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Dynamical analysis reveals individuality of locomotion in goldfish
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Summary

Goldfish swimming was analysed quantitatively to less than 7%, in contrast to mean velocity (30%). A
determine if it exhibits distinctive individual spatio-  discriminant analysis, or classification system, based on
temporal patterns. Due to the inherent variability in fish  all six measures revealed that trajectories are indeed
locomotion, this hypothesis was tested using five nonlinear highly individualistic, with the probability that any two
measures, complemented by mean velocity. A library was trajectories generated from different fish are equivalent
constructed of 75 trajectories, each of ®min duration, being less than 1%. That is, the combination of these
acquired from five fish swimming in a constant and measures allows a given trajectory to be assigned to its
relatively homogeneous environment. Three nonlinear source with a high degree of confidence. The Richardson
measures, the ‘characteristic fractal dimension’ and dimension and the ‘Hurst exponent’, which quantifies
‘Richardson dimension’, both quantifying the degree to persistence, were the most effective measures.
which a trajectory departs from a straight line, and
‘relative dispersion’, characterizing the variance as a Key words: fish, behaviour, individuality, locomotion, velocity,
function of the duration, have coefficients of variation nonlinear dynamics, complexity, discriminant analysis.

Introduction

Individual differences are often sufficiently large as tobeen paid to the possibility of individual differences in the
make it difficult to quantify a behaviour and to distinguish itsunderlying basic patterns of motor activity.
underlying components (Gotceitas and Colgan, 1988; Mather Swimming is actually composed of highly organized spatial
and Anderson, 1993; Wilson et al.,, 1993). Howeverand temporal patterns even in a relatively homogeneous
individual variation may constitute an important aspect oenvironment (Kleerekoper et al., 1974; Steele, 1983). Some of
behavioural selection (Clark and Ehlinger, 1987; Gotceitathese patterns are complex and cannot be characterized with
and Colgan, 1988; Colgan et al., 1991). For example, it mighhe tools of classical kinematics, as they may exhibit nonlinear
ensure fitness of a population when resources are limitgatoperties, such as persistence (the tendency to repeat a
(Magurran, 1986a; Gotceitas and Colgan, 1988)given sequence), redundancy (the relationship between the
Nevertheless, analyses of behavioural performance oftamcertainty of a signal and its length) and scale invariance (a
focus on general phenomena of entire populations, angndency for a signal to have the same structure when
idiosyncratic aspects are noted secondarily. Moreover, studiebserved on different temporal or spatial scales) (Faure et al.,
on individuality often concern higher order behaviours, sucl2003). Indeed, nonlinear measures have been used to
as, in the case of teleost fish, foraging, fear avoidanceharacterize locomotion and the behavioural repertoires in
aggression, predator inspection, mating strategies, parentadrious species, including invertebrates (Dicke and Burrough,
care and sociability (Gervai and Csanyi, 1986; Magurran]988; Cole, 1995), fish (Coughlin et al., 1992; Alados and
19864a,b; Clark and Ehlinger, 1987; Huntingford and GilesWeber, 1999; Brewer et al., 2001), birds (Viswanathan et al.,
1987; Gotceitas and Colgan, 1988; Francis, 1990; Murphy antB96; Ferriere et al., 1999) and mammals (Paulus et al., 1990;
Pitcher, 1991; Colgan et al., 1991; Wilson et al.,, 1993Marghitu et al., 1996; Alados et al., 1996; Alados and
Budaev, 1997; Coleman and Wilson, 1998; Budaev an#iuffman, 2000).
Zhuikov, 1998; Budaev et al.,, 1999a,b). While these The present study was designed to (1) apply five nonlinear
behaviours all involve motor activity, they are often quantifiedneasures and one linear measure as descriptors of goldfish
on the basis of socio-biological descriptors, such as inspectimwimming trajectories in order to quantify this locomotor
rates, or proximity to other fish. However, less attention habehaviour and (2) to develop a discriminant analysis that would



698 H. Neumeister and others

allow us to ask if a given trajectory could be assigned to afranslucent white plastic sheets were mounted on the inside
individual within the experimental pool. It was found that,frame of the table with a small hole in the bottom sheet for
despite the apparent variability of trajectories, our protocolhe camera lens. Illumination was from above with a circular
could reliably achieve such a classification. fluorescent bulb (approximately 356 at the water surface)
and from below with four floodlights (approximately 26@

at the bottom of the tank). New conditioned water was used

Materials and methods for each recording session.

Animals

Mature goldfish Carassius auratud..) were purchased Data acquisition and experimental design
from a commercial hatchery (Hunting Creek Fisheries, Inc., Approximately 30min prior to all recording sessions, fish
Thurmont, MD, USA). Upon arrival in the laboratory, the were transferred to a translucent white container
animals were adapted to laboratory conditions for at least or{@0 cmx15cmx10cm) filled with aerated, conditioned water,
week. Five female fish with similar body length (9-€f® to be marked for automated motion tracking. Two markers
were chosen randomly. They were maintained together in\aere applied with instant adhesive (Quick Tite; Locktite Corp.,
rectangular glass aquarium (@&2x41cmx31cm; 75Slitre),  Avon, OH, USA) along the ventral midline of the fish to
using deionised water conditioned with NovAqua (0nil3-%; specify its position on the video image. They were made of
Novalek Inc., Hayward, CA, USA), Instant Ocean (g1, double-sided black tape ¢mxlcm) with a dot
Aquarium Systems, Mentor, OH, USA), Aquarium Salt(approximately 4nm diameter) of white nail polish painted in
(0.125g17%; Jungle Labs, Cibolo, TX, USA), Copper Safethe centre. For this purpose, the fish was removed from the
(0.32ml I}, Mardel Laboratories, Inc., Harbor City, CA, water, the ventral midline was exposed and the skin was gently
USA) and pH Stabilizer 7.2 (0.126%, Jungle Labs). Water dried. The markers were applied between the paired pelvic and
quality was monitored regularly and was the same for holdingectoral fins and onto the lower jaw in less thamiiry after
and experimental tanks (temperature 22+1°C; pH 7+0.2which the fish recovered in fresh aerated water for at least
dissolved oxygen saturated,p®.m.). Fish were fed on a 10min. This procedure had no obvious impact on behaviour
regular 48-h schedule. A 1212h light:dark cycle was and, in most cases, the marker remained in place for several
supplied by room lights (360x at the water surface). All days.

