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In the segmented axial musculature of most fishes, the
muscle fiber architecture in superficial red musculature is
relatively simple, with all of the fibers oriented primarily in the
longitudinal direction. In the deeper white musculature,
however, the three-dimensional (3D) muscle fiber architecture
is highly complex. When projected onto the sagittal plane,
white muscle fibers form dorsoventral angles (�) that vary
between 0° and 25°, and when projected onto the frontal plane,
they form mediolateral angles (�) that vary between 0° and 30°
(Alexander, 1969; Gemballa and Vogel, 2002). Many fibers are
obliquely oriented in both projections, and � and � vary
depending on the longitudinal, dorsoventral and mediolateral
positions of the fibers (Gemballa and Vogel, 2002). In addition
to the architectural complexity of white muscle fibers, the
segments themselves form 3D nested cones, and the
collagenous myosepta separating the segments exhibit

complex and conserved collagen fiber architecture (Gemballa
et al., 2003).

Despite the structural complexity of myomeres and myosepta,
sonomicrometry studies have demonstrated that the bodies of
most fishes bend like a simple, homogeneous beam during
swimming (Coughlin et al., 1996; Shadwick et al., 1998; Katz
et al., 1999; with the exceptions being tuna and mako sharks;
Shadwick et al., 1999; Donley et al., 2004). Beam-like behavior
means that, for longitudinally oriented red muscle fibers, muscle
fiber strain (�f) is equal to longitudinal strain (�f=�x), when �x is
defined as the local longitudinal strain at the same mediolateral
position as the muscle fiber. Therefore, �f for red fibers can be
calculated from video images of fish curvature and measurement
of the distance of the fibers from the vertebral axis, or �f can be
measured directly with longitudinally arranged pairs of
sonomicrometry crystals (reviewed in Long et al., 2002).
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The anatomical complexity of myomeres and myosepta
has made it difficult to develop a comprehensive
understanding of the relationship between muscle fiber
architecture, connective tissue mechanics, and locomotor
function of segmented axial musculature in fishes. The
lateral hypaxial musculature (LHM) of salamanders is less
anatomically complex and therefore a good system for
exploring the basic mechanics of segmented musculature.
Here, we derive a mathematical model of the LHM and
test our model using sonomicrometry and
electromyography during steady swimming in an aquatic
salamander, Siren lacertina. The model predicts
longitudinal segment strain well, with predicted and
measured values differing by less than 5% strain over
most of the range. Deviations between predicted and
measured results are unbiased and probably result from
the salamanders performing slight turns with associated
body torsion in our unconstrained trackway swimming
experiments.

Model simulations of muscle fiber contraction and
segment shortening indicate that longitudinal segment

strain, for a given amount of muscle fiber strain, increases
with increasing initial fiber angle. This increase in
architectural gear ratio (AGR = longitudinal strain/fiber
strain) is mediated by muscle fiber rotation; the higher the
initial fiber angle, the more the fibers rotate during
contraction and the higher the AGR. Muscle fiber rotation
is additionally impacted by bulging in the dorsoventral
(DV) and/or mediolateral (ML) dimensions during
longitudinal segment shortening. In segments with
obliquely oriented muscle fibers, DV bulging increases
muscle fiber rotation, thereby increasing the AGR.
Extending the model to include force and work indicates
that force decreases with increasing initial muscle fiber
angle and increasing DV bulging and that both
longitudinal shortening and DV bulging must be included
for accurate calculation of segment work.
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The oblique orientations of fibers in the white musculature,
however, cause white muscle fiber strains to differ from local
longitudinal strains (�f��x). Alexander (1969) proposed a
model in which obliquely oriented muscle fibers within the
myomeres participate in helical trajectories that cross
myoseptal boundaries. Alexander showed that when fibers are
oriented obliquely, fiber strain is less than longitudinal strain
(�f<�x). Therefore, a smaller �f is required to produce a given
�x in obliquely oriented fibers than in longitudinally oriented
fibers, and this amplification of �f results from fiber rotation
(i.e. increase in fiber angle) during contraction (Azizi et al.,
2002).

To measure �f in the white musculature with
sonomicrometry, the crystal pairs must be aligned along the �
and � fiber angles. A few studies have used sonomicrometry
to measure �f in superficial areas of the dorsal white
musculature, within 2·mm of the skin surface (Franklin and
Johnston, 1997; James and Johnston, 1998; Wakeling and
Johnston, 1998). Proper crystal alignment is more difficult to
achieve in the deep white musculature (Wakeling and
Johnston, 1999), but one study measured both deep and
superficial �f, with crystal alignment precision within ±10° of
the muscle fiber angles (Ellerby and Altringham, 2001).

Other techniques have also been used to measure or estimate
white muscle fiber strain. Rome and Sosnicki (1991) measured
white �f by bending freshly killed carp to various curvatures
and letting them set in rigor mortis. Sarcomere lengths were
then measured from frozen sections and compared with resting
sarcomere lengths to calculate �f. Other studies have measured
�x with video or sonomicrometry and used Alexander’s helical
trajectory model (Alexander, 1969), van Leeuwen’s
mediolateral bulging model (van Leeuwen, 1990) or Wakeling
and Johnston’s centroid technique (Wakeling and Johnston,
1999) to calculate �f for the white fibers (Rome et al., 1988;
Lieber et al., 1992; Johnston et al., 1995; Spierts and van
Leeuwen, 1999; Wakeling and Johnston, 1999).

Measures of red and white muscle fiber strain can be
combined to calculate the red-to-white gearing ratio, defined
as red �f divided by white �f (Rome and Sosnicki, 1991;
Wakeling and Johnston, 1999). When defined in this way, the
gearing ratio combines the effect of muscle fiber angulation in
the white musculature with the effect of greater distance from
the vertebral axis in the red musculature. To separate these two
effects, we define here an ‘architectural gear ratio’, AGR=�x/�f,
in which �x and �f are longitudinal strain and fiber strain at the
same mediolateral position. In longitudinally oriented fibers,
�f=�x and AGR=1. In obliquely oriented fibers, �f<�x and
AGR>1 (Azizi et al., 2002).

The primary goal of the present study is to explore the effect
of muscle fiber angle on AGR in segmented musculature. The
lateral hypaxial musculature (LHM) of salamanders is a good
model system for this work because � is approximately
constant within each layer of the LHM, and � is approximately
zero (Fig.·1A). It is also a good model system because the
hypaxial myomeres of salamanders are approximately planar,
rather than forming nested cones, and the myosepta run

vertically rather than obliquely as in fishes. This relatively
simple geometry makes it possible to model the LHM
segments as planar rectangles in the x–y plane with some
thickness along an orthogonal z-axis (Fig.·1B; Azizi et al.,
2002).

