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Summary

The unsteady aerodynamic forces of a model fruit fly
wing in flapping motion were investigated by numerically
solving the Navier—Stokes equations. The flapping motion
consisted of translation and rotation [the translation
velocity (ut) varied according to the simple harmonic
function (SHF), and the rotation was confined to a short
period around stroke reversal]. First, it was shown that
for a wing of given geometry withut varying as the SHF,
the aerodynamic force coefficients depended only on five
non-dimensional parameters, i.e. Reynolds numberRg),
stroke amplitude (®), mid-stroke angle of attack €m),
non-dimensional duration of wing rotation (Aty) and
rotation timing [the mean translation velocity at radius of
the second moment of wing areal), the mean chord
length (c) and c/U were used as reference velocity, length
and time, respectively]. Next, the force coefficients were
investigated for a case in which typical values of these
parameters were used Re=200; ®=150°; am=40°; Aty was
20% of wingbeat period; rotation was symmetrical).
Finally, the effects of varying these parameters on the
force coefficients were investigated.

In the Re range considered (20-1800), wheRe was
above ~100, the lift C.) and drag (Cp) coefficients were
large and varied only slightly with Re (in agreement with
results previously published for revolving wings); the
large force coefficients were mainly due to the delayed
stall mechanism. However, wherRe was below ~100C_
decreased andCp increased greatly. At such lowRe
similar to the case of higherRe, the leading edge vortex
existed and attached to the wing in the translatory phase

of a half-stroke; but it was very weak and its vorticity
rather diffused, resulting in the small C. and large Cp.
Comparison of the calculated results with available
hovering flight data in eight speciesReranging from 13 to
1500) showed that wherRe was above ~100, lift equal to
insect weight could be produced but wherRe was lower
than ~100, additional high-lift mechanisms were needed.

In the range of Re above ~100® from 90° to 180° and
Aty from 17% to 32% of the stroke period (symmetrical
rotation), the force coefficients varied only slightly with
Re @& and At,. This meant that the forces were
approximately proportional to the square of ®n (n is the
wingbeat frequency); thus, changing® and/or n could
effectively control the magnitude of the total aerodynamic
force.

The time course of C. (or Cp) in a half-stroke for
utr varying according to the SHF resembled a half sine-
wave. It was considerably different from that published
previously for ut, varying according to a trapezoidal
function (TF) with large accelerations at stroke reversal,
which was characterized by large peaks at the beginning
and near the end of the half-stroke. However, the mean
force coefficients and the mechanical power were not so
different between these two cases (e.g. the mean force
coefficients for ut varying as the TF were approximately
10% smaller than those forut varying as the SHF except
when wing rotation is delayed).

Key words: flapping wing, insect, computational fluid dynamics,
unsteady aerodynamics, delayed stall, force coefficients.

Introduction

It has been shown that conventional aerodynamic theoryRe=75-225; for a flapping wingRe is based on the mean

which was based on steady flow conditions, cannot explain ttehord length and the mean translation velocity at radius of the
generation of large lift by the wings of small insects (forsecond moment of wing area). They showed that lift was
reviews, see Ellington, 1984a; Spedding, 1992). In the past feenhanced by the presence of a dynamic stall vortex, or leading
years, much progress has been made in revealing the unsteadge vortex (LEV). After the initial start, lift coefficienty)
high-lift mechanisms of flapping insect wings. of approximately 2 was maintained within 2-3 chord lengths
Dickinson and Go6tz (1993) measured the aerodynamiof travel. Afterwards,C_ started to decrease due to the

