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It has been shown that conventional aerodynamic theory,
which was based on steady flow conditions, cannot explain the
generation of large lift by the wings of small insects (for
reviews, see Ellington, 1984a; Spedding, 1992). In the past few
years, much progress has been made in revealing the unsteady
high-lift mechanisms of flapping insect wings.

Dickinson and Götz (1993) measured the aerodynamic
forces of an airfoil started rapidly at high angles of attack in
the Reynolds number (Re) range of the fruit fly wing

(Re=75–225; for a flapping wing, Re is based on the mean
chord length and the mean translation velocity at radius of the
second moment of wing area). They showed that lift was
enhanced by the presence of a dynamic stall vortex, or leading
edge vortex (LEV). After the initial start, lift coefficient (CL)
of approximately 2 was maintained within 2–3 chord lengths
of travel. Afterwards, CL started to decrease due to the
shedding of the LEV. But the decrease was not rapid, possibly
because the shedding of the LEV was slow at such low Re; and
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The unsteady aerodynamic forces of a model fruit fly
wing in flapping motion were investigated by numerically
solving the Navier–Stokes equations. The flapping motion
consisted of translation and rotation [the translation
velocity (ut) varied according to the simple harmonic
function (SHF), and the rotation was confined to a short
period around stroke reversal]. First, it was shown that
for a wing of given geometry with ut varying as the SHF,
the aerodynamic force coefficients depended only on five
non-dimensional parameters, i.e. Reynolds number (Re),
stroke amplitude (Φ), mid-stroke angle of attack (αm),
non-dimensional duration of wing rotation (∆τr) and
rotation timing [the mean translation velocity at radius of
the second moment of wing area (U), the mean chord
length (c) and c/U were used as reference velocity, length
and time, respectively]. Next, the force coefficients were
investigated for a case in which typical values of these
parameters were used (Re=200; Φ=150°; αm=40°; ∆τr was
20% of wingbeat period; rotation was symmetrical).
Finally, the effects of varying these parameters on the
force coefficients were investigated.

In the Re range considered (20–1800), when Re was
above ~100, the lift (CL) and drag (CD) coefficients were
large and varied only slightly with Re (in agreement with
results previously published for revolving wings); the
large force coefficients were mainly due to the delayed
stall mechanism. However, when Re was below ~100, CL

decreased and CD increased greatly. At such low Re,
similar to the case of higher Re, the leading edge vortex
existed and attached to the wing in the translatory phase

of a half-stroke; but it was very weak and its vorticity
rather diffused, resulting in the small CL and large CD.
Comparison of the calculated results with available
hovering flight data in eight species (Reranging from 13 to
1500) showed that when Re was above ~100, lift equal to
insect weight could be produced but when Re was lower
than ~100, additional high-lift mechanisms were needed.

In the range of Re above ~100, Φ from 90° to 180° and
∆τr from 17% to 32% of the stroke period (symmetrical
rotation), the force coefficients varied only slightly with
Re, Φ and ∆τr . This meant that the forces were
approximately proportional to the square of Φn (n is the
wingbeat frequency); thus, changing Φ and/or n could
effectively control the magnitude of the total aerodynamic
force.

The time course of CL (or CD) in a half-stroke for
ut varying according to the SHF resembled a half sine-
wave. It was considerably different from that published
previously for ut, varying according to a trapezoidal
function (TF) with large accelerations at stroke reversal,
which was characterized by large peaks at the beginning
and near the end of the half-stroke. However, the mean
force coefficients and the mechanical power were not so
different between these two cases (e.g. the mean force
coefficients for ut varying as the TF were approximately
10% smaller than those for ut varying as the SHF except
when wing rotation is delayed).
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from 3 to 5 chord lengths of travel, CL was still as high as
approximately 1.7. The authors considered that because the fly
wing typically moved only 2–4 chord lengths each half-stroke,
the stall-delaying behavior was more appropriate for models of
insect flight than were the steady-state approximations.

Ellington et al. (1996) and van den Berg and Ellington
(1997a,b) performed flow-visualization studies on the large
hawkmoth Manduca sexta, in tethered forward flight (speed
range, 0.4–5.7·m·s–1), and on a mechanical model of the
hawkmoth wings (Re≈3500). They found that the LEV on the
wings did not shed in the translational phases of the half-
strokes and that there was a spanwise flow directed from the
wing base to the wing tip. Analysis of the momentum imparted
to fluid by the vortex wake showed that the LEV could produce
enough lift for the weight support. For the hovering case, the
hawkmoth wing traveled approximately three chord lengths
each half-stroke, whereas for the case of forward flight at high
speeds the wing traveled twice as far. The authors suggested
that the spanwise flow had prevented the LEV from detaching. 

The above studies identified delayed stall as the high-lift
mechanism of some small and large insects. Recently,
Dickinson et al. (1999) measured the aerodynamic forces on a
revolving model fruit fly wing (Re≈75) and showed that stall
did not occur and large lift and drag were maintained.
Usherwood and Ellington (2002a,b) measured the
aerodynamic forces on revolving real and model wings of
various insects and a bird (quail) and, for some cases, flow
visualization was also conducted. They found that large
aerodynamic forces were maintained by the attachment of the
LEV for Re≈600 (mayfly) to 15·000 (quail) and for different
wing planforms. These results further showed that the delayed
stall mechanism was valid for most insects [wing length (R)
2·mm (fruit fly) to 50·mm (hawkmoth)]. The delayed stall
mechanism was confirmed by computational fluid dynamics
(CFD) analyses (Liu et al., 1998; Wang, 2000; Lan and Sun,
2001).

