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Scleractinian corals derive their nutritional needs, in part,
from photosynthates translocated by their symbiotic
zooxanthellae (Muscatine, 1990). The effects and mechanisms
of autotrophy have been well documented (Muscatine, 1980).
Corals nevertheless are true heterotrophs, ingesting a wide
range of food such as dissolved and particulate organic matter
(Anthony, 1999; Anthony and Fabricius, 2000), sediment
(Rosenfeld et al., 1999), bacteria (Farrant et al., 1987; Sorokin,
1991) and zooplankton (Lasker et al., 1983; Lewis, 1992;
Ferrier-Pagès et al., 1998; Sebens et al., 1996). The relative
importance of phototrophy vs. heterotrophy is still partially
understood. In shallow waters and high-light-adapted corals,
photosynthesis alone may meet all the nutritional needs
(Falkowski et al., 1984) while in deep living corals or in some
species depending mostly on predation, photosynthesis may
only supply a small fraction of this energy demand (Szmant-
Froelich and Pilson, 1984; for a review, see Barnes and

Chalker, 1990). Corals living in turbid environments are also
more dependent on heterotrophy than those living in clear
waters (Anthony and Fabricius, 2000).

The major role of feeding is to provide the symbiosis with
essential nutrients such as nitrogen and phosphorus (Rahav et
al., 1989; Cook et al., 1994). Both host and algal symbionts
respond quickly to food availability (Fitt, 2000). At the algal
level, Dubinsky et al. (1990) as well as Titlyanov et al.,
(2000a,b, 2001) showed an enhancement of the areal
pigmentation and zooxanthellae density in fed corals, leading
to an increase in the areal photosynthesis. At the animal level,
heterotrophy tends to increase the amount of tissue synthesis
(Jacques and Pilson, 1980; Sebens and Johnson, 1991; Kim and
Lasker, 1998). An enhancement in skeletal growth has also
been observed, suggesting that corals allocate a high
proportion of the energy brought by food to calcification
processes (Jacques and Pilson, 1980; Witting, 1999; Ferrier-
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We investigated the effect of zooplankton feeding on
tissue and skeletal growth of the scleractinian coral
Stylophora pistillata. Microcolonies were divided into two
groups: starved corals (SC), which were not fed during the
experiment, and fed corals (FC), which were abundantly
fed with Artemia salina nauplii and freshly collected
zooplankton. Changes in tissue growth, photosynthesis
and calcification rates were measured after 3 and 8 weeks
of incubation. Calcification is the deposition of both an
organic matrix and a calcium carbonate layer, so we
measured the effect of feeding on both these parameters,
using incorporation of 14C-aspartic acid and 45Ca,
respectively. Aspartic acid is one of the major components
of the organic matrix in scleractinian corals. For both
sampling times, protein concentrations were twice as high
in FC than in SC (0.73 vs 0.42·mg·P–1·cm–2·skeleton) and
chlorophyll c2 concentrations were 3–4 times higher in fed
corals (2.1±0.3·µg·cm–2). Cell specific density (CSD), which
corresponds to the number of algal cells inside a host cell,
was also significantly higher in FC (1.416±0.028) than in
SC (1.316±0.015). Fed corals therefore displayed a higher

rate of photosynthesis per unit area (Pg
max=

570±60·nmol·O2·cm–2·h–1 and Ik=403±27·µmol·photons
m–2·s–1). After 8 weeks, both light and dark calcification
rates were twofold greater in FC (3323±508 and
416±58·nmol·Ca2+·2·h–1·g–1·dry·skeletal·mass) compared
to SC (1560±217 and 225±35·nmol·Ca2+·2·h–1·g–1

dry·skeletal·mass, respectively, under light and dark
conditions). Aspartic acid incorporation rates were also
significantly higher in FC (10.44±0.69 and 1.36±
0.26%RAV·2·h–1·g–1·dry·skeletal·mass, where RAV is total
radioactivity initially present in the external medium)
than in SC (6.51±0.45 and 0.44±0.02%RAV·2·h–1·g–1

dry·skeletal·mass under dark and light conditions,
respectively). Rates of dark aspartic acid incorporation
were lower than the rates measured in the light. Our
results suggest that the increase in the rates of calcification
in fed corals might be induced by a feeding-stimulation of
organic matrix synthesis.