video recordings were made during the light period. To analyse locomotion (see also Faure et al., 2003),
o _ recordings of the ventral view of the fish were obtained from
Swimming environment below at 30Hz using a digital camcorder (Canon Optura;

A cylindrical Plexiglas tank (20tre, 50cm diameter) was Canon USA, Jamesburg, NJ, USA). Each recording session
used for the experiments. The water column wastarted 3G after the fish was introduced into the experimental
comparatively shallow (16m deep) to prevent fish from tank and lasted 1&in. Video capturing software (Adobe
swimming out of the camera’s focal plane and to minimisd’remiere; Adobe Systems Inc., San José, CA, USA) was used
errors due to changing swimming depth. To reducdo subdivide a recording session into three 5-min trajectories.
mechanosensory and visual cues, the tank was mounted onFKime such recording sessions, each obtained on a different day,
anti-vibration table and its wall and lid were translucent whitewere collected from five fish and used to construct a library of
Its bottom was clear to allow video recording from below.75 trajectories.
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Fig. 1. (A) Swimming trajectories. The graph shows a representative trajectory from a single fish recorded over a 5-min pesathplitiga
frequency of 3MHz. (B) The corresponding instantaneous velocity as a function of time. The arrow indicates a period of inactivity that was
confirmed by direct examination of the video recording.
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Data analysis when a trajectory covers the entire two-dimensional surface.

Commercial motion analysis software (WinAnalyze; Given the differences between the factors influencing the CFD
Mikromak GmbH, Erlangen, Germany) provided frame-to-and Dk, they can diverge.
frame data on th& andY position of the markers (FigA). Measures of fractal analysis comparable to CFD ard D
Only the central marker data were used for the calculatiorf3@ve been used to describe behavioural sequences, such as
reported in this paper. ThéandY position data as functions swimming and foraging in clownfish (Coughlin et al., 1992),
of time were used as primary data for the multivariate analysfails in mites (Dicke and Burrough, 1988), reproductive
described below. The five nonlinear measures chosen for tHi¢haviour in fathead minnows (Alados and Weber, 1999),
study were computed with software of our own constructionsocial behaviour in chimpanzees (Alados and Huffmann, 2000)
the mean velocity was then taken as the 5-min average of tA@d head lifting during feeding behaviour in ibex (Alados et
instantaneous velocity dg/dt)2+(dy/dt)2]°-5. al., 1996).

A pragmatic criterion for choosing each nonlinear measure ) .
was that it should provide a quantitative value that could ba: 1he Lempel-Ziv complexity (LZC)
assigned to a trajectory, allowing for statistical comparisons The LZC is a sequence-sensitive measure that characterizes
between groups of data. A brief description of these nonlinedh€ structure of time-varying signals as a series of symbols
measures is presented here; a more detailed mathemati@mpel and Ziv, 1976; Ziv and Lempel, 1978). The spatial
description’ inc|uding additional references to the primar}diﬁerence in the fish’'s position between two consecutive points

literature, is given in Rapp et al. (2002). in time is compared, generating a time series of incremental
distance travelled. This distance function is simplified by
1. The characteristic fractal dimension (CFD) partitioning it into a binary symbol sequence about the median

The CFD measures the degree to which a trajectory depaiticrement size. For example, a typical sequence might be
from a straight-line path (Katz and George, 1985; Katz, 1988)Jaabaabbab’ where ‘a’ symbolises values less than the median
It is a measure of the total distance travelled from point to poirénd ‘b’ symbolises those greater. Then, the LZC is calculated
(or frame to frame) relative to the maximum separation of anfor the resulting symbol sequence. It reflects the number of
two points in the series. In other words, it is an approximatiorgub-strings in the sequence (e.g. aab) and the rate at which they
equal to the distance travelled divided by the diameter adccur. This measure will therefore give information about the
the experimental tank. It is sensitive to the duration of théedundancy (or lack thereof) of a trajectory, for example about
observation period and to the speed of motion (see Rapp et dhe irregularity of its velocity. Kurths et al. (1995) used this
2002). It has a minimum value of 1 but does not have an uppgrethod for analysing heart rate variability in an investigation
limit. Since, in the present application, the fish is swimming irof predictors of sudden cardiac death, while Gu et al.
a cylindrical tank, a circular motion of constant velocity would(1994) and Xu et al. (1998) found differences in the
be equivalent to a straight line. As the trajectory deviates froralectroencephalograms (EEGs) of healthy controls and
circular motion, the CFD increases. This measure has beg@sychotics with symbolic dynamics. Subsequently, it was
used to analyse a variety of complex geometrical patterrghown that the complexity of multichannel EEGs of healthy
(Rinaldo et al., 1993; Rodriguez-lturbe and Rinaldo, 1997). controls is sensitive to changes in behaviour (Watanabe et al.,

2002; this reference includes a review of the associated
2. The Richardson dimensiongpD literature). The value of LZC increases approximately linearly

