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In both walking and running the body decelerates forwards
at each step. The braking action is due to the more-or-less
extensible link represented by the supporting anatomical
structures interposed between the centre of mass of the body
and the point of contact on the ground. In order to maintain the
average speed constant, it is necessary to reaccelerate the
centre of mass forwards each step, and this occurs when the
point of contact of the foot on the ground is behind the centre
of mass. Chemical energy is spent to maintain the muscles
active during both the brake (negative work) and the
subsequent forward acceleration (positive work). It follows
that the fluctuations in kinetic energy of forward motion imply
a waste of energy.

The waste of energy during legged terrestrial locomotion is
reduced by two basic mechanisms: the pendular mechanism of
walking and the bouncing mechanism of running. In walking,
the kinetic energy of forward motion is stored in part as
gravitational potential energy when the point of contact with
the ground is in front of the centre of mass: the body is lifted
while it decelerates forwards. The process is reversed when the
point of contact is behind the centre of mass with a
transformation of potential energy back into kinetic energy of
forward motion. Gravitational potential energy and kinetic
energy of forward motion change in opposition of phase during
a walking step (Cavagna et al., 1963).

The same energy conserving mechanism is not possible in

running because the centre of mass is lowered while
decelerating forwards and lifted while accelerating forwards.
Gravitational potential energy and kinetic energy of forward
motion change in-phase during the running step (Cavagna et
al., 1964). With each step the muscle–tendon units must absorb
and restore both the kinetic energy change of forward motion,
due to the braking action of the ground, and the gravitational
potential energy change, associated with the fall and the lift of
the centre of mass. This results in a large amount of negative
and positive work and the chemical energy cost per unit
distance is twice that spent in walking at the optimal speed
(Margaria, 1938).

The metabolic energy expenditure is reduced in running,
however, by an elastic storage and recovery of mechanical
energy, as in a bouncing ball. This was initially suggested by
the finding that in human running the ratio between mechanical
power output and metabolic energy expenditure exceeded the
maximum efficiency of transformation of chemical energy into
mechanical work (Cavagna et al., 1964). Evidence for an
elastic storage and recovery was also found in the kangaroo by
Alexander and Vernon (1975) and in the horse by Biewener
(1998). A spring–mass model of the bounce of the body at each
running step (Blickhan, 1989; McMahon and Cheng, 1990;
Seyfarth et al., 2002) is now widely used in studies on the
effect of the spring stiffness on energy expenditure (McMahon
et al., 1987; Kerdok et al., 2002) as well as the changes in
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The effect of an increase in gravity on the mechanics of
running has been studied by using a force platform fixed
to the floor of an aircraft undergoing flight profiles,
resulting in a simulated gravity of 1.3·g. The power spent
to maintain the motion of the centre of mass of the body is
~1.3 times greater than on Earth, due to a similar increase
of both the power spent against gravity and to sustain the
forward speed changes. This indicates that the average
vertical displacement per unit distance and the average
direction of the push are unchanged. The increase in
power is mainly due to an increase in step frequency
rather than to an increase in the work done at each step.

The increase in step frequency in turn is mainly due to a
decreased duration of the effective aerial phase (when the
vertical force is less than body weight), rather than an
increase in the stiffness of the bouncing system. The
maximal speed where step frequency can match the
resonant frequency of the bouncing system is increased by
~5·km·h–1 at 1.3·g. These results suggest a similar running
mechanics at higher gravity, maintained at the expense of
greater energy expenditure.
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spring stiffness and step frequency with speed (Cavagna et al.,
1988; McMahon and Cheng, 1990) and with surfaces of
different stiffness (Ferris and Farley, 1997; Ferris et al., 1998;
1999; Kerdok et al., 2002).

As expected, the pendular mechanism of walking is
drastically affected by gravity. The range of walking speeds,
optimal walking speed and external work done to move the
centre of mass are all increased by gravity (Cavagna et al.,
2000). Walking on the Moon is practically not possible
(Margaria and Cavagna, 1964): in fact, locomotion takes place
by a succession of bounces with a mechanism similar to that
of running on Earth. The effect of gravity on the mechanism
of running still needs investigation. Suspending the body from
springs results in a reduction of the peak force attained at each
step during running, with little change of the stiffness of the
leg (He et al., 1991). No data exist on the effect of an increase
in gravity on the mechanics of running.

One purpose of the present study was to analyze the effect of
an increase in gravity on the characteristics of the elastic bounce
of the body. The vertical oscillation of the centre of mass during
each running step can be divided into two parts: one taking place
when the vertical force exerted on the ground is greater than
body weight (lower part of the oscillation) and another when this
force is smaller than body weight (upper part of the oscillation;
Fig.·1). According to the spring–mass model, the duration of the
lower part of the oscillation represents half-period of the
bouncing system and the vertical displacement of the centre
of mass during this period represents the amplitude of the
oscillation (Cavagna et al., 1988; Blickhan, 1989; McMahon and
Cheng, 1990). The upper part of the oscillation, by contrast, may
be compared with the second half-period only in the absence of
an aerial phase, as often happens during trotting and very slow
running (Cavagna et al., 1988) (Fig.·1). On Earth, the rebound
is symmetric, i.e. the duration and the amplitude of the lower
part of the oscillation are about equal to those of the upper part
up to a speed of ~11·km·h–1 in both adult humans and children
(Cavagna et al., 1988; Schepens et al., 1998). It follows that up
to this critical speed the step frequency equals the frequency of
the bouncing system. Above the critical speed the rebound
becomes asymmetric, i.e. the duration and the amplitude of the
upper part of the oscillation become greater than those of the
lower part, and the step frequency is lower than the frequency
of the system. The asymmetry arises because the average vertical
acceleration upwards during the lower part of the oscillation
becomes greater than 1·g, whereas during the upper part of the
oscillation the average vertical acceleration downwards cannot
exceed 1·g. It was therefore suggested that the critical speed may
depend on gravity and that at higher gravity values this speed
would probably be greater (Schepens et al., 1998). The aim of
the present study was therefore to determine experimentally if
and to what extent this hypothesis is true. Analysis of the
rebound of the body may also help to determine how an increase
in gravity affects the stiffness of the bouncing system and the
preferred combination between stiffness and landing angle of
attack (Seyfarth et al., 2002).

A second question was the effect of an increase in gravity on

the external mechanical work done to sustain the displacements
of the centre of mass of the body in the sagittal plane. In walking,
external work increases with gravity in both its components: the
work against gravity and the work to sustain the forward velocity
changes, the former increasing much more than the second. It is
likely that gravity will also increase the external work in running,
but the amount of this increase is not known, nor to what extent
it will affect the work done against gravity and the work done
to sustain the forward velocity changes.