forces of an airfoil started rapidly at high angles of attack irshedding of the LEV. But the decrease was not rapid, possibly
the Reynolds numberR@ range of the fruit fly wing because the shedding of the LEV was slow at sucliRiewnd
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from 3 to 5 chord lengths of travely was still as high as those near the end of the stroke were due to the effects of wing
approximately 1.7. The authors considered that because the fiytation (Dickinson et al., 1999; Sun and Tang, 2002a).
wing typically moved only 2—4 chord lengths each half-stroke, The experiments on revolving wings (Usherwood and
the stall-delaying behavior was more appropriate for models @&llington, 2002a,b; Dickinson et al., 1999) have showed that
insect flight than were the steady-state approximations. similar high force coefficients (due to the delayed stall
Ellington et al. (1996) and van den Berg and Ellingtonmechanism) are obtained in tRerange of approximately
(1997a,b) performed flow-visualization studies on the largd40 (model fruit fly wing) to 1®00 (quail wing). It is of
hawkmothManduca sextain tethered forward flight (speed interest to investigate the aerodynamic force behavior and the
range, 0.4-5.Ms1), and on a mechanical model of the delayed stall mechanism at lower Reynolds numbers, because
hawkmoth wings Re=3500). They found that the LEV on the Refor some very small insects is as low as 20 (Weis-Fogh,
wings did not shed in the translational phases of the halft973; Ellington, 1984a). In the experiments (Dickinson et al.,
strokes and that there was a spanwise flow directed from tl®99; Sane and Dickinson, 2001) and CFD simulations (Sun
wing base to the wing tip. Analysis of the momentum imparteéind Tang, 2002a; Ramamurti and Sandberg, 2002) on the
to fluid by the vortex wake showed that the LEV could producéapping model fruit fly wings, the translation velocity)(of
enough lift for the weight support. For the hovering case, ththe wing varied as a TF with rapid accelerations at stroke
hawkmoth wing traveled approximately three chord lengthseversal (the stroke positional angle followed a smoothed
each half-stroke, whereas for the case of forward flight at higttiangular wave), which was an idealization on the basis of
speeds the wing traveled twice as far. The authors suggestibed kinematic data of tethered fruit flies (Dickinson et al.,
that the spanwise flow had prevented the LEV from detachind.999). However, data of free flight in many insects
The above studies identified delayed stall as the high-liftEllington, 1984c; Ennos, 1989) showed thatvas close to
mechanism of some small and large insects. Recentlyhe simple harmonic function (SHF). Recent data of free-
Dickinson et al. (1999) measured the aerodynamic forces onflging fruit fly (Fry et al., 2003) also showed thatwas close
revolving model fruit fly wing Re=75) and showed that stall to the SHF. Wheni varies as the SHF, the time courses of
did not occur and large lift and drag were maintainedthe forces and their sensitivity to some of the kinematic
Usherwood and Ellington (2002a,b) measured thearameters, such as wing-rotation rate and stroke timing,
aerodynamic forces on revolving real and model wings ofmight be significantly different from those wheywvaries as
various insects and a bird (quail) and, for some cases, flow TF with large acceleration at stroke reversal. Therefore, it
visualization was also conducted. They found that largés of interest to study the aerodynamic forces for the case of
aerodynamic forces were maintained by the attachment of the varying as the SHF.
LEV for Re=600 (mayfly) to 1®00 (quail) and for different In the present study, we use the CFD method to simulate the
wing planforms. These results further showed that the delaydibws of a model insect wing in flapping motion. The flapping
stall mechanism was valid for most insects [wing lengh ( motion consists of translation and rotation (Hig. The
2mm (fruit fly) to 5¢mm (hawkmoth)]. The delayed stall translation follows the SHF; the rotation is confined to stroke
mechanism was confirmed by computational fluid dynamicseversal. As will be shown below, for a given wing with
(CFD) analyses (Liu et al., 1998; Wang, 2000; Lan and Sumarying the SHF (in the absence of wing deformation), its
2001). aerodynamic force coefficients depend only on the following
Dickinson et al. (1999) and Sane and Dickinson (2001), bfive non-dimensional parameteiRg stroke amplitude @),
measuring the aerodynamic forces on a mechanical model ofid-stroke angle of attacki,), wing-rotation durationXtr)
fruit fly wing in flapping motion, showed that when the and rotation timing ). We consider th&kerange of 20 to
translation velocity varied according to a trapezoidal functiorl800; in addition, we investigate the effects of vary@m@m,
(TF) with large accelerations at stroke reversal and the winfyt, andT;.
rotation was advanced, in addition to the large forces during
the translational phase of a half-stroke, very large force peaks
occurred at the beginning and near the end of the half-stroke. Materials and methods
Sun and Tang (2002a) and Ramamurti and Sandberg (2002)Most of the procedures used in these CFD simulations have
simulated the flows of model fruit fly wings using the CFDbeen described elsewhere (Sun and Tang, 2002a,b). The
method, based on wing kinematics nearly identical to thosplanform of the model wing used (F®). is the same as that
used in the experiment of Dickinson et al. (1999). Theyof the robotic fruit fly wing used by Dickinson et al. (1999).
obtained results qualitatively similar to those of theThe wing section is a flat plate of 3% thickness with round
experiment. The large forces during the translational phadeading and trailing edges. The ratio of the wing lenghtq
were explained by the delayed stall mechanism (Dickinson ¢he mean chord lengttc)(is 3. The radius of the second
al., 1999). It was suggested that the large force peaks at theoment of wing arearf) is 0.6R (the mean translational
beginning of the half-stroke were due to the rapid translationalelocity atrz is used as reference velocity in this study). Two
acceleration of the wing and the interaction between the wingoordinate systems are used. One is the inertial coordinate
and the wake left by the previous strokes (Dickinson et alsystem,OXYZ and the other is the body-fixed coordinate
1999; Sun and Tang, 2002a; Birch and Dickinson, 2003), amslystem,oxyz(Fig. 1).
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\ Fig. 2. The wing planform used.
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Written in the inertial coordinate syste@XYZ and non-

Fig. 1. Sketches of the reference frames and wing mo@e{yYZis dimensionalized, they are as follows:

an inertial frame, with thXY plane in the horizontal planexyzis a
frame fixed on the wing, with theaxis along the wing chord and ou odv ow _
the y-axis along the wing spaig, positional angle of the wingy, X + Y + az ~
geometrical angle of attack of the wirig;wing length.
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The velocity at the span locatiop due to wing translation — 5y T 5= ~ T =0 @)
is called the translational velocity). Ut is assumed to vary as 0X Re[ox* 9v2 07°0
the SHF: ov ov ov o

ut* = 0.5msin(2TvT) (1) ot Yax TVay T VWaz T

where the non-dimensional translational velocify=u/U (U op 1 2y 9y 49U
is the reference velocity); non-dimensional timwU/c (t is “ay Re %ﬁ v @E (%)
the time); and is the non-dimensional period of a wingbeat
cycle. The azimuth-rotational speed of the wing is related tc 0w ow  ow ow
u. Denoting the azimuth-rotational speed @swe have ot Tu X +VW +Wﬁ =
d(t)=ur/ro. The geometric angle of attack of the wing is denotec
by a. It assumes a constant value except at the start or near t — aﬂ + i gﬂ” + ﬂv + @D, (6)
end of a stroke. The constant value is denotedrlythe mid- 0Z Rex? 0dY? 0z°0
stroke angle of attack. Around the stroke reversahanges whereu, vandw are three components of the non-dimensional
with time and the angular velocity, is given by: fluid velocity andp is the non-dimensional fluid pressure. In

&= o{L — cos[2MT —T)AT]);, T<T< (U +AT), (2) the nqn-dimensionali;atiom, C andp/U are taken as referepce
velocity, length and time, respectiveRein equationl—6 is

where the non-dimensional foreit=c.c/U; @ is the mean non-  defined afRe=cU/v (wherev is the kinematic viscosity of the
dimensional angular velocity of rotation [note ti@there is  fluid). The numerical method used to solve equatBsis is
different by a factor ofR/r2 from that defined in Ellington the same as that in Sun and Tang (2002a,b).
(1984c), where velocity at wing tip was used as reference Once the Navier—Stokes equations are numerically solved,
velocity]; Tr is the non-dimensional time at which the rotationthe fluid velocity components and pressure at discretized grid
starts;At, is the non-dimensional time interval over which thepoints for each time step are available. The aerodynamic forces
rotation lasts, which is termed as Wing-rotation duration. In th@hft, L, and dragD) acting on the W|ng are calculated from the

time interval ofAty, the wing rotates from=omto a=180-6m.  pressure and the viscous stress on the wing surface. The lift
Therefore, whem andAt; are specifiedﬁ can be determined. and drag coefficients are defined as follows:

In the flapping motion described above, the period of L
wingbeat cyclec, the geometric angle of attack at mid-stroke CL=———, @)
Om, the rotation duratiod\t, or the mean angular velocity 0.50U%s
rotation® and the rotation timingr need to be specified. Note D
that sinceU=2®nr, (wheren is the wingbeat frequency adu Co= 05U (8)
is the stroke amplitude)rc (=U/cn) is related to® by P
=29 (r2/R)* (R/c). wherep is the fluid density an&is the wing area.

Flow equations and evaluation of the aerodynamic forces  Non-dimensional parameters that affect the aerodynamic

The governing equations of the flow are the three- force coefficients
dimensional incompressible unsteady Navier—Stokes equations.For a wing of given geometry (in the absence of
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deformation), when its flapping motion is prescribed, 2c A
solution of the non-dimensional Navier—Stokes equation 3
(equationz1-6) gives the aerodynamic force coefficie@is 1E

and Cp; the only non-dimensional parameter in the
Navier—Stokes equations that needs to be specifiBa i$o
prescribe the flapping motion, as mentioned ab®yeim, Aty
and tr need to be specified. That is, the aerodynamic forc
coefficients on the wing depend on five non-dimensiona -1F
parametersRe ®, am, Aty andt,. When the wing rotation is 3
symmetrical;tr may be determined frodwt,; thus,C. andCp
depend only on four parameteRe @, am andAty.

—e—Experiment
—e— Calculdion

-2 E I I I |
-40 20 0 20 40 60 80 100 120

Results ,
Code validation and grid resolution test o
Code validation

The code used in this study is the same as that in St 7
and Tang (2002a). It was tested by measured unstea C
aerodynamic forces on a flapping model fruit fly wing (Sun :
and Tang, 2002b; Sun and Wu, 2003). The calculated dre oF
coefficient agreed well with the measured value [se@AgC f . .
of Sun and Wu (2003)]. For the lift coefficient, in the 40 20 0 20 20 &0 s 100 120
translation phase during the middle, and in the rotation pha a
at the end, of each half-stroke, the computed value agreed well
with the measured value, whereas in the beginning of thFig-3. Comparison of the calculated and measureddif} @nd drag
stroke, the computed peak value was much smaller than t\(CD) coefficients. The experimental data are taken from7figf
measured value [see f2B,D of Sun and Wu (2003) and fi. Usherwood and Ellington (2002, angle of attack.
of Sun and Tang (2002b)]. Recently, Birch and Dickinsor
(2003) visualized the vorticity patterns around the flapping
model fruit fly wing using digital particle image velocimetry. similar to that of the bumble bee wing). In order to make
It is of interest to compare the vorticity patterns calculated bgomparisons with the experimental data, lift and drag
Sun and Tang (2002a) using the code with the experimentalgoefficients were averaged between 60° and 120° from the end
visualized ones. For convenience, we define a non-dimensionafl the initial start of rotation. The computed and meas@ed
parameterf, such that=0 at the start of the downstroke and andCp are shown in Fig3 [measured data are taken from fig.
=1 at the end of the subsequent upstroke. At the beginning of Usherwood and Ellington (2002b)]. In the wholeange
the half-stroke, difference in the positions of shed vortice¢from —20° to 100°), the computed. agrees well with the
exists between the computation and the experiment [compameeasured values; both have approximately sinusoidal
fig. 4A of Sun and Tang (2002a) with the panef=1.02 in  dependence on. The compute®p also agrees well with the
fig. 5 of Birch and Dickinson (2003)]; during the translationmeasured values except wheeiis larger than ~60°.
phase at the middle, and the rotation phase at the end, of theThe above comparisons show that there still exist some
half-stroke, the computed vorticity patterns agree well with theliscrepancies between the CFD simulations and the
experimentally visualized patterns [compare 4B-E,G,H of  experiments but that, in general, the agreement between the
Sun and Tang (2002a) with panelsg=2.07, 0.12, 0.19, 0.26, computational and experimental aerodynamic forces is good.
0.38 and 0.48 in fip of Birch and Dickinson (2003)]. The We think that the present CFD method can calculate the
vorticity comparison is consistent with the force comparisorunsteady aerodynamic forces and flows of the model insect
described above: both show that discrepancy exists at thdng with reasonable accuracy.
beginning of the half-stroke. The discrepancy might be because
the CFD code does not resolve satisfactorily the complex florid resolution test
at stroke reversal. There is also the possibility that it is due to Before proceeding to study the physical aspects of the flow,
variations in the precise kinematic patterns, especially at stroltbe effects of the grid density, the time step and computational-
reversal. domain size on the computed solutions were considered. The

Upon the suggestion of a referee of the present paper, wgensitivity of the computed flow to spatial and time resolution
made a further test of the code using the recent experimentaid to the far-field boundary location was evaluated for the
data of Usherwood and Ellington (2002a,b) on revolvingcase 0fRe=1800 (this Reynolds number is the highest among
model wings. In the computation, the wing rotated 120° aftethe cases considered in this study). Calculations were
the initial start, andRe was set as 1800 (thRevalue was performed using three different grid systems. Grid 1 had

Cp
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Fig. 4. Effects of grid density on computed lift coefficient
(CL) and vorticity field. (A) The time course @i in one
cycle. (B) Vorticity contour plots at half-wing length near
the end of a stroke.

