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Aquatic micro-organisms form a large fraction of the
earth’s biomass and are of fundamental importance at the
bottom of the food chain, both as nourishment for higher links
in the chain and, sometimes, as a source of toxicity. Some
species are also exploited technologically, for example in
bioreactors. Many species are motile, and the swimming
behaviour of the cells inevitably has an influence on their
interaction with each other and with other species. The
understanding of such behaviour and interactions in enough
detail to make a useful quantitative prediction of future
population levels, in a natural or a man-made environment,
requires the use of mathematical models, such as large-scale
simulations designed to describe plankton ecology (e.g.
Fasham et al., 1990) or very idealised models, designed to
highlight particular mechanisms (e.g. Truscott and Brindley,
1995; Matthews and Brindley, 1997).

One class of phenomena for which mathematical modelling
is well advanced is spontaneous pattern formation, which has
been observed in laboratory suspensions of swimming micro-
organisms from a variety of phyla, including algae (Wager,
1911; Kessler, 1985; Bees and Hill, 1997), protozoa (Platt,
1961; Childress et al., 1975) and bacteria (Kessler et al., 1994).
The mechanism of pattern formation is a convective one,
driven by the up-swimming of cells that are denser than the
medium in which they swim, and is called bioconvection (Platt,

1961), the mathematical modelling of which has been
discussed by Pedley and Kessler (1992a,b).

An essential ingredient of such mathematical models is a
quantitative description of the random swimming behaviour
of the cells. For algal cells such as the biflagellate
Chlamydomonas nivalis, the mechanism for up-swimming in
a still fluid is thought to be that the cells are bottom-heavy
(Kessler, 1985). The consequence in a moving fluid is that the
average orientation of the cells, and hence their swimming
direction, is governed by a balance between the gravitational
torque and a viscous torque proportional to the vorticity in the
ambient flow (called gyrotaxis: see Kessler, 1985).

However, casual observation through a microscope reveals
that the trajectories of the cells are intrinsically random, in that
different cells swim in randomly different directions and
individual cells appear to change direction randomly (though
by a small amount at each change) over distances comparable
to cell size, the random walks being merely biased by gyrotaxis
(Hill and Häder, 1997). Pedley and Kessler (1990) took
account of the randomness of the trajectories in their
continuum model of suspensions of swimming C. nivaliscells.
They related the average swimming velocity of the cell (a
vector) and the diffusivity to the probability density function
(p.d.f.) of the swimming direction, which they assumed to be
a random variable independent of the swimming speed. They
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The self-propulsion of unicellular algae in still ambient
fluid is studied using a previously reported laser-based
tracking method, supplemented by new tracking
software. A few hundred swimming cells are observed
simultaneously and the average parameters of the cells’
motility are calculated. The time-dependent, two-
dimensional distribution of swimming velocities is
measured and the three-dimensional distribution is
recovered by assuming horizontal isotropy. The mean and
variance of the cell turning angle are quantified, to
estimate the reorientation time and rotational diffusivity
of the bottom-heavy cell. The cells’ phototactic and

photokinetic responses to the laser light are evaluated.
The results are generally consistent both with earlier
assumptions about the nature of cell swimming and
quantitative measurements, appropriately adjusted. The
laser-based tracking method, which makes it possible to
average over a large number of motile objects, is shown to
be a powerful tool for the study of microorganism
motility.
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also assumed that the p.d.f. of the swimming direction satisfied
a particular partial differential equation (a Fokker–Planck, or
FP equation), whose form was the same as that was known to
be valid for colloidal particles subjected to Brownian rotations.
This assumption is consistent with the fundamental theory of
random walks (Chandrasekhar, 1943). Although predictions of
bioconvection using the model of Pedley and Kessler (1990)
agree reasonably well with observation (Bees and Hill, 1997),
full confidence cannot be placed in the model without
independent experimental confirmation that the trajectories of
the cells in an otherwise still fluid are biased random walks,
that the p.d.f. of the swimming speed and that of the swimming
direction are independent, and that the p.d.f. of the swimming
direction satisfies the same FP equation, as assumed by Pedley
and Kessler (1990). If all those features are confirmed, then the
two unknown parameters occurring in the FP equation (a
reorientation time, B, and a rotational diffusivity, D), a pair of
constants that can be regarded as indices of that population’s
swimming behaviour, can be inferred from the data.

Hill and Häder (1997), used a microscope-based tracking
method to measure the random trajectories of C. nivalis, in an
otherwise still fluid, under two sets of conditions: (i) uniform
lighting, so that the bias in the random walk was entirely due
to gravity, and (ii) illumination from a particular direction,
which led to phototaxis coupled with gravitaxis. Trajectories
were recorded on video and tracked at time intervals of around
0.08·s, though to avoid errors associated with segments of
trajectory being only one or two pixels long, the data had to be
sampled at longer time intervals (0.6–3.0·s) and extrapolated
back to zero. In the case of gravitaxis, Hill and Häder (1997)
found that the data were consistent with the cell motion being
a correlated, biased random walk, changing direction
apparently continuously, with the mean swimming direction
being vertically upwards and the mean swimming speed
being 55··µm·s–1 (5.5·body lengths per second). Reasonable
consistency was also found with the hypothesis that the p.d.f.

of the swimming direction satisfied an FP equation of the form
proposed by Pedley and Kessler (1990), with a reorientation
time B of about 2.7·s and diffusivity D about 0.85·rad2·s–1

(though the scatter in the data means that these numbers may
not be reliable). The microscope-based tracking method was
able to view only a few, relatively short trajectories at once,
and it was, therefore, a somewhat laborious process to gather
enough data for statistical analysis.