The Dris also an estimate of the degree to which a trajectorwith the number of measurements in the time series and attains
departs from a straight line (Richardson, 1960; Mandelbrog maximum with random numbers (Rapp et al., 2001a). For
1983). In contrast with the CFD,grDalso quantifies how data sets of the length used in this study (9000), a maximum
the estimate of a curve changes with the precision of thef approximately 700 would be expected.
measurement. It is an example of the generic class of
dimension measures that have been applied to the analysis4fThe Hurst exponent (HE)
the classical problem of fractal geometry, namely ‘How long The HE measures persistence — the tendency of large
is the coast line of Britain?” (Mandelbrot, 1967). Stateddisplacements to be followed by large displacements (e.g. an
operationally, for a fixed step length one counts the numbéncrease is followed by an increase) and small displacements
of steps required to walk around the coast (or, as in ouo be followed by small displacements — and anti-persistence,
application, along the fish’s trajectory). The length of thewhich is the tendency of large displacements to be followed by
stride, i.e. the distance covered with each step, is then reduceaiall displacements (e.g. an increase is followed by a
and the number of steps required using this new step lengthdecrease) andice versa(Hurst, 1951; Hurst et al., 1965;
determined. The process is repeated and the log of the numberder, 1988; Bassingthwaighte et al., 1994). In other words, it
of steps required is plotted as a function of the log of the stegescribes how deterministic a trajectory is, i.e. the extent to
length. Thus, R is a measure for scale invariance. The slopavhich a future component of the trajectory is specified by
of this curve is used to determing.DAs for the CFD, a value components of its past. Theoretically, its range of possible
of 1 is obtained from a straight line. The value of 2 is thesalues is 0 to 1, with 0.5 as the crossover point between anti-
maximum possible B and it represents a theoretical limit persistence and persistence (since it is estimated from the
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log—log plot of variabilityversusepoch length, uncertainty in as the probability that the six-dimensional measurement
curve fitting can expand this range slightly). An HE of 0.5distributions corresponding to Fish A and Fish B were drawn
would be obtained if the trajectory was indistinguishable fronfrom the same parent distribution. The estimate of failure in
a random walk. Biological applications of the HE havea pairwise discrimination iRerrorFish A, Fish B). This is

included investigations of heart interbeat interval sequencdbke theoretically estimated probability that a trajectory from
(DePetrillo et al., 1999; Sherman et al., 2000) and pulmonaryish A will be incorrectly classified as a Fish B trajectory and

dynamics (Zhang and Bruce, 2000). vice versa Note thatPerroris not the same aBsame and
_ _ _ _ can be much larger. For example, a previous report (Rapp et
5. Relative dispersion (R. Disp.) al., 2002) included an example in whilgame=3.2x10-13

R. Disp. measures the dependence of signal variance on thaile Perror=0.32, which is relatively large, given that
duration of the dataset. It ranges from 1.0 to 1.5 (Boffetta éhe maximum possible error in a pairwise discrimination
al., 1999) and quantifies the change in the uncertainty in a tinféhe error rate corresponding to random assignment) is
series’ mean value as the observation period increaséBzrror=0.5. A disparity betweeRerrorand Psame occurs
Practically, the R. Disp. is the slope of the linear region of &ecause they address different questiBgame determines if
log—log plot of the coefficient of variation of a signarsus the means of two multivariate distributions are significantly
the length of the data set. Its primary applications have bedtifferent. For cases where only one measure is e
in the analysis of the physics of turbulent flow (Pedersen et als identical to the probability calculated irn-gest.Psame can
1996; Willis et al., 1997) but it has also been used in thbe very small even when the two distributions overlap.
guantitative characterization of pulmonary perfusion (KlockeHowever, if the distributions do overlap, which is the case
et al., 1995; Capderou et al., 2000). here, there can be considerable error in a between-group

All of the algorithms used to calculate these measureslassification.
are sensitive to noise in the data, non-stationarities in the Two classification criteria were used fd?same and
underlying dynamics and the temporal duration of théPerror The first classification is based on the minimum
examined epoch. For example, filtered noise can mimic lowMahalanobis distance (Lachenbruch, 1975). In the context of
dimensional chaotic attractors (Rapp et al.,, 1993) and, the six-dimensional measure space, the Mahalanobis distance
inappropriately applied, the method of surrogate data (whicls a generalized mathematical distance between the vector
is used to validate dynamical calculations) can give falsefrom the single trajectory that is to be classified and the
positive indications of non-random structure (Rapp et al., 1994pllection of measure vectors calculated from all of the
2001b). These are central concerns if one is trying to establistajectories obtained from one of the fish. The test trajectory
the absolute value of one of these measures, such as the tizieleemed to be a member of the group corresponding to the
value of the [r. However, this is a less crucial considerationsmallest Mahalanobis distance. The second procedure for
in the present investigation because we do not presume ¢tassifying a trajectory is based on the Bayesian likelihood
calculate the value of any measure in an absolute sense. Ratl{ptcLachlan, 1992). The trajectory’s vector is classified
we are computing approximations of these empirical measureisto the group corresponding to the maximum Bayesian
which nonetheless may be of value in the classification ahembership probability. Both classification schemes
these signals. The efficacy of these computed values in thecorporate a correction for correlations between the
classification was assessed quantitatively in the course of tineeasures, ensuring that dynamically similar measures do not

discriminant analysis, as described below. bias the classification results. In practice, the two procedures
o _ usually give identical results. Cases where results differ
Discriminant analysis correspond to classification with low confidence levels.