In order to answer the questions outlined above, the motion
of the centre of mass of the body during running at different
speeds was analyzed in this study on Earth and on an aeroplane
undergoing flight profiles, resulting in a simulated gravity of
1.3·g. The effect of the increase in gravity on the stiffness of the
bouncing system and on the work done to move the centre of
mass in a sagittal plane was measured.

Materials and methods
The experimental procedure consisted of measuring the

vertical and fore–aft components of the force exerted by feet
on a large force platform. The parameters characterizing the
bounce of the body, such as the whole body vertical stiffness,
leg stiffness, vertical and horizontal displacements of the
centre of mass of the body during contact and during the
effective time of contact, were measured as described by
Cavagna et al. (1988) and McMahon and Cheng (1990). The
mechanical energy changes of the centre of mass of the subject
during one or more subsequent running steps were determined
from the force platform records as described by Cavagna
(1975). Details of the subjects, the hardware and the software
used are given below.

Subjects

The experiments were made on five adult subjects, four males:
A, 33 years, 68–72·kg, 1.74·m height, leg length (hip to floor)
0.92·m; B, 68 years, 81·kg, 1.79·m height, leg length 0.94·m; C,
53 years, 87–91·kg, 1.93·m height, leg length 1.03·m; D, 46
years, 87·kg, 1.79·m height, leg length 0.93·m; and one female
E, 25 years, 52·kg, 1.66·m height, leg length 0.87·m. Informed
consent was obtained from each subject. The studies were
performed according to the Declaration of Helsinki. The
European Space Agency Safety Committee approved the
procedures in the experiments made on the aeroplane.

Experiments at 1.3·g
Experiments were performed during the 32nd European

Space Agency parabolic flight campaign. A simulated gravity of
1.3·g was attained during turns of an A300 Airbus. The
experiments were done over 3 days with a total of 23 turns. An
aircraft orthogonal frame of reference was defined as follows:
the X-axis is parallel to the fore–aft axis of the aeroplane, the
Y-axis is parallel to the lateral axis of the aeroplane and the
Z-axis is perpendicular to the floor of the aeroplane. Three
accelerometers (DS Europe, Milan, Italy) measured
simultaneously the X, Y and Z components of the acceleration
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vector in the aircraft reference frame. In order to reduce the noise
induced by the aircraft vibrations (Fig.·2), the accelerometers
were both mechanically and electrically damped by a low-pass
filter with a cut-off frequency at 5·Hz. In this study, results are
given as means ± S.D. During the time intervals encompassing
the 175 steps analysed, the acceleration was 12.90±0.51·m·s–2

in the Z-direction, 0.03±0.06·m·s–2 in the X-direction and
0.13±0.16·m·s–2 in the Y-direction. The X and Y-axis
accelerations of the frame of reference were neglected and the
acceleration along the Z-axis of the frame of reference was
considered to be equivalent to the vertical on Earth. Therefore
in the following text, forward (or fore–aft), lateral, and vertical
refer to the X, Y and Z-axes, respectively.

During each turn, the subjects ran at different speeds back and
forth across a 6.1·m�0.4·m force platform fixed to the aeroplane
floor along the X-axis. The platform (Heglund, 1981) was
sensitive to the force exerted by the feet in the forward (X) and
vertical (Z) directions; lateral (Y) forces were neglected. The
lowest frequency mode of vibration for the unloaded platform
was greater than 180·Hz. With each turn of the aircraft, the
simulated gravity was maintained for 40–60·s: during this period
the subjects could run several times back and forth on the
platform, one after the other. Two handrails, fixed on each side
of the platform, proved to be useful in case the subject lost
balance. Two photocells fixed 5.87·m apart at neck height along
the side of the platform were used to determine the average
running speed, Vf. Two additional photocells, 1.93·m from the
first and last, were used to detect rough variations in speed
between the first and the last photocells. Two video cameras
were used to check for obvious loss in balance or touching the
handrails. Before stepping on the platform, the subjects had, in
one direction, 12·m to accelerate, the last 6·m of which were at
the same level of the platform; the corresponding figures in the
other direction were 8 and 4.8 m.

Data were gathered as follows. The five subjects made 309
runs, of which 175 were used for analysis. The other runs were
unusable because the subject was accelerating or decelerating
forward (indicated by a continuous velocity change greater than
0.3·m·s–1 from start to end of the run), lost balance, made
irregular steps, the platform signals were out of scale, records
between photocells were incomplete or the Z, Y and X
acceleration were not steady due to turbulence or other factor.
In particular, of the 175 runs analysed: subject A had 50 runs
with 61 steps analysed (speed range: 5.8–20.5·km·h–1); B had 20
runs with 31 steps analysed (6.0–13.6·km·h–1); C had 12 runs
with 16 steps analysed (7.5–11.2·km·h–1), D had 47 runs with
61 steps analysed (5.5–15.5·km·h–1); and E had 46 runs with 52
steps analysed (5.2–15.3·km·h–1).

A microcomputer was used at a sampling rate of 500·Hz to
acquire (i) the platform signals, proportional to the force exerted
by the feet in forward direction (Ff, along the X-axis of the
aeroplane) and in vertical direction (Fv, along the Z-axis of the
aeroplane), (ii) the output of photocell circuit, and (iii) the output
of the accelerometers (Fig.·2). No subject suffered motion
sickness. Subjects experienced a normal coordination of
movements since the first runs at 1.3·g, but at an evidently
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Fig.·1. Diagrammatic representation of the effective aerial and contact
times, and vertical displacements. The vertical displacement of the
centre of mass during the time of contact with the ground tc (continuous
line) and during the aerial phase ta (broken line) is divided into a lower
part Sce (red) taking place when the vertical force is greater than body
weight, and into an upper part Sae (blue) taking place when the vertical
force is less than body weight. Running speed increases from top to
bottom. Note that in all cases Sce (red) represents the amplitude of the
oscillation of the spring–mass system from its equilibrium point and
its duration tce represents a half period of the oscillation (neither the
peak-to-peak vertical displacement nor the vertical displacement
during contact represent the amplitude of the oscillation). Sae (blue)
represents the amplitude of the oscillation in the opposite direction,
and its duration tae the half period of the oscillation, only at the lowest
running speed (A) when the whole vertical displacement takes place
during contact Sc. Only A, when no aerial phase takes place, is
consistent with the spring–mass model. With increasing speed a
progressively greater fraction of the vertical displacement takes place
during the aerial phase Sa. The resonant frequency of the spring–mass
system fs·=1/(2tce) equals the step frequency f only when tce=tae, i.e.
when the rebound is symmetric (A,B). At high running speeds (C) the
rebound is asymmetric (tce<tae) and the step frequency is lower than
the resonant frequency of the system.
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greater effort; any instability tended to
quickly result in a loss of balance due to
the greater vertical acceleration.