A key component of our model is that the volume of each
muscle segment is assumed to remain constant during
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Fig.·1. The lateral hypaxial musculature (LHM) of an aquatic
salamander, Siren lacertina, and an isovolumetric planar model of this
segmented musculature. The skin and superficial layers of LHM have
been progressively removed from cranial to caudal along the
myoseptal boundaries. The positions of the sonomicrometry crystals
used to test the segmented muscle model are shown, and the initial
muscle fiber angle, �, of the external oblique (EO) is indicated. (A)
Lateral view of the EO, internal oblique (IO) and transverse
abdominis (TA) layers of the LHM as well as the rectus abdominis
(RA) and epaxial (EP) musculature (modified from Simons and
Brainerd, 1999). (B) Isovolumetric planar model of a muscle segment
in the relaxed and contracted states. Note that the muscle fiber angle
increases from � to � and the segment bulges out in the y and z
dimensions to maintain constant volume. Variables: � and �, muscle
fiber angle before and after shortening; x1 and x2, length of segment
before and after muscle fiber shortening; z1 and z2, depth of segment
before and after shortening; y1 and y2, height of triangle defined by x1

and � and x2 and �; f, initial muscle fiber length; �f, extension ratio
of the muscle fiber; �x, �y and �z, extension ratios of the three
dimensions, x, y and z of the segment. Modified from Azizi et al.
(2002).
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contraction (Azizi et al., 2002). This is a reasonable
assumption because precise volumetric measurements have
shown that muscle volume decreases only slightly during
isometric contraction, for example 0.007% in the frog
sartorius and 0.003% in the frog gastrocnemius (Baskin and
Paolini, 1967). To maintain this approximately constant
volume during contraction, muscles must bulge out in one or
both of the dimensions orthogonal to shortening (Otten,
1988). This isovolumetric constraint is central to muscular
hydrostat models and leads to the conclusion that, for
cylindrical muscular hydrostats, the contraction of muscle
fibers with angles lower than 54.44° causes the cylinder to
shorten and contraction of muscle fibers with angles higher
than 54.44° causes the cylinder to lengthen (Kier and Smith,
1985).

A previous model of fish musculature used the
isovolumetric constraint to correct for the effect of
mediolateral bulging on the distance of fibers from the neutral
axis (van Leeuwen, 1990). If a good measure of mediolateral
bulging is available, and x-ray studies have disagreed on how
much mediolateral bulging actually occurs in fishes (van
Leeuwen, 1990; Wakeling and Johnston, 1998), then this
model provides a useful correction to simple beam theory for
calculating longitudinal strain from body curvature. Models of
the nested-cone geometry of myomeres have also used the
isovolumetric constraint to model the shape changes of
myomeric cones during muscle contraction in fish axial
musculature and lizard tails (Westneat et al., 1998; Zippel et
al., 1999).

Our segmented musculature model is similar to a model
proposed by Alexander (1969) in which a block of muscle is
assumed to bulge equally in height and depth when it shortens
in length. Our model differs in that segment height and depth
are allowed to vary semi-independently within the
isovolumetric constraint (Azizi et al., 2002). This semi-
independence allows us to explore the effects of dorsoventral
versus mediolateral bulging on fiber strain, longitudinal
segment strain and AGR.

In a previous study (Azizi et al., 2002), we used a
preliminary version of our model to interpret the morphology
and function of hypaxial myosepta in an aquatic salamander,
Siren lacertina (Fig.·1A). Preliminary model results showed
that, in muscle segments with angled fibers, dorsoventral
bulging increases longitudinal segment strain for a given
amount of muscle fiber strain (i.e. bulging increases the AGR
of the segment; Azizi et al., 2002). Myomeres are
fundamentally muscular hydrostats, surrounded by
collagenous myosepta and skin (Wainwright, 1983; Westneat
et al., 1998). The stiffness of these connective tissues may
constrain segment bulging in one dimension and permit
bulging in another, thereby modulating the bulging condition
and AGR of the segments. In S. lacertina, the collagen fibers
in the hypaxial myosepta are oriented mediolaterally,
indicating that these myosepta constrain mediolateral bulging
and permit dorsoventral bulging, thereby increasing the AGR
of the hypaxial segments (Azizi et al., 2002).

Here, we derive a generalized equation for the relationship
between muscle fiber strain, segment bulging, muscle fiber
rotation and longitudinal segment strain. We simulate four
specific bulging conditions to explore the effects of initial
muscle fiber angle and segment bulging on AGR, test our
model assumptions and predictions with sonomicrometry and
electromyography of the hypaxial myomeres in Siren lacertina
and then use our validated model to explore the effects of
muscle fiber angulation and bulging on force and work in
segmented musculature.

Materials and methods
Segmented muscle model

Our segmented muscle model is based on the LHM of
salamanders (Fig.·1). For the purposes of this model, a muscle
segment is represented by one muscle fiber of length f, attached
to the myosepta at an acute angle � (in radians) relative to the
horizontal axis. The muscle fiber is a part of a block of muscle
with a constant volume, bound by the length of the segment
(x), the depth of the segment (z) and the height (y) of the
triangle defined by x, f and � (Fig.·1B). When the muscle fiber
shortens from f to final length (�ff), the segment shortens (x
decreases), and y and/or z must increase to keep the total
volume constant (x1y1z1=x2y2z2). Within this isovolumetric
constraint, the model allows the segment to bulge out
differentially in the y and z dimensions. For mathematical
simplicity, we express �f, �x and segment bulging (�y, �z) as
extension ratios: �=�+1. For example, if a muscle fiber
shortens by 10%, then �f=–0.1 and �f=0.9.

Although the model includes segment strain in three
dimensions, the muscle fibers lie in just one plane, making the
model an ‘isovolumetric planar’ model (Fig.·1B). In the future,
it may be possible to expand the model to include fiber
shortening and rotation in three dimensions, but our planar
model is appropriate for the approximately planar structure of
the salamander LHM (Fig.·1).