In an earlier paper (Vladimirov et al., 2000), the present
authors demonstrated the feasibility of a laser-based tracking
method, without the use of a microscope, for studying large
numbers of trajectories of C. nivalis simultaneously. The
spatial resolution of the video-recordings was noticeably less
fine (1·pixel=20·µm) than that of Hill and Häder (1997;
1·pixel=1.7·µm), and the sampling interval in the method was
always more than 1·s. Thus the fine details of the trajectories
as the cells continually changed direction were invisible to us,
and the results represented averages over the quoted space and
time scales. We assumed that Hill and Häder (1997) were
correct in identifying the trajectories as correlated, biased
random walks, and we show that enough data could be
obtained in a short period of time for appropriate averaging to
be performed with confidence, so that the method could indeed
be used to measure the important properties of populations of
swimming cells.

The purpose of the present paper is to apply the laser-based
tracking method (with a more automated image processing
technique than in Vladimirov et al., 2000) to the measurement
of the swimming velocities of many cells in a still fluid in a
controlled experimental environment. Statistical analysis of the
data is performed to find out whether they are consistent with
the hypotheses discussed above: that the cells perform a
random walk, that the swimming speed is uncorrelated to the
swimming direction (i.e. that the p.d.f. of the swimming
velocity is separable into the product of a p.d.f. of speed and
a p.d.f. of direction) and that the p.d.f. of direction is close to
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the prediction obtained from the gyrotaxis model of Pedley and
Kessler (1990). If these hypotheses are consistent, we will be
able to estimate the cells’ reorientation time and rotational
diffusivity, B and D, and compare them with the values
obtained by Hill and Häder (1997). The whole experiment is
repeated several times, with different batches of cells (though
all cultures were of the same age) to test the data for
reproducibility. Other closely related questions, such as the
influence of the laser light on the cells’ swimming, are also
studied.

Materials and methods
Algal culture and experimental setup

For the experiments, cultures of the unicellular
photosynthetic freshwater flagellate Chlamydomonas nivalis(F.
A. Bauer) Wille 1903 are used. They are grown by inoculating
1·ml of a logarithmic phase culture into 50·ml of Bold’s basal
medium + 5% sterilized soil extract. The culture is kept at
23.4°C under a light of about 6000·lux=8.8·W·m–-2 from cool,
white-tone fluorescent lights turned on for 16·h a day.
Measurements are performed 2 weeks after the inoculation of
the culture. Microscopic observation shows that the diameter of
an individual cell in these cultures lies in the range 3–5·µm.

The experimental setup used is generally similar to the one
described in Vladimirov et al. (2000), see Fig.·1A. An argon
ion laser with a wavelength of 514·nm (green) and light
intensity of 1400·W·m–2 is the only light source in the
experiments. Laser light passes through a cylindrical lens and
a diaphragm, which produces a vertically oriented light sheet
with a cross-section of 14·mm×1.5·mm. The laser sheet is
directed along the plane of symmetry of the vertically
positioned test tube of rectangular cross-section (Fig.·1B)
containing medium and algal cells. A mirror is placed behind
the test tube to make the cells’ illumination symmetric, thus
avoiding bias in their self-swimming. Images are acquired
with a Kodak Megaplus 1.4 CCD camera, resolution of
1316×1034·pixels2. The laser, optical system and acquisition
system belong to a Particle Image Velocimetry (PIV) System
(TSI Inc., Shoreview, MN, USA).

To describe the results, a Cartesian coordinate system is
used with axes (x,y,z) directed as shown in Fig.·1A. The
projection of the cells’ displacements (or velocities) onto the
x–z plane is recorded. The measurement volume (with x,y,z
sizes of 10·mm×1.5·mm×14·mm) represents the intersection of
the laser sheet with the test tube. The depth of the measurement
area, that is the thickness of the laser sheet of 1.5·mm, is twice
as large as the distance that a typical cell can travel in 30·s.

Experimental procedure

To observe the algal cells’ self-swimming in the still fluid,
the following experimental procedure is carried out.

(1) The test tube (Fig.·1B) is filled with the medium in which
the culture was grown, after filtration (average filter pore size
is 0.45·µm). Filtration decreases the number of sediment

Fig.·2. (A) Typical image of swimming cells. The white vertical bars
represent the walls of the test tube, which is 1·cm wide.
(B) Composite image from the 21 images acquired in a burst: algal
tracks are clearly seen; the short straight vertical tracks are made by
sedimenting dust particles.
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particles in the medium (dust, dead cells etc.) that confuse
recognition of live cells.

(2) The test tube is left in a vertical position for approx.
15·min to allow the initial temperature and velocity
perturbations in the medium to decay.

(3) The lower (open) end of the test tube is submerged
into the medium containing the algal culture, which is
sucked into the lower section of the test tube by slow
withdrawal of a piston at a speed of approx. 1·mm·s–1,
and the bottom of the test tube blocked with a cork
(Fig.·1B).

(4) The test tube is placed into the working position
(Fig.·1B). The cells are now located near the bottom of
the test tube. The time instant at which this is done is t=0
for each experiment.