A multivariate discrimination was constructed to askFinally, as the descriptive analysis did not reveal consistent
specific questions about the behavioural data. For exampléme-dependent differences between three successive 5-min
can locomotor performance be distinguished betweetrajectories for most measures, this variable was not
individual fish? For this purpose, each swimming trajectoryncorporated into the discriminant analysis.
was represented by its set of values calculated for the five A distinction should be made between the out-of-sample
nonlinear measures described above plus its mean velocitylassifications used in this study and within-sample
Since it was possible that no measure alone would providdassification. When an out-of-sample classification is
consistent results for such discrimination, all the measurgserformed, the trajectory to be classified is removed from the
were incorporated into the discriminant analysis and then thélibrary before the classification was calculated. For this reason,
relative contributions to the classification process wer¢he error rates of classifications are always greater than, or at
assessed, as described in the Results section. The discriminbast equal to, the error rates obtained using within-sample
analysis is thus based on these six measures, and calculatiofessifications, where the trajectory to be classified remains in
were made between the sets of values defining individuahe library during the calculation. If the number of elements in
trajectories in a matrix consisting of a six-dimensional spacesach group is small (here, there are 15 trajectories for each
All statistical procedures used are explained in mathematicéish), the disparity between within-sample and out-of sample
detail by Rapp et al. (2002same(Fish A, Fish B) is defined classifications can be large. A comparison showing how
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within-sample  classifications can give unrealisticallybackward, which is not obvious with visual inspection of a
optimistic results is given in Watanabe et al. (2002). trajectory. In general, a trajectory gives the impression of
moderate irregularity. However, there are also restricted areas
signalled by path components of higher density, mostly along
Results the wall, and visual inspection of the video tapes suggests they
Characterization of swimming trajectories correspond to small turning movements of the fish while facing
A representative trajectory (FifjA) is characterized by a the wall or to periods of inactivity. Swimming in the centre
predominance of swimming along the circumference of the@ccurs in a different way as the fish swims more calmly and
cylindrical tank (‘wall hugging’ effect; Warren and Callaghan, slowly without generating a dense accumulation of path
1975; Steele, 1983; Kato et al., 1996), which is occasionallgomponents. The instantaneous velocity calculated from the
interrupted by swimming across the centre and by changirntgajectory in Fig1A is shown as a function of time in FitB.
speed (very fast swimming is indicated by a clear separatidh reveals high variability within the 5-min recording period.
between successive data points) and/or direction. Periods Diuiring this epoch, the instantaneous velocity of this trajectory
fast swimming were observed as swimming in circles along theanged from Gnms to 46Cmms1, with a mean value of
wall, without significant change in direction, and as occasiona#9+45mms=! (mean +s.0.). The velocity trace displays
fast sprints across the centre of the tank. Additionally, fish dideveral fast bursts, prolonged periods of slower swimming and
not only swim forward but sometimes propelled themselveperiods of inactivity. For this trajectory, the characteristic
fractal dimension (CFD) is 1.609, indicating that the
trajectory is not straight (if straight, CFD=1). The
Richardson dimension @) is 1.002, which would
appear to suggest minimal deviation from a straight
line and therefore to be in conflict with the CFD.
As previously mentioned, the RD additionally
incorporates sensitivity to the measurement scale
while the CFD depends upon the duration of
, , | : observation. The two measures can also diverge in the
0 200 400 O 200 400 O 200 400 case of noisy data or data digitised over a small range
of values. However, repeated analysis of individual
trajectories indicated that the measurements are not
compromised by noise or a limited range. The
Lempel-zZiv complexity (LZC) of this trajectory is
242. Since the expectation for a purely random
trajectory is approximately 700, this result therefore
indicates that velocity does not vary randomly. The
Hurst exponent (HE) is 0.938, indicating that the
trajectory is highly persistent; in other words, its
components are determined, or preserved, and thus
the trajectory corresponds to uniform or consistent
motion. Finally, the relative dispersion (R. Disp.) is
1.188. This value is close to the midrange of this
measure and indicates that the mean value of the time
series is relatively stable as a function of time.
Swimming trajectories of different fish are
dissimilar in appearance (Fig). The distribution of
path components in the centrersusthe periphery of
| | | the tank seems to be most variable. For example, the
O 200 400 O 200 400 three consecutive 5-min trajectories of Fish 2 in
X position (mm) Fig. 2A show more time spent in the centre of the tank
than do the three consecutive trajectories of Fish 5 in

400

200

400+

200 &

Y position (mm)

T T
0 200 400

400+

200 | §N

Fig.2. Variability between trajectories. (A) Three consecutive 5-min.. C e . . . .
recordings obtained from Fish 2 during its first visit to the tank. (B) Thre Fig. 2B, which Indlca_te rglatlvely “tt.le time Spen't n
consecutive 5-min trajectories from Fish 5 recorded during its first visit to th e centre or traversmg. it. Instead, in F3§. there is
tank. Differences between Fish 2 and Fish 5 are distinct. (C) Three consecutf'\fle\ther more aqcumulathn of path component; near
5-min recordings from Fish 5 during its fifth visit to the tank. Visual the wall, sometimes forming dense patches, which are
comparison of B and C suggests the presence of a high degree of intRRt seen in the trajectories of F&A. In addition,
individual variability, which was confirmed quantitatively with the nonlinear there is session-to-session variation in an individual
measures. fish's trajectories, as seen by comparing the first
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Table 1.Measured ranges of dynamical measures The data summarized in Taldleare displayed separately for
Measure Min. Max. Mean sb.  CV (%) each f!sh in Tabl@. The latter re;ults were obt'alned by
- averaging the values from all recording sessions (five per fish)
Mean velocity 89 866 515 156 302 and all trajectories (three for each recording session).
(mms~) Appreciably different values were obtained for each fish.
CFD* 1.24 1.79 1.62 0.10 6.2 . .
Nevertheless, given the large.n.s, the between-fish
Dr* 1.00 1.11 1.03 0.03 2.4 T . . .
L7C 91 379 235 6042 257 distributions overlap. Mean velocity values are similar for Fish
HE 0.57 113 0.82 013 149 2 and Fish 4 and for Fish 3 and Fish 5. This pattern was
R. Disp.* 1.07 1.33 1.20 0.07 5.8 repeated for two of the nonlinear measures, CFD andt