The purpose of the model is to calculate the effects of initial
muscle fiber angle and segment bulging on the magnitude of
segment strain for a given muscle fiber strain (i.e. the
architectural gear ratio, AGR). The final geometry of the
segment after shortening (Fig.·1B, contracted) can be
expressed in terms of initial length of the muscle fiber (f),
extension ratio of the muscle fiber (�f), extension ratio of the
segment (�x), initial muscle fiber angle (�) and final muscle
fiber angle (�) in radians):

(�ff)2 = (�xfcos�)2 + (�ffsin�)2·, (1)

which can be simplified to:

�x = �f (cos� / cos�)·. (2)

AGR is the ratio of �x to �f:

AGR = �x / �f = (�x – 1) / (�f – 1) (3)

and substituting Eqn·2 for �x:

AGR = [�f (cos� / cos�) – 1] / (�f – 1)·. (4)
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From Fig.·1, we can express � in terms of final muscle fiber
length and segment height:

� = sin–1 (y2 / �ff)·. (5)

This generalized model (Eqns·2–5) may be further
simplified by setting constraints on how the segment bulges
during contraction. We define four ‘bulging conditions’ that
represent points along a continuum of possible shape changes:
(1) segment depth remains constant (�z=1) and segment height
increases to maintain the constant volume of the segment; (2)
the segment bulges equally (�y=�z) in height and depth; (3) the
segment height remains constant (�y=1), and segment depth
increases to maintain the constant volume of the segment; (4)
segment height decreases in proportion to segment shortening
(�y=�x), and segment depth increases to accommodate
shortening of both x and y. Equations for calculating segment
bulging and longitudinal segment strain are derived for each of
the four conditions in Appendices 1 and 2. We used Microsoft
Excel X for Mac to run simulations of the four bulging
conditions with a range of input values for � and �f.

Assumptions

Three primary assumptions of our model are: (1) the
segment does not shear into a non-rectangular parallelepiped
during contraction; (2) the LHM segments are planar at rest
and the muscle fibers remain in the same plane as they contract;
and (3) the muscle fibers are active and generating force during
segment shortening. We tested our model and these
assumptions with sonomicrometry and electromyography
(EMG) of the external oblique (EO) and internal oblique (IO)
in Siren lacertina L. (Fig.·1).

Segment shearing and violation of assumption 1 would
occur if the two myosepta bordering each segment were to
translate differentially in the vertical direction or deform
differentially during segment shortening. We assume that shear
does not occur, and therefore all muscle fiber shortening is
converted into fiber rotation. This is a reasonable assumption
in salamanders because at least two muscle layers with
opposite muscle fiber directions are always present in each
segment (EO and IO; Fig.·1), and their positive and negative
vertical force components balance each other to prevent shear.
Previous studies of swimming in two salamanders,
Dicamptodon and Ambystoma, support the absence of
substantial shear during steady swimming in salamanders,
because shear would be associated with long axis torsion, and
substantial long axis torsion was not observed (Carrier, 1993;
Bennett et al., 2001).

Assumption 2 is violated by the curvature of the segments
around the circumference of the animal at rest (Fig.·1) and by
the likelihood that muscle fiber curvature increases as segments
bulge out between the myosepta during segment contraction
(as observed in S. lacertina by Azizi et al., 2002). Testing the
model predictions with sonomicrometry will determine how
severely the violations of assumption 2 affect the validity of
the model.

We tested assumption 3 with simultaneous EMG of the EO

and IO and sonomicrometry of the EO during steady
swimming in S. lacertina. Assumption 3 is supported by
previous studies in which all layers of the LHM were found to
be active during steady swimming in two salamanders,
Dicamptodon and Ambystoma (Carrier, 1993; Bennett et al.,
2001).

Testing the model with sonomicrometry and
electromyography

We used sonomicrometry to test whether segment shear
(assumption 1), deviations from planar (assumption 2) or
perhaps violation of some unrecognized assumption causes the
model predictions to differ substantially from measured
segment strains. Initial muscle fiber angles (�) and fiber
lengths (f) measured during the surgeries (see below) were
combined with changes in �f and �y from sonomicrometry and
substituted into equations 5 and 2 to calculate a predicted value
for the magnitude of longitudinal segment strain (�x=�x–1).
The mean predicted �x was calculated for each of the
swimming sequences analyzed and compared with empirically
measured mean �x from sonomicrometry measurements of the
same sequence.

Three adult Siren lacertina, ranging in total length from
38·cm to 43·cm, were purchased from a licensed herpetological
vendor. The salamanders were housed in individual glass
aquaria, which were maintained at approximately 22°C. The
salamanders were fed a diet of four earthworms per week but
were not fed three days prior to the surgery. The University of
Massachusetts Institutional Animal Care and Use Committee
approved all experimental and animal care protocols.

Salamanders were anesthetized by immersion in a buffered
solution of tricaine methanesulfonate (1·g·l–1). Intraspecific
variation in the muscle fiber angles of the LHM of salamanders
is substantial (Simons and Brainerd, 1999) and therefore it was
necessary to measure muscle fiber angles in each individual
before implanting the sonomicrometry crystals. We made an
incision in the skin to expose the lateral aspect of a myomere
located at 70% of the total body length (0.7·TL) from head to
tail, and we measured the EO muscle fiber angle to within
±0.5°. The longitudinal position (0.7·TL) was selected because
the myomeres and myosepta of the LHM in this region are
roughly planar, and substantial axial bending occurs in this
region during steady swimming in Siren (Gillis, 1997). We
found that the EO muscle fiber angles of the three individuals
examined were 36.5°, 40.5° and 43.0°.

After measuring fiber angle, we closed the incision with 6-
0 silk suture and implanted the crystals on the other side of the
body in the same longitudinal position (0.7·TL). To minimize
the surgical trauma to the myomere of interest, we used small
incisions (~5·mm) in the two adjacent myomeres to gain access
to the EO muscle layer. The tips of the crystals were then
pushed into the myomere of interest through small incisions
(1·mm) in the myosepta, and the leads were sutured tightly to
both the myosepta and the skin (the crystals themselves were
embedded in the EO musculature). Three crystals were
arranged into a right-angled triangle (Fig.·1): two in a vertical
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series along one myoseptum and the third on an adjacent
myoseptum at the appropriate dorsoventral position to be
aligned with muscle fiber angle (measured previously as
above). Skin incisions were closed with 6-0 silk suture. The
right-angled-triangle crystal configuration allowed us to
measure muscle fiber strain, longitudinal segment strain and
dorsoventral segment strain.

Prior to data collection, the salamanders were allowed 1·h
to recover from the anesthetic. Longitudinal segment strain and
muscle fiber strain were collected at 200·samples·s–1 with a
Sonometrics TRX-6 sonic micrometer (Sonometrics
Corporation, London, Ontario, Canada) as the salamanders
swam in a 2.5·m-long aquatic trackway. Analysis of the
sonomicrometry data was conducted with Sonometrics
Sonoview 3.1.4 and limited to swimming bouts that contained
a minimum of four complete tailbeat cycles. Instantaneous
length measurements were converted to extension ratios
(�=length/rest length) prior to a quantitative comparison of
empirical and model results.