Key words: coral, feeding, photosynthesis, calcification, organic
matrix, 14C-aspartate, 45Ca.
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Pagès et al., 2003; Houlbrèque et al., 2003). Although it is well
known that nutrients are continuously exchanged between the
two partners (Muscatine, 1990), few studies have focused on
the simultaneous effect of feeding on the algal and animal
components (Witting, 1999; Ferrier-Pagès et al., 2003;
Houlbrèque et al., 2003). Here, we build on this knowledge
base by providing an experimental analysis of the interactions
between heterotrophy, photosynthesis and calcification in
corals.

Feeding has also been shown to enhance skeletal growth,
suggesting that corals allocate a high proportion of the energy
brought by food to calcification processes (Jacques and Pilson,
1980; Witting, 1999; Ferrier-Pagès et al., 2003; Houlbrèque et
al., 2003). It is important to note that calcification is also a dual
process, involving the secretion of an organic matrix and the
deposition of a CaCO3 fraction. The presence of an organic
matrix in coral skeletons is widely documented (Goreau and
Goreau, 1959; Wainwright, 1963; Young, 1971; Constantz and
Weiner, 1988; Cuif and Gautret, 1995: Dauphin and Cuif,
1997) and is considered an essential prerequisite in the
formation of a biomineral strucure (Goreau and Goreau, 1959;
Cuif et al., 1997; Allemand et al., 1998). This matrix
potentially plays key roles in various processes such as crystal
nucleation and growth, crystal size and orientation and
regulation of skeletal formation (Weiner and Addadi, 1991;
Falini et al., 1996; Belcher et al., 1996). Cuif et al. (1999)
demonstrated that the composition of the matrix was different
between symbiotic and asymbiotic corals, and Allemand et al.
(1998) suggested that heterotrophy is a source of aspartic acid,
one of the major components of the coral matrix (Young, 1971;
Cuif and Gautret, 1995; Dauphin and Cuif, 1997). We
therefore investigated the effect of feeding on both organic
matrix synthesis and calcification.

Materials and methods
Biological material

Experiments were conducted in the laboratory using
microcolonies (1·cm long fragments) of the scleractinian coral
Stylophora pistillataEsper, 1797. The advantages of using
microcolonies in radioactive experiments are described in
Tambutté et al. (1995). 140 terminal portions of branches were
cut from ten different parent colonies placed and maintained
on separate nylon nets. 14 nubbins were cut from each parent
colony and kept on separated nylon nets during the healing
period. After 3 weeks, coral fragments were entirely covered
with new tissue and were ready to be used for the experiments.
35 microcolonies (3–4 microcolonies from each parent
colonies) were assigned to each of the four aquaria. The growth
of the microcolonies was monitored twice a week for 3 weeks,
using the buoyant weight technique (Jokiel et al., 1978). An
analysis of variance (ANOVA) performed on these growth
rates showed no significant clone or aquaria effects (P>0.05).

Tanks were supplied with oligotrophic Mediterranean
seawater, pumped from 50·m depth at a rate of 2·l·h–1 and
mixed using a submersible pump (Aquarium system, mini-jet

MN 606, Mentor, OH, USA). The velocity of flow across the
corals was approximately 0.6–1·cm·s–1, as measured by timing
the passage of neutrally buoyant beads. Filtered seawater,
maintained at 26°C, had low amounts of organic and inorganic
nutrients (Ferrier-Pagès et al., 1998). Corals received a
constant irradiance of 350·µmol·photons·m–2·s–1 (photoperiod
was 12·h:12·h light:dark) using metal halide lamps (Philips,
HPIT, 400·W, Eindhoven, The Netherlands). Tanks and nylon
nets were cleaned several times per week in order to avoid algal
growth on the nylon nets.

Experimental design

Microcolonies were then divided into two groups (two tanks
per group) corresponding to two feeding levels: (1) starved
corals (SC) were not fed during the whole experiment; (2) fed
corals (FC) were fed 4 days per week (Monday, Wednesday,
Thursday and Friday). On Monday and Friday corals were
fed Artemia salina nauplii (2022±115·shrimps·l–1) and on
Wednesday and Thursday they were fed freshly collected
Mediterranean zooplankton (1005±164·organisms·l–1).
Copepods represented 94% of the plankton, followed by lesser
numbers of siphonophores, brachiopods, crustacean larvae and
jellyfish. The ingestion of prey was controlled under a
dissecting microscope during feeding (Ferrier-Pagès et al.,
2003). The number of prey items ingested was proportional
to prey density and capture rates varied from 0.06 to
1·prey·items·polyp–1·day–1 (Ferrier-Pagès et al., 2003). These
rates were in the same range as previous estimates for other
coelenterates (Lasker et al., 1983; Sebens et al., 1996).