(5) The test tube is placed inside a larger rectangular
vessel (100·mm×100·mm×220·mm) filled with distilled
water at a stabilized temperature of 23.4°C. This provides
a water jacket around the test tube in order to diminish
temperature gradients and, hence, thermal convection in
the test tube that may be generated by either laser heating
or environmental perturbations.

(6) After approx. 15·min, the first 20–25 cells cover
the distance between their initial position and the lower
edge of the measurement area (40·mm) (Fig.·1B); the
laser is then turned on and the CCD camera acquires 21
images (‘frames’) of exposure time 0.256·s, separated by
an interval δt of 1.1·s. A fragment of a typical frame is
shown in Fig.·2A. Each set of 21 successive frames is
denoted as a ‘burst’. After a burst is acquired, the laser
is turned off for a few minutes until the next burst is
started. Bursts obtained during one experiment form an
experimental ‘run’.

Cell tracking

Now we have a number of 21-image sets (bursts), from
which the cells’ velocities are to be recovered. Most of
the bright blobs in Fig.·2A correspond to swimming algal
cells. These blobs have sizes from 1×1–3×3·pixels2,
while the camera resolution is 1·pixel=20·µm. Thus, the
size and shape of a blob do not match the actual size and
shape of a cell and depend only on the amount of light
scattered by it.

To get a visual impression of the cells’ behaviour, we assign
the brightness of each pixel (x,z) to be the largest brightness
met among the 21 images of a burst at the location (x,z), to
obtain an image of the tracks of the swimming cells (Fig.·2B).
The several short vertical tracks correspond to dust particles
suspended in the medium. The lengths of these tracks give an
estimate of the typical distance travelled by dust particles
during one burst (21·s) due to either motion of the medium or
their own sedimentation under gravity.

To obtain values of the swimming cells’ velocities, tracking
software has been created using C++ in a UNIX environment.
The code analyzes image sets (bursts), identifies bright blobs
on each image and calculates the coordinates of each cell as

the weighted centre of mass of the corresponding grey-valued
blob. Then the tracks are reconstructed by searching for the
most probable position of the cell among the blobs detected in
the frame n+1, given the cell’s position and velocity in the
frame n. To find the best candidate for the track continuation,
we minimize the linear combination:

where bn, bn+1 is the brightness of the blob interpreted as the
cell image in frames n and n+1 and vW is the cell velocity derived
from the difference of its position in sequential images (vn is

(1)C1
bn+1 – bn

bn+1bn!U U+ C2
vn+1 – vn

vn+1vn!U U+ C3 1 – ,
vWn+1 – vWn

vn+1vn!U U
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Fig.·4. Time evolution of the cells’ distribution by two-dimensional
projections of velocities onto x–z plane. Contour plots of the probability
density function (see Equation·5) at six time instants. The difference
between colour levels is 0.00015·s2·µm–2. In the 20·min plot, where the
number of motile cells that had reached the observation area is small, the
peak corresponding to suspended dust particles is seen. On later images,
where the number of active swimmers is large enough, this peak vanishes.
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the magnitude of the velocity vector vWn). Thus, blob chains with
a not-too-sudden change in the blob’s brightness (1st term), a
not-too-sudden change in the speed between two sequential
blobs (2nd term) and not-too-sharp angles (3rd term) are
interpreted as the cell trajectories. The coefficients C1, C2, C3

are tuned empirically by visual comparison of reconstructed
tracks with images similar to Fig.·2B.

To diminish the error related to inaccuracy in the
measurement of the cells’ positions, triple displacements of
the cells (i.e. the displacement between frame n and n+3, for
any n) are used to calculate velocities. The results obtained
by considering single and double displacements turned out to
be too noisy. Finally, each burst gives an array of sets of
(Vx, Vz)n which represent sequential cells’ instantaneous
velocities within a track. A typical set of (Vx, Vz)1 pairs
corresponding to the cell displacement from the 1st to the 4th

point of its track is presented graphically in Fig.·3 as a ‘cloud
of points’, where each point corresponds to the velocity of an
individual cell.

Background velocity of the medium

This study is devoted to the cells’ swimming in a still fluid,
so it was essential to minimize velocity of the ambient medium
and ensure that it is well below a typical speed of cell
swimming of tens of micrometres per second. Estimates show
that the characteristic time of viscous decay of the velocity
perturbations in the test tube is 10·s and thus the initial velocity
perturbation of about 1·cm·s–1 decays to 10·µm·s–1 in about
1·min. So velocity perturbations arising from manipulations of
the test tube can be neglected.

Another source of the medium motion is bioconvection
arising from spatial variation in the cells’ concentration leading
to a variation in the average fluid density, which would drive
the convective motion. A force balance between gravity
(buoyancy) and the viscous force yields the result that to cause
bioconvection with a speed of 10·µm·s–1, a relative variation
of fluid density of 10–7 is required, and that corresponds to a
variation in the number density of cells of the order of
10·mm–3. The total cell concentration is not more than 1·mm–3

in our experiments, so that its variation is even less and no
bioconvection can arise. In comparison, the typical cell
concentration in the experiments by Kessler (1986) and Bees
and Hill (1997), where the existence of bioconvection is
apparent, is around 1000·mm–3.