Trackway swimming included a range of swimming speeds
and maximum longitudinal segment strains for each animal,
and we used this variation to test the model under these varying
conditions. We plotted the measured �x versus the predicted �x

from the model to test assumptions 1 and 2 and to look for bias
in the model.

To test assumption 3, EMGs from the EO and IO of two S.
lacertina were recorded during steady swimming, and axial
bending was measured with sonomicrometry. Fine-wire,
hooked electrodes were constructed from 0.05·mm-diameter,
insulated nichrome wire (California Fine Wire Co., Grover
Beach, CA, USA). Electrodes were implanted percutaneously
with 25·gauge hypodermic needles at a depth predetermined to
be appropriate for the EO or IO. Signals were amplified 1000�
with A-M Systems AC amplifiers (model number 1700;
Everett, WA, USA) with the low and high filters set to 100·Hz
and 1000·Hz, respectively, and the 60·Hz notch filter on. Each
signal was digitized at 4000·samples·s–1 with an instruNet
analog-to-digital converter with Superscope II software (GW
Instruments, Somerville, MA, USA).

Modeling force and work

Our model can also be used to explore the effects of muscle
fiber angle and segment bulging on the force and work
produced by the segment. The vector component of muscle
fiber force (Ff) in the direction of longitudinal segment
shortening (Fx) depends on the instantaneous muscle fiber
angle 	 (from Alexander, 1968):

Fx = Ff cos	·, (6)

and if we define relative force as FR=Fx/Ff, then FR=cos	.
Eqn·6 is often used to calculate the force produced by

pennate muscles (e.g. Calow and Alexander, 1973 and many
subsequent studies of pennate muscle force production), but it
makes the simplifying assumption that muscle fiber angle does
not change during the contraction cycle, which is
approximately true only for small changes in muscle fiber

length. When angled muscle fibers in pennate or segmented
muscles contract, the fibers rotate and 	 changes from � to �.
In such cases, the mean relative force (FR) can be calculated
by integrating relative force from � to � and averaging over
the change in fiber angle:

FR = (��
� cos	 d	 / (� – �)·. (7)

Integrating and evaluating this expression from � to � yields:

FR = (sin� – sin�) / (� – �)·. (8)

From equations for force (Eqn·7) and displacement (Eqn·2),
expressions for segment work in the x and y dimensions can
be derived (Appendix·3).

Results
Model results

Under most bulging conditions, architectural gear ratio
increases with increasing initial muscle fiber angle (Fig.·2).
The AGR at a given � depends strongly on whether the
segment bulges primarily in the y dimension (�z=1), equally in
both dimensions (�y=�z) or primarily in the z dimension (�y=1)
(Fig.·2).

In the first bulging condition, �z=1, all of the segment
bulging occurs in the y (dorsoventral) dimension. By assuming
that �z=1, Eqn·1 becomes �x

4cos2�–(�f
2�x

2)+sin2�=0
(Appendix·2; Eqn·15). Substituting a range of values for � at
a fixed muscle fiber strain (�f=–0.1; �f=0.9) yields values for
�x and therefore AGR (�x/�f) over a range of initial muscle fiber
angles (Fig.·2). In this bulging condition, the increase in height
(y) of the segment is maximized, thereby producing the
greatest muscle fiber rotation (largest � for a given � and �f)

Fig.·2. Model simulations of the relationship between architectural
gear ratio (AGR=�x/�f) and initial muscle fiber angle (�) for a fiber
shortening of 10% (�f=–0.1). The AGR is shown for the four bulging
conditions defined in the text. These conditions are part of a
continuum of bulging conditions. The AGR increases most rapidly
when all of the bulging is in the y (dorsoventral) direction (�z=1) and
progressively less rapidly with less dorsoventral bulging.
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and the largest AGRs at small initial muscle fiber angles
(Fig.·2). For example, if �=25° (0.44·rad) and the muscle fibers
shorten by 10% (�f=0.9), then the muscle segment will shorten
by 19.2% (�x=0.808), corresponding to an AGR of 1.92.

In the second bulging condition, �y=�z, muscle volume is
conserved by bulging equally in the dorsoventral and
mediolateral dimensions (the same assumption as in
Alexander, 1969). By assuming that �y=�z, Eqn·1 becomes
�x

3cos2�–(�f
2�x)+sin2�=0 (Appendix·2; Eqn·16). Substituting

a range of values for � at a fixed muscle fiber strain yields
values for AGR over a range of initial muscle fiber angles
(Fig.·2). In this bulging condition, if �=25° and the muscle
fibers shorten by 10%, then the muscle segment will shorten
by 14.7% (�x=0.835), corresponding to an AGR of 1.47.

In the third bulging condition, �y=1, all of the segment
bulging occurs in the z (mediolateral) dimension. By assuming
that �y=1, Eqn·1 becomes �x=[(�f

2–sin2�)/cos2�]1/2

(Appendix·2; Eqn·17). In this bulging condition, if �=25° and
the muscle fibers shorten by 10%, then the muscle segment will
shorten by 12.4% (�x=0.876), corresponding to an AGR of
1.24 (Fig.·2).

In the fourth bulging condition, �x=�y, we assume that as
the segment shortens longitudinally, y also shortens by an
equal proportion. It is plausible that y might decrease because
obliquely oriented muscle fibers generate a vertical force
component that will tend to decrease y (Fig.·1A). When �x=�y,
the decrease in segment height prevents rotation of the muscle
fiber during contraction (�=�), and Eqn·1 simplifies to �x=�f

(Appendix·2; Eqn·18). This result demonstrates that, without
muscle fiber rotation, muscle fiber strain and longitudinal
segment strain are equal, corresponding to an AGR of 1.00 at
all initial muscle fiber angles (Fig.·2).

To visualize the effect of different segment bulging
conditions and AGRs on overall body bending, we combined
seven segments to create a hypothetical aquatic vertebrate and
assumed that all of the segments contract simultaneously
(Fig.·3). We created drawings to scale by setting the combined
length of the seven segments to 4·cm and the diameter of the
hypothetical animal to 0.6·cm [radius (r)=0.3·cm]. We set the
muscle fiber strain to 10% (�f=–0.1), calculated the segment
strain (�x) for each bulging condition and calculated the radius
of curvature (R) for a given segment strain using beam theory
(R=r/�x). Figs·2 and 3 demonstrate the importance of segment
bulging on AGR in this model. The more the segment bulges
in the dorsoventral (y) dimension, the greater the AGR and the
greater the axial bending for a given amount of muscle fiber
shortening.