dimensions 5848x41 (around the wing section, in the
normal direction and in the spanwise direction
respectively), grids 2 and 3 had dimensions70&61
and 10%93x78, respectively. The spacings at the wall
were 0.003, 0.002 and 0.0015 for grids 1, 2 and 3,
respectively. The far-field boundary for these three
grids was set at 2;away from the wing surface in the
normal direction and@away from the wing-tips in the
spanwise direction. The grid points were clustered
densely toward the wing surface and toward the wake.
Fig. 4 shows the time course of the lift coefficient in
one cycle and the contours of the non-dimensional
spanwise component of vorticity at mid-span location
near the end of a half-stroke (just before the wing
starting the pitching-up rotation), calculated using the
above three grids and a time-step value of 0.02. It is
observed that the first grid refinement produced some change
in the vorticity plot; however, after the second grid refinement,
the discrepancies are considerably reduced. The differences
between the computed lift coefficients using the three grids are
small; there is almost no difference between the lift coefficients
computed using grids 2 and 3. Computations using grid 3 and
two time-step valuesAt=0.02 and 0.01, were conducted.
Discrepancies between the computed aerodynamic forces and
vorticity fields using the two time steps were very small.
Finally, the sensitivity of the solution to the far-field boundary
location was considered by calculating the flow in a large
computational domain. In order to isolate the effect of the far-
field boundary location, the boundary was made further away
from the wing by adding more grid points to the normal
direction of grid 3. The calculated results showed that there was
no need to put the far-field boundary further than that of grid 3.
From the above analysis, it was concluded that grid 3 and a time
step value oAt=0.02 were appropriate for the present study.

Forces and flows of a typical case

We first considered a case in which typical values of wing
kinematic parameters were usd®iet200, ®=150°, am=40°,
A1,=1.87 and wing rotation was symmetrical; with the above
values of ®, am and At,, we hadt1c=9.37, ®=0.93 and
ATr:O.Z[c).

Fig. 5 shows the time courses©@f andCp in one cycleCp

Fig. 5. Time history of aerodynamic force coefficients of the typical
case. (A) Non-dimensional angular velocity of pitching rotatiof) (
and azimuthal rotationdf); (B) time courses of lift coefficientQ()
and (C) drag coefficientGp) in one cycle. Reynolds number
(Re=200, stroke amplituded()=150°, midstroke angle of attack
(am)=40° and non-dimensional duration of wing rotatidvw)=1.87
[mean angular velocity of rotatiom)=0.93]; symmetrical rotation.
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Fig. 6. Vorticity plots at half-wing length at various times during one cycle. Solid and broken lines indicate positive and vetattye
respectively. The magnitude of the non-dimensional vorticity at the outer contour is 2 and the contour interval is 3. Astipkep&rH,
upstroke. Reynolds numbeR€=200, stroke amplitude®)=150°, midstroke angle of attackn{)=40° and non-dimensional duration of wing
rotation (At)=1.87 [mean angular velocity of rotatiom)€0.93]; symmetrical rotation.

in the middle portion of a half-stroke is large and dominatespanwise component of vorticity at mid-span location are given
over C_ at the beginning and near the end of the half-stroken Fig.6. The LEV does not shed in an entire half-stroke,
(Cp behaves similarly). In previous studies by Dickinson et alshowing that the larg€_ and Cp in the mid-portion of the
(1999) and Sun and Tang (2002a), in whigkaried as a TF half-stroke are due to the delayed stall mechanism.
with large accelerations at stroke reversal, large force peaks
occurred near the end of the half-stroke. They were caused by The effects dRe
the pitching-up rotation of the wing while it was still Fig.7 shows the time courses@f andCp in one cycle for
translating at relatively large velocity. In the present casejariousRe(Reranging from 20 to 1800; other conditions being
peaks inC_ and Cp also exist (FighB,C) but they are very the same as in the typical case). In gen&alincreases and
small. This is because near the end of the half-stroka ttes ~ Cp decreases d&®eincreases. However, wh&eis higher than
become very low and wing rotation cannot produce a large100,C. andCp do not vary greatly, whereas whieeis lower
force at lowu. than ~100,C_ is much smaller an€p much larger than at
The mean lift CL) and drag Cb) coefficients are 1.66 and higherRe
1.67, respectively, which are much larger than the steady-stateFor the case dke=200, as discussed above, the laZgand
values [measured steady-st@eandCp on a fruit fly wing in ~ Cp during a stroke are due to the delayed stall mechanism. For
uniform free-stream in a wind tunnel at the sd®e€200) and the cases of othd&tg as seen in Fig, CL andCp do not have
sameom (40°) are 0.6 and 0.75, respectively (Vogel, 1967)].a sudden drop during a half-stroke (betweed andt=0.5tc,
As seen in Fig5, the major part of the mean lift (or drag) the downstroke; betweerx0.5t1c andt=T1¢, the upstroke), i.e.
comes from the mid-portions of the half-strokes. During thesstall is also delayed for an entire half-stroke. Bighows the
periods, the wing is in pure translational motiang constant).  vorticity contour plots at half-wing length near the end of a
From the results in Fid, it is estimated that 88% of the mean half-stroke. It is seen that, at &kconsidered, the LEV does
lift is contributed by the pure translational motion. As wasnot shed and the delayed stall mechanism exists. However, for
shown previously (Ellington et al., 1996; Liu et al., 1998;Re lower than ~100, the LEV is very diffused and weak
Dickinson et al., 1999; Sun and Tang, 2002a), the largend  compared with that for highdke (comparing Fig8D,E with
Cp during the translatory phase of a half-stroke were due tbig. 8A—C; the strength of the LEV can be estimated from the
the delayed stall mechanism. That is, the delayed stallalues of vorticity represented by the contours and the spacing
mechanism is mainly responsible for the large aerodynamisetween the contours), resulting in sn@lland largeCp. For
forces produced. The flow-field data provide further evidenceeference, vorticity contour plots at various times in one cycle
for the above statement. The contours of the non-dimensiontr the case oRe=20 are shown in Fid.
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Fig. 7. Time courses of the (A) lift coefficienC() and (B) drag
coefficient Cp) in one cycle for various Reynolds numb&e)(
Stroke amplituded)=150°, midstroke angle of attactnf)=40° and
non-dimensional duration of wing rotatiofit()=1.87 [mean angular
velocity of rotation §)=0.93]; symmetrical rotation.

CL andCp at variousReare plotted in Figl0. ForReabove
~100, change i€L andCp with Reare small, whereas féte
below ~100,CL decreases andp increases rapidly aRe
decreases. Similar to the typical case, approximately 85-90
of CL is contributed by the pure translational motion for all the
values ofReconsidered.

Dependence of the force coefficients on mid-stroke angle o
attack

Fig. 11 givesCL andCp in the range obim from 25° to 60°
(for all Reconsidered in the above section). The slope of th
CL (am) curve is approximately constant betweer=25° and
35°; beyondim=35°, it decreases gradually to zeraat50°.

The rate of change @ with am (dCL/dom) from am=25°
to 35° is given in Tablé. For Re above ~100, @./dom
hardly varies withRe and its value is approximately 3.0,
which is almost the same as the measured value (2.9-3.1)
the revolving wings [see fig of Usherwood and Ellington
(2002b); the cited value is for the case of aspect ratio equ
to 6 R/c=3)]. ForRebelow ~100, @ /dam decreases greatly.

Fig. 8. Vorticity plots at half-wing length near the end of a half-
stroke at various Reynolds numbdRe( Solid and broken lines
indicate positive and negative vorticity, respectively. The magnitude
of the non-dimensional vorticity at the outer contour is 2 and the
. . contour interval is 3. Stroke amplitud®)E150°, midstroke angle of

The effects of rotation duration attack @m)=40° and non-dimensional duration of wing rotation

In the calculations abovepAt=1.87 (=0.2¢; ©=0.93). (A1)=1.87 [mean angular velocity of rotation®)E0.93];

Observation of many insects in free flight (Ellington, 1984c:;symmetrical rotation.
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£=0.40 *

Fig. 9. Vorticity plots at half-wing length at various times during one cycle. Solid and broken lines indicate positive and vetattye
respectively. The magnitude of the non-dimensional vorticity at the outer contour is 2 and the contour interval is 3. Atinkéou#aH,
upstroke. Reynolds numbBe=20, stroke amplitud®=150°, midstroke angle of attacik=40° and non-dimensional duration of wing rotation
At=1.87 (mean angular velocity of rotatim+0.93); symmetrical rotation.

Ennos, 1989) showed thatranged approximately from 0.8 to 25
1.4. Here, we investigate the effects of vanyg(i.e. varying
m) on the aerodynamic force coefficients.

Fig. 12 gives the time courses©f andCp in one cycle for Fi
four values ofAty; Table2 gives the mean force coefficients. S 3 T
Varying Aty does not change the mean force coefficient: - 15
greatly (see Tab!8); whenArt, is almost doubled (varied from
1.27 to 2.40)CL and Cp change only approximately 396, 1
andCp in the mid-portion of a half-stroke vary little witkr, : - -Cp
(see Figl2). The force peaks around the stroke reversal a g . .
due to the effects of wing rotation (Dickinson etal., 1999; St~ %°0~ 25 1000
and Tang, 2002a); at a given translation velocity, the peal
increase with rotation rate (Sane and Dickinson, 200z,
Hamdani and Sun, 2000). Whéw, is relatively short@ is  Fig-10. Mean lift C) and drag (o) coefficientsvs Reynolds
relatively large), the force peaks are relatively large but thenumber Re). Stroke amplitude &)=150°, mid-stroke angle of
occupy a short period; whet; is longer @ is smaller), the attack (im)=40° and non-d|men3|on.al duration qf wing rotation
force peaks become smaller but they occupy a longer perio(ATr):l'g.7 I[meap angular - velocity of - rotation®)E0.93];
As a result, the force peaks around the stroke reversal for t!symmemca rotation.
cases of differenf\t; give more or less the same contribution
to the corresponding mean force coefficient. This explains wh
CL and Cp do not change greatly witht, (or ®).

TR

N
JLAAS

1500

2000

Re

Table 2.Effects of non-dimensional rotation duratiakr{) on
mean lift CL) and drag Cp) coefficients

Table 1.The(r(?éelgzc??g%sc?fllfztSiot?)fZ(;SIﬂLo with am 239 073 160 i
LHHm m 1.88 0.93 1.61 1.70

Re 1800 600 200 60 20 1.54 1.13 1.63 1.72
dCi/dam 3.0 2.9 2.9 2.5 1.8 1.31 1.33 1.65 1.76

Stroke amplitude ®)=150°; non-dimensional rotation duration  Reynolds numberR€=200; mid-stroke angle of attact)=40°;
(At)=1.87 (=0.2¢; Tc, non-dimensional wingbeat period); stroke amplitude ®)=120°; symmetrical rotation@, mean non-
symmetrical rotation. dimensional angular velocity of rotation.
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Fig.11. Mean lift CL) and drag (p) coefficientsvs mid-stroke © /
angle of attack dm) for various Reynolds numbeiR@. Stroke 7
amplitude ¢)=150° and non-dimensional duration of wing rotation 2F
(At)=1.87 [mean angular velocity of rotation®)E0.93];
symmetrical rotation. _4?‘ o L
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Stroke cycle

. The ef_fects of rotation timing . Fig.12. The effects of rotation duratioAt¢) on force coefficients.
Fig. 13 shows the time courses ©f andCp in one cycle  (a) Non-dimensional angular velocity of pitching rotatiant) and

for different rotation timingt can be read from Fig3A;Re  azimuthal rotationd); (B) time courses of lift coefficiento) and
om, ® andAt are the same as those in the typical case). In th(C) drag coefficient@p) in one cycle. Reynolds numbeRd=200,
case of advanced rotation (the major part of rotation istroke amplituded®)=150° and mid-stroke angle of attackn)=40°;
conducted before stroke reversal), the peaky iandCp near ~ symmetrical rotation.
the end of a half-stroke are larger than those in the case
symmetrical rotation; this is because the wing conduct
pitching-up rotation at a higher translational velocity (see30% larger than those for the case of delayed rotation,
Fig. 13A). At the beginning of the next half-strok&, andCp respectively.
are also larger than their counterparts in the case of
symmetrical rotation; this is because the wing does not conduct The effects of stroke amplitude
pitching-down rotation in this period (the wing rotation is Free-flight data collected from many insects (Ellington,
almost finished before this period). In the case of delayetl984c; Ennos, 1989; Fry et al., 2003) showed that the stroke
rotation (the major part of rotation is conducted after strokamplitude, @, ranged approximately from 90° to 180°.
reversal), ndC. andCp peaks occur near the end of the half-Moreover, an insect might changeo control its aerodynamic
stroke because the wing does not rotate in this period; in tHerce (e.g. Ellington, 1984c; Lehmann and Dickinson, 1998).
beginning of the next half-strok€_ is negative andCp is  Here, we investigate the effects®fon the force coefficients.
large compared with that in the case of symmetrical rotatio€alculations were made for vario®g65°, 90°, 120°, 150° and
because all of the wing rotation is conducted in this period anti80°) while other parameters were fixed (they are the same as
the rotation is pitching-down rotation. those in the typical case). Fitd shows the time courses@f

The mean force coefficients are given in Téhl€L andCp  andCp in one cycle; Tabld gives the mean force coefficients.
for the case of advanced rotation are approximately 40% ardote that when® is varied, the non-dimensional period of
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Fig. 13. The effects of rotation timing on force coefficients. (A) Non-
dimensional angular velocity of pitching rotatia@nt) and azimuthal
rotation §*); (B) time courses of lift coefficientq{) and (C) drag
coefficient Cp) in one cycle. Reynolds numbeRd=200, stroke
amplitude ¢)=150°, mid-stroke angle of attacki{)=40° and non-
dimensional duration of wing rotatiom\f)=1.87 [mean angular
velocity of rotation )=0.93].

Table 3.Effects of rotation timing on mean liff() and drag
(Cp) coefficients

Rotation timing CL Co CL/Cp

Symmetrical 1.66 1.67 0.99
Advanced 1.84 211 0.87
Delayed 1.32 1.61 0.82

Reynolds numberRe=200; mid-stroke angle of attact)=40°,
stroke amplitude 4)=150°; non-dimensional rotation duration
(Atr)=1.87 (=0.2¢; 1c, non-dimensional wingbeat period).

wingbeat cycle will changetd=2®r2/c); sinceAt; (i.e. ®) is
fixed, Ati/1c is different for differentd. In the range oo from
90° to 180°, the effects of varying on the force coefficients

1r A (0] 12
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Fig. 14. The effects of stroke amplitud®)(on force coefficients.
(A) Non-dimensional angular velocity of pitching rotatian) and
azimuthal rotation{(*); (B) time courses of lift coefficientQ{) and
(C) drag coefficient@p) in one cycle. Reynolds numberg=200,
mid-stroke angle of attaclaf)=40° and non-dimensional duration
of wing rotation QAt,)=1.87 [mean angular velocity of rotation
()=0.93]; symmetrical rotation.

are not large; whe#p increases or decreases by 30°andCp
change less than 3% and 6%, respectively. \\Wheas below
approximately 90°, the effects of varyidgbecome larger (see
the results foP=65°; Fig.14; Tabled). It is of interest to point
out the fact tha€L andCp hardly vary with® (in the range of

@ from 90° to 180°) means that the mean lift and mean drag

vary as®?, because the forces are non-dimensionalized%y
andU equals 2nr2 (n is the wingbeat frequency).
Sane and Dickinson (2001) studied the effects of varging

and other parameters using a dynamically scaled mechanical

model of the fruit fly. Their results [see flBA,C of Sane
and Dickinson (2001)] showed that wheb fell below

approximately 120°,C. decreased and’p increased with
decreasingp (Cp increased rapidly a® became small). In the
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Table 4.Effects of stroke amplitud&] on mean lift C,) and 1r A ® ]
drag (Cp) coefficients . —180° 14
05 ) gt ——180° ]
o Tc CL Cp > _5%9 12
° ——60° ]
180 11.24 1.69 1.65 Y0 0 s
150° 9.37 1.66 1.67 ;
120° 7.50 1.61 1.70 _05E S
90° 5.62 1.57 1.80 ' 3
65° 4.06 1.58 2.08 L . . J
0 0.25 0.5 0.75 1

Reynolds numberRe=200, mid-stroke angle of attact)=40°;
non-dimensional rotation duratioAt)=1.87; symmetrical rotation. 4
Tc, non-dimensional wingbeat period. I

Table 5.Effects of stroke amplitud@] on mean liftC,) and 2f
drag (Cp) coefficients wheAT/1¢ is fixed (=20%) 15}

(0] Tc Re ATy CL Cbp

180° 11.24 240 2.25 1.71 1.63
150° 9.37 200 1.87 1.66 1.67
120° 7.50 160 1.50 1.59 1.76
90° 5.62 120 1.12 1.49 1.94
60° 3.75 80 0.75 1.39 2.52

|
N

0.5 0.75 1

o
of
N

mA

Mid-stroke angle of attackam)=40°; symmetrical rotationRe
Reynolds number;®, stroke amplitude;tc, non-dimensional
wingbeat periodAty, non-dimensional rotation duration.

Q
present simulation (Fid.4; Table4), when® is below ~90°, ©
we also found’p increasing an@. decreasing with a decrease
in ®, but the rates of change @ and Cp are smaller than
those reported by Sane and Dickinson (2001). In thei
experiment, whe changedReandAt, also changed, but the L e
ratio of Aty/t¢ did not change; in the present simulatiBeand 0.25 0.5 0.75 1
Aty did not change wherb changed. To make further Stroke cycle
comparison with their results, we made some calculations in

. . Fig.15. The effects of stroke amplitud®)(on force coefficients
which Re and Aty changed with® but Ati/tc was kept whenAt/1c is fixed (=20%). (A) Non-dimensional angular velocity

unchanged (:0.2)-_The rgiults are givenin IE’J'gand_Tgblé. of pitching rotation ¢*) and azimuthal rotationéf); (B) time

The trends of variation i€ and Cp with @ are similar 0 rses of Jift coefficientd) and (C) drag coefficientOp) in one

those in Sane and Dickinson (2001): whenis below  cycle. Mid-stroke angle of attackf)=40°; symmetrical rotation.
approximately 120°C, decreases andp increases with® A, non-dimensional duration of wing rotatior; non-dimensional
decreasing, and wheh is below 90°,Cp increases rapidly.  wingbeat period.

bbLbbonmsoon

o

_ Discussion . _ whenReis below ~100(. decreases arh increases greatly.
The influence of Re and comparison between the lift  This is because at such I&®e(20, 60), although the LEV still
coefficients and insect flight data exists and attaches to the wing in the translational phases

Previous studies on revolving wings (Usherwood andf the half-strokes, it is rather weak and its vorticity is
Ellington, 2002a,b; Dickinson et al., 1999) showed that largeonsiderably diffused (see Figb,E,9).
aerodynamic force coefficients were produced due to the From the flight data of an insect, the mean lift coefficient
delayed stall mechanism in tRerange of approximately 140 needed for supporting its weight (denoted Gyw) can be
(model fruit fly wing) to 1300 (quail wing) and that the force determined. Data of free hovering (or very low-speed) flight in
coefficients were not sensitive Re The present study on a eight species were obtained. Six species were from Ellington
flapping wing has provided results for lowRe As seen in (1984b,c) [the wing length of these species ranges from
Fig. 10, whenReis above ~100CL andCp vary only slightly ~ 9.3mm (in Episyrphus balteatysto 14.1mm (in Bombus
with Re in agreement with the previous results. Howeverhortorum)]; two smaller oned)rosophila virilisandEncarsia
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35 such a lowRe the maximumCy is ~1.15 (abim=45°), which
B is much smaller than it§_ w. In the computations that gave
3 Paale the results in Figl1, symmetrical rotation was used abavas
- D . . .
25E & 150°. For reference, we made another calculation in which
S Pt o} advanced rotation was used@=180° and am=45° (this
K5 3 o g— c=@B-==R=-:-4 combination of parameters was expected to maxi@izeThe
15F . :855558': i} com_putation gav€ =1.25, which was also much smaller than
;/::gg;:- Black 2%% 1‘200 0‘33 the CLw of Encarsia formosaThese results show that using
§;;,’ Red 240 180° 1.12 the flapping motion described above, the insect could not
T T S S produce enough lift to support its weight; i.e. at such Regv
30 40 50 60 high-lift mechanisms, in addition to the delayed stall

am mechanism, are needed [Weis-Fogh (1973) suggested the ‘clap
Fig.16. Mean lift CL) and drag €p) coefficientsvs mid-stroke and fllng.me.chanlsm]. For other InSEGZGE,'IS abo:/e_100 and,
angle of attackogm; symmetrical rotation)Re Reynolds numberd, as seenin Fidl1, at amam between 30° and 50°, @& equal
stroke amplitudem, mean non-dimensional angular velocity of wing {0 CLw can be produced.
rotation. The above comparison shows that wikgis higher than
~100, the delayed stall mechanism can produce enough lift for
supporting the insect’s weight and whgeis lower than ~100,

formosa were from Weis-Fogh (1973). These data includeadditional high-lift mechanisms are needed.
insect massM), wing length, mean chord length, radius of
second moment of wing area, stroke amplitude and wingbeat Lift and drag vary approximately with the squaredaf
frequency (see Tabl). On the basis of these data, the The non-dimensional Navier—Stokes equations
reference velocityRe and mean lift coefficient needed for (equations3—6), the equations prescribing the flapping motion
supporting insect weight were computét=Rdnro, Re=Uclv  (equationdl, 2) and the equations defining the aerodynamic
and CLw=mg/0.50U2S, whereg andS were the gravitational force coefficients (equatior% 8) show that the mean force
acceleration and the area of both wings, respectivielyand  coefficients of a wing of given geometry withvarying as the
CLw are given in Tablé. SHF depend only oRe om, @ andAtr (assuming symmetrical

Now, we compare the data in TaBlevith the results of rotation). As already discussed above, wReis above ~100,
model-wing simulation in Figll [here, we assume that the the force coefficients vary only slightly witRe results in
wing planform does not have a significant effect on liftTables2,4 show that the force coefficients vary only slightly
coefficient; this is true for revolving wings (Usherwood andwith Aty and also vary only slightly witkp in the range ofp
Ellington, 2002b)]. Of the insects considereBincarsia  approximately from 90° to 180°.
formosahas the lowesRe (13) and itsC,w is 2.87; when its When ® and/or n is varied, Re will change (note that
wing area is extended to include the brim hairs (EllingtonRe=2®nr.c/v). Since the force coefficients hardly vary with
1975), itsCL,w is still as high as 1.62. As seen in Fid, at andRe the mean lift{) and drag D) vary approximately with

Table 6.Data of free hovering flight and lift coefficient needed for weight support