The third source of motion of the ambient medium is
density variation due to temperature variation caused by either
laser radiation or some other source, e.g. the test tube being
heated by the experimenter’s hands. Experiments show that
the laser radiation does not cause thermal convection. To
estimate the influence of initial temperature perturbations, an
argument similar to that used in the context of bioconvection
shows that a relative fluid density variation of 10–7 can drive
convective motion of 10·µm·s–1. To cause a relative density
variation of 10–7, however, a temperature variation of
4×10–4·K is necessary. The estimates show that approx. 10
min is required for a temperature variation of 1·K to decay

below this value. This time interval is comparable with the
experimental run duration and that is why the test tube is
placed in the water jacket, providing a uniform temperature
along it.

Statistical analysis and results
Cells’ velocity distribution

To obtain the instantaneous distribution of cells by velocity,
the two-dimensional velocity space (Vx,Vz) is subdivided into
square bins of width ∆V=10·µm·s–1, so that a velocity (Vx,Vz)
is placed in bin (i,j) if:

i∆V < Vx < (i+1)∆V·; j∆V < Vz < (j+1)∆V·, 
(i, j = –10…10)·. (2)

Let nr,b,ij be the number of cells with velocity in the bin (i,j)
detected during burst b of run r, and Nr,b=∑i,jnr,b,ij be the total
number of cells detected in the burst b of run r. Then, the
instantaneous distribution Fr,b,ij of cells by their swimming
velocities measured at the time instant tr,b is defined as: 

Fr,b,ij = nr,b,ij / Nr,b·. (3)

In fact, tr,b is defined with a precision of 22·s, that is the
duration of a burst. In order to compare runs with each other,
a continuous function of time Fr,ij(τ) is introduced. It is
constructed by linear interpolation between successive bursts
b and b+1 of each run r:

where τ belongs to the time interval (tr,b, tr,b+1). The procedure
(Equation·4) preserves the norm condition ∑Fr,ij=1. Now, the
weighted average of Fr,ij over all runs is defined as:

where wr(τ) is the weight proportional to the number of cells
detected in the corresponding run:

The function Fij (τ) is considered as a presumptive p.d.f. of the
cells’ velocity distribution and this assumption is tested below
(see Appendix). Function Fij (τ) is associated with a continuous
function of three variables F(Vx,Vz,τ), of which a contour plot
is presented in Fig.·4 for several time instants.

Reconstruction of the three-dimensional velocity distribution

The measured cells’ swimming velocities are the two-
dimensional projections of the actual three-dimensional
velocities. However, the cells’ motion and most of the models
describing it are three-dimensional. Thus it is important to
recover the three-dimensional distribution. Reconstruction of
the three-dimensional p.d.f. f(Vx,Vy,Vz) from a measured

(tr,b+1– τ)Nr,b + (τ – tr,b)Nr,b+1

tr,b+1– tr,b
wr(τ) = . (6)

1

∑rwr(τ)
Fij (τ) = Fr,ij(τ)wr(τ) , (5)

m̂

(tr,b+1– τ)Fr,b,ij + (τ – tr,b)Fr,b+1,ij

tr,b+1– tr,b
Fr,ij(τ) = , (4)
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projection F(Vx,Vz) is feasible if f(Vx,Vy,Vz) is assumed to be
axially symmetric, i.e. if the cells are equally likely to swim in
any horizontal direction. In cylindrical coordinates (r,φ, z) with
the z axis directed vertically upwards, an axially symmetric
p.d.f. f(Vx,Vy,Vz) can be represented as f(Vr,Vz), where
Vr=√

––
Vx

2+Vy
2 is the horizontal velocity component. Since

F(Vx,Vz) is the two-dimensional projection of f(Vr,Vz), 

or after a change of variables,

This equation is known as the Abel Integral Equation for
f(Vr,Vz). According to Gorenflo and Vessela (1991), the

solution of this equation is given by:

This integral is here evaluated numerically with the use of the
discrete representation of F(Vx,Vz) as Fij , as defined in
Equation·5. Surface plots of reconstructed distributions f(Vr,Vz)
at several time instants are presented in Fig.·5. For
convenience, variables V=√

––
Vr

2+Vz
2 (the cell forward velocity)

and θ =atan(Vr /Vz) (the angle between the trajectory and the
vertical) are used instead of Vr and Vz..

Evolution of the averaged parameters of cells’ self-swimming

The mean of the vertical, horizontal, and absolute projected
velocities, 〈Vz〉 r,b, 〈Vx〉 r,b and 〈Vp〉 r,b=〈√

–
Vz

2–+Vx
2〉 r,b, and their

standard deviations are calculated for all cells detected in each
burst b of each run r. Substituting 〈Vz〉 r,b, 〈Vx〉 r,b
and 〈Vp〉 r,b into Equations·4 and 5 instead of Fr,b,ij,
we obtain weighted averages Vz(τ), Vx(τ), Vp(τ),
over all runs. The results are presented in Fig.·6A:
values of 〈Vz〉 r,b, 〈Vx〉 r,b and 〈Vp〉 r,b are plotted as
diamonds and the averaged values Vz(τ), Vx(τ),
Vp(τ) are plotted as solid lines. Standard deviations
of cell velocity obtained in a similar way are
plotted in Fig.·6B. Both the mean values and
standard deviations decrease as the slower
swimming cells reach the observation area.

To illustrate the inhomogeneity of cells’ motility
across the camera field of view, the observation
area is divided into quarters and the averaged
velocities Vz(τ), Vx(τ), Vp(τ) are calculated
separately for each quarter (Fig.·7). Cells located
in the upper half of the camera’s field of view
(furthest from the injection point) are observed to
swim faster than those located in the lower part,
while cells in the left and right halves (closer to and
further from the laser, respectively) appear to be
similar.