Dickinson et al. (1999) and Sane and Dickinson (2001), by
measuring the aerodynamic forces on a mechanical model of
fruit fly wing in flapping motion, showed that when the
translation velocity varied according to a trapezoidal function
(TF) with large accelerations at stroke reversal and the wing
rotation was advanced, in addition to the large forces during
the translational phase of a half-stroke, very large force peaks
occurred at the beginning and near the end of the half-stroke.
Sun and Tang (2002a) and Ramamurti and Sandberg (2002)
simulated the flows of model fruit fly wings using the CFD
method, based on wing kinematics nearly identical to those
used in the experiment of Dickinson et al. (1999). They
obtained results qualitatively similar to those of the
experiment. The large forces during the translational phase
were explained by the delayed stall mechanism (Dickinson et
al., 1999). It was suggested that the large force peaks at the
beginning of the half-stroke were due to the rapid translational
acceleration of the wing and the interaction between the wing
and the wake left by the previous strokes (Dickinson et al.,
1999; Sun and Tang, 2002a; Birch and Dickinson, 2003), and

those near the end of the stroke were due to the effects of wing
rotation (Dickinson et al., 1999; Sun and Tang, 2002a).

The experiments on revolving wings (Usherwood and
Ellington, 2002a,b; Dickinson et al., 1999) have showed that
similar high force coefficients (due to the delayed stall
mechanism) are obtained in the Re range of approximately
140 (model fruit fly wing) to 15·000 (quail wing). It is of
interest to investigate the aerodynamic force behavior and the
delayed stall mechanism at lower Reynolds numbers, because
Re for some very small insects is as low as 20 (Weis-Fogh,
1973; Ellington, 1984a). In the experiments (Dickinson et al.,
1999; Sane and Dickinson, 2001) and CFD simulations (Sun
and Tang, 2002a; Ramamurti and Sandberg, 2002) on the
flapping model fruit fly wings, the translation velocity (ut) of
the wing varied as a TF with rapid accelerations at stroke
reversal (the stroke positional angle followed a smoothed
triangular wave), which was an idealization on the basis of
the kinematic data of tethered fruit flies (Dickinson et al.,
1999). However, data of free flight in many insects
(Ellington, 1984c; Ennos, 1989) showed that ut was close to
the simple harmonic function (SHF). Recent data of free-
flying fruit fly (Fry et al., 2003) also showed that ut was close
to the SHF. When ut varies as the SHF, the time courses of
the forces and their sensitivity to some of the kinematic
parameters, such as wing-rotation rate and stroke timing,
might be significantly different from those when ut varies as
a TF with large acceleration at stroke reversal. Therefore, it
is of interest to study the aerodynamic forces for the case of
ut varying as the SHF.

In the present study, we use the CFD method to simulate the
flows of a model insect wing in flapping motion. The flapping
motion consists of translation and rotation (Fig.·1). The
translation follows the SHF; the rotation is confined to stroke
reversal. As will be shown below, for a given wing with ut

varying the SHF (in the absence of wing deformation), its
aerodynamic force coefficients depend only on the following
five non-dimensional parameters: Re, stroke amplitude (Φ),
mid-stroke angle of attack (αm), wing-rotation duration (∆τr)
and rotation timing (τr). We consider the Re range of 20 to
1800; in addition, we investigate the effects of varying Φ, αm,
∆τr and τr.

Materials and methods
Most of the procedures used in these CFD simulations have

been described elsewhere (Sun and Tang, 2002a,b). The
planform of the model wing used (Fig.·2) is the same as that
of the robotic fruit fly wing used by Dickinson et al. (1999).
The wing section is a flat plate of 3% thickness with round
leading and trailing edges. The ratio of the wing length (R) to
the mean chord length (c) is 3. The radius of the second
moment of wing area (r2) is 0.6R (the mean translational
velocity at r2 is used as reference velocity in this study). Two
coordinate systems are used. One is the inertial coordinate
system, OXYZ, and the other is the body-fixed coordinate
system, oxyz(Fig.·1).
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Stroke kinematics

The velocity at the span location r2 due to wing translation
is called the translational velocity (ut). ut is assumed to vary as
the SHF:

ut+ = 0.5πsin(2πτ/τc)·, (1)

where the non-dimensional translational velocity ut+=ut/U (U
is the reference velocity); non-dimensional time τ=tU/c (t is
the time); and τc is the non-dimensional period of a wingbeat
cycle. The azimuth-rotational speed of the wing is related to
ut. Denoting the azimuth-rotational speed as f, we have
f(t)=ut/r2. The geometric angle of attack of the wing is denoted
by α. It assumes a constant value except at the start or near the
end of a stroke. The constant value is denoted by αm, the mid-
stroke angle of attack. Around the stroke reversal, α changes
with time and the angular velocity, a, is given by:

a+ = w{1 – cos[2π(τ – τr)/∆τr]}; τr ≤ τ ≤ (τr + ∆τr)·, (2)

where the non-dimensional form a+=ac/U; w is the mean non-
dimensional angular velocity of rotation [note that w here is
different by a factor of R/r2 from that defined in Ellington
(1984c), where velocity at wing tip was used as reference
velocity]; τr is the non-dimensional time at which the rotation
starts; ∆τr is the non-dimensional time interval over which the
rotation lasts, which is termed as wing-rotation duration. In the
time interval of ∆τr, the wing rotates from α=αm to α=180–αm.
Therefore, when αm and ∆τr are specified, w can be determined. 

In the flapping motion described above, the period of
wingbeat cycle τc, the geometric angle of attack at mid-stroke
αm, the rotation duration ∆τr or the mean angular velocity
rotation w and the rotation timing τr need to be specified. Note
that since U=2Φnr2 (where n is the wingbeat frequency and Φ
is the stroke amplitude), τc (=U/cn) is related to Φ by
τc=2Φ•(r2/R)•(R/c).

Flow equations and evaluation of the aerodynamic forces 

The governing equations of the flow are the three-
dimensional incompressible unsteady Navier–Stokes equations.

Written in the inertial coordinate system OXYZ and non-
dimensionalized, they are as follows:

where u, vand w are three components of the non-dimensional
fluid velocity and p is the non-dimensional fluid pressure. In
the non-dimensionalization, U, c and c/Uare taken as reference
velocity, length and time, respectively. Re in equations·4–6 is
defined as Re=cU/ν (where ν is the kinematic viscosity of the
fluid). The numerical method used to solve equations·3–6 is
the same as that in Sun and Tang (2002a,b).