not for the other three. In general, there did not seem to be a
*|dentifies measures with a coefficient of variation (CV) less thenconsistent relationship between the mean values of different
10%. parameters and individual fish, suggesting that the measures,
CFD, characteristic fractal dimensiong [Richardson dimension; which, with the exception of mean velocity, are empirical,
LZC, Lempel-Ziv complexity; HE, Hurst exponent; R. Disp., reflect different properties of the swimming trajectories.
relative dispersion. Three of the six measures have time-dependent changes
during the 15-min recording periods. Mean velocity decreased
by 77% from the first to the last 5-min recordings (from
(Fig. 2B) and fifth (Fig2C) recording sessions of Fish 5. In 58.41mmsto 45.01mms1), and the mean CFD decreased
the fifth session, there is a greater tendency to explore thy 5% from 1.62 to 1.54. By contrast, the average LZC
centre than in the first session. This difference is reflected iniacreased by 15% from 214 to 248, while the other measures
significant difference between the mean velocities of the twdid not change appreciably. Since the data were pooled for
15-min sessions (62r@m s1vs58.8mms-1; P<0.002). Also, multiple exposures of the five fish, a repeated-measures
there is greater variability between the three successivenalysis of variance (ANOVA) was used to ask if there were
trajectories of the fifth session than between those in the firsignificant changes in a given measure between the three
session; indeed, the third 5-min trajectory of R2i@. more subsequent 5-min epochs of a 15-min recording session. The
closely represents those of the first session (2B) than the twesults, shown in Tabl® indicate significant differences
trajectories preceding it, as it is denser at the periphery ar{@<0.015) between subsequent 5-min trajectories for mean
exhibits a smaller number of excursions to the centre of theelocity and CFD. Also, in the case of LZC, the first 5-min
tank. trajectory was significantly different from both the second and
An initial overall impression of the nonlinear dynamical third ones. These time-dependent changes in the six measures
analysis can be obtained by determining the range an@lative to each other during a 15-min recording are illustrated
variability of each measure determined across all five fistin Fig. 3. Values for each measure are normalized with respect
These results are stated in TableThe coefficient of to the corresponding values obtained in the first 5-min
variation, CV=6.0./meanx100%, provides a quantitative trajectory. The repeated-measures ANOVA was also used to
characterization of the degree of spread in the observexsk if there were differences between the five subsequent
dynamical measures. A high degree of variation is observeskssions in which data were collected from each fish, and the
for some measures. The mean velocity has the highest Q¥sults were negative. Since the changes that occurred within
(30.2%) and a nearly 10-fold range in values, and the CV ai 15-min recording session were minimal, the discriminant
the LZC is also high (25.7%). By contrast, the CVs of the CFDanalysis did not treat successive 5-min trajectories separately.
the Dr and the R. Disp. are less than 7%. With the exception
of DR, the mean values of the nonlinear measures are all Discriminant analysis classifies individual fish
consistent with properties of a complex dynamical behaviour. Three questions were addressed in the discriminant analysis:

Table 2.Mean dynamical measures for each fish

Measure Fish 1 Fish 2 Fish 3 Fish 4 Fish 5
Velocity (mms) 34.88+13.72 49.49+5.38 61.23+17.02 49.85+8.89 61.79+13.23
CFD 1.51+0.12 1.63+0.03 1.67+0.09 1.61+0.05 1.70+0.07
Dr 1.03+0.02 1.02+0.01 1.03+0.02 1.01+0.01 1.07+0.02
LZC 213+60 269+41 197+45 199+23 279452

HE 0.96+0.11 0.704£0.07 0.86+0.07 0.83+0.07 0.74+0.09
R. Disp. 1.14+0.05 1.26+0.05 1.16+0.05 1.18+0.06 1.24+0.05

Values are meansso.
CFD, characteristic fractal dimensiongPRichardson dimension; LZC, Lempel-Ziv complexity; HE, Hurst exponent; R. Disp., relative
dispersion.
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Table 3.Statistical comparison of 5-min trajectories Table 4. Bame the probability that two fish are the same
1stvs3rd 1stvs2nd 2ndvs3rd Fish 1 2 3 4 5
5 min Smin Smin 1 0.1%10° 0.61x102 019104  0.3810%
Measure t P t P t P 2 0.15¢107 0.71x10°  0.36x10°6
2 6
Mean velocity 520 <0.0001* 3.15 0.002* 249 0.015* 5 0.9010%  0.70<1077
N 4 0.81x10-
(mms) 5
CFD 4.3 0.001* 2.05 0.04* 2.51 0.01*
EZRC j;g 8(2)32* :2113 8.8562* _g'go 829697 Psame is calculated with the between-group Mahalanobis
HE 018 0857 078 0435 -098 0332 distance.
R. Disp. 0.34 0.732 -0.24 0.81 0.60 0.548
Repeated-measures ANOVA for significant testing across the fivélistributions corresponding to Fish A and Fish B were drawn
min periods (P<0.015); d.f.=68. from the same parent distribution (see Materials and methods).