Experiments at 1·g
Data were gathered during running in

the laboratory of Louvain-la-Neuve with
the same platform used on the aeroplane
(photocell distance 3–4.5·m according to
the running speed) and in the laboratory of
Milan with the platform described by
Cavagna (1975; photocells distance 3·m).
The two platforms gave consistent results.
Data were collected for the same range of
speeds obtained by each subject on the
aeroplane (5–20·km·h–1). Subject A had
32 runs with 45 steps analysed (made
before the flight, sampling frequency
500·Hz); B had 20 runs with 23 steps
analysed (three before the flight,
250–500·Hz, the others after the flight,
500·Hz); C had 14 runs with 25 steps
analysed (after the flight, 500·Hz), E had
25 runs with 36 steps analysed (after the
flight, 200–400·Hz); D had 29 runs with
47 steps analysed (23 before the flight and
6 after, 500·Hz). Experimental records
obtained at 1·g and at 1.3·g are given in
Fig.·2.

Analysis of force platform records

A custom LabVIEW (6.1) software
program was used to analyze the ground
reaction force records. The average of the
first 50 points of the unloaded platform
base lines was measured in the short time
interval between runs and subtracted from
the entire Ff and Fv arrays to get the net
changes of Ff and Fv during each run. In
case of the 1.3·g experiments, the Ff and
Fv records where also corrected at each
instant for the changes in acceleration
during the aircraft manoeuvres. This was
made by subtracting the product of the
changes in the acceleration measured by

G. A. Cavagna and others

Fig.·2. Experimental records of running on
Earth (A) and during a flight profile simulating
1.3·g (B). (A) Fore–aft (Ff) and vertical (Fv)
components of the force exerted by the foot on
the force platform during running between the
two photocells at the indicated speeds on Earth. (B) From top to bottom at each speed are shown the vertical (av), lateral (al), and fore–aft (af)
components of the acceleration recorded on the aircraft during the run; the force signals Ff and Fv from the force platform (noise is due to
vibrations of the aircraft) and the output of the photocell circuit. The vertical dotted lines delimit the time interval corresponding to the steps
illustrated in Fig.·3, with expansion of the energy records to include the previous valley of potential energy as described in the Materials and
methods. Subject A, mass 72·kg.
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the accelerometers along the Z and X-axis times the mass of
the suspended part of the platform.

An integer number of running steps, encompassing those
subsequently used for calculation, was selected between peaks
of Fv. The time-average of the Fv record over an integer number
of cycles should equal body weight. In reality the ratio between
this time-average and the weight of the subject (body mass �
1.0·g for the Earth experiments and ≈1.3·g for the aeroplane
experiments) was 1.00±0.02 (N=120) in the experiments at 1·g
and 1.05±0.05 (N=175) at 1.3·g.

The velocity of the centre of mass of the body in the vertical
direction Vv and in the forward direction Vf was determined by
integration of the Fv and Ff tracings (Cavagna, 1975). Only
translational motion in a sagittal plane was considered when
calculating the mechanical energy of the centre of mass. Lateral
movements were ignored.

The instantaneous vertical velocity Vv(t) was used to calculate

the instantaneous kinetic energy of vertical motion
Ekv(t)=0.5MbVv(t)2 and, by integration, the vertical displacement
of the centre of mass, Sv(t), with the corresponding gravitational
potential energy change Ep(t)=MbgSv(t). The kinetic energy of
forward motion was calculated as Ekf(t)=0.5MbVf(t)2, the total
translational kinetic energy of the centre of mass in the sagittal
plane as Ek(t)=Ekf(t)+Ekv(t), and the translational mechanical
energy of the centre of mass in the sagittal plane as
Ecm(t)=Ekv(t)+Ekf(t)+Ep(t) (Fig.·3).

Since this study refers to steady running at a constant step-
average speed, an integer number of running cycles was selected
between two Vv peaks (or valleys), searching by eye for a
minimum difference between the beginning and the end of both
the Vv and Vf records. The time-average vertical velocity in the
selected integral number of Vv cycles was calculated and
considered to be zero on the assumption that the upward vertical
displacement was equal to the downward vertical displacement
(Cavagna, 1975). This would only be true if successive steps
were exactly equal to each other. An attempt to quantify the
consequences of this assumption is described below.

The work done at each step to move the centre of mass in the
sagittal plane was measured in the interval included between two
or more peaks (or valleys) of the gravitational potential energy,
Ep. Since, as mentioned above, selection was initially made
between peaks (or valleys) of the vertical velocity, the record
was expanded to include the previous valley (or peak) of Ep(t)
until a clear picture of the selected steps was obtained (Fig.·3).
The work done during the selected steps, Wv, Wk, Wkf and Wext,
was calculated from the amplitudes of peaks and valleys and the
initial and final values in the Ep(t), Ek(t), Ekf(t) and Ecm(t)
records. Positive values of the energy changes gave positive
work, negative values gave negative work. In a perfectly steady
run on the level the ratio between positive and negative work
should be equal to one. In reality the ratios were as follows. In
the 1·g experiments (N=120): W+

v/W–
v=1.00±0.04, W+

k/W–
k=

1.01±0.06, W+
kf/W–

kf=1.02±0.10, W+
ext/W–

ext= 1.01±0.05. In the
1.3·g experiments (N=175): W+

v/W–
v=1.01±0.10, W+

k/W–
k=

1.01±0.10, W+
kf/W–

kf=1.02±0.16, W+
ext/W–

ext=1.01±0.09.
The error involved by the assumption that lifts equal falls in

an integer number of steps was estimated from the difference in
amplitude between the first and last of the selected Vv(t) peaks
(or valleys), as if this difference were due to a drift of the whole
Vv(t) record. Accordingly, the absolute value of the difference
between Vv(t) peaks (or valleys) was multiplied by the time
interval between them and divided by 2 to get the vertical
displacement due to the hypothetical drift. This was then
expressed as a fraction of the sum of the upward vertical
displacements calculated during the same time interval:
0.08±0.07 at 1·g (N=120) and 0.15±0.12 at 1.3·g (N=175).
These figures correspond to a random error less than 1% in the
measured values of Ep (as found by simulating the Vv drift over
one step with a sine wave).