Once the Navier–Stokes equations are numerically solved,
the fluid velocity components and pressure at discretized grid
points for each time step are available. The aerodynamic forces
(lift, L, and drag, D) acting on the wing are calculated from the
pressure and the viscous stress on the wing surface. The lift
and drag coefficients are defined as follows:

where ρ is the fluid density and S is the wing area.

Non-dimensional parameters that affect the aerodynamic
force coefficients

For a wing of given geometry (in the absence of
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Fig.·1. Sketches of the reference frames and wing motion. OXYZ is
an inertial frame, with the XYplane in the horizontal plane. oxyzis a
frame fixed on the wing, with the x-axis along the wing chord and
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Fig.·2. The wing planform used.
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deformation), when its flapping motion is prescribed,
solution of the non-dimensional Navier–Stokes equations
(equations·4–6) gives the aerodynamic force coefficients CL

and CD; the only non-dimensional parameter in the
Navier–Stokes equations that needs to be specified is Re. To
prescribe the flapping motion, as mentioned above, Φ, αm, ∆τr

and τr need to be specified. That is, the aerodynamic force
coefficients on the wing depend on five non-dimensional
parameters: Re, Φ, αm, ∆τr and τr. When the wing rotation is
symmetrical, τr may be determined from ∆τr; thus, CL and CD

depend only on four parameters: Re, Φ, αm and ∆τr.

Results
Code validation and grid resolution test

Code validation

The code used in this study is the same as that in Sun
and Tang (2002a). It was tested by measured unsteady
aerodynamic forces on a flapping model fruit fly wing (Sun
and Tang, 2002b; Sun and Wu, 2003). The calculated drag
coefficient agreed well with the measured value [see fig.·2A,C
of Sun and Wu (2003)]. For the lift coefficient, in the
translation phase during the middle, and in the rotation phase
at the end, of each half-stroke, the computed value agreed well
with the measured value, whereas in the beginning of the
stroke, the computed peak value was much smaller than the
measured value [see fig.·2B,D of Sun and Wu (2003) and fig.·4
of Sun and Tang (2002b)]. Recently, Birch and Dickinson
(2003) visualized the vorticity patterns around the flapping
model fruit fly wing using digital particle image velocimetry.
It is of interest to compare the vorticity patterns calculated by
Sun and Tang (2002a) using the code with the experimentally
visualized ones. For convenience, we define a non-dimensional
parameter, t, such that t=0 at the start of the downstroke and
t=1 at the end of the subsequent upstroke. At the beginning of
the half-stroke, difference in the positions of shed vortices
exists between the computation and the experiment [compare
fig.·4A of Sun and Tang (2002a) with the panel at t=0.02 in
fig.·5 of Birch and Dickinson (2003)]; during the translation
phase at the middle, and the rotation phase at the end, of the
half-stroke, the computed vorticity patterns agree well with the
experimentally visualized patterns [compare fig.·4B–E,G,H of
Sun and Tang (2002a) with panels at t=0.07, 0.12, 0.19, 0.26,
0.38 and 0.48 in fig.·5 of Birch and Dickinson (2003)]. The
vorticity comparison is consistent with the force comparison
described above: both show that discrepancy exists at the
beginning of the half-stroke. The discrepancy might be because
the CFD code does not resolve satisfactorily the complex flow
at stroke reversal. There is also the possibility that it is due to
variations in the precise kinematic patterns, especially at stroke
reversal.

Upon the suggestion of a referee of the present paper, we
made a further test of the code using the recent experimental
data of Usherwood and Ellington (2002a,b) on revolving
model wings. In the computation, the wing rotated 120° after
the initial start, and Re was set as 1800 (this Re value was

similar to that of the bumble bee wing). In order to make
comparisons with the experimental data, lift and drag
coefficients were averaged between 60° and 120° from the end
of the initial start of rotation. The computed and measured CL

and CD are shown in Fig.·3 [measured data are taken from fig.·7
of Usherwood and Ellington (2002b)]. In the whole α range
(from –20° to 100°), the computed CL agrees well with the
measured values; both have approximately sinusoidal
dependence on α. The computed CD also agrees well with the
measured values except when α is larger than ~60°.

The above comparisons show that there still exist some
discrepancies between the CFD simulations and the
experiments but that, in general, the agreement between the
computational and experimental aerodynamic forces is good.
We think that the present CFD method can calculate the
unsteady aerodynamic forces and flows of the model insect
wing with reasonable accuracy.

Grid resolution test

Before proceeding to study the physical aspects of the flow,
the effects of the grid density, the time step and computational-
domain size on the computed solutions were considered. The
sensitivity of the computed flow to spatial and time resolution
and to the far-field boundary location was evaluated for the
case of Re=1800 (this Reynolds number is the highest among
the cases considered in this study). Calculations were
performed using three different grid systems. Grid 1 had
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(CD) coefficients. The experimental data are taken from fig.·7 of
Usherwood and Ellington (2002b). α, angle of attack.
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dimensions 53×48×41 (around the wing section, in the
normal direction and in the spanwise direction
respectively), grids 2 and 3 had dimensions 77×70×61
and 109×93×78, respectively. The spacings at the wall
were 0.003, 0.002 and 0.0015 for grids 1, 2 and 3,
respectively. The far-field boundary for these three
grids was set at 20c away from the wing surface in the
normal direction and 8c away from the wing-tips in the
spanwise direction. The grid points were clustered
densely toward the wing surface and toward the wake.

Fig.·4 shows the time course of the lift coefficient in
one cycle and the contours of the non-dimensional
spanwise component of vorticity at mid-span location
near the end of a half-stroke (just before the wing
starting the pitching-up rotation), calculated using the
above three grids and a time-step value of 0.02. It is

observed that the first grid refinement produced some change
in the vorticity plot; however, after the second grid refinement,
the discrepancies are considerably reduced. The differences
between the computed lift coefficients using the three grids are
small; there is almost no difference between the lift coefficients
computed using grids 2 and 3. Computations using grid 3 and
two time-step values, ∆τ=0.02 and 0.01, were conducted.
Discrepancies between the computed aerodynamic forces and
vorticity fields using the two time steps were very small.
Finally, the sensitivity of the solution to the far-field boundary
location was considered by calculating the flow in a large
computational domain. In order to isolate the effect of the far-
field boundary location, the boundary was made further away
from the wing by adding more grid points to the normal
direction of grid 3. The calculated results showed that there was
no need to put the far-field boundary further than that of grid 3.
From the above analysis, it was concluded that grid 3 and a time
step value of ∆τ=0.02 were appropriate for the present study.