Initial and final muscle fiber angle limits

When segment height remains constant or is allowed to
increase, the models reach limits in final muscle fiber angle (�)
beyond which segment shortening can no longer be calculated
(Fig.·2; Table·1). In the �z=1 condition, the limit on � is 45°,
and in the �y=�z condition, the limit is 54°. In the �y=1 and
�y=�x conditions, the limit on � is 90°, which corresponds to
100% segment strain. Whereas the limits on � depend only on

the bulging condition, limits on � also depend on muscle fiber
strain (�f). To achieve high �f, the segment must start at a lower
� to allow the larger amount of fiber shortening and associated
fiber rotation before reaching the maximum allowable �
(Table·1). For example, �f in Fig.·2 is 10%, and the asymptotes
of the curves in this figure correspond with the maximum
values for � at �f=10% in Table·1.

Empirical tests of the model and its assumptions

Sonomicrometry data were collected from the EO muscle
layer of three adult Siren lacertina (Fig.·4). During steady
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Fig.·3. Effect of the four segment bulging conditions on axial bending.
Longitudinal strain and body curvature are drawn to scale. (A) Initial
fiber angle of 25°. (B) If all of the bulging occurs in the dorsoventral
direction such that �z=1, then 10% muscle fiber shortening leads to
19.2% shortening of the right side of the body and the greatest axial
bending. (C) If dorsoventral and mediolateral bulging are equal,
�y=�z, then 10% muscle fiber shortening leads to 14.7% segment
shortening. (D) If all the bulging occurs in the mediolateral direction,
�y=1, then 10% muscle fiber shortening leads to 12.4% segment
shortening. (E) If the dorsoventral height of the segment decreases by
the same proportion as the segment shortens, �x=�y, then 10% muscle
fiber shortening leads to 10% segment shortening. Modified from
Azizi et al. (2002).
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swimming, longitudinal segment strain is greater than muscle
fiber strain, indicating that AGR is greater than one (Fig.·4A).
We observe a consistent pattern of increasing segment height
(�y>1) during longitudinal segment shortening (�x<1), with
changes in segment height falling between the �y=1 and �y=�z

bulging conditions (Fig.·4B).
We recorded a range of steady swimming speeds and body

curvatures for each individual, which correspond to a range of
values for longitudinal segment strain. Predicted �x and
measured �x were compared by plotting measured versus
predicted and performing a least squares regression (Fig.·5). In

general, the predicted and measured �x are similar, with some
tendency for more scatter at higher strains and body curvatures.
The regression slope and y-intercept are 0.95±0.11 and
0.80±1.87, respectively (±S.E.M.). The 95% confidence interval
of the slope overlaps a slope of one, and the y-intercept is not
significantly different from zero (P=0.67), indicating that there
is no detectable bias in the model predictions.

To test the assumption that the LHM is active and generating
force during segment shortening, we recorded segment length
and EMGs from the EO and IO. During steady swimming, both
the EO and the IO become active shortly before peak
contralateral bending, and activity ceases shortly before peak
ipsilateral bending (Fig.·6).

Fiber length, force and work

In our model, we have kept the initial longitudinal segment
length constant and allowed muscle fiber length to change with
changes in initial muscle fiber angle. However, since the
absolute amount of muscle fiber shortening is proportional to
initial muscle fiber length, previous models of muscle
architecture have kept initial fiber length constant (reviewed in
Otten, 1988). When initial fiber length is held constant in our
model, the absolute amount of segment shortening still depends
strongly on � and the bulging condition (Fig.·7A). Keeping the
initial muscle fiber length constant is also necessary for accurate

Table 1. Limits to initial muscle fiber angle (�) and final
muscle fiber angle (�)

� (deg.)

Model �f=1% �f=5% �f=10% �f=20% � (deg.)

�z=1 39 32 27 20 45
�y=�z 49 42 36 28 54
�y=1 78 71 64 53 90
�y=�x 90 90 90 90 90

�f, muscle fiber strain; �x, longitudinal extension ratio of segment;
�y, dorsoventral extension ratio of segment; �z, mediolateral
extension ratio of segment.

Fig.·4. Sonomicrometry traces from the external oblique (EO) muscle layer of Siren lacertina (�=40.5° in this individual). (A) Proportional
changes in the muscle fiber length (�f; red), segment length (�x; black) and segment height (�f; blue) are shown over seven swimming tailbeats.
Note that the amplitude of changes in longitudinal strain are larger than the changes in muscle fiber strain, indicating that the AGR is greater
than one. (B) Comparison of measured �y (solid blue line) with predicted �y from two of the bulging condition models (broken lines). The
empirical trace falls between these two bulging conditions, indicating that the EO shows some dorsoventral bulging but not as much dorsoventral
bulging as mediolateral bulging.
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comparisons of segment work at different � and under varying
bulging conditions (Appendix·3).

Increasing the initial muscle fiber angle, and therefore AGR,
comes at the cost of force production (Fig.·7B). These results
show that relative segment force in the longitudinal direction
decreases with increasing muscle fiber angle and that this
decrease is accelerated by rotation of muscle fibers due to
bulging in segment height.

The observed trade-off between segment shortening and
force can also be examined through calculations of segment

work (Appendix·3). Previous equations for work in pennate
muscles have shown that muscle work is independent of
muscle fiber angle and depends only on muscle fiber length and
muscle fiber force (Otten, 1988). In this model, we expand
previous calculations of work to incorporate the orthogonal
shape changes associated with segment bulging (Appendix·3).
For these calculations, directional (x and y) force components
are integrated over the displacement of the fiber in each
direction. The work components are then summed to calculate
total segment work. Similar to previous results, we find that
work depends only on muscle fiber length and fiber force and
is independent of muscle fiber angle or bulging condition.

Discussion
In our model of segmented musculature, AGR is determined

by the initial muscle fiber angle and the bulging condition
(Fig.·2). Segments must bulge to maintain constant volume
during longitudinal (x) contraction, and, depending on whether
the segments bulge primarily in the dorsoventral (y) or
mediolateral (z) dimension, the same muscle fiber strain can
produce dramatically different amounts of axial bending
(Fig.·3; Azizi et al., 2002).