Plankton were collected using a WP2 net and immediately
brought back to the laboratory. They were concentrated with a
reverse filtration apparatus on a 10·µm filter, to remove small
algae and detritus. They were then added to heated seawater,
and the actively swimming portion of the sample was fed to
the corals during a 1·h period. A 100·ml sample was collected
from the aquaria at each feeding time to determine the nature
and abundance of the planktonic prey using a binocular
microscope (Wild M3, 40×) and a Dolfuss tank. After feeding,
the aquaria were emptied entirely and refilled with fresh
filtered seawater to avoid contamination by dissolved and
organic nutrients coming from the degrading prey.

Microcolonies were maintained under these conditions for 8
weeks. Changes in photosynthesis, tissue composition (protein
and chlorophyll contents), cell-specific density (CSD), rates of
aspartic acid incorporation and calcification were measured
after 3 and/or 8 weeks, depending on the assay.

Photosynthesis–irradiance (P/I) curves

Rates of photosynthesis and respiration were measured after
3 weeks on five microcolonies (replicates) taken from each
tank (total=20 colonies, 10 fed and 10 starved corals,
respectively). Each microcolony was placed in a respirometric
glass chamber containing a ‘Strathkelvin 928®’ electrode
(Glasgow, UK) and immersed in a water bath (26°C). The
incubation medium was continuously stirred with a magnetic
stirring bar. Photosynthesis vs. irradiance (P/I) curves were
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constructed by measuring production rates across a range of
irradiances. Samples were incubated for 10·min under different
light levels (0, 50, 80, 120, 200, 300, 400, 500, 600,
800·µmol·m–2·s–1). Light was provided by a 400·W metal
halide lamp (Philips, HPIT) attenuated to the desired intensity
with screens placed between the light source and the aquaria.
Before each experiment, the oxygen sensor was calibrated
against air-saturated seawater (100% oxygen) and a saturated
solution of sodium dithionite (zero oxygen). Oxygen was
monitored every 10·s on an acquisition station. Rates of
photosynthesis and respiration were estimated by regressing
oxygen data against time.

The following function was fitted to the photosynthesis–
irradiance data (Barnes and Chalker, 1990).

Pnet= (Pg
max) tanh(I/Ik) + R·, (1)

where Pnet is the net photosynthetic rate, expressed in
µmol·O2·cm–2·h–1 or in µmol·O2·(chlorophyll·a)–1·h–1. Pg

max is
the maximum gross photosynthetic rate (µmol·O2·cm–2·h–1),
tanh is the hyperbolic tangent, I is the irradiance
(µmol·photon·m–2·s–1), Ik is the irradiance at which the initial
linear portion of the curve intersects Pg

max (Talling index, i.e.
saturation constant) and R is the respiration rate in the dark
(µmol·O2·cm–2·h–1). From these P/I curves, two other
parameters were determined: Ic, representing the light intensity
at which the oxygen production equalled the oxygen
consumption (compensation intensity), and α, the initial slope
of the P/I curve (photosynthetic efficiency, α=Pg

max/Ik).
From the same corals, chlorophylls a and c2 were extracted

twice in 100% acetone (24·h at 4°C). The extracts were
centrifuged at 6000·g for 20·min and the absorbencies read at
630, 663 and 750·nm. Chlorophyll concentrations were
computed according to the spectrometric equations of Jeffrey
and Humphrey (1975) and were expressed per surface area
(cm2). Surface area was measured using the aluminium foil
technique (Marsh, 1970).

Estimation of the cell-specific density (CSD)

After 3 weeks, CSD was determined for five colonies
(replicates) taken from each tank (N=10 fed and 10 starved
corals, respectively). Cells were extracted mechanically by
shaking (using a wrist-action) crushed coral in a flask
(Muscatine and Cernichiari, 1969). Host cells containing
symbionts were observed under a Leica microscope (50×;
Wetzlar, Germany), and the number of algae contained in each
cell was counted for 300 host cells per sample. Data were
expressed in terms of the frequency or percentage distribution
of host cells (fi) with a given number of algae per cell (r i).