CFD, characteristic fractal dimensiongRichardson dimension; The results from the 10 possible pairwise discriminations are
LZC, Lempel-Ziv complexity; HE, Hurst exponent; R. Disp., relative shown in Tablel. As an example from that table, it is seen that
dispersion. Psame(1, 2)=0.1%105; that is, the probability that Fish 1 and
Fish 2 trajectories were produced by the same fish isD0t®
We conclude that Fish 1 and Fish 2 have very different
(1) based on the application of these six dynamical measuragnamical profiles. The largest value Réame is Psame(3,
would it be possible to conclude that the five fish are differen4)=0.9<10-2. While Fish 3 and Fish 4 are the most similar, even
(2) given a trajectory and its dynamical characterization, woulih this case the probability that these trajectories were obtained
it be possible to correctly determine which fish produced th&om the same fish is less than 1%. Given the very low value
trajectory and (3) of the six measures used, which ones weoé Psamg, it might be supposed that a classification of a single
the most effective in discriminating between different fishrajectory amongst the five fish would be highly accurate.
These questions were addressed by performing a discriminaidbwever, this is not necessarily the case.
analysis based on the six measures, with each fish providing aPerror IS a theoretical prediction of the pairwise
total of 15 trajectories. For this analysis, no distinction waglassification error, using the between-group Mahalanobis
made between first, second and third 5-min trajectories. Usirgjstance. In the present study, using six measures, the
these measures, we calculaihve(Fish A, Fish B), which  theoreticalPerror for the 10 pairwise calculations was less
is the probability that the six-dimensional measurementhan 0.07 in eight cases and ranged from 0.003 (Fist+B&h
4) to a maximum of 0.1118 (Fishv3fish 4).

The error rate also can be determined empirically by
performing a classification. The results of an out-of-sample
classification are shown in Talde for both minimum
Mahalanobis distance and maximum Bayesian likelihood
criteria, respectively. For example, the entry 13/12 in the Fish
1-Fish 1 box means that 13 out of 15 Fish 1 trajectories were

= classified as Fish 1 using the minimum distance criterion and
L% 12 were correctly classified as Fish 1 using the maximum
% likelihood criterion. The entry 2/3 in the Fish 1-Fish 5 box
—
S
< O Table 5.Classification results obtained with fish trajectories
Assigned classification (frequency)
1111 Fish 1 2 3 4 5
8
B Mean velocity h 1 13/12 0/0 0/0 0/0 2/3
2 3/2 11/12 0/0 0/0 1/1
: - ! : - ! 3 5/3 0/0 8/8 0/2 2/2
2nd 5 min 3rd S min 4 21 11 712 511 0/0
5 1/1 0/0 3/3 0/0 11/11

Fig.3. Time-dependent adaptation. Values of the six measures

averaged over all fish are displayed. Separate means are calculated . o ) . . L
for each trajectory of 5-min duration. The displayed values are Trajectories of individual fish were classified using two criteria

normalized against the average value obtained during the first 5-mifjiinimum Mahalanobis  distance/maximum Bayesian likelihood).

period. Asterisks identify statistically significant differences 1€ Source of the trajectory is listed to the left, and its assigned
(P<0.015) compared with the first 5-min period. classification is on the upper row. The identity line is in bold.
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means that two Fish 1 trajectories were classified as Fishtbe data indicate that therDand the HE have the lowest
using minimum distance and three Fish 1 trajectories wereumulative scores, suggesting they are the most effective.
classified as Fish 5 using maximum likelihood as the criteriorinterestingly, the mean values of these two measures (Table
Thus, more than 75% of the trajectories from Fish 1, 2 and &e consistent with trajectories that are relatively stable or
were correctly classified with both criteria. Also, a comparisordetermined (i.e. mean of HE=0.82 indicates a high degree of
based on mean velocity alone suggests similarities betwegersistence and mearrEL.06 indicates high similarity to a
Fish 1 and 4 and between Fish 3 and 5; the discriminamstraight line trajectory). The lack of a consistent pattern in the
analysis, which uses six measures, does not often confuse thessults presented in TalBeis not surprising, since our results
fish. established that the fish trajectories are highly individualistic

The expectation error rate is the error rate that would bglable4) using a statisticPsamve, that combines all six
observed if the classifications were performed randomly. Themaeasures. Another approach for obtaining an estimate of the
are five fish. If trajectories were assigned randomly, four outomparative effectiveness of each dynamical measure is to
of five trajectories would be misclassified. This gives arcalculate each measure’s average coefficient of determination,
expectation error rate of 80%. For these data, the overall errtaking the average over the 10 pairwise discriminations. These
rate using minimum Mahalanobis distance as the classificaticaverage values are shown in Tablend again suggest thag D
criterion is 36%. The overall error rate using the maximunand the HE are the most effective measures when used alone.
Bayesian likelihood is 28%.

The third question to be addressed with discrimination _ _
analysis asked, ‘of the measures used, which were the most Discussion
effective in discriminating between different fish?’. This The results demonstrate that a set of nonlinear measures can
question is not easily answered when there are five groups (fibe used in a discriminant analysis, or classification system, to
fish) as opposed to only two. In the case of a pairwise, twadistinguish between swimming trajectories of individual fish.
group comparison, a measure’s coefficient of determinatioifhat is, any two trajectories generated from different fish
establishes the amount of total between-group variance that care distinguishable with a high confidence level. This
be accounted for by the measure (Flury and Riedwyl, 1988liscrimination is possible only when those nonlinear measures,
Then, the larger a measure’s coefficient of determination, thalong with the linear measure mean velocity, are applied
more effective it is in discriminating between groups. A largecollectively, as no single measure has a high coefficient of
coefficient of determination corresponds to a large betweerdetermination. The results also show that the nonlinear
group Mahalanobis distance (specifically, the partial derivativeneasures used here potentially provide a perspective on a
of the coefficient of determination with respect to thebasic behaviour, swimming in a sparse environment, that
Mahalanobis distance is positive). The effectiveness of the scomplements insights obtained with more classical kinematic
measures in the 10 pairwise between-group discriminations hageasures. In general, the values for the different measures
been assessed empirically. Tablgives the rank ordering of suggest that swimming is not purely random but is rather
the coefficients of determination for each measure for eactomplex, with detectable redundancy.
pairwise discrimination (ordered from the largest to the
smallest). For example, when Fish 1 and Fish 2 are compared nterpretation of fish locomotion with nonlinear measures
the HE is most effective in discriminating between the two Although they are empirical, the tools of nonlinear
groups while the Ris the least effective. When the rank dynamical analysis are increasingly being used in the analysis
ordering of the 10 pairwise discriminations is compared, nonef biological phenomena (Faure and Korn, 2001; Giesinger,
of the measures stands out as being exceptionally effective001), including continuously recorded behavioural
However, if the rank order is treated as a score for each pagequences. One rationale is that, since these measures are