Aerial time and vertical displacement during contact

Since the mechanical energy of the centre of mass is
constant when the body is airborne (air resistance is neglected),

Ep 

Ep+Ekv 

Ekf 

Ecm 

7.1 km h–1 6.6 km h–1 

11.3 km h–1 11.7 km h–1 

20.5 km h–1 20.1 km h–1 

200 J 

200 ms 

1 g 1.3 g A B 

Fig.·3. Mechanical energy changes of the centre of mass of the body
during the running step. (A) 1·g, (B) 1.3·g. At each speed the curves
show from bottom to top: the changes in the gravitational potential
energy of the centre of mass of the body (Ep, dotted line), the sum of
the kinetic energy of vertical motion (Ekv) plus Ep (continuous line),
the kinetic energy of forward motion (Ekf) and the total translational
energy of the centre of mass in the sagittal plane (Ecm=Ep+Ekv+Ekf).
The records were obtained as described in the Materials and methods
from the Fv and Ff signals for the steps indicated by the vertical
interrupted lines in Fig.·2, expanded to the left to include the previous
valley of Ep. At each speed, the zero line corresponds to the minimum
attained by the Ep curve. The continuous line below each panel
indicates the ground contact time.
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the aerial time was calculated as the time
interval during which the derivative
dEcm(t)/dt=0. This time interval was
measured using two reference levels set
by the user above and below the section
of the record where dEcm(t)/dt�0. When
vibrations or a peak of Ecm at the end of
the aerial phase (at high speeds)
disturbed this measurement, the aerial
time could also be determined by eye on
the basis of the duration of the plateau of
the Ecm(t) record (Fig.·3, after
appropriate expansion of the tracing):
this procedure, however, was followed
in only eight of the 295 runs analyzed.
The upward and downward
displacement of the centre of mass
during contact was measured from the
section of the Ep(t) curve during which
dEcm(t)/dt�0 and dEp(t)/dt was positive
and negative, respectively.

‘Effective’ contact and aerial times,
vertical and forward displacements

As described in the Introduction, the
spring–mass model can be applied to the
vertical displacement of the centre of
mass taking place at each running step
provided that the period and the
amplitude of the oscillation of the
spring–mass system are correctly
measured. In all conditions the half
period of the oscillation equals the time
interval where the centre of mass
decelerates downwards and accelerates
upwards, i.e. the time interval during
which the vertical force is greater than
body weight. This time interval is called
effective contact time, tce, and is shorter
than the total time of contact (Fig.·1).
The time interval where the centre of
mass decelerates upwards and
accelerates downwards, i.e. when the
vertical force is less than body weight, is
called effective aerial time, tae: it occurs
both during contact and during the aerial
phase and does not necessarily
correspond to the other half period of the
oscillation. The amplitude of the vertical
oscillation, i.e. the compression of the
spring from its equilibrium position,
equals in all conditions the vertical
displacement Sce attained during tce. The
displacement upward, Sae, attained
during tae corresponds to the amplitude
of the vertical oscillation only in the
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to bottom, the step period (τ), the vertical displacement of the centre of gravity of the body
during the step (Sv) and the step length (L) as a function of the running speed (Vf). Triangles
(blue) indicate the duration (tae) of the effective aerial phase, and the displacement of the centre
of gravity during this phase in the vertical direction (Sae) and in the forward direction (Lae).
Similarly, squares (red) indicate the duration (tce) of the effective contact phase and the
corresponding displacements in the vertical direction (Sce) and in the forward direction (Lce).
The red broken line in each panel indicates the actual contact time (tc), and the vertical (Sc)
and forward (Lc) displacement of the centre of mass during it. The blue broken line in each
panel indicates the actual aerial time (ta), and the vertical (Sa) and forward (La) displacement
of the centre of mass during it. The vertical bars indicate the standard deviation of the mean
calculated in each velocity class; the figures near the symbols in the upper panels indicate the
number of items in the mean. Note that the step divisions based on the effective contact time
and aerial time correspond to about half of total duration and displacements of the step, whereas
the fraction of the step occupied by the actual contact and aerial phases varies widely with
speed. Note also that the speed beyond which tae=tce, Sae=Sce and Lae=Lce is greater at 1.3·g
than at 1·g.
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absence of an aerial phase (Cavagna et al, 1988). In the
spring–mass model, but not in the actual running step (see
below), both Sce and Sae are assumed to be equal during the lift
and the fall of the centre of mass.

The locations of the Ekv peaks attained during the step were
used in this study to determine the transition from the effective
aerial time to the effective contact time and vice versa. The
locations and the amplitudes of Ep simultaneous with the peaks
of Ekv were used to determine the vertical displacements,
Sce,down, during the downward deceleration of the centre of
mass, and Sce,up, during the upward acceleration of the centre
of mass. Since Sce,down may differ from Sce,up, the amplitude of
the oscillation was taken as Sce=(Sce,down+Sce,up)/2 (Fig.·4). The
downward and upward vertical displacements during the
effective aerial phase were calculated as Sae,down=
Sv,down–Sce,down and Sae,up=Sv,up–Sce,up. The average vertical
displacement during the effective aerial phase was calculated
as Sae=(Sae,down+Sae,up)/2 (Fig.·4).

The total vertical displacement of the centre of mass at each
step (Fig.·4) was calculated as the average between the total
vertical displacement during the lift and that during the fall,
i.e. Sv·=(Sv,up+Sv,down)/2.

The forward displacements of the centre of mass during tce

and tae were labeled Lce and Lae (Fig.·4) and were calculated
from the time integral of the instantaneous forward velocity of
the centre of mass Vf(t) during the corresponding times. These

measures are more precise than those hitherto made using the
average forward speed Vf (Cavagna et al., 1988) because they
take into account the difference in forward speed between the
lower and the upper part of the vertical oscillation.

Vertical stiffness

The vertical stiffness (kvert in Fig.·5) was calculated from the
effective contact time tce on the assumption that this time
represents the half-period of oscillation of the elastic system:
kvert=Mb(π/tce)2, where Mb is the body mass of each subject.
Correspondingly, the resonant frequency of the bouncing
system was calculated as fs=1/(2tce) (Fig.·5). The mass-specific
vertical stiffness, kvert/Mb, was also calculated from the slope
of a graph obtained by plotting the vertical acceleration of the
centre of mass av as a function of the simultaneous vertical
displacement of the centre of mass Sv during the effective
contact time (positive values of av), as described by Cavagna
et al. (1988). This method, however, was found to be
drastically affected by the oscillations of av after foot contact,
particularly at high speeds and at 1.3·g. In fact, the mass-
specific vertical stiffness, calculated in some of the records
from the maximum compression of the spring as av,mx/Sce (see
Discussion) approaches that calculated from the effective
contact time tce and is higher, particular in the presence of large
oscillations, than that measured from the average slope of the
av–Sv plot.
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Fig.·5. Stiffness (A,C), resonant frequency of
the bouncing system and freely chosen step
frequency (B,D) as a function of running
speed. (A,B) 1·g, (C,D) 1.3·g. In A and C,
filled circles give the vertical stiffness of the
bouncing system [kvert=Mb(π/tce)2], whereas
open circles give the leg stiffness (kleg),
calculated as described in the Materials and
methods. The kvert,1g line in C is drawn for
comparison to show the similarity of the two
stiffness at intermediate speeds. In B and D,
filled squares indicate the freely chosen step
frequency (f) for comparison with open
squares, the resonant frequency of the
bouncing system [fs=1/(2tce)], calculated
assuming that the effective contact time
corresponds to one half-period of the
oscillation of the elastic system. Note that the
increase in gravity increases the maximum
speed where f=fs. The two lower lines
indicate the frequency fk,leg=(kleg/Mb)0.5/(2π),
calculated from the leg stiffness and the
frequency fc=1/(2tc), calculated assuming that
the time of contact corresponds to one half-
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both give false indication in their relation with
the actual step frequency. Lines are least-
squares linear regressions or weighted mean
of all the data (Kaleidagraph 3.6.4).
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Leg stiffness