Forces and flows of a typical case

We first considered a case in which typical values of wing
kinematic parameters were used (Re=200, Φ=150°, αm=40°,
∆τr=1.87 and wing rotation was symmetrical; with the above
values of Φ, αm and ∆τr, we had τc=9.37, w=0.93 and
∆τr=0.2τc).

Fig.·5 shows the time courses of CL and CD in one cycle. CL
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Fig.·4. Effects of grid density on computed lift coefficient
(CL) and vorticity field. (A) The time course of CL in one
cycle. (B) Vorticity contour plots at half-wing length near
the end of a stroke.
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and (C) drag coefficient (CD) in one cycle. Reynolds number
(Re)=200, stroke amplitude (Φ)=150°, midstroke angle of attack
(αm)=40° and non-dimensional duration of wing rotation (∆τr)=1.87
[mean angular velocity of rotation (w)=0.93]; symmetrical rotation.
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in the middle portion of a half-stroke is large and dominates
over CL at the beginning and near the end of the half-stroke
(CD behaves similarly). In previous studies by Dickinson et al.
(1999) and Sun and Tang (2002a), in which ut varied as a TF
with large accelerations at stroke reversal, large force peaks
occurred near the end of the half-stroke. They were caused by
the pitching-up rotation of the wing while it was still
translating at relatively large velocity. In the present case,
peaks in CL and CD also exist (Fig.·5B,C) but they are very
small. This is because near the end of the half-stroke the ut has
become very low and wing rotation cannot produce a large
force at low ut.

The mean lift (CL) and drag (CD) coefficients are 1.66 and
1.67, respectively, which are much larger than the steady-state
values [measured steady-state CL and CD on a fruit fly wing in
uniform free-stream in a wind tunnel at the same Re(200) and
same αm (40°) are 0.6 and 0.75, respectively (Vogel, 1967)].
As seen in Fig.·5, the major part of the mean lift (or drag)
comes from the mid-portions of the half-strokes. During these
periods, the wing is in pure translational motion (α is constant).
From the results in Fig.·5, it is estimated that 88% of the mean
lift is contributed by the pure translational motion. As was
shown previously (Ellington et al., 1996; Liu et al., 1998;
Dickinson et al., 1999; Sun and Tang, 2002a), the large CL and
CD during the translatory phase of a half-stroke were due to
the delayed stall mechanism. That is, the delayed stall
mechanism is mainly responsible for the large aerodynamic
forces produced. The flow-field data provide further evidence
for the above statement. The contours of the non-dimensional

spanwise component of vorticity at mid-span location are given
in Fig.·6. The LEV does not shed in an entire half-stroke,
showing that the large CL and CD in the mid-portion of the
half-stroke are due to the delayed stall mechanism. 

The effects of Re

Fig.·7 shows the time courses of CL and CD in one cycle for
various Re(Reranging from 20 to 1800; other conditions being
the same as in the typical case). In general, CL increases and
CD decreases as Reincreases. However, when Reis higher than
~100, CL and CD do not vary greatly, whereas when Reis lower
than ~100, CL is much smaller and CD much larger than at
higher Re.

For the case of Re=200, as discussed above, the large CL and
CD during a stroke are due to the delayed stall mechanism. For
the cases of other Re, as seen in Fig.·7, CL and CD do not have
a sudden drop during a half-stroke (between τ=0 and τ=0.5τc,
the downstroke; between τ=0.5τc and τ=τc, the upstroke), i.e.
stall is also delayed for an entire half-stroke. Fig.·8 shows the
vorticity contour plots at half-wing length near the end of a
half-stroke. It is seen that, at all Reconsidered, the LEV does
not shed and the delayed stall mechanism exists. However, for
Re lower than ~100, the LEV is very diffused and weak
compared with that for higher Re (comparing Fig.·8D,E with
Fig.·8A–C; the strength of the LEV can be estimated from the
values of vorticity represented by the contours and the spacing
between the contours), resulting in small CL and large CD. For
reference, vorticity contour plots at various times in one cycle
for the case of Re=20 are shown in Fig.·9.
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Fig.·6. Vorticity plots at half-wing length at various times during one cycle. Solid and broken lines indicate positive and negative vorticity,
respectively. The magnitude of the non-dimensional vorticity at the outer contour is 2 and the contour interval is 3. A–D, downstroke; E–H,
upstroke. Reynolds number (Re)=200, stroke amplitude (Φ)=150°, midstroke angle of attack (αm)=40° and non-dimensional duration of wing
rotation (∆τr)=1.87 [mean angular velocity of rotation (w)=0.93]; symmetrical rotation.
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CL and CD at various Reare plotted in Fig.·10. For Reabove
~100, change in CL and CD with Reare small, whereas for Re
below ~100, CL decreases and CD increases rapidly as Re
decreases. Similar to the typical case, approximately 85–90%
of CL is contributed by the pure translational motion for all the
values of Reconsidered.

Dependence of the force coefficients on mid-stroke angle of
attack

Fig.·11 gives CL and CD in the range of αm from 25° to 60°
(for all Reconsidered in the above section). The slope of the
CL (αm) curve is approximately constant between αm=25° and
35°; beyond αm=35°, it decreases gradually to zero at αm≈50°.

The rate of change of CL with αm (dCL/dαm) from αm=25°
to 35° is given in Table·1. For Re above ~100, dCL/dαm

hardly varies with Re and its value is approximately 3.0,
which is almost the same as the measured value (2.9–3.1) for
the revolving wings [see fig.·6 of Usherwood and Ellington
(2002b); the cited value is for the case of aspect ratio equal
to 6 (R/c=3)]. For Rebelow ~100, dCL/dαm decreases greatly.