Table 6.Rank ordering of the coefficients of determination

Compared fish 1st 2nd 3rd 4th 5th 6th
Fish 1vsFish 2 HE R. Disp. v CFD LzC Dr

Fish 1vsFish 3 \Y CFD HE R. Disp. LzC [P

Fish 1vsFish 4 HE v Dr CFD R. Disp. LzC
Fish 1vsFish 5 r HE R. Disp. v CFD LzC
Fish 2vsFish 3 HE R. Disp. LzC v CFD Dr

Fish 2vsFish 4 LzC (B HE R. Disp. CFD v

Fish 2vsFish 5 Dk \Y CFD LzC HE R. Disp.
Fish 3vsFish 4 (B \Y CFD HE R. Disp. LzC
Fish 3vsFish 5 LzC r R. Disp. HE CFD \Y;

Fish 4vsFish 5 Dk LzC CFD R. Disp. HE \Y;

V, mean velocity.
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Table 7.Mean coefficient of determination heterogeneous than that used in the present study would
Mean coefficient of generate swimming trajectories with higher values of CFD and
Measure determination Dr, indicative of a more fractal nature. Such an experimental
- " design would give more insight into what extent the
gﬁgﬂ velocity (mns™) %‘224373 environment might influence the nonlinear properties and their
DR 0..382 underlying _components. o .
L7C 0.287 The nonlinear measures and discriminant analysis employed
HE 0.351 here may then be applied to detect subtle changes in
R. Disp. 0.298 behavioural sequences altered by changes in the environment.

Fish behaviour is increasingly important in toxicology, and it
CFD, characteristic fractal dimensiong[Richardson dimension; has already been shown that fractal dimension could serve as
LZC, Lempel-Ziv complexity; HE, Hurst exponent; R. Disp., a sensitive measure for quantifying differences in locomotor
relative dispersion. activity during sublethal exposure to toxic contaminants
(Motohashi et al., 1993; Alados and Weber, 1999; Brewer et
al.,, 2001). The application of multiple measures, including a
sensitive to the spatio-temporal structure of a sequence, théyear one, may well enhance such discriminations. Indeed,
might reveal hidden structures in those continuous signalpreliminary data, obtained using this methodology to
Indeed, studies have shown that the examination dalistinguish swimming trajectories of goldfish exposed to low
behavioural data that appeared to be random can reveal higlidgsages of Malathion, a pesticide and neurotoxin, confirm this
non-random components when analysed with sequencexpectation (Neumeister et al., 2001).
sensitive nonlinear measures. For example, a number of Exposure to a novel environment for a continuous period or
behaviours have been described as fractal, from spontanedos several discrete periods will, in general, result in a gradual
locomotion (Dicke and Burrough, 1988; Coughlin et al., 1992gecrease of locomotor activity over the course of several days
Motohashi et al., 1993; Cole, 1995) and foraging (Alados andr weeks (Russell, 1973; Warren and Callaghan, 1976; Clark
Weber, 1999) in diverse species to social behaviour iand Ehlinger, 1987). Novelty represents a potentially stressful
chimpanzees (Alados and Huffman, 2000) and feeding-relatesituation (Russell, 1973; Csanyi and Téth, 1985; Gervai and
activities in goats (Alados et al., 1996). Related tools have algdsanyi, 1986). For example, male guppies initially show high
been used to successfully analyse the pattern of transitiomelocity swimming at the periphery of an open field, and it has
between periods of active swimming and inactivity (Faure ebeen suggested that this activity is related to some degree of
al., 2003). As discussed below, this type of analysis might biear (Warren and Callaghan, 1976). In the present study, a
effectively employed to reveal subtle changes in locomotiomelatively small but significant decrease during the 15-min
not revealed with classical means. period was not only detected in mean velocity but also in CFD
The five nonlinear measures applied in the present study aaed Lempel-Ziv complexity. The results in the CFD are
empirical measures of complexity of swimming behaviour, and@onsistent with reports that fractal dimension decreases in
each reduces a trajectory into a single value. With theonditions characterized as stressful (Alados et al., 1996;
exception of the Richardson dimension, the values of thes&lados and Weber, 1999; Alados and Huffman, 2000).
nonlinear measures are consistent with the notion that goldfi$fevertheless, this modification with time can be subtle, and it
swimming in even a relatively sparse environment is a mixtureemains to be seen if further development of the discriminant
of random and nonlinear deterministic activities. Theiranalysis would benefit by treating successive 5-min trajectories
empirical nature may explain the finding that two of theseparately.
measures, the characteristic fractal dimension and Richardson
dimension, which are expected to reflect similar properties, Classifying trajectories
often diverged. Multivariate discriminant analysis, which allowed us to
The degree of complexity exhibited in locomotor behaviourclassify swimming trajectories to the fish that generated them,
and other behavioural patterns can depend on the environméras a long and successful history in the physical and biological
(Coughlin et al., 1992; Motohashi et al., 1993; Anderson et alsciences (Lachenbruch, 1975; McLachlan, 1992). The
1997). Spatial and temporal complexity of foragingcombination of discriminant analysis with nonlinear measures
trajectories, for example, can be correlated to the pattern &f, however, comparatively recent (Rapp et al., 2002; Watanabe
occurrence of food sources (Cole, 1995; Viswanathan et akf al., 2002). In the present study, a discriminant analysis based
1996). Similarly, some bird species exhibit nonlinearities iron six measures was used to characterize between-group
vigilance behaviour (Ruxton and Roberts, 1999), andlifferences and to classify individuals amongst the groups,
correlations have been drawn between fractal complexity andith each fish defining its own group. Five fish were used
the ability to cope with the environment, such as in theaand five recordings consisting of three consecutive 5-min
presence of toxins or stress (Alados et al., 1996; Alados arnrhjectories were obtained from each fish. Thus, in the language
Weber, 1999; Alados and Huffman, 2000). One can thusf discriminant analysis, there are five groups, 15 elements in
speculate that fish exposed to an environment moreach group and six-dimensional measure space.
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As outlined above, we addressed a sequence of thrééghly individualistic. Recent ethological and psychological
guestions. First, we asked if we are able to conclude that ttstudies have revealed individual differences in many species
fish are different, computindPsame for each pair of fish. (Clark and Ehlinger, 1987; Bell, 1991; Mather and Anderson,
Although direct visual observation of the fish did not suggest993; Boissy and Bouissou, 1995). As already mentioned,
that their swimming behaviour was dramatically different, themost of these studies concerned higher order behaviours. To
calculations ofPsame indicate that trajectories are highly our knowledge, idiosyncratic variability in fish swimming has
individual, and each fish has a very different swimming profilenot been the subject of previous investigations, although it has