Species M (mg) R (mm) ¢ (mm) ra/R ® (deg.) n(s? Re CLw
Coleoptera: beetles
Coccinella 7-punctata 34.4 11.2 3.23 0.53 177 54 443 1.82
Diptera: flies, mosquitoes
Drosophila virilis 2.0 3.0 0.97 0.58 150 240 147 1.15
Tipala obsolete 11.4 12.7 2.38 0.6 123 45.5 245 1.31
Episyrphus balteatus 27.3 9.3 2.20 0.57 90 160 408 1.52
Episyrphus tenax 68.4 114 3.19 0.53 109 157 812 1.10
Hymenoptera: bees and wasps
Apis mellifera 101.9 9.8 3.08 0.54 131 197 1018 1.19
Bombus hortorum 226 14.1 4.2 0.54 120 152 1463 1.21
Encarsia formosa 0.025 0.62 0.23 0.69 135 400 13 2.87
Encarsia formosa* 0.025 0.65 0.38 0.69 135 400 22 1.62

M, insect massR, wing length;c, mean chord lengthy, radius of second moment of wing arég;stroke amplituden, wingbeat frequency;
Re Reynolds numberC w, mean lift coefficient needed to balance insect weight. DaBragophila virilis and Encarsia formosare from
Weis-Fogh (1973); data of other species are from Ellington (1984b,c). *Wing area extended to include the brim hairs (EBlfi&gton,
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(®n)2. That is, changing and/orn can effectively control the approximately 12% and 8% smaller than thoseufaarying
aerodynamic forces. For instance, increaghgy 15%,L can as the SHF, respectively, and when wing rotation was
be increased by approximately 32% [note that by increasindelayed,C. for ut varying as the TF was approximately 35%
om by 15% (e.g. from 40° to 46°], increases only by ~10% smaller than that fou: varying as the SHF bu€p was
(see Figl1)]. approximately the same for the two cases.

In the above discussion, we have assumed that the force
coefficients hardly vary wittRe ® andAt, (or @). However, ~Power requirements
in testing the effects of a particular parameter on the force In the studies on power requirements of fruit fly flight by
coefficients, we varied one parameter while keeping all otherSun and Tang (2002b) and Sun and Wu (2003), a TF similar
the same as in the typical case. When the parameters aocethat used in Sun and Tang (2002a) was used: fiwing
simultaneously varied, do the force coefficients still vary onlyrotation was symmetrical). As seen abo&e,and Cp for u
slightly? We conducted some further calculations in whichyarying as the TF are 12% and 8% smaller, respectively, than
for a range ofam from 25° to 60°,Re ® and @ were those foru: varying as the SHF. It is of interest to know the
simultaneously increased by 20% from those of the typicadffects of replacing the TF by the SHF on the results presented
case. Figl6 shows the results. At allh considered, the force in Sun and Tang (2002a) and Sun and Wu (2003).
coefficients vary only slightly. To quantify the effects of the new kinematic model, we

made calculations in which the same model wing and
Comparison of the present results with thosetwitying as  kinematic parameters as those in Sun and Tang (2002b) and
the TF Sun and Wu (2003) were used, except that the Thfo@as

In some recent experimental (Dickinson et al., 1999; Saneeplaced by the SHF. For hover flight, the results in Sun and
and Dickinson, 2001) and computational (Sun and Tangfang (2002b) and Sun and Wu (2003) are as follows: mean lift
2002a,b; Ramamurti and Sandberg, 2002; Sun and Wu, 2008yual to the insect weight is producedoa=36.5° and the
studies,u; varying as a TF with rapid accelerations at strokebody-mass-specific power is ¥@ kg=2; with u; varying as the
reversal has been employed. It is of interest to discuss ti®&HF, the correspondingm and body-mass-specific power are
differences between the present resultsuforarying as the 30.5° and 31.% kg1, respectively. That is, with the SHF, the
SHF and those fau varying as a TF with rapid accelerations am needed is a few degrees smaller and the body-mass-specific
at stroke reversal. power is approximately 10% larger than that with the TF

(similar results were obtained for forward flight).

The force coefficients The reason for the needagh becoming smaller is obvious.
The time courses of force coefficients are considerableeing thatCi and Cp with the SHF are larger than their
different between the two cases; for the case: 9hrying as  counterparts with the TF by approximately the same

a TF with rapid accelerations at stroke reversalCihéor Cp) percentage (i.e. th€. to Cp ratio is not very different for the
curve is flat in the mid-portion of a half-stroke and has largéwo cases), one might expect that the power results with the
peaks at the beginning and near the end of the half-stroke [sBelF are approximately the same as those with the TF.
fig. 3A,B of Dickinson et al. (1999) and fi§.of Sun and Tang However, as seen above, the specific power becomes a little
(2002a)], whereas for the caseupVarying as the SHF, thé. ~ larger. This is because in the caseuo¥arying as the SHF,
(or Cp) curve grossly resembles a half sine-wave (seeblrig. bothCp andut at the middle portion of a stroke are larger than
As a result, very large time gradients of aerodynamic forctheir counterparts in the casewfarying as the TF (note that
exist in each half-stroke in the caseup¥arying as the TF but aerodynamic power is proportional to the mean of the product
not in the case aft varying as the SHF. of Cp andut over a stroke cycle, not ©p).

However, in spite of the large differences in instantaneous
force coefficients, the mean force coefficients are not so

different. To examine the quantitative differences of the mean List of symbols

force coefficients between the two cases, we made two sets
of computations. In the first sety varied as a TF with Cp
rapid accelerations at stroke reversal [the duration ofp
translational acceleration at stroke reversal was 19,18 C.
similar to that used in Dickinson et al. (1999) and Sun and’.

Tang (2002a,b)]; symmetrical rotation, advanced rotatiorCLw

(the major part of rotation conducted before stroke reversal)
and delayed rotation (the major part of rotation conducte®
after the stroke reversal) were considered; other condition3
(Re @, am, Aty) were the same as those in the typical case.
In the second setyt was replaced by the SHF. The resultsL
showed that when wing rotation was symmetrical oM
advanced,CL and Cp for ut varying as the TF are n

mean chord length

drag coefficient

mean drag coefficient

lift coefficient

mean lift coefficient

mean lift coefficient for supporting the insect’s
weight

drag

mean drag

lift

mean lift

mass of insect

wingbeat frequency
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