To check if the laser light affects cells’ motility
in our experimental arrangement, we compare
averaged parameters based on the data taken from
the 1...6, 3...9, 6...12, 9...15, 12...18, 15...21st

f(Vr,Vz) = – dVx . (9)
⌠

⌡

+∞

Vr

F(Vx,Vz)

Vx2 – Vr2!
1

π

∂
∂Vx

F(Vx,Vz) = 2 dVr . (8)
⌠

⌡

+∞

Vx

f(Vr,Vz)Vr

Vr2 – Vx2!

F(Vx,Vz) = f dVy (7)Vx2 + Vy2,Vz!1 2⌠

⌡

+∞

–∞
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frames within each burst, i.e. at approximately 3, 6, 9, 12, 15
and 18·s after the burst starts. Mean horizontal, vertical and
absolute projected velocities calculated in the same way as for
Fig.·6 are plotted in Fig.·8A and the standard deviations of Vz

and Vp are plotted in Fig.·8B. The data related to 18·s, 15·s,
12·s, 9·s, 6·s, 3·s are shown by lines of descending thickness,
so that the boldest line corresponds to 18·s and the thinnest line
to 3·s. The symbols correspond to the data obtained at high
laser light intensity and will be discussed later. Observe that
the three thin lines are very close to each other, which means
that a photokinetic response (cell acceleration) starts to develop
only after the first 10·s of laser illumination.

Parameters for the entire cell population

In previous sections the time-dependence of the cells’
velocity distribution has been considered. One reason for the
time-dependence is that we only deal with the motion of cells
located in the camera field of view at the time instant tr,b.
However, to model the behaviour of an entire system, for

example to model bioconvection, it is essential to know the
properties of the population as a whole. A variety of methods
are used to obtain the population properties from the measured
time-dependent values F(t),Vz(t), Vx(t) and Vp(t). Each
method has its advantages and disadvantages, so the most
straightforward one is chosen, namely, the cells’ velocity
distribution based on all tracks detected during all experimental
runs is calculated as if all tracks were detected during one
burst.

The distributions for Vx, Vy and Vp are shown in Fig.·9. The
one-dimensional angular distribution f(θ) is obtained from the
three-dimensional p.d.f. f(V,θ) reconstructed in accordance
with Equation·9. The average horizontal velocity Vx calculated
over the whole population is –1.7·µm·s–1, the average vertical
velocity Vz is 26·µm·s–1, the average projected velocity Vp is
38·µm·s–1. The two-dimensional and reconstructed three-
dimensional probability density functions of the velocity
distribution for the entire cell population are shown in Fig.·10
on linear and logarithmic scales.

Discussion
Laser-based cell tracking has been applied to study the

motility of the unicellular algae Chlamydomonas nivalis. The
technique enables observation of up to several hundred cells
simultaneously and provides ample material for investigation
into the general statistical properties of the cell self-propulsion

40

30

20

10

15

A

B

Vp

Vz

Vx

Vz

20 25 30 35 40 45 50

15 20 25 30

Time after injection of cells (min)

35 40 45 50

M
ea

n v
el

oc
ity

 (
µm

 s
–1

)
V

el
oc

ity
 S

.D
. (

µm
 s

–1
)

0

20

10

0

–10

VxVp

Fig.·6. Time evolution of averaged velocities (A) and their standard
deviations (B) for the cells located in the camera field of view.
Absolute projected velocity Vp, vertical velocity Vz and horizontal
velocity Vx. Diamonds with error bars correspond to the instant
values 〈Vx〉 r,b, 〈Vz〉 r,b, 〈Vp〉 r,b. Solid lines correspond to averaged
values of Vp, Vz and Vx in A and to their standard deviations in B,
obtained using an equation similar to Equation·5.

40

50

30

20

10

15

A

B

C

20 25 30

Time after injection of cells (min)

35 40 45 50

V
el

oc
iti

es
 (µ

m
 s

–1
)

0

–10

Fig.·7. Averaged (A) absolute projected velocity Vp, (B) vertical
velocity Vz and (C) horizontal velocity Vx, calculated separately for
the tracks detected in the different quarters of the observation area
(compare with Fig.·6). Broken bold lines correspond to the upper
right quarter, broken thin line to the upper left quarter, solid bold line
to the lower right quarter and solid thin line to the lower left quarter
of the observation area. As expected, faster swimmers (ones with
higher vertical and projected velocities) are located further from the
injection point at the bottom of the test tube.



1210

and the time evolution of cell motility. An experimental
protocol, providing repeatable delivery of motile cells to the
observation area and a technique for the simultaneous tracking
of up to a few hundred cells located in the observation area are
developed. 

In particular, the medium containing the algal cell culture
is injected into the bottom of the test tube a few cm below
the section visible by camera. The cells gradually reach the
observation area, where their trajectories are recorded. The
time evolution of the average parameters of cells located in
the observation area is fairly repeatable, though one of
the eight experimental runs appeared to be invalid: the

distribution functions Fij (τ) calculated in accordance with
Equation·5 on the basis of all eight experimental runs
failed to pass the goodness-of-fit test. On separate
examination, one run was found to be noticeably different
from the others. This inconsistent run was eliminated and the
distribution function Fij (τ) calculated on the basis of the
seven remaining runs passed the test successfully (see
Appendix). 

