataglyphis bicolor. Naturwissenschaften 87, 133-136.

Lambrinos, D. (2003). Navigation in desert ants: the robotic solution.
Robotica 21, 407-426.

Layne, J. E., Barnes, W. J. P. and Duncan, L. M. J. (2003a). Mechanisms of
homing in the fiddler crab Uca rapax 1. Spatial and temporal characteristics
of a system of small-scale navigation. J. Exp. Biol. 206, 4413-4423.

Layne, J. E., Barnes, W. J. P. and Duncan, L. M. J. (2003b). Mechanisms
of homing in the fiddler crab Uca rapax 2. Information sources and frame
of reference for path integration. J. Exp. Biol. 206, 4425-4442.

Loewenstein, Y. and Sompolinsky, H. (2003). Temporal integration by
calcium dynamics in a model neuron. Nat. Neurosci. 6, 961-967.

Major, G., Baker, R., Aksay, E., Mensh, B., Seung, H. S. and Tank, D. W.
(2004). Plasticity and tuning by visual feedback of the stability of a neural
integrator. Proc. Natl Acad. Sci. USA 101, 7739-7744.

Mathayomchan, B. and Beer, R. D. (2002). Center-crossing recurrent neural
networks for the evolution of rhythmic behavior. Neural Comput. 14, 2043-
2051.

Maurer, R. and Séguinot, V. (1995). What is modelling for? A critical review
of models of path integration. J. Theor. Biol. 175, 457-475.

Miller, J. P., Jacobs, G. A. and Theunissen, F. E. (1991). Representation
of sensory information in the cricket cercal sensory system.
I. Response properties of the primary interneurons. J. Neurophysiol. 66,
1680-1689.

Mittelstaedt, H. (1962). Control systems of orientation in insects. Annu. Rev.
Entomol. 7, 177-198.

Mittelstaedt, H. (1985). Analytical cybernetics of spider navigation. In
Neurobiology of Arachnids (ed. F. Barth), pp. 298-318. Berlin: Springer.

Mittelstaedt, M. L. and Glasauer, S. (1991). Idiothetic navigation in gerbils
and humans. Zool. Jb. Physiol. 95, 427-435.

Mittelstaedt, M. L. and Mittelstaedt, H. (2001). Idiothetic navigation in
humans: estimation of path length. Exp. Brain Res. 139, 318-332.

Moller, P. and Görner, P. (1994). Homing by path integration in the spider
Agelena labyrinthica Clerck. J. Comp. Physiol. A 174, 221-229.

Müller, M. and Wehner, R. (1988). Path integration in desert ants,
Cataglyphis fortis. Proc. Natl. Acad. Sci. USA 85, 5287-5290.

Müller, M. and Wehner, R. (1994). The hidden spiral: systematic search and
path integration in desert ants, Cataglyphis fortis. J. Comp. Physiol. A 175,
525-530.

Ortega-Escobar, J. (2002). Evidence that the wolf-spider Lycosa tarentula
(Araneae, Lycosidae) needs visual input for path integration. J. Arachnol.
30, 481-486.

Peck, S. L. (2004). Simulation as experiment: a philosophical reassessment
for biological modeling. Trends Ecol. Evol. 19, 530-534.

THE JOURNAL OF EXPERIMENTAL BIOLOGY



3366

Salinas, E. and Abbott, L. F. (1996). A model of multiplicative neural
responses in parietal cortex. Proc. Natl. Acad. Sci. USA 93, 11956-11961.

Schmidt, I., Collett, T. S., Dillier, F.-X. and Wehner, R. (1992). How desert
ants cope with enforced detours on their way home. J. Comp. Physiol. A
171, 285-288.

Seung, H. S. (1996). How the brain keeps the eyes still. Proc. Natl. Acad. Sci.
USA 93, 13339-13344.

Shen, L. (1989). Neural integration by short term potentiation. Biol. Cybern.
61, 319-325.

Sommer, S. and Wehner, R. (2004). The ant’s estimate of distance travelled:
experiments with desert ants, Cataglyphis fortis. J. Comp. Physiol. A 190,
1-6.

Taube, J. S. (1997). Head direction cells and the neurophysiological basis for
a sense of direction. Prog. Neurobiol. 55, 225-256.

Touretzky, D. S., Redish, A. D. and Wan, H. S. (1993). Neural
representation of space using sinusoidal arrays. Neural Comput. 5,
869-884.

Vickerstaff, R. (2003). First steps in evolving path integration in simulation.
In Advances in Artificial Life, 7th European Conference, ECAL 2003,
Dortmund, Germany, September 2003, Proceedings (ed. W. Banzhaf, T.

Christaller, P. Dittrich, J. T. Kim and J. Ziegler), pp. 209-216. Berlin:
Springer-Verlag.

Wehner, R. (1992). Arthropods. In Animal homing (ed. F. Papi), pp. 45-144.
London: Chapman and Hall.

Wehner, R. (1994). The polarization-vision project: championing organismic
biology. In Neural Basis of Behavioural Adaptations (ed. K. Schildberger
and N. Elsner), pp. 103-143. Stuttgart: Gustav Fischer.

Wehner, R. (2003). Desert ant navigation: how miniature brains solve
complex tasks. J. Comp. Physiol. A 189, 579-588.

Wehner, R. and Srinivasan, M. V. (1981). Searching behaviour of desert
ants, genus Cataglyphis (Formicidae, Hymenoptera). J. Comp. Physiol. A
142, 315-338.

Wehner, R., Gallizzi, K., Frei, C. and Vesely, M. (2002). Calibration
processes in desert ant navigation: vector courses and systematic search. J.
Comp. Physiol. A 188, 683-693.

Wittmann, T. and Schwegler, H. (1995). Path integration – a neural model.
Biol. Cybern. 73, 569-575.

Ziegler, P. E. and Wehner, R. (1997). Time courses of memory decay in
vector-based and landmark-based systems of navigation in desert ants,
Cataglyphis fortis. J. Comp. Physiol. A 181, 13-20.

R. J. Vickerstaff and E. A. Di Paolo

THE JOURNAL OF EXPERIMENTAL BIOLOGY