The effects of rotation duration

In the calculations above, ∆τr=1.87 (=0.2τc; w=0.93).
Observation of many insects in free flight (Ellington, 1984c;
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Fig.·7. Time courses of the (A) lift coefficient (CL) and (B) drag
coefficient (CD) in one cycle for various Reynolds number (Re).
Stroke amplitude (Φ)=150°, midstroke angle of attack (αm)=40° and
non-dimensional duration of wing rotation (∆τr)=1.87 [mean angular
velocity of rotation (w)=0.93]; symmetrical rotation.

Fig.·8. Vorticity plots at half-wing length near the end of a half-
stroke at various Reynolds number (Re). Solid and broken lines
indicate positive and negative vorticity, respectively. The magnitude
of the non-dimensional vorticity at the outer contour is 2 and the
contour interval is 3. Stroke amplitude (Φ)=150°, midstroke angle of
attack (αm)=40° and non-dimensional duration of wing rotation
(∆τr)=1.87 [mean angular velocity of rotation (w)=0.93];
symmetrical rotation.
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Ennos, 1989) showed that w ranged approximately from 0.8 to
1.4. Here, we investigate the effects of varying ∆τr (i.e. varying
w) on the aerodynamic force coefficients.

Fig.·12 gives the time courses of CL and CD in one cycle for
four values of ∆τr; Table·2 gives the mean force coefficients.
Varying ∆τr does not change the mean force coefficients
greatly (see Table·2); when ∆τr is almost doubled (varied from
1.27 to 2.40), CL and CD change only approximately 3%. CL

and CD in the mid-portion of a half-stroke vary little with ∆τr

(see Fig.·12). The force peaks around the stroke reversal are
due to the effects of wing rotation (Dickinson et al., 1999; Sun
and Tang, 2002a); at a given translation velocity, the peaks
increase with rotation rate (Sane and Dickinson, 2002;
Hamdani and Sun, 2000). When ∆τr is relatively short (w is
relatively large), the force peaks are relatively large but they
occupy a short period; when ∆τr is longer (w is smaller), the
force peaks become smaller but they occupy a longer period.
As a result, the force peaks around the stroke reversal for the
cases of different ∆τr give more or less the same contribution
to the corresponding mean force coefficient. This explains why
CL and CD do not change greatly with ∆τr (or w).

J. H. Wu and M. Sun

Table 1. The rate of change of lift coefficient (CL) with αm

(dCL/dαm) from αm=25° to 35°

Re 1800 600 200 60 20
dCL/dαm 3.0 2.9 2.9 2.5 1.8

Stroke amplitude (Φ)=150°; non-dimensional rotation duration
(∆τr)=1.87 (=0.2τc; τc, non-dimensional wingbeat period);
symmetrical rotation.

Table 2.Effects of non-dimensional rotation duration (∆τr) on
mean lift (CL) and drag (CD) coefficients

∆τr w CL CD

2.39 0.73 1.60 1.71
1.88 0.93 1.61 1.70
1.54 1.13 1.63 1.72
1.31 1.33 1.65 1.76

Reynolds number (Re)=200; mid-stroke angle of attack (αm)=40°;
stroke amplitude (Φ)=120°; symmetrical rotation. w, mean non-
dimensional angular velocity of rotation.
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Fig.·9. Vorticity plots at half-wing length at various times during one cycle. Solid and broken lines indicate positive and negative vorticity,
respectively. The magnitude of the non-dimensional vorticity at the outer contour is 2 and the contour interval is 3. A-D, downstroke; E-H,
upstroke. Reynolds number Re=20, stroke amplitude Φ=150°, midstroke angle of attack αm=40° and non-dimensional duration of wing rotation
∆τr=1.87 (mean angular velocity of rotation w=0.93); symmetrical rotation.

Fig.·10. Mean lift (CL) and drag (CD) coefficients vs Reynolds
number (Re). Stroke amplitude (Φ)=150°, mid-stroke angle of
attack (αm)=40° and non-dimensional duration of wing rotation
(∆τr)=1.87 [mean angular velocity of rotation (w)=0.93];
symmetrical rotation.
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The effects of rotation timing

Fig.·13 shows the time courses of CL and CD in one cycle
for different rotation timing (τr can be read from Fig.·13A; Re,
αm, Φ and ∆τr are the same as those in the typical case). In the
case of advanced rotation (the major part of rotation is
conducted before stroke reversal), the peaks in CL and CD near
the end of a half-stroke are larger than those in the case of
symmetrical rotation; this is because the wing conducts
pitching-up rotation at a higher translational velocity (see
Fig.·13A). At the beginning of the next half-stroke, CL and CD

are also larger than their counterparts in the case of
symmetrical rotation; this is because the wing does not conduct
pitching-down rotation in this period (the wing rotation is
almost finished before this period). In the case of delayed
rotation (the major part of rotation is conducted after stroke
reversal), no CL and CD peaks occur near the end of the half-
stroke because the wing does not rotate in this period; in the
beginning of the next half-stroke, CL is negative and CD is
large compared with that in the case of symmetrical rotation
because all of the wing rotation is conducted in this period and
the rotation is pitching-down rotation.

The mean force coefficients are given in Table·3. CL and CD

for the case of advanced rotation are approximately 40% and

30% larger than those for the case of delayed rotation,
respectively.

The effects of stroke amplitude

Free-flight data collected from many insects (Ellington,
1984c; Ennos, 1989; Fry et al., 2003) showed that the stroke
amplitude, Φ, ranged approximately from 90° to 180°.
Moreover, an insect might change Φ to control its aerodynamic
force (e.g. Ellington, 1984c; Lehmann and Dickinson, 1998).
Here, we investigate the effects of Φ on the force coefficients.
Calculations were made for various Φ (65°, 90°, 120°, 150° and
180°) while other parameters were fixed (they are the same as
those in the typical case). Fig.·14 shows the time courses of CL

and CD in one cycle; Table·4 gives the mean force coefficients.
Note that when Φ is varied, the non-dimensional period of
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Fig.·11. Mean lift (CL) and drag (CD) coefficients vs mid-stroke
angle of attack (αm) for various Reynolds number (Re). Stroke
amplitude (Φ)=150° and non-dimensional duration of wing rotation
(∆τr)=1.87 [mean angular velocity of rotation (w)=0.93];
symmetrical rotation.