McMahon and Cheng (1990) pointed out that the actual
compression of the hypothetical spring over which the body
bounces each step includes not only the lowering of the centre
of mass after foot contact, but also the amplitude of the arc made
by the extended spring in its rotation during contact. These
authors calculated leg stiffness as the ratio between maximal
vertical force attained during contact and length change of the
leg taking place during the contact time tc. This leg change
extends beyond the amplitude of the oscillation of the
spring–mass system and includes the beginning and the end of
‘spring’ loading, when the load–extension curve is often not
linear. In this study, leg stiffness kleg is calculated within the
amplitude of the oscillation, i.e. during the effective contact time
tce, as the ratio between the increment of the vertical force above
body weight (Mbav,max) and the total length change of the
hypothetical leg-spring during this time (Sce+ΔY). The amplitude
of the arc made by the extended spring in its rotation during tce

was calculated as ΔY=l(1–cosθ), where θ= arcsine(Lce/2l) and l
is the hip-ground distance of each subject (0.87–1.03·m).

Statistics

The data collected as a function of running speed were
grouped into 1·km·h–1 intervals as follows: 5 to <6·km·h–1, 6 to
<7·km·h–1,.., 19 to <20·km·h–1 and 20–20.5·km·h–1 at 1·g; and 5
to <6·km·h–1, 6 to <7·km·h–1,.., 17 to <18 and 19 to <20.5·km·h–1

at 1.3·g (no data in the 18 to <19·km·h–1 range at 1.3·g). The data
points in the figures represent the mean ± S.D. in each of the
above speed intervals and the figures near the symbols in
Fig.·4A,D give the number of items in the mean. Given the
limitations imposed by the experimental conditions, a different
number of subjects and of steps analyzed contributed to the mean
values reported at each speed. Comparison between groups of
data at each speed (Tables 1 and 2) was made using a two-factors
analysis of variance (ANOVA) with contrast (SuperANOVA
version 1.11). The contrast analysis was not made for the four

highest speed groups (>16·km·h–1) because, both at 1·g and at
1.3·g, the number of items was too small (see Fig.·4A,D). For
clarity, in some of the figures lines are drawn through all of the
data using Kaleidagraph 3.6.4 linear or weighted fits, as
indicated in the legend of each figure. The only purpose of these
lines is to be a guide for the eye; they do not describe the
underlying physical mechanism.

Results
The results are given in two sections. The dynamics of the

rebound of the body during the running step is described in the
first section from (i) the displacement of the centre of mass
taking place during the different phases of the step (total and
effective aerial phase, total and effective ground contact phase),
and (ii) the relationship between naturally selected step
frequency and apparent resonant frequency of the bouncing
system. The second section refers to the work done to lift and
accelerate the centre of mass in a sagittal plane.

Dynamics of the rebound

In what follows an average is made of the upward and
downward displacements, and corresponding time intervals, in
the lower and upper half of the vertical oscillation of the centre
of mass. This procedure was followed by Cavagna et al. (1988)
and is the basis of the spring–mass model (Blickhan, 1989;
McMahon and Cheng, 1990), which assumes that during the
running step the landing and take-off conditions are the same.

The step period (τ, Fig.·4A,D), the vertical displacement of
the centre of gravity during each step (Sv, Fig.·4B,E) and the step
length (L, Fig.·4C,F) are given as a function of running speed
(Vf) at 1·g and 1.3·g. As proposed by Cavagna et al. (1988), τ,
Sv and L are divided into two parts, corresponding to the lower
and upper parts of the vertical oscillation of the centre of mass:
a lower part taking place when the vertical force is greater than

G. A. Cavagna and others

Table·1. Speeds at which the pairs of the listed variables are statistically different at each gravity level

tce vs tae Sce vs Sae Lce vs Lae f vs fs

Speed 1·g 1.3·g 1·g 1.3·g 1·g 1.3·g 1·g 1.3·g

(km·h–1) F P F P F P F P F P F P F P F P

5 13.19 0.0004 11.14 0.0009 6.23 0.0133 ns 4.31 0.0390 ns ns ns
6 7.33 0.0074 22.28 0.0001 4.20 0.0417 ns ns 10.1 0.0016 ns 6.21 0.0132
7 ns 33.86 0.0001 4.43 0.0365 9.28 0.0025 ns 19.6 0.0001 ns 9.11 0.0028
8 ns 35.24 0.0001 ns 8.37 0.0041 ns 25.74 0.0001 ns 11.26 0.0009
9 ns 29.53 0.0001 ns 11.03 0.0010 ns 26.91 0.0001 ns 11.26 0.0009
10 ns 4.38 0.0372 ns ns ns 4.69 0.0310 ns ns
11 10.45 0.0014 11.39 0.0008 ns 6.95 0.0088 14.57 0.0002 15.46 0.0001 5.35 0.0217 ns
12 11.41 0.0009 ns ns ns 18.77 0.0001 ns 6.73 0.0102 ns
13 7.10 0.0083 ns ns ns 13.31 0.0003 ns 4.37 0.0378 ns
14 21.35 0.0001 ns ns ns 45.84 0.0001 ns 13.73 0.0003 ns
15 17.62 0.0001 ns ns ns 44.50 0.0001 ns 12.86 0.0004 ns
16 7.74 0.0059 ns ns ns 22.06 0.0001 ns 5.99 0.0153 ns

ns, not significant, i.e. P≥0.05.
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the body weight (tce, Sce and Lce; Fig.·4, red squares), and an
upper part taking place when the vertical force is smaller than
body weight (tae, Sae and Lae; Fig.·4, blue triangles). For
comparison, τ, Sv and L have also been divided, according to
tradition, into parts occurring during the ground contact phase
and the aerial phase (Fig.·4, dotted lines).