The effect of bulging on AGR is mediated by muscle fiber
rotation. In our model, fiber rotation is expressed as the
increase in muscle fiber angle from � to � (Fig.·1B). The AGR
increases as � increases (Eqn·4), and � in turn increases as the
final height of the segment increases (Eqn·5). Therefore, the
more a segment bulges in dorsoventral height, the more the
muscle fibers will rotate and the more the segment will shorten
for a given muscle fiber shortening.

To emphasize the relationship between dorsoventral bulging
and fiber rotation, segment shortening and segment bulging can

be thought of as occurring sequentially rather
than simultaneously. If the muscle fiber
shortens by a given amount, and y is keep
constant, then the fiber will rotate to an initial
value for � and the segment will shorten.
Then, if the segment lengthens in the y
dimension, and muscle fiber length is kept
constant, the fiber will rotate even more and
the segment will shorten more, thereby
increasing the AGR.

Model results indicate that, in segmented
muscles with oblique muscle fibers,
longitudinal segment strain will generally be
greater than muscle fiber strain (AGR>1).
The AGR is equal to one only when � is zero
or if y shortens in the same proportion as x
(�y=�x; Fig.·2). In all other cases, the AGR
increases with increasing � and with
increasing dorsoventral bulging, indicating a
synergistic relationship between initial
muscle fiber angle and segment bulging
(Fig.·2).

Measurements of muscle fiber strain and
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longitudinal segment strain in the EO of Siren lacertina
indicate that, as expected, the AGR in this segmented muscle
layer is greater than one (Fig.·4A). The AGR of the EO is
determined by both the high � (mean of 40°) and by
dorsoventral bulging of the segments (Fig.·4A; �y increases
when �f and �x decrease). From empirically measured �x, we
calculated the expected �y if �y=�z, and we also plotted �y=1.
The magnitude of the empirical �y curve falls between the �y=1
and �y=�z bulging conditions (Fig.·4B; Azizi et al., 2002).

Testing the model and its assumptions

The model provides an unbiased prediction of longitudinal
segment strain, with predicted strain varying from the
measured values by less than 5% strain over most of the range

(Fig.·5). The deviation between measured and predicted
strains for the individual swimming sequences could result
from violation of assumption 1 (no shear), assumption 2
(segments planar) or both. The lack of bias in the predictions
indicates that violation of assumption 1 is the most likely
source of the variation. The segments do bulge out laterally
between the myosepta during swimming, thereby violating
assumption 2, but the associated increase in muscle fiber
curvature would tend to produce a bias in favor of higher gear
ratios. Slight torsion of the body, tending to produce left or
right turns equally, would produce unbiased variation. We
attempted to select sequences of steady, rectilinear
swimming, but slight turning in unconstrained trackway
swimming could be associated with body torsion and
unbiased deviations between predicted and measured
longitudinal segment strains.

As was expected from previous work on other species of
salamanders (Carrier, 1993; Bennett et al., 2001), EMG
confirmed that the EO and IO in Siren lacertina are active
during segment shortening, thereby validating assumption 3.
Work loop studies would be necessary to determine the actual
contributions to positive and negative work, but our finding
that EO activity begins shortly before the beginning of segment
shortening and ceases shortly before the beginning of
lengthening is consistent with EO force generation during
segment shortening and the contribution of positive work to
body bending.

Force and work

As expected from the conservation of work principle (Otten,
1988), the model predicts that changes in AGR affect the
longitudinal force produced by segmented musculature.
Segment shortening increases (in three of four bulging
conditions) and longitudinal force production decreases with
increasing initial fiber angle and with increasing dorsoventral
bulging (Fig.·7). Our mean segment force equation (Eqn·8) is
similar to the equation that is commonly used to calculate
muscle force from fiber force in pennate muscles (Eqn·6), but
we include a correction for change in muscle fiber angle from
� to � during contraction. Our modified equation applies
equally well to pennate muscle as to segmented muscle and
may be useful for estimating mean muscle force in pennate
muscle contractions with substantial fiber rotation.

Incorporating changes in y (dorsoventral bulging) into the
equations for total segment work demonstrates that total
segment work equals muscle fiber work and work is conserved
(Appendix·3). If we only consider work done in the x
(longitudinal) direction, then the conservation of work
principle is violated because changes in segment shortening
are not the exact inverse of changes in segment force with
increasing initial fiber angle (compare Figs·7A and 7B).
However, if work done in the y direction is added to work
done in the x direction, then segment work and fiber work are
equal (Appendix·3). As with our force equation, our work
equations apply equally well to pennate muscle and may be
useful for estimating work in pennate muscles during
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Fig.·7. Model calculations of absolute shortening distance and relative
force of segmented muscle. (A) Absolute segment shortening (cm)
versus � when initial muscle fiber length is held constant (1·cm).
Results are shown for 10% fiber strain (0.1·cm muscle fiber
shortening). (B) Relationship between � and the relative force
produced in the longitudinal direction during 10% muscle fiber
shortening (force normalized to the �=0 condition). In Appendix·3,
we use shortening distance and force to calculate segment work, and
we find that work is independent of muscle fiber angle and bulging
condition.
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contractions in which the width of the muscle does not remain
constant.

Function of connective tissues in segmented musculature

Because our model includes the 3D shape changes of the
LHM myomeres, and because myomeres are wrapped in
collagenous myosepta and skin that may constrain their shape
changes, our model provides an explicit, quantitative link
between muscle fiber and connective tissue architecture in a
simple segmented muscle system. The strong effect of bulging
on AGR suggests that the structural and material properties of
connective tissues may affect the most fundamental aspects of
segmented muscle mechanics – the speed and force of
shortening (Azizi et al., 2002).

The shapes of our sonomicrometry traces suggest that
maximum dorsoventral bulging may sometimes be limited by
connective tissues (Fig.·4). Traces for fiber strain (�f) and
segment strain (�x) are close to sinusoidal, and the trace for
dorsoventral bulging (�y) is sinusoidal when y is decreasing,
but the peaks are flattened when y increases. These flattened
peaks would be consistent with the J-shaped stress–strain curve
that is typical for soft tissues. Stiffness is low in the toe of the
J, but then increases at higher strains, and could be limiting
dorsoventral extension and flattening the peaks. This might
explain why the measured trace for �y appears to follow the
model �y=�z at low strains but then the �y=1 model at higher
strains (Fig.·4B). This analysis is highly speculative, however,
because we did not observe the same, flattened shape for the
�y curve in all trials analyzed, and the shape could be caused
by other factors, such as adjacent muscle layers limiting the
dorsoventral bulging of the EO.