Fig.·12. The effects of rotation duration (∆τr) on force coefficients.
(A) Non-dimensional angular velocity of pitching rotation (a+) and
azimuthal rotation (f+); (B) time courses of lift coefficient (CL) and
(C) drag coefficient (CD) in one cycle. Reynolds number (Re)=200,
stroke amplitude (Φ)=150° and mid-stroke angle of attack (αm)=40°;
symmetrical rotation.
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wingbeat cycle will change (τc=2Φr2/c); since ∆τr (i.e. w) is
fixed, ∆τr/τc is different for different Φ. In the range of Φ from
90° to 180°, the effects of varying Φ on the force coefficients

are not large; when Φ increases or decreases by 30°, CL and CD

change less than 3% and 6%, respectively. When Φ is below
approximately 90°, the effects of varying Φ become larger (see
the results for Φ=65°; Fig.·14; Table·4). It is of interest to point
out the fact that CL and CD hardly vary with Φ (in the range of
Φ from 90° to 180°) means that the mean lift and mean drag
vary as Φ2, because the forces are non-dimensionalized by U2,
and U equals 2Φnr2 (n is the wingbeat frequency).

Sane and Dickinson (2001) studied the effects of varying Φ
and other parameters using a dynamically scaled mechanical
model of the fruit fly. Their results [see fig.·5A,C of Sane
and Dickinson (2001)] showed that when Φ fell below
approximately 120°, CL decreased and CD increased with
decreasing Φ (CD increased rapidly as Φ became small). In the
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Fig.·13. The effects of rotation timing on force coefficients. (A) Non-
dimensional angular velocity of pitching rotation (a+) and azimuthal
rotation (f+); (B) time courses of lift coefficient (CL) and (C) drag
coefficient (CD) in one cycle. Reynolds number (Re)=200, stroke
amplitude (Φ)=150°, mid-stroke angle of attack (αm)=40° and non-
dimensional duration of wing rotation (∆τr)=1.87 [mean angular
velocity of rotation (w)=0.93].

Table 3. Effects of rotation timing on mean lift (CL) and drag
(CD) coefficients

Rotation timing CL CD CL/CD

Symmetrical 1.66 1.67 0.99
Advanced 1.84 2.11 0.87
Delayed 1.32 1.61 0.82

Reynolds number (Re)=200; mid-stroke angle of attack (αm)=40°,
stroke amplitude (Φ)=150°; non-dimensional rotation duration
(∆τr)=1.87 (=0.2τc; τc, non-dimensional wingbeat period).
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Fig.·14. The effects of stroke amplitude (Φ) on force coefficients.
(A) Non-dimensional angular velocity of pitching rotation (a+) and
azimuthal rotation (f+); (B) time courses of lift coefficient (CL) and
(C) drag coefficient (CD) in one cycle. Reynolds number (Re)=200,
mid-stroke angle of attack (αm)=40° and non-dimensional duration
of wing rotation (∆τr)=1.87 [mean angular velocity of rotation
(w)=0.93]; symmetrical rotation.
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present simulation (Fig.·14; Table·4), when Φ is below ~90°,
we also found CD increasing and CL decreasing with a decrease
in Φ, but the rates of change in CL and CD are smaller than
those reported by Sane and Dickinson (2001). In their
experiment, when Φ changed, Reand ∆τr also changed, but the
ratio of ∆τr/τc did not change; in the present simulation, Reand
∆τr did not change when Φ changed. To make further
comparison with their results, we made some calculations in
which Re and ∆τr changed with Φ but ∆τr/τc was kept
unchanged (=0.2). The results are given in Fig.·15 and Table·5.
The trends of variation in CL and CD with Φ are similar to
those in Sane and Dickinson (2001): when Φ is below
approximately 120°, CL decreases and CD increases with Φ
decreasing, and when Φ is below 90°, CD increases rapidly.

Discussion
The influence of Re and comparison between the lift

coefficients and insect flight data

Previous studies on revolving wings (Usherwood and
Ellington, 2002a,b; Dickinson et al., 1999) showed that large
aerodynamic force coefficients were produced due to the
delayed stall mechanism in the Rerange of approximately 140
(model fruit fly wing) to 15·000 (quail wing) and that the force
coefficients were not sensitive to Re. The present study on a
flapping wing has provided results for lower Re. As seen in
Fig.·10, when Reis above ~100, CL and CD vary only slightly
with Re, in agreement with the previous results. However,

when Reis below ~100, CL decreases and CD increases greatly.
This is because at such low Re(20, 60), although the LEV still
exists and attaches to the wing in the translational phases
of the half-strokes, it is rather weak and its vorticity is
considerably diffused (see Figs·8D,E,·9).

From the flight data of an insect, the mean lift coefficient
needed for supporting its weight (denoted by CL,W) can be
determined. Data of free hovering (or very low-speed) flight in
eight species were obtained. Six species were from Ellington
(1984b,c) [the wing length of these species ranges from
9.3·mm (in Episyrphus balteatus) to 14.1·mm (in Bombus
hortorum)]; two smaller ones, Drosophila virilisand Encarsia
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Fig.·15. The effects of stroke amplitude (Φ) on force coefficients
when ∆τr/τc is fixed (=20%). (A) Non-dimensional angular velocity
of pitching rotation (a+) and azimuthal rotation (f+); (B) time
courses of lift coefficient (CL) and (C) drag coefficient (CD) in one
cycle. Mid-stroke angle of attack (αm)=40°; symmetrical rotation.
∆τr, non-dimensional duration of wing rotation; τc, non-dimensional
wingbeat period.