The average cell-specific density (CSD) was calculated as:

CSD = ∑(r i × fi) / ∑fi·. (2)

Measurements of skeletal calcium and aspartic acid
incorporation

Measurements were performed both in the light and in the
dark after 3 and 8 weeks of treatment. Corals were incubated

in the morning to avoid variations due to endogenous circadian
rhythms (Buddemeier and Kinzie, 1976; Tambutté et al.,
1995). For each sampling period (3 and 8 weeks), three
replicates microcolonies, randomly taken in each tank, were
used for each measurement (a total of 48 colonies, N=6 for
starved and fed corals and each measurement, respectively).
Calcification rates were measured using 45Ca according to the
method of Tambutté et al. (1995). Organic matrix synthesis
was measured as skeletal incorporation of 14C-aspartic acid
and protocols were adapted from Allemand et al. (1998) and
Tambutté et al. (1995, 1996). 45Ca- and 14C-aspartic acid
incorporations were studied in separate colonies.

Each microcolony was placed in a plastic holder and
incubated for 2·h in an 8·ml beaker containing either
16·kBq·ml–1 of 45CaCl2 (NEN, LifeScience Products, France)
or 833·Bq·ml–1 of 14C-aspartic acid (NEN) dissolved in
seawater. Corals for dark incubations were sampled at the end
of the night (1·h before the lights were switched on) and were
maintained in the dark during the whole incubation. The results
are expressed either as nmol·Ca2+·g–1·dry·skeletal·mass or as a
fraction of the total radioactivity initially present in the external
medium (%RAV; 14C-aspartic·acid·g–1·dry·skeletal·mass)
(Allemand et al., 1998). Protein content of the radioactive
tissue was measured using the BC Assay Kit (Interchim,
Montluçon, France), based on the colorimetric determination
of the amount of protein (Smith et al., 1985). The standard
curve was established with bovine serum albumin.

In the Results, the amounts of protein and chlorophyll are
normalized per unit surface area and the rates of photosynthesis
per unit surface area or per amount of chlorophyll. The rates
of calcification and aspartic acid incorporation are normalized
per g·skeletal·dry·mass in order to facilitate comparisons with
the previous results of Allemand et al. (1998).

Statistical analyses

The effects of feeding on the physiological parameters were
tested using a t-test (software Stat-View 4.01, Abacus concept,
Inc, Berkeley, CA, USA). The effect of feeding on the CSD
was analysed using a Pearson χ2 test.

Results
Chlorophyll and protein content

After 3 and 8 weeks of treatments, protein concentrations
were significantly higher in fed (FC) than in starved corals
(SC) (Fig.·1A,B, Table·1). Concentrations of chlorophyll-a per
unit surface skeleton were, however, comparable in fed
and starved corals (Fig.·1C, Table·1). Conversely, feeding
significantly increased chlorophyll c2 concentrations (Fig.·1C,
Table·1) roughly three- to fourfold.

Photosynthesis–irradiance (P/I) curves

Mean P/I curves obtained for each treatment are shown
in Fig.·2. Table·2 represents the calculated mean values for
Pn

max, Ik, Ic and α. When normalized per surface area,
feeding significantly increased the rates of maximum net
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photosynthesis (Pn
max) (570±60 vs. 200±20·nmol·O2·cm–2·h–1

for FC and SC, respectively) and the Talling index (Ik)
(403±27 and 203±11·µmol·photons·m–2·s–1, respectively, for
FC and SC). Conversely, when data were normalised per
chlorophyll a concentrations, feeding did not have any
significant effect on Pn

max(t-test, d.f.=4, P=0.13) (Table·2). For
both normalizations, there was no significant difference in the
respiration rates between FC and SC (t-test, d.f.=0.6, P=0.50)
(Table·2).

Cell-specific density

Fig.·3 shows the percentage distribution of the number of
algae per host cell. Host cells containing a single dinoflagellate
(singlet) predominate (62.3% and 70.4% of the total cells for
FC and SC, respectively) followed in decreasing frequency by
those containing two (doublet) (34.3% in FC and 28.3% in SC),
three (triplet; 3.0% in FC and 0.7% in SC), and up to four cells
(quadruplet; 0.4% in FC and 0.7% in SC). In FC, the number

of doublets and triplets significantly increased during the
incubation compared to the SC. Therefore, CSD was
significantly higher in FC (1.416±0.028) than in SC
(1.316±0.015) (Pearson χ2 test, d.f.=1, P=0.04).