The decrease of the average cell velocities with time (Fig.·6)
corresponds to the natural variability of cell motility within the
population. Indeed, if all the cells were exactly the same, the
time taken to reach the camera’s field of view would be
different only due to statistical scatter, and the average
parameters of the cells located in the observation area would
be independent of time, as happens, for example, when
sedimentation of identical Brownian particles is observed
(Nikolai et al., 1975). In turn, if a population consists of
differently swimming cells, faster swimmers generally reach
the camera field of view earlier than the slower ones, and the
average cell velocities at the beginning of a run are higher than
at the end, in agreement with the data shown in Fig.·7; indeed,
cells in the upper parts of the measurement area tend to have
a higher speed than those in the lower part.

V. A. Vladimirov and others
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Influence of the laser light on cell motility

Chlamydomonas nivalis is a photo-responding alga. When
it is illuminated steadily from a particular direction, it tends to
swim towards or away from the light source, depending on the
light intensity (phototaxis). Photophobic (for example,
Matsunaga et al., 1999) and photokinetic effects can also
occur, i.e. the cell stops swimming, decelerates or accelerates
after the lighting conditions are changed. 

In our experiments, the laser is the only source of light
illuminating the cells. Its wavelength, 514·nm, is in the range
to which C. nivalisis known to respond (Harris, 1989, p. 211;
this interval is approximately 475–575·nm). Moreover, the
light intensity used for the measurements (1400·W·m–2) is
twice as high as the maximum sunlight intensity on the Earth’s
surface and 200 times higher than that in the light-shelf where
the cells are grown. To diminish the cells’ phototactic
response, a mirror is placed behind the test tube forming a
back-propagating laser sheet, thus making the cells’
illumination more symmetric (Fig.·1). The laser is switched on
only during a burst (22·s) for image acquisition and switched
off for several minutes between bursts, so that most of the time
the cells swim in darkness. Since a light response normally
needs time to develop (Kessler et al., 1992), the question is
whether the 22·s of illumination is enough to cause any
response. Fig.·8 shows that the
photokinetic response starts to develop
around 10·s after the laser is switched
on. Thus, images from the first halves of
bursts can be used without worrying
about the influence of the laser light.

To study the influence of the laser
light on the cells’ motility, the same
protocol was used as for a standard run,
but the cells were illuminated with a
higher laser light intensity. Several
experimental runs with the light
intensity ten times higher than was
normally used were performed.
Average swimming velocities of the
cells 〈Vz〉 , 〈Vx〉 , 〈Vp〉 are plotted with
open diamonds in Fig.·8A. The result of
these experiments is that, even at a laser
light intensity ten times greater than
standard, no reliable evidence of

phototaxis (i.e. a significant change in the cells’ horizontal
velocity 〈Vx〉) is detected. At the same time, the average
vertical velocity component 〈Vz〉 (and thus 〈Vp〉) decreases
faster than in the standard runs, and the standard deviation of
cell velocity (Fig.·8B) for the runs with high light intensity
significantly exceeds that for standard runs. Note that the
standard deviations of Vz and Vx (triangles and stars in
Fig.·8B) are now similar to the mean values of Vz and Vx.
These findings can be associated with the influence of the laser
light on the cell orientation mechanism. 

The light-related responses (phototactic, photophobic and
photokinetic) depend on the conditions under which the culture
is grown, culture age, time of the day etc. Thus, measurements
of the photokinetic response, and particularly the time it needs
to develop, can be a sensitive indicator of the state of the cells’
culture, which may be useful for biological applications.

Three-dimensional velocity distribution

Pedley and Kessler (1990) proposed the Fisher distribution
to be an appropriate approximation for the three-dimensional
cells’ velocity distribution f in equation (9):

f(V,θ) = R(V)eλcosθ·, (10)

where R is some function of the forward velocity V. The
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expression λcosθ is proportional to the gravitational
potential energy of the bottom-heavy cell deviated
from the equilibrium position, divided by this cell’s
rotational diffusivity. Thus, the exponential
multiplier corresponds to the Boltzman distribution
of the cells by the energy associated with their
orientation. According to Equation·10, ln[ f(V,θ)] is
predicted to be a linear function of cosθ with a slope
λ. In Fig.·11, profiles of ln[f(V,θ)] versuscosθ are
presented for various values of V. In fact, these
profiles are logarithmically re-scaled sections of the
surfaces plotted in Fig.·5 on the planes V = const.
Sections in the interval 30·µm·s–1<V<60·µm·s–1 are
plotted as bold lines. Within this restricted velocity
range (bold lines), the graphs can be seen to be
roughly linear, with λ in the range from 1.8 to 3.0,
having the most typical value of 2.3. This is
consistent with λ=2.2 suggested by Pedley and
Kessler (1990). The value of λ recovered from the
distributions for the entire population (Figs·9C, 10D)
varies from 2 to 3, depending on θ, indicating that λ
is not a constant but itself depends somewhat on θ.

One obvious interpretation of the absence of a
uniquely defined value of λ is that, while cells
obey the distribution (Equation·10), the culture
contains organisms with different values of the
‘bottom-heaviness’ parameter λ.