It can be seen that tae=tce, and Lae=Lce in a range of lower
speeds at 1·g (<10·km·h–1) and of higher speeds at 1.3·g
(>11·km·h–1; see Table·1). As in previous studies (Schepens et
al., 1998), this trend is not so clear for Sae and Sce due to the
larger scatter of the data. In addition, τ, Sv and L are on average
smaller at 1.3·g than at 1·g, mainly due to their reduction in the
phase of the step where the vertical force is less than body
weight, i.e. tae, Sae and Lae are on average smaller than tce, Sce

and Lce at 1.3·g (Table·2).
The whole body vertical stiffness kvert, the leg stiffness kleg,

the natural frequency of the bouncing system fs and the freely
chosen step frequency f are given in Fig.·5 as a function of
running speed. Fig.·5A,C show the vertical stiffness and the leg
stiffness. The vertical stiffness increases linearly with speed
whereas the leg stiffness is about constant independent of speed.
This is in agreement with the spring–mass model predictions and
experimental results reported in the literature (McMahon and
Cheng, 1990; Farley et al, 1993). It can be seen that gravity tends
to increase stiffness, but its effect is not significant at
intermediate running speeds (Fig.·5C and Table·2).

In Fig.·5B,D a comparison is made between the step
frequency f and the natural frequency of the bouncing system,
fs. At 1·g the overlap between f and fs occurs at speeds
(<11·km·h–1) lower than the speeds (>10·km·h–1) where the
overlap occurs at 1.3·g (Table·1). As reported in previous studies
(Cavagna et al., 1988; Schepens et al., 1998), the natural
frequency of the bouncing system exceeds the step frequency
beyond 10·km·h–1 at 1·g (fs>f, see Fig.·5 and Table·1). The
maximum speed where f=fs is greater at 1.3·g. Data in Figs·4, 5
and Table·1 also suggest an asymmetry in the opposite direction
at low speeds (tce>tae and f>fs), particularly at 1.3·g; this will be
discussed below.

If the frequency of the bouncing system is calculated from the
total contact time as fc=1/(2tc) or from the leg stiffness as
fk,leg=(kleg/Mb)0.5/(2π) (Fig.·5B,D, continuous lines), a large
discrepancy is found with f. This indicates that the vertical
stiffness only is related to step frequency.

Work

The step-average positive external power to move the centre
of mass of the body in the sagittal plane is plotted as a function
of the running speed in Fig.·6A (1·g) and Fig.·6C (1.3·g).
Fig.·6B,D give the corresponding positive work done per unit
distance. The results obtained at 1·g (Fig.·6A,B) are in good
agreement with those obtained previously (e.g. Cavagna et al.,
1976; Schepens et al., 1998). The external power, Wext, seems
to increase linearly with speed. Since the gravitational potential
energy curve and the kinetic energy curve of forward motion
are nearly in-phase during the running step, the external power
is practically equal to the sum of the power output due to the
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kinetic energy changes of forward motion Wf and the vertical
lift against gravity Wv, i.e. Wext�Wf+Wv. The power spent to
sustain the forward velocity changes Wf increases with speed,
whereas the power spent against gravity Wv attains a plateau
at ~11·km·h–1. The external work done per unit distance,
Wxt/Vf, is about constant at speeds greater than 10·km·h–1, due
to mirror changes of Wf/Vf and Wv/Vf, whereas it increases as
the speed is reduced below 10·km·h–1 due to the positive
intercept of Wext=f(Vf ) linear relation.

A 1.3� increase in gravity causes a ~1.3� increase of the
external power Wext and its components Wf and Wv. This is
shown by the similarity of the experimental data in Fig.·6C,
with the crosses obtained by multiplying the mean
experimental values of Fig.·6A (1·g) �1.3. The linear
relationship between external power and speed is retained but
power increases more steeply with speed from a smaller
intercept at 1.3·g. Given the small intercept, the slope
approaches the work done per unit distance (Fig.·6D).

Discussion
Symmetric and asymmetric rebound

Running on Earth the step frequency is
adapted to comply with the resonant
frequency of the system (symmetric
rebound) until a speed is attained
(~11·km·h–1) where this is no longer
possible (asymmetric rebound). The
critical running speed is attained when the
time-average vertical acceleration during
the lower half of the oscillation, tce, which
increases continuously with speed,
exceeds the time-average acceleration
during the upper half of the oscillation, tae,
due to the pull by gravity. As
hypothesized by Schepens et al. (1998)
this limit is attained at a higher speed at
higher gravity. A 30% increase in gravity
increases the speed where the rebound can
remain symmetric by ≈5·km·h–1 (Fig.·5).

What is the physiological significance
of attaining equivalent step frequencies
and resonant bouncing frequencies?
Runners maintain spring-like mechanics
over a wide range of speeds independent of
the symmetry of the rebound (Blickhan,
1989; McMahon and Cheng, 1990;
Seyfarth et al., 2002; Farley and Gonzalez,
1996). Furthermore, a mismatch of the
resonant and step frequencies does not
appear to result in greater work required to
maintain the motion of the center of gravity
(Fig.·6). However, energy expenditure,
rather than mechanical work, may be
considered in this respect. It is possible that
the energy expenditure required to
maintain the oscillation will be smaller

when the rebound is symmetric than when it is asymmetric.
When the rebound is symmetric the system is activated to
bounce at a frequency equal to its resonant frequency. The utility
to adopt a step frequency equal to the resonant frequency of the
bouncing system is suggested by the finding that at running
speeds less than about 13·km·h–1, an increase in step frequency
above the freely chosen step frequency increases the energy
expenditure, despite a decrease in mechanical power (Cavagna
et al., 1997).

At low running speeds the increase in gravity often causes
an asymmetry in the opposite direction, with tce>tae and Sce>Sae.
This condition is also observed at 1·g in some subjects,
particularly at low speeds, but is enhanced by an increase in
gravity in all subjects (Fig.·4 and Table·1). The reversed
asymmetry is due to the fact that the vertical stiffness when the
vertical force is greater than body weight is, in some
conditions, smaller than the vertical stiffness when the vertical
force is less than body weight and the foot is still in contact

G. A. Cavagna and others
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Fig.·6. External power and work per unit distance. (A,B) 1·g, (C,D) 1.3·g. The mass-specific
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movement of the centre of mass in the sagittal plane (filled diamonds, ext) to accelerate it
forwards (open squares, f) and to lift it against gravity (open triangles, v) are given as a
function of the running speed. In C, x and + give the mean values plotted in B �1.3: the
agreement with the experimental data shows that a 1.3� increase in gravity causes an ~1.3�
increase in work. Lines for external power, Wext, are least-squares linear regressions of all
the data, the other lines are weighted means of all the data (Kaleidagraph 3.6.4).
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Fig.·7. Relationship between
vertical acceleration and vertical
displacement of the centre of
mass. (A) 1·g, (B) 1.3·g. In each
group the top set of speeds refers
to subject A and the lower set to
subject D. In each column graphs
are arranged in couples, with
speed increasing from top to
bottom, as indicated. In each
couple the graph on the right is the
experimental record of vertical
acceleration (av) vs vertical
displacement (Sv) of the centre of
mass during the step. These curves
are disturbed by a large oscillation
during the fall (McMahon et al.,
1987), and are more consistent
with the spring–mass model
during the lift (arrows directed
rightward and downward).
Additional oscillations at 1.3·g are
due to the vibrations of the
aircraft: these are clearly visible in
Fig.·2 in the force platform
records, but not in the acceleration
records due to the high damping of
the accelerometers (see Materials
and methods). The left graph of
each couple is constructed using
three points on the ordinate:
+av,mx, av=0 and –av,mx,
corresponding to bottom, half and
top of the vertical oscillation, and
the lift–fall average of the
measured values of Sce, Sae and Sa