Calcification rates

After 3 weeks, there was no significant difference in the
calcification rates measured in the light between FC and SC
(Fig.·4A, Table·1). However, after 8 weeks, FC showed
significantly higher light calcification rates than SC (Fig.·4B,
Table·1). For the two sampling periods, feeding enhanced the
dark calcification rates, which were twice as high in FC
compared to starved corals (Fig.·4A,B, Table·1). For the two
sampling periods, rates of dark calcification were 6–10 times
lower than those of light calcification (Fig.·4A,B).
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Fig.·1. Protein concentration after (A) 3 weeks of incubation (N=6)
and (B) 8 weeks of incubation (N=6); (C) chlorophyll (Chl)
concentrations after 3 weeks for starved and fed corals (N=10).
Values are means ±S.D. White bars, starved corals (SC); grey bars,
fed corals (FC).

Table·1. The effect of feeding on the chlorophyll and protein
contents, on the rates of light and dark calcification and on
the light and dark uptake of aspartic acid for each sampling

time

Effect of feeding

d.f. F P

Proteins
T0+3 1 16.17 <0.01
T0+8 1 23.94 <0.01

Chlorophyll a 1 0.20 0.68
Chlorophyll c2 1 116.26 <0.01

Photosynthesis parameters
Pg

max 1 115.32 <0.01
Ik 1 46.02 <0.01
Ic 1 1.15×10–4 0.99

Respiration 1 0.02 0.89
α 1 1.81 0.25

Calcification
Light 

T0+3 1 4.00 0.12
T0+8 1 12.57 0.02

Dark
T0+3 1 38.01 <0.01
T0+8 1 9.13 0.03

Uptake of aspartic acid
Light 

T0+3 1 0.02 0.89
T0+8 1 22.80 <0.01

Dark 
T0+3 1 0.20 0.68
T0+8 1 12.13 0.03

P, probability; significant values (P<0.05) are indicated in bold.
T0, time at start of experiment; +3, +8 indicates +3 weeks and + 8
weeks feeding, respectively; α, initial slope; Pg

max, maximum gross
photosynthetic rate; Ik, Talling index; Ic, compensation intensity (see
Materials and methods for details). 
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Effects of feeding on organic matrix synthesis

After 3 weeks, we found no significant effect of feeding on
the light and dark incorporations (Fig.·5A, Table·1). After 8
weeks, however, feeding significantly changed the rate of
incorporation in both the light and the dark (Fig.·5B, Table·1).
Incorporation rates in the light were increased by two thirds in
FC compared to SC. The uptake rates in the dark were three
times higher in FC than in SC. In both cases, darkness
markedly reduced the incorporation of 14C aspartic acid into
the skeleton (Fig.·5A,B). After 8 weeks, the rates of
incorporation in the dark were, respectively, 14 and 8 times
lower than the uptake rates in the light for starved and fed
corals (Fig.·5B). Feeding did not affect the ratios of
calcification rate/aspartic acid incorporation, measured in the
light (Fig.·6). However this ratio is 1.82–2.64 higher in the dark
for both fed and starved corals, respectively.

Discussion
Feeding induced significant changes in most of the

physiological parameters measured. The increase in tissue
growth (significant after 3 weeks) was faster than the increase
in skeletal growth (significant only after 8 weeks). This is in
agreement with the findings of Anthony et al. (2002), who
suggest that either tissue may react more rapidly than the
skeleton to availability of resources, or that the energy content
of the tissue may represent a major component of the total
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Table·2. Parameter estimates for the photosynthesis curves

Parameter estimates SC FC

r2 0.98 0.99

Pn
max (µmol·O2·h–1·cm–2) 0.20±0.02 0.57±0.06

R (µmol·O2·h–1·cm–2) –0.44±0.02 –0.43±0.04
α (nmol·O2·h–1·cm–2) 1.04±0.28 1.21±0.18

(µmol photons·m–2·s–1)