Previous studies have explored the roles of connective
tissues in force transmission and the modulation of body
pressure and stiffness (e.g. Long and Nipper, 1996; Long et al.,
1996; Westneat et al., 1993), and recent work on collagen fiber
orientations in myosepta has demonstrated a set of highly
conserved myoseptal tendons in cartilaginous and ray-finned
fishes (Gemballa et al., 2003). We propose that one function
of these tendons may be to constrain myomere bulging, thereby
affecting the speed and force of segment shortening. This
‘bulge control hypothesis’ is not mutually exclusive of other
proposed functions; the skin and myosepta may well contribute
to force transmission, bulge control and the modulation of
body pressure and stiffness simultaneously.

Limits to initial and final muscle fiber angles

If dorsoventral bulging is less than or equal to 1 (�y<1), then
the only geometric limit to muscle fiber and segment
shortening occurs when the final muscle fiber angle, �,
approaches 90° and segment length approaches zero (Table·1).
In the �z=1 condition, the area defined by x and y must remain
constant as x decreases and y increases. In this case, muscle
fiber length will be shortest when �=45°; beyond 45°,
dorsoventral bulging would cause the muscle fibers to
lengthen. In the �y=�z condition, we calculated the limit on �
to be 54°. Beyond this angle, the muscle fibers would have to

lengthen for further segment shortening to occur. This is the
same angle (54.44°) at which helically wound cylindrical
muscular hydrostats begin to lengthen rather than shorten with
further muscle contraction (Kier and Smith, 1985).

Larger strains cause the muscle fibers to rotate through a
larger angle and therefore decrease the maximum initial fiber
angle, �, that will allow the fibers to contract by a given
amount (Table·1). We can compare these maximum initial
muscle fiber angles with the actual muscle fiber angles
observed in the lateral hypaxial musculature of salamanders.
In eight representative species from eight families, the fiber
angles in the external and internal oblique layers are generally
in the range of 20–40° (Brainerd and Simons, 2000; Simons
and Brainerd, 1999). This range of initial muscle fiber angles
would allow maximum muscle fiber strains of up to ~15% for
most of the bulging conditions defined by our models.

Muscle fiber angles in the transverse abdominis (TA) and
the external oblique superficialis (EOS; present only in some
salamanders) are generally higher, ranging from 60 to 80° in
the TA and from 50 to 70° in the EOS (Simons and Brainerd,
1999; Brainerd and Simons, 2000). These high angles indicate
that the fibers in these layers probably undergo very low strains
or even active lengthening during segment shortening (EMG
studies indicate that the EOS and TA are active during
swimming; Carrier, 1993; Bennett et al., 2001). The EOS, in
particular, may undergo substantial lengthening because this
layer is located far from the neutral axis and therefore is
subjected to large longitudinal segment strains. The TA, by
contrast, is located closest to the neutral axis of bending. The
TA will experience smaller longitudinal segment strains, but
we still expect that the dorsoventral bulging of the segments
will cause the muscle fibers of the TA to undergo some active
lengthening during swimming. Our calculations predict that the
EOS and TA contribute little to axial bending, indeed they may
generate forces that oppose lateral bending, but they may
function to balance torsional moments and modulate body
pressure and connective tissue stiffness during swimming
(Brainerd and Simons, 2000; Bennett et al., 2001).

Comparison with models of pennate muscle architecture

Our model of segmented musculature is similar to the most
widely used model for relating muscle fiber strain and fiber
force to tendon excursion and muscle force in pennate
musculature (Benninghoff and Rollhäuser, 1952; Gans and
Bock, 1965; Alexander, 1968). More sophisticated pennate
muscle models have also been developed, in which curved
muscle fibers and deformation of the aponeuroses have been
modeled (Woittiez et al., 1984; Huijing and Woittiez, 1984;
Zuurbier and Huijing, 1992; Van Leeuwen and Spoor, 1993).
The basic pennate model assumes that the distance between the
tendon sheets, usually drawn as the width of the muscle, does
not change during muscle contraction (Otten, 1988). With this
assumption, the pennate model is mathematically identical to
our �y=1 model of segmented musculature, rotated 90° such
that y becomes the width of the muscle and x becomes the
direction of tendon movement.

E. L. Brainerd and E. Azizi
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When comparing the mechanics of two or more muscles
with different resting fiber angles (�), pennate muscle models
show that increases in � produce increases in tendon excursion
and contraction velocity (higher AGR), as long as resting
muscle fiber length is held constant (e.g. Muhl, 1982; Gans and
Gaunt, 1991; Zuurbier and Huijing, 1992). In actual pennate
muscles, however, it is more common to compare muscles with
similar overall length and width. In this case, resting muscle
fiber length decreases as � (pennation angle) increases, so
increases in velocity and excursion with increasing � are
generally offset by decreases in fiber length (Calow and
Alexander, 1973).

This trade-off between muscle fiber angle and fiber length
is the source of some confusion. Many text books emphasize
that pennate muscles generate greater forces over shorter
tendon excursion distances than do fusiform muscles with the
same length and width (e.g. Kardong, 2001; Liem et al., 2001).
In most muscles this is true because increasing the pennation
angle increases force, by allowing more muscle fibers to attach
to the tendon, and decreases tendon excursion because the
fibers are shorter. Confusion arises because the increased force
and decreased excursion are attributed directly to the increase
in pennation angle, when in fact they result from keeping
overall muscle length and width constant while allowing fiber
number to increase and fiber length to decrease with increases
in pennation angle. If the number and length of fibers is held
constant, then a muscle with a higher pennation angle will
generate less force and greater tendon excursion for a given
muscle fiber shortening. Thus, the AGR of a pennate muscle
is always higher than the AGR of a fusiform muscle, but the
higher AGR is offset by a decrease in fiber length if the muscle
must be packed in to the same available space (Calow and
Alexander, 1973).

By contrast, our segmented muscle model differs from
pennate muscle models in that when we explore the effect of
increasing �, we hold segment length constant, and therefore
fiber length increases rather than decreases with increases in
�. In pennate muscles, this would be equivalent to keeping
muscle length constant while allowing muscle width to
increase as pennation angle (�) increases. The assumption of
constant segment length means that segment volume increases
with �; therefore, we use the assumption of constant fiber
length rather than constant segment length for calculations of
segment work (Fig.·7; Appendix·3). However, keeping
segment length constant for exploring the effect of � makes
biological sense in segmented musculature because � varies
from medial to lateral within the same segment of both fishes
and salamanders (Alexander, 1969; Simons and Brainerd,
1999; Gemballa and Vogel, 2002).