Turning angle: random walk on circle

For a description of the cell swimming direction,
Hill and Häder (1997) suggested a model of a
biased random walk on a circle. To compare
this model with the data obtained from our
experiments, the mean and the variance of the cell
turning angle E[θ(τ)–θ(0)] and Var[θ(τ)–θ(0)] are
estimated and plotted versustime τ for tracks with
different initial direction θ(0), where θ=0
corresponds to cells swimming vertically upward
(Figs·12A, 13A). The averaging is performed over
all 21-point tracks detected during all experimental
runs. Each line corresponds to a group of cells with
certain θ(0); in Fig.·13A, graphs are shifted
vertically for convenience. Following Hill and
Häder (1997), we approximate the graphs linearly
for small enough τ to obtain the dependence of
turning speed µ0 (Fig.·12B) and rotational
diffusivity σ0 (Fig.·13B) on the cell orientation:

E[θ(τ) – θ(0)] ~ τµ0[θ(0)]·, (11)

Var[θ(τ) – θ(0)] ~ τσ0
2[θ(0)]·. (12)

The function µ0(θ) (Fig.·12B) corresponds to the rate of
returning of the pendulum (the bottom-heavy cell) to the
equilibrium position (θ=0):

µ0(θ) ~ −d0 sinθ ~ –0.16 sinθ·, (13)

where d0 is the drift coefficient. This result is in reasonable
agreement with that of Hill and Häder (1997), who reported a
value of d0 from 0.19 to 0.37 for different cultures.

The reorientation time B of a bottom-heavy cell in the field
of gravity can be estimated theoretically from the balance
between gravitational torque and the resisting viscous torque
(Pedley and Kessler, 1987):

µα⊥

2ρgh
B = , (14)
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where µ is the fluid viscosity, α⊥ ≈6.8 is the dimensionless
resistance coefficient, ρ is the cell density,g is the gravitational
acceleration andh is the distance of the cell’s centre of mass
from its geometric centre. A guess of h≈0.1 ·µm (Kessler,
1986) gives an estimate of B≈3.4 s. A smaller value ofh would
result in larger B. Evaluated from our experiments, the drift
coefficient (Equation·13) gives the reorientation time
B=d0–1≈6·s.

Solving the F–P equation for the cells’ orientation, Pedley
and Kessler (1990, 1992) showed that the constant λ in
Equation·10 is related to B in Equation·14 by:

where Dr is the rotational diffusivity, quantifying the
directional randomness of the cells’ trajectories. The
observed value of λ=2.2 combined with B=6·s gives
Dr≈0.04·rad2·s–1. On the other hand, Dr is related to σ0

2,

defined in Equation·12 as Dr=σ0
2/2. It is difficult to specify

how σ0
2 depends on θ because of the data scatter (Fig.·13).

The value of σ0
2 varies in the range 0.035–0.14, which

corresponds to Dr in the range 0.018–0.07·rad2·s–1. This value
is in agreement with the one estimated from Equation·15.
However, our value of Dr is significantly smaller than
0.4–2.2·rad2·s–1 estimated by Hill and Häder (1997). This
may be caused by the difference in the experimental protocol:
Hill and Häder observed all cells located in the experimental
volume, while only upward swimming cells reach the
observation area in our experiments. Berg (1983) suggested
that the random reorientation of cells is due to rotational
Brownian motion, but that gives an estimate
Dr≈0.001·rad2·s–1 and, from Equation·15, the corresponding
value of B≈200·s, which is significantly larger than
experimentally observed, confirming the customary view that
Brownian effects on cells as big as 5·µm are insignificant.

Fig.·13B suggests that σ0 and thus Dr increase with θ, which
does not agree with the assumption that Dr is independent of

1
2BDr

λ = , (15)
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θ, as in the theory by Pedley and Kessler (1992b). One possible
interpretation of the dependence of Dr on θ is the existence of
some internal sensor of gravity in the cell, so that the
reorientation mechanism is not entirely defined by the cell
bottom-heaviness.

Autocorrelation of cell swimming direction

One characteristic illustrating the randomness of cell self-
propulsion is the auto-correlation of its swimming direction.
Assuming that all cells are identical (which is generally not
true), we replace the time averaging by averaging over the
ensemble:

where θ is the deviation of the cells’ swimming direction
from the vertical and the time τ in Equation·16 is a discrete
variable and can be written as τ=1.1·s × n where n = 0 to 17.
Summations are performed over all 21-point tracks detected
in a selected experimental run. The results are presented in
Fig.·14 as separate curves on a semi-logarithmic plot. As
mentioned above, a cell’s velocity is derived from three
successive displacements, so that θ(0) corresponds to
displacement from the 1st to the 4th point and θ(17)
corresponds to displacement from the 18th to the 21st point
of the track. We observe that the auto-correlation of the cell
swimming direction decreases exponentially with time,
which is typical for stationary stochastic processes (Alt,
1989) and thus is consistent with the model of a random walk
proposed in Hill and Häder (1997). The typical time of decay
of the autocorrelation is around 10 s, i.e. the cell velocities
within a 22·s burst are correlated and cannot be considered

as statistically independent. That is the reason why only one
segment of each track is used to construct the cells’ velocity
distribution and to calculate the average velocities. It is worth
noticing that the auto-correlation of the cell swimming
direction for the run that turned out to be invalid (see
Appendix) differs from that related to the normal runs
(broken line in Fig.·14).