Pn
max (µmol·O2) (mg·Chla)–1·h–1) 106.83±24.9 190.900±33.8

R (µmol·O2) (mg·Chla)–1·h–1) –244.66±76.6 –167.55±29.45

Ik (µmol·photons·m–2·s–1) 203.04±10.99 403.81±27.48
Ic (µmol·photons·m–2·s–1) 182.98±6.90 182.88±5.83

r2 is the statistical fit of the curve, Pn
max is the net maximal

photosynthetic rate,R is the respiration rate in the dark and α is the
initial slope (see Materials and methods for details). Ik, Talling
index; Ic, compensation irradiance.
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energy investment in coral growth. In a previous experiment,
Ferrier-Pagès et al. (2003) estimated that the amount of carbon
and nitrogen ingested by S. pistillatafed with zooplankton over
a 4 week period represented one-third of the carbon and
nitrogen needed for the estimated tissue growth. In the present
study, we also observed that feeding increased the number of
zooxanthellae per host cell. Feeding therefore enhanced the
growth of the algal component at a higher rate than the growth
of the animal cells. A similar increase in CSD was observed in
an environment enriched in inorganic nitrogen (Muscatine et
al., 1998), suggesting that the algae are nitrogen-limited in the
symbionts. When collected in situ in the same environment,
different coral species do not display the same CSD, which
ranged from ca. 50% of doublets in Madracis mirabilisto 20%
in Acropora palmata (Muscatine et al., 1998). This may
suggest different feeding capacities for different species, with
‘effective’ predators displaying a higher CSD than ‘poor’
predators. For example, previous studies have established that
M. mirabilis (high CSD) is a ‘voracious’ feeder (Sebens et al.,
1996) and capable of capturing more prey than more
‘autotrophic’ species with smaller CSDs. Our results are
consistent with the study of Muscatine et al. (1998), since a
difference in CSD was observed for microcolonies of S.
pistillata benefiting from a food supply. However, the validity
of this underlying relationship deserves further testing.

One of the aims in this work was to understand by which
mechanism feeding enhances calcification. Both light and dark
calcification rates were greatly enhanced by feeding; after 8

weeks of incubation, these rates were twice as high in fed than
in starved corals. This stimulation had already been noticed
in a previous experiment performed with the same species
(Houlbrèque et al., 2003) and validates recent results showing
a positive effect of heterotrophy on coral growth (Kim and
Lasker, 1998; Anthony and Fabricius, 2000; Witting, 1999;
Ferrier-Pagès et al., 2003). A light-enhanced (or dark-
repressed) calcification (Goreau and Goreau, 1959; Barnes and
Chalker, 1990; Gattuso et al., 1999; Houlbrèque et al., 2003)
was also noticed with rates of dark calcification 6–10 times
lower than rates of light calcification.

Calcification is carried out in two processes, i.e. the
secretion of an organic matrix and the deposition of calcium
carbonate. The presence of an organic matrix in corals has been
a matter of much controversy (Constantz, 1986), but its
existence is now well-demonstrated, both from studies
performed on scleractinian corals (Goreau and Goreau, 1959;
Cuif et al., 1997; Allemand et al., 1998) and on other calcifying
organisms (Belcher et al., 1996; Falini et al., 1996). Cuif and
Gautret (1999) showed that the amino acid composition of
the organic matrix differs between zooxanthellate and
azooxanthellate corals, suggesting that their nutritive source
may affect the organic matrix synthesis. Aspartic acid, for
example, is one of the major and most abundant amino acids
in the coral matrix (Young, 1971; Cuif and Gautret, 1995;
Dauphin and Cuif, 1997). Allemand et al. (1998) also showed
that no aspartic acid pool was present inside the coral tissue,
suggesting the need for a constant supply from an exogenous
source. By using 14C-aspartic acid as a precursor for organic
matrix synthesis (Allemand et al., 1998), we measured a higher
incorporation of this amino acid into the organic matrix of fed
corals. Since feeding has increased the unlabelled amino acid
pool present within the tissue, the rates of incorporation in fed
animals are likely to be underestimated, suggesting that the
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N=6. Fed corals (black bars); starved corals (white bars).

Fig.·6. Ratios of the calcification rates (nmol·Ca2+

2·h–1·g–1·skeletal·mass) to aspartic acid uptake (%RAV·2·h–1·g–1

skeletal·mass) for the microcolonies of Stylophora pistillata
maintained for 8 weeks under the two feeding conditions.
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enhancement of the organic matrix synthesis by feeding is even
higher.