The relative effects of increasing AGR and increasing
muscle fiber length can be seen by comparing the curves in
Fig.·2, in which segment length was held constant and fiber
length was allowed to increase, with the curves in Fig.·7A, in
which fiber length was held constant. Increases in fiber length
do contribute to increasing the magnitude and speed of
shortening, but the effect of increasing fiber length is small

when compared with the effects of changes in � and changes
in the magnitude of dorsoventral bulging.

List of symbols
AGR architectural gear ratio, �x/�f

f initial muscle fiber length
F segment force
Ff muscle fiber force
FR mean relative force
FR segment force relative to fiber force
Fx longitudinal force
Fy dorsoventral force
WT total work
Wx longitudinal work
Wy dorsoventral work
x segment length
x1 initial segment length
x2 final segment length
y segment height
y1 initial segment height
y2 final segment height
z segment depth
z1 initial segment depth
z2 final segment depth
� initial dorsoventral muscle fiber angle (in radians)
� final dorsoventral muscle fiber angle (in radians)
� strain (change in length/initial length)
�f muscle fiber strain
�x longitudinal strain
�y dorsoventral strain
�z mediolateral strain
� initial mediolateral muscle fiber angle (in radians)
� extension ratio (final length/initial length)
�f muscle fiber extension ratio
�x longitudinal extension ratio of segment
�y dorsoventral extension ratio of segment
�z mediolateral extension ratio of segment
	 instantaneous dorsoventral muscle fiber angle (in 

radians)

Appendix 1. Equations for relative segment bulging
The constant volume constraint may be stated formally as:

x1y1z1 = x2y2z2·. (9)

This equation can be used to derive expressions for the
magnitude of bulging in the y and z dimensions for a given
amount of longitudinal (x-dimension) segment shortening for
each of our four bulging conditions.

Bulging condition 1: �z=1

In this condition, z remains constant, so we can substitute z1

for z2 and �xx1 for x2 in Eqn·9 and solve for y2:

y2 = y1 / �x·. (10)
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Bulging condition 2: �y=�z

Assuming that y and z have equal extension ratios
(�y=�z=�yz), then y2=�yzy1 and z2=�yzz1 and x2=�xx1.
Substituting into Eqn·9 yields x1y1z1=�xx1�yz

2y1z1, which
simplifies to �yz=1/(�x

1/2) and:

y2 = y1 / (�x
1/2)·, (11)

z2 = z1 / (�x
1/2)·. (12)

Bulging condition 3: �y=1

Since y remains constant, we can substitute y1 for y2 and �xx1

for x2 in Eqn·9 and solve for z2:

z2 = z1 / �x·. (13)

Bulging condition 4: �y=�x

Assuming that the height and length of the segment decrease
by the same proportion (�y=�x), we can substitute �xx1 for x2

and �xy1 for y2 in Eqn·9 and solve for z2

z2 = z1 / �x
2 . (14)

Appendix 2. Equations for segment strain
By setting constraints on relative bulging in the y and z

dimensions in our four bulging conditions, we can derive
expressions for segment extension ratio (�x) as a function of
initial muscle fiber angle (�) and muscle fiber extension ratio
(�f). Since strain (�)=�–1, these equations describe the
relationship between muscle fiber strain, segment strain and
fiber angle for each of the four bulging conditions.

Bulging condition 1: �z=1

From Eqn·10, y2=y1/�x, and since y1=fsin� (from Fig.·1B),
then y2=fsin�/�x. Substituting y2=fsin�/�x into Eqn·1 yields
�f

2=�x
2cos2�+sin2�/�x

2 and:

�x
4 cos2� – �f

2�x
2 + sin2� = 0·. (15)

Bulging condition 2: �y=�z

From Fig.·1B, y2=�ffsin� and y1=fsin�. Substituting into
Eqn·11, �ffsin�=fsin�/(�x

1/2) and �fsin�=sin�/(�x
1/2).

Substituting sin�/(�x
1/2) for �fsin� in Eqn·1 yields:

�x
3 cos2� – �f

2�x + sin2� = 0·. (16)

Bulging condition 3: �y=1

In this case, y2=y1 and �fsin�=sin� (from Fig.·1B).
Substituting sin� for �fsin� in Eqn·1 yields
�f

2=sin2�+�x
2cos2�, and solving for �x yields:

�x = [(�f
2 – sin2�) / cos2�]1/2·. (17)

Bulging condition 4: �y=�x

Fiber angle is constant in this shortening condition (the
before and after conditions are similar triangles), so we can
substitute � for � in Eqn·2 such that �x=�f(cos�/cos�) and:

�x = �f·. (18)

Appendix 3. Work in segmented musculature
To calculate total muscle segment work, we integrate force

(F) over displacement and assume that total work (WT) has two
components, one in the direction of segment shortening (Wx)
and one in the dorsoventral direction of bulging (Wy):

WT = Wx + Wy·, (19)

Wx = �x1

x2 Fx dx·, (20)

Wy = �y1

y2 Fy dy·. (21)

From Eqn·6 and Fig.·1B:

Fx = Ff cos	·, (22)

Fy = Ff sin	·, (23)

Wx = �x1

x2 Ff cos	 dx·, (24)

Wy = �y1

y2 Ff sin	 dy·. (25)
From Fig.·1B:

cos	 = x / f·, (26)

sin	 = y / f·, (27)

f = (x2 + y2)1/2·, (28)

Wx = Ff �x1

x2 x / (x2 + y2)1/2 dx·, (29)

Wy = Ff �y1

y2 y / (x2 + y2)1/2 dy·. (30)

For calculations of Wx, we keep segment height constant at
the initial height (y2=y1). For calculations of Wy, we keep
segment length constant at final segment length (x1=x2). This
allows us to calculate the two work components independently
in two separate steps:

Wx = Ff [(x2
2 + y1

2)1/2 – (x1
2 + y1

2)1/2]·, (31)

Wy = Ff [(y2
2 + x2

2)1/2–(y1
2 + x2

2)1/2]·, (32)

Wt = Ff [(x2
2 + y1

2)1/2 – (x1
2 + y1

2)1/2] + 
Ff [(x2

2 + y2
2)1/2 – (x1

2 + y2
2)1/2]·, (33)

Wt = Ff [(x2
2 + y2

2)1/2 – (x1
2 + y1

2)1/2]·, (34)

Wt = Ff (f�f – f)·, (35)

Wt = Ff f �f·. (36)

Eqns·31 and 32 can be used to calculate shortening work and
bulging work, and Eqn·36 confirms that the total work done by
the segment is equal to the work done by the muscle fibers.
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