on the abscissa. The zero on
the abscissa corresponds to the
bottom of Sv when the upward
acceleration, on the ordinate, is at
a maximum, av,mx (measured as
the av peak following the early
peak due to rapid deceleration of
the foot after contact; McMahon et
al., 1987). The end of Sce (the
beginning of Sae) corresponds to
av=0 by definition, i.e. to Fv=Mbg.
The end of Sae corresponds to
Fv=0 and to –av,mx=1·g (Ai–iii) or
1.3·g (Bi–iii). The mass-specific
vertical stiffness measured during
the lower half of the oscillation,
kvert,ce/Mb=+av,mx/Sce (the slope of
the line from av,mx to av=0), is
similar to kvert/Mb=(π/tce)2

calculated on the assumption that
tce represents one half oscillation
of the bouncing system (Fig.·5). The mass-specific vertical stiffness measured during the upper half of the oscillation when the foot is in contact
with the ground, kvert,ae-a/Mb=|–av,mx|/(Sae–Sa) (the absolute value of the slope of the line from av=0 to –av,mx), differs, in some conditions, from
the mass-specific vertical stiffness during the lower half of the oscillation, kvert,ce/Mb. In particular, kvert,ae–a>kvert,ce in some speeds at 1·g (subject
D) and in a wider speed range at 1.3·g: the significance of this finding is described in the text.
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with the ground. This is shown in Fig.·7, where the vertical
acceleration of the centre of mass is plotted as a function of its
vertical displacement for different running speeds.

The top row in each group (Ai, Aii, Aiii) Fig.·7A refers to
subject A running at 1·g with a symmetric rebound, i.e. Sce≈Sae,
up to the speed of about 10·km·h–1: this is the average condition
at 1·g (Cavagna et al., 1988; Schepens et al., 1998). The row
below, however, refers to subject D running at a low running
speed on Earth with Sce>Sae. It can be seen from Fig.·7A that in
this case the mass-specific vertical stiffness measured during the
lower half of the oscillation, kvert,ae–a/Mb=+av,mx/Sce (the slope of
the line from av,mx to av=0), is lower than the mass-specific
vertical stiffness measured during the upper half of the
oscillation when the foot is in contact with the ground,
kvert,ce/Mb=|–av,mx|/(Sae–Sa) (the absolute value of the slope of the
line from av=0 to –av,mx). As mentioned above, this condition is
enhanced in both subjects by an increase in gravity to 1.3·g
(Fig.·7B).

A vertical stiffness during Sae–Sa, when the vertical force is

lower than body weight, greater than that during Sce, when the
force is higher than body weight, does not reflect the
characteristics of the elastic structures over which the body may
possibly bounce. In fact, it has been shown both in vitro and in
situ that the muscle–tendon stiffness increases with load (Hill,
1950; Cavagna, 1970; Ker et al., 1987). The finding that
kvert,ae–a>kvert,ce is simply due to the fact that body weight minus
the upward push results in a restoring force, per unit of
deformation of the spring, directed downward during tae–ta,
which is greater than that directed upward during tce. In these
subjects, gravity during tae is more effective than the upward
push of the elastic system during tce in absorbing and restoring
the kinetic energy of vertical motion. Since the vertical
momentum lost and gained during tce must equal the vertical
momentum lost and gained during tae, a stiffer ‘spring’ during
tae–ta will contribute to make tae<tce (Fig.·4) and, as a
consequence, the step frequency, f=1/(tce+tae), greater than the
natural frequency of the bouncing system, fs=1/(2tce). This was
in fact found during some of the runs at low speeds, particularly
at 1.3·g (Fig.·5 and Table·1).

At low running speeds (<10·km·h–1), subjects characterized
by tce≈tae and Sce≈Sae show a smaller angle swept by the leg
during tce, a smaller Sv and a higher mass-specific vertical
stiffness than subjects characterized by tce·>tae and Sce·>Sae.
Seyfarth et al. (2002) showed that different running strategies
are compatible with stable running as predicted by a
spring–mass system: ‘either stiff legs with steep angles of attack
or more compliant legs with flatter angles’ (a steep angle of
attack corresponds to a small angle swept by the leg during tce).
The first strategy implies a smaller work done against gravity at
each step, but a higher step frequency, with the result that the
average vertical power is similar to that spent during the ‘softer’
running of the second strategy with Sce·>Sae (this was in fact
measured comparing subject A with subject B, data not shown).

Effect of gravity on work

As shown in Fig.·6, a 1.3� increase in gravity results in an
~1.3� increase in the work done per unit distance against gravity
and to sustain the forward speed changes. An increase in the
work done against gravity is to be expected. The finding,
however, that this increase is proportional to gravity gives the
additional information that the average vertical displacement of
the centre of mass per unit distance is the same at 1·g as at 1.3·g.
In other words, the sum of all the vertical lifts made in 1·km is
the same and is independent of gravity. Since the step frequency
is increased by gravity (Fig.·8 and Table·2), the vertical lift per
step must be smaller at 1.3·g (Fig.·4), but the average lift per unit
distance must be the same.

Less obvious is an increase with gravity of the work done per
unit distance to sustain the forward speed changes. In fact kinetic
energy of forward motion does not contain a gravity component.
One possible explanation is given by a simplified model worked
out by Alexander (Modelling step by step; http://plus.maths.org/
issue13/features/walking/). Considering that the average vertical
force over the step period (contact phase plus aerial phase) must
equal body weight, Alexander derived an equation where the
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Fig.·8. The mass-specific external work done at each step (A) and the
step frequency (B) are plotted as a function of running speed for the
experiments made at 1·g (open circles) and at 1.3·g (filled circles). It
can be seen that, on average, step frequency is increased by gravity
more than the work per step: in other words, an increase in gravity
increases the mechanical power output mainly through an increase in
step frequency. Lines are least-squares linear regressions (1·g) or
weighted mean (1.3·g) of all the data (Kaleidagraph 3.6.4).
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work done per unit distance to sustain the forward speed changes
of the centre of mass is proportional to gravity and to the tangent
of the angle made by the leg with the vertical (leg is assumed as
a rigid rod connecting point of contact on the ground with the
centre of mass). Alexander’s approach is based on the
assumption that at each running step the direction of the resultant
force exerted on the ground equals that of the link between
centre of mass and point of contact on the ground. It follows that
an increase in the vertical component of the force due to an
increase in gravity, as in the present experiments, must imply an
increase in the horizontal component as well. This is in
agreement with the experimental results of Chang et al. (2000)
showing that gravity affects both vertical and horizontal forces
generated against the ground during running so that the
orientation of the resultant vector remains aligned with the leg.
This strategy, minimizing muscle forces, was first described by
Biewener (1989). The finding that a 1.3� increase in gravity
results in an ~1.3� increase in the work done to sustain the
forward speed changes (Fig.·6) is in agreement with Alexander’s
equation, and indicates that at any given speed the average
direction of the push is independent of gravity.