We then addressed the problem of classification obeen noted (Kleerekoper et al., 1974). Locomotion serves a
individual 5-min trajectories among the five possible groupsiange of behaviours in fish, including exploration, foraging and
by calculatingPerror for each pairwise classification. As social interactions. Individuality in these behaviours can be
expected (see Result®erroris larger tharPsame, with an  expected to benefit survival of individuals and, therefore, of
average value of 5.7%. HowevdPerror is a theoretical the population. For example, it may increase access to food
estimate of the error in a pairwise classification based on themurces by enhancing the search efficiency of shoaling fish
between-group Mahalanobis distance (Lachenbruch, 1975)Gotceitas and Colgan, 1988; Colgan et al., 1991).
An empirical test of this classification was produced byAdditionally, it can provide a competitive advantage to some
computing an out-of-sample classification that used théndividuals, such as the dominant ones within a hierarchy
minimum individual-to-group Mahalanobis distance as thebased upon boldness (Budaev, 1997; Wilson et al., 1993).
classification criterion. It gave an error rate of 36%, in contrashgain, this would contribute to the fithess of the population by
to the expected error rate obtained with random assignment giaranteeing survival of individuals in the case of limited
80%. The error rate using maximum Bayesian likelihood as theesources (Magurran, 1986a; Gotceitas and Colgan, 1988).
assignment criterion was even less, 28%. Thus, the variations observed here may have functional

It might seem surprising that, while the aver&geroris  relevance.

5.7%, the empirically determined classification error rate is Three categories of mechanisms have been proposed to
greater. Yet,Perror is the predicted error rate in a single underlie behaviours that are unique to one individual as
pairwise classification. The empirically determined error rat@pposed to another, namely a variable environment, social
is more appropriately compared against a classificatioaffects and phenotypic variability (reviewed in Magurran,
procedure based on a sequence of pairwise classificationslif86a). In that context, the present study was designed to
which several individual pairwise errors accumulate to producquantitatively characterise swimming of one fish alone in a
the overall result. When the distinction between pairwise angparse and constant environment, minimising any affective
global error is taken into account, it is seen that the error ratesntribution to the resulting pattern. The results demonstrate
are similar. that, with the appropriate analytical tools, it is possible to

The third question concerned the identification of theconclude that this elementary behaviour exhibits individuality.
measure or measures that were most successful Trhus, we suggest that this property reflects phenotypic
discriminating between fish. This was investigated bydifferences of either genetic or experiential origin. Such
calculating the coefficient of determination in each pairwiselifferences are not simply related to environmental
classification for each measure. The results indicated that monditions, body size or sex, as these factors were controlled
single measure emerged as the most effective. However, it was this study. Rather, they may be embedded in underlying
possible to conclude that the nonlinear measures were marerinsic processes. It has been suggested that a population
effective than the mean velocity, with the most effective beindgpenefits from varying phenotypes, or differences in
the HE and R, values which are consistent with the generaindividuals, by being better adapted to environmental
conclusion that fish swimming in a sparse environment have@nditions (Clark and Ehlinger, 1987). In this context, it
relatively low degree of complexity. would be interesting to know how the individuality observed

It should be recognized that the ability to classify any giverin the present study would change in other conditions, such as
trajectory is limited. To introduce an analogy, we can prov& more heterogeneous environment or one requiring social
that fingerprints are highly individual but we can’t usually basenteractions.

a positive identification on a single fingerprint. We should
point out that these conclusions are dependent on the measure$he authors thank I. Cantave and N. Gianattassio for their
used in this study. The application of additional measures toontributions in data acquisition and analysis. We also thank
these data might result in an improvement in the classificatiod. Eckholdt for his valuable advice and assistance with