Final remarks

The technique presented above allows us to study the
parameters of micro-organism self-swimming by averaging
among hundreds of micro-organisms. The spatial and temporal
dependence of micro-organism motility can be studied, which
is useful for understanding various types of taxis and
bioconvection phenomena.

Deviations of the observed cell swimming behaviour from
the biased random walk, together with the increase of scatter
in the cells’ velocities at high laser light intensity, can be
associated with the existence of some internal cell orientation
mechanism. No reliable conclusions can be reached at this
stage, so further studies of the evolution of the cell swimming
direction will be conducted.

A study of cell self-swimming may be interesting from the
biological point of view: cell motility and light-related
responses can be used as sensitive indicators of the cells’
physiological state. In particular, faster/slower-swimming
cells, or cells with stronger/weaker gravitactic, phototactic and
photokinetic properties can be distinguished. Sometimes a
difference between cell cultures can be visually observed by
comparing composed images of swimming cells such as
Fig.·2B. As the next step, an investigation of the influence of
various environmental parameters on the self-swimming of
various micro-organisms will be conducted using the technique
described above.

Appendix
The hypothesis to test is the following:
At any time instant, the measured number of cells nr,b,ij in

the bin (i,j) defined by Equation·2 is distributed in accordance
with the averaged distribution Fi,j(τ) defined by Equation·5.

If the answer is positive, we get evidence of the absence of
any hidden parameters in the experiments. The χ2 test for the
multinomial distribution is applied as described by Ostle and
Malone (1988). Consider the deviation ζr,b of the number of
cells nr,b,ij detected in the bin (i,j) during the burst b of the run
r from that expected in accordance with the distribution Fi,j at
the time instant tr,b:

where nr,b,ij is the expected number of events in the bin (i,j)
detected during burst b of run r:

nr,b,ij = Fi,j(tr,b)Nr,b·, (A2)

and ζr,b is the term corresponding to bins with nr,b,ij<3 that are

(nr,b,ij – nr,b,ij)2

nr,b,ij
ξr,b = + ζr,b , (A1)^

nr,b,ij≥3









〈θ(0),θ(τ)〉 =       θ(0)θ(τ) ·     θ(0)2 θ(τ)2            , (16)^ ^ ^
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Fig.·14. Autocorrelation of the cells’ swimming direction (projected
onto the x–z plane) calculated for the tracks detected in seven
experimental runs separately (Equation·16). The broken line
corresponds to the run that turned out to be invalid. Solid lines
connect points related to one run. The exponential decrease of
correlation with time τ is typical for random walk processes.
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merged to form larger ones, as it is common to do for the
multinomial distribution. The summation in Equation·A1 is
performed over all bins with nr,b,ij>3. If the hypothesis
mentioned above is correct, the quantity ξr,b is a random
variable exhibiting a χ2 distribution with νr,b degrees of
freedom. Here:

where kr,b is the number of bins composed from those with the
expected number of cells less than 3. Introduce the
probabilities pr,b:

pr,b = P(ξ > ξr,b : νr,b) = 1 – χ2(νr,b) (ξr,b)·, (A4)

and it is easy to show that, given that the hypothesis is true,
the values pr,b must be homogeneously distributed in the
interval [0,1). To test this fact, the Kolmogorov–Smirnov
criterion is applied as described by Blum and Rosenblatt
(1972). To demonstrate that the result is not too sensitive to
the choice of the parts of the tracks being analyzed, the data
based on the beginnings of the tracks and the data based
on the ends of the tracks are considered separately. The
maximum differences of the measured distributions
(Equation·A4) from the uniform distribution are 0.22 and
0.19. These correspond to confidence levels of 0.76% and
2.6%, which are significant, so we conclude that the
hypothesis is invalid.

Examining each of the experimental runs separately, we
found that the distribution obtained from one of them differs
from the averaged distribution by more than the others. Also,
autocorrelation of the cell’s swimming direction in this run
significantly deviates from that in other runs (the broken line
in Fig.·14). This could have happened because some
uncontrolled deviation in experimental procedure appeared
during this run, making it invalid. We eliminated that
particular run from the data and repeated the averaging
procedure (Equation·5). Now the maximum differences of
distribution of pr,b from the uniform distribution become 0.09
and 0.10, which gives insignificant confidence levels of 92%
and 82%. Thus we have a set of seven reliably similar
experimental runs, which contain 47 bursts with 8794 tracks
detected.

List of symbols and abbreviations
B cell reorientation time in the gravity field
b burst number
bn, bn+1 brightness of the blob interpreted as the cell image 

in frames n and n+1
Dr cell rotational diffusivity
d0 angular drift coefficient
f three-dimensional velocity distribution
F two-dimensional velocity distribution
FP Fokker–Planck
g gravitational acceleration

h distance of the cell’s centre of mass from its 
geometric centre

nr,b,ij number of cells detected in the burst b of the run r 
in the bin with a particular velocity

Nr,b total number of cells detected in the burst b of the 
run r

p.d.f. probability density function
r run number
tr,b time when the burst b of the run r has been 

acquired
Vx/z/p horizontal/vertical/projected velocity
vn magnitude of the velocity vector vWn

vW cell velocity derived from the difference of its 
position in sequential images

w weight
α⊥ dimensionless resistance coefficient
θ deviation of cell swimming direction from vertical
λ gravitaxis constant
σ0

2 doubled rotational diffusivity
ρ cell density
τ time
µ fluid absolute (dynamic) viscosity
µ0 turning speed 
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