All together the above information suggest that, in running, a
similar centre of mass motion tends to be maintained when gravity
is increased as well as when stiffness of the ground is changed
(Ferris and Farley, 1997; Ferris et al., 1998, 1999; Kerdok et al.,
2002). The similarity here refers to the average vertical
displacement per unit distance and the direction of the push, which
are maintained in spite of an increase in step frequency.

The increase in external mechanical power induced by the
increase in gravity is due to an increase in step frequency more
than to an increase of the external work done at each step (Fig.·8,
Table·2). The increase in step frequency in turn is explained to a
lesser extent by an increase in the stiffness of the bouncing system
(Fig.·5 and kvert in Table·2), and to a greater extent by a decrease
of the effective aerial time (Fig.·4 and tae in Table·2). He et al.
(1991) found that the leg stiffness adopted at 1·g was retained
when a lower gravity was simulated by suspension with springs.

The finding that the increase in step frequency
f=1/τ=1/(tce+tae), is not explained by an increase in the natural
frequency of the bouncing system fs=1/(2tce), but is mainly due
to a shorter duration of the upper half of the oscillation tae,
implies that the ratio tce/τ is greater at 1.3·g. Since the average
vertical force over the step period must equal body weight, a
greater fraction tce/τ has the beneficial effect of reducing the
fraction of the step during which the vertical force exerted on
the ground is greater than body weight. On the other hand the
greater step frequency at 1.3·g must increase the internal power
spent to accelerate the limbs relative to the centre of mass
(Cavagna et al., 1991).

List of symbols
av,mx maximal vertical acceleration of the centre of 

mass of the body measured at the bottom 
(av,mx) and at the top (–av,mx) of the vertical 
displacement, Sv

Ecm translational energy of the centre of mass in the 
sagittal plane: Ecm=Ek+Ep

Ek translational kinetic energy of the centre of mass 
in the sagittal plane: Ek=Ekf+Ekv

Ekf kinetic energy of forward motion of the centre of 
mass: Ekf=0.5MbVf

2

Ekv kinetic energy of vertical motion of the centre of 
mass: Ekv=0.5MbVv

2

Ep gravitational potential energy of the centre of mass
f step frequency: f=1/τ
fc natural frequency of the bouncing system 

calculated from the total contact time: 
fc=1/(2tc)

fk,leg natural frequency of the bouncing system 
calculated from the leg stiffness: 
fk,leg=(kleg/Mb)0.5/(2π)

fs natural frequency of the bouncing system 
calculated from the effective contact time: 
fs=1/(2tce)

Ff fore–aft force exerted by the subject on the force 
platform

Fv vertical force exerted by the subject on the force 
platform

g acceleration of gravity
kleg leg stiffness: kleg=(Mbav,max)/(Sce+ΔY), where 

ΔY=l{1–cos[arcsin(Lce/2l)]}
kvert vertical stiffness calculated from the effective 

contact time: kvert=Mb(π/tce)2

kvert,ae–a vertical stiffness when the vertical force is less 
than body weight and foot is still in contact 
with the ground: kvert,ae–a=Mb|–av,mx|/(Sae–Sa)

kvert,ce vertical stiffness when the vertical force is 
greater than body weight: kvert,ce=Mbav,mx/Sce, 
this stiffness works out to be about equal to 
kvert =Mb(π/tce)2

l hip–ground distance
L step length
La forward displacement of the centre of mass while 

the body is off the ground, calculated from the 
maximal forward speed attained during the 
step, Vf,mx, as: La= taVf,mx

Lae forward displacement of the centre of mass 
during tae calculated from the time integral of 
the instantaneous forward velocity of the 
centre of mass: Lae=0�taeVf(t)dt

Lc forward displacement of the centre of mass while 
the body is on the ground: Lc=L–La

Lce forward displacement of the centre of mass 
during tce calculated from the time integral of 
the instantaneous forward velocity of the 
centre of mass: Lce=0�tceVf(t)dt

Mb body mass
Sa vertical displacement during the aerial time: 

Sa=(Sa,up+Sa,down)/2
Sae vertical displacement during the effective aerial 

time: Sae=(Sae,up+Sae,down)/2
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Sae,down downward vertical displacement during the 
effective aerial time: Sae,down=Sv,down–Sce,down

Sae,up upward vertical displacement during the effective 
aerial time: Sae,up=Sv,up–Sce,up

Sc vertical displacement during contact with the 
ground: Sc=(Sc,down+Sc,up)/2

Sce vertical displacement during the effective contact 
time: Sce=(Sce,down+Sce,up)/2

Sce,down vertical displacement during the downward 
deceleration of the centre of mass

Sce,up vertical displacement during the upward 
acceleration of the centre of mass

Sv total vertical displacement of the centre of mass: 
Sv=(Sv,down+Sv,up)/2.

Sv,down vertical displacement during the fall of the centre 
of mass

Sv,up vertical displacement during the lift of the centre 
of mass

ta time interval during which the body is airborne
tae effective aerial time: time interval during which 

the vertical force is smaller than body weight
tc time interval during which the body is in contact 

with the ground
tce effective contact time: time interval during which 

the vertical force is greater than body weight
Vf average running speed
Vf instantaneous velocity of the centre of mass in 

forward direction
Vv instantaneous velocity of the centre of mass in 

vertical direction
Wext external work done at each step to sustain the 

changes in the translational mechanical energy 
of the centre of mass during its motion in a 
sagittal plane, Ecm=Ep+Ekf+Ekv

Wf positive work done at each step to sustain the 
changes in the translational kinetic energy of 
the centre of mass Ekf in forward direction

Wk positive work done at each step to sustain the 
changes in the translational kinetic energy of 
the centre of mass in the sagittal plane, 
Ek=Ekf+Ekv

Wv work done to sustain the changes in gravitational 
potential energy of the centre of mass Ep

Wext step-average external power to move the centre 
of mass of the body in a sagittal plane: 
Wext=Wext/τ

Wf step-average power to sustain the kinetic energy 
changes of forward motion: Wf= Wf/τ

Wv step-average power to sustain the vertical lift 
against gravity: Wv= Wv/τ

τ Step period, i.e. period of repeating change in the 
motion of the centre of mass
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