Feeding might therefore have enhanced the construction of
the organic matrix by (i) supplying additional input of energy,
especially for the dark processes. Under high plankton
concentrations, such as those provided for the fed corals in this
study, uptake of organic carbon (and hence energy) may be
significant and could provide some energy for calcium/proton
exchange at night. Alternatively, the larger biomass of fed
corals may have provided larger energy stores for dark
processes (McConnaughey and Whelan, 1997; Anthony et al.,
2002). Thus, feeding might have (ii) directly provided the
necessary ‘external’ amino acids and/or (iii) indirectly
increased photosynthesis and therefore the supply of
‘autotrophic’ amino acids. When normalized per amount of
chlorophyll, the rates of photosynthesis were unchanged
between fed and starved corals, suggesting that feeding does
not increase the efficiency with which symbionts (or reaction
centers) use light for photosynthesis. However, when
normalized per surface area, the rates of photosynthesis were
higher in fed corals, with a change in photosynthetic
parameters, such as Pn

max and Ik. The increase in Pn
max, already

observed by Titlyanov et al. (2001), generally corresponds to
an increase in the number of photosynthetic units (Prezelin,
1987). Davy and Cook (2001) obtained similar results in fed
and starved sea anemones and showed that the percentage
translocation of photosynthates remained unchanged between
the two treatments. This is presumably because the surplus
carbon was stored by the algae rather than being translocated.
However, several authors have demonstrated that even if the
amount of translocated photosynthates is unchanged between
starved and fed animals, their quality is completely different
(Swanson and Hoegh-Guldberg, 1998; Wang and Douglas,
1999). Since the supply of nitrogen directly influences the
zooxanthellar C:N ratio (Snidvongs and Kinzie III, 1994;
Grover et al., 2002), feeding might have increased the amino
acid synthesis compared to the production of non-nitrogenous
compounds such as glycerol and glucose (Swanson and Hoegh-
Guldberg, 1998; Wang and Douglas, 1999). This higher
amount of translocated amino acids might have enhanced the
synthesis of the organic matrix. However, this question can
only be answered by investigating the quality of the
photosynthates produced by fed and starved corals.

The second main conclusion that can be derived from this
study is that the effect of feeding on aspartic acid
incorporation is comparable to its effect on calcium
incorporation. Feeding enhanced both light and dark
processes, with a higher enhancement in the dark (threefold
increase) than in the light (1.6-fold increase). To determine
the link between the deposition of organic and mineral
fractions, we compared the ratio of CaCO3/aspartate
incorporation. The dark ratio was 1.8–2.6 higher than the light
ratio (for fed and starved corals, respectively), which suggests
that the interactions between the organic and mineral fractions
were affected by light/dark conditions. In the dark, there may
have been a decrease in the organic matrix synthesis, an

increase in the mineral fraction deposition or a combination
of both events. From Figs·4B and 5B, it appears that the more
important process should be a decrease of dark organic-matrix
synthesis. This decreased fourteen-fold (Fig.·5B), while dark
calcification decreased only sevenfold (Fig.·4B). This
phenomenon, observed here for the first time, could be
responsible for the diurnal bands observed in coral skeletons
(Barnes, 1973). A higher dark inhibition of organic matrix
synthesis vs.CaCO3 deposition may be explained by the lack
of photosynthates as organic matrix precursors (Cuif et al.,
1999) or by some other unknown process. In either case, this
suggests a close relationship between calcification, organic
matrix synthesis and photosynthesis. These results are in
agreement with the hypothesis of Barnes et al. (1989, 1990)
and Taylor et al. (1993), who suggested a cyclic deposition of
skeleton leading to the formation of skeletal banding in
scleractinian corals.

Feeding did not affect the CaCO3/aspartate deposition in the
light. This result suggests a close coupling between organic
matrix synthesis and CaCO3 deposition in the light. This
coupling appears less strict in the dark where feeding induces
a slight decrease of the ratio. Since it has been previously
shown that the organic matrix synthesis is a prerequisite step
for calcification (Allemand et al., 1998), the increase in the
rates of calcification in fed corals might therefore be induced
by an increase in the rates of feeding-induced organic matrix
synthesis. Corals may derive some important source of amino
acid and/or energy for their growth from external food
supplies. Another conclusion can be drawn from the
comparison of the ratio between starved/fed and light/dark
treatments. Since these ratios were different from each other,
we suggest that autotrophy and heterotrophy do not affect
calcification in the same way.
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