Table 4. Effects of stroke amplitude (Φ) on mean lift (CL) and
drag (CD) coefficients

Φ τc CL CD

180° 11.24 1.69 1.65
150° 9.37 1.66 1.67
120° 7.50 1.61 1.70
90° 5.62 1.57 1.80
65° 4.06 1.58 2.08

Reynolds number (Re)=200, mid-stroke angle of attack (αm)=40°;
non-dimensional rotation duration (∆τr)=1.87; symmetrical rotation.
τc, non-dimensional wingbeat period.

Table 5. Effects of stroke amplitude (Φ) on mean lift (CL) and
drag (CD) coefficients when ∆τr/τc is fixed (=20%)

Φ τc Re ∆τr CL CD

180° 11.24 240 2.25 1.71 1.63
150° 9.37 200 1.87 1.66 1.67
120° 7.50 160 1.50 1.59 1.76
90° 5.62 120 1.12 1.49 1.94
60° 3.75 80 0.75 1.39 2.52

Mid-stroke angle of attack (αm)=40°; symmetrical rotation.Re,
Reynolds number; Φ, stroke amplitude; τc, non-dimensional
wingbeat period; ∆τr, non-dimensional rotation duration. 
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formosa, were from Weis-Fogh (1973). These data include:
insect mass (M), wing length, mean chord length, radius of
second moment of wing area, stroke amplitude and wingbeat
frequency (see Table·6). On the basis of these data, the
reference velocity, Re and mean lift coefficient needed for
supporting insect weight were computed (U=2Φnr2, Re=Uc/ν
and CL,W=mg/0.5ρU2St, where g and St were the gravitational
acceleration and the area of both wings, respectively). Reand
CL,W are given in Table·6.

Now, we compare the data in Table·6 with the results of
model-wing simulation in Fig.·11 [here, we assume that the
wing planform does not have a significant effect on lift
coefficient; this is true for revolving wings (Usherwood and
Ellington, 2002b)]. Of the insects considered, Encarsia
formosahas the lowest Re(13) and its CL,W is 2.87; when its
wing area is extended to include the brim hairs (Ellington,
1975), its CL,W is still as high as 1.62. As seen in Fig.·11, at

such a low Re, the maximum CL is ~1.15 (at αm≈45°), which
is much smaller than its CL,W. In the computations that gave
the results in Fig.·11, symmetrical rotation was used and Φ was
150°. For reference, we made another calculation in which
advanced rotation was used, Φ=180° and αm=45° (this
combination of parameters was expected to maximize CL). The
computation gave CL=1.25, which was also much smaller than
the CL,W of Encarsia formosa. These results show that using
the flapping motion described above, the insect could not
produce enough lift to support its weight; i.e. at such low Re,
high-lift mechanisms, in addition to the delayed stall
mechanism, are needed [Weis-Fogh (1973) suggested the ‘clap
and fling’ mechanism]. For other insects, Reis above 100 and,
as seen in Fig.·11, at an αm between 30° and 50°, a CL equal
to CL,W can be produced.

The above comparison shows that when Re is higher than
~100, the delayed stall mechanism can produce enough lift for
supporting the insect’s weight and when Reis lower than ~100,
additional high-lift mechanisms are needed.

Lift and drag vary approximately with the square of Φn

The non-dimensional Navier–Stokes equations
(equations·3–6), the equations prescribing the flapping motion
(equations·1,·2) and the equations defining the aerodynamic
force coefficients (equations·7,·8) show that the mean force
coefficients of a wing of given geometry with ut varying as the
SHF depend only on Re, αm, Φ and ∆τr (assuming symmetrical
rotation). As already discussed above, when Reis above ~100,
the force coefficients vary only slightly with Re; results in
Tables·2,·4 show that the force coefficients vary only slightly
with ∆τr and also vary only slightly with Φ in the range of Φ
approximately from 90° to 180°.

When Φ and/or n is varied, Re will change (note that
Re=2Φnr2c/ν). Since the force coefficients hardly vary with Φ
and Re, the mean lift (L) and drag (D) vary approximately with
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Fig.·16. Mean lift (CL) and drag (CD) coefficients vs mid-stroke
angle of attack (αm; symmetrical rotation). Re, Reynolds number; Φ,
stroke amplitude; w, mean non-dimensional angular velocity of wing
rotation.

Table 6. Data of free hovering flight and lift coefficient needed for weight support

Species M (mg) R (mm) c (mm) r2/R Φ (deg.) n (s–1) Re CL,W

Coleoptera: beetles
Coccinella 7-punctata 34.4 11.2 3.23 0.53 177 54 443 1.82

Diptera: flies, mosquitoes
Drosophila virilis 2.0 3.0 0.97 0.58 150 240 147 1.15
Tipala obsolete 11.4 12.7 2.38 0.6 123 45.5 245 1.31
Episyrphus balteatus 27.3 9.3 2.20 0.57 90 160 408 1.52
Episyrphus tenax 68.4 11.4 3.19 0.53 109 157 812 1.10

Hymenoptera: bees and wasps
Apis mellifera 101.9 9.8 3.08 0.54 131 197 1018 1.19
Bombus hortorum 226 14.1 4.2 0.54 120 152 1463 1.21
Encarsia formosa 0.025 0.62 0.23 0.69 135 400 13 2.87
Encarsia formosa* 0.025 0.65 0.38 0.69 135 400 22 1.62

M, insect mass; R, wing length; c, mean chord length; r2, radius of second moment of wing area; Φ, stroke amplitude; n, wingbeat frequency;
Re, Reynolds number; CL,W, mean lift coefficient needed to balance insect weight. Data of Drosophila virilis and Encarsia formosa are from
Weis-Fogh (1973); data of other species are from Ellington (1984b,c). *Wing area extended to include the brim hairs (Ellington, 1975).
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(Φn)2. That is, changing Φ and/or n can effectively control the
aerodynamic forces. For instance, increasing Φ by 15%, L can
be increased by approximately 32% [note that by increasing
αm by 15% (e.g. from 40° to 46°), L increases only by ~10%
(see Fig.·11)].

In the above discussion, we have assumed that the force
coefficients hardly vary with Re, Φ and ∆τr (or w). However,
in testing the effects of a particular parameter on the force
coefficients, we varied one parameter while keeping all others
the same as in the typical case. When the parameters are
simultaneously varied, do the force coefficients still vary only
slightly? We conducted some further calculations in which,
for a range of αm from 25° to 60°, Re, Φ and w were
simultaneously increased by 20% from those of the typical
case. Fig.·16 shows the results. At all αm considered, the force
coefficients vary only slightly.

Comparison of the present results with those of ut varying as
the TF

In some recent experimental (Dickinson et al., 1999; Sane
and Dickinson, 2001) and computational (Sun and Tang,
2002a,b; Ramamurti and Sandberg, 2002; Sun and Wu, 2003)
studies, ut varying as a TF with rapid accelerations at stroke
reversal has been employed. It is of interest to discuss the
differences between the present results for ut varying as the
SHF and those for ut varying as a TF with rapid accelerations
at stroke reversal.

The force coefficients

The time courses of force coefficients are considerably
different between the two cases; for the case of ut varying as
a TF with rapid accelerations at stroke reversal, the CL (or CD)
curve is flat in the mid-portion of a half-stroke and has large
peaks at the beginning and near the end of the half-stroke [see
fig.·3A,B of Dickinson et al. (1999) and fig.·6 of Sun and Tang
(2002a)], whereas for the case of ut varying as the SHF, the CL

(or CD) curve grossly resembles a half sine-wave (see Fig.·5).
As a result, very large time gradients of aerodynamic force
exist in each half-stroke in the case of ut varying as the TF but
not in the case of ut varying as the SHF.

However, in spite of the large differences in instantaneous
force coefficients, the mean force coefficients are not so
different. To examine the quantitative differences of the mean
force coefficients between the two cases, we made two sets
of computations. In the first set, ut varied as a TF with
rapid accelerations at stroke reversal [the duration of
translational acceleration at stroke reversal was 0.18τc,
similar to that used in Dickinson et al. (1999) and Sun and
Tang (2002a,b)]; symmetrical rotation, advanced rotation
(the major part of rotation conducted before stroke reversal)
and delayed rotation (the major part of rotation conducted
after the stroke reversal) were considered; other conditions
(Re, Φ, αm, ∆τr) were the same as those in the typical case.
In the second set, ut was replaced by the SHF. The results
showed that when wing rotation was symmetrical or
advanced, CL and CD for ut varying as the TF are

approximately 12% and 8% smaller than those for ut varying
as the SHF, respectively, and when wing rotation was
delayed, CL for ut varying as the TF was approximately 35%
smaller than that for ut varying as the SHF but CD was
approximately the same for the two cases.

Power requirements

In the studies on power requirements of fruit fly flight by
Sun and Tang (2002b) and Sun and Wu (2003), a TF similar
to that used in Sun and Tang (2002a) was used for ut (wing
rotation was symmetrical). As seen above, CL and CD for ut

varying as the TF are 12% and 8% smaller, respectively, than
those for ut varying as the SHF. It is of interest to know the
effects of replacing the TF by the SHF on the results presented
in Sun and Tang (2002a) and Sun and Wu (2003).

To quantify the effects of the new kinematic model, we
made calculations in which the same model wing and
kinematic parameters as those in Sun and Tang (2002b) and
Sun and Wu (2003) were used, except that the TF for ut was
replaced by the SHF. For hover flight, the results in Sun and
Tang (2002b) and Sun and Wu (2003) are as follows: mean lift
equal to the insect weight is produced at αm=36.5° and the
body-mass-specific power is 29·W·kg–1; with ut varying as the
SHF, the corresponding αm and body-mass-specific power are
30.5° and 31.5·W·kg–1, respectively. That is, with the SHF, the
αm needed is a few degrees smaller and the body-mass-specific
power is approximately 10% larger than that with the TF
(similar results were obtained for forward flight).

The reason for the needed αm becoming smaller is obvious.
Seeing that CL and CD with the SHF are larger than their
counterparts with the TF by approximately the same
percentage (i.e. the CL to CD ratio is not very different for the
two cases), one might expect that the power results with the
SHF are approximately the same as those with the TF.
However, as seen above, the specific power becomes a little
larger. This is because in the case of ut varying as the SHF,
both CD and ut at the middle portion of a stroke are larger than
their counterparts in the case of ut varying as the TF (note that
aerodynamic power is proportional to the mean of the product
of CD and ut over a stroke cycle, not to CD).

List of symbols
c mean chord length
CD drag coefficient
CD mean drag coefficient
CL lift coefficient
CL mean lift coefficient
CL,W mean lift coefficient for supporting the insect’s 

weight
D drag
D mean drag
L lift
L mean lift
M mass of insect
n wingbeat frequency
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O,o origins of the inertial frame of reference and the 
non-inertial frame of reference

p non-dimensional fluid pressure
R wing length
r2 radius of the second moment of wing area
Re Reynolds number
S area of one wing
St area of a wing pair
t time
t non-dimensional parameter (being zero at the start 

of downstroke and 1 at the end of the subsequent 
upstroke)

U reference velocity
ut translational velocity of the wing
ut+ non-dimensional translational velocity of the wing
x,y,z coordinates in non-inertial frame of reference
X,Y,Z coordinates in inertial frame of reference (Z in 

vertical direction)
α geometric angle of attack
a angular velocity of pitching rotation
a+ non-dimensional angular velocity of pitching 

rotation
αm mid-stroke geometric angle of attack
φ azimuthal or positional angle 
f angular velocity of azimuthal rotation
f+ non-dimensional angular velocity of azimuthal 

rotation
Φ stroke amplitude
ν kinematic viscosity
ρ density of fluid
τ non-dimensional time
τc period of one wingbeat cycle (non-dimensional)
τr time when pitching rotation starts (non-dimensional)
∆τr duration of wing rotation or flip duration (non-

dimensional)
w mean non-dimensional angular velocity of wing 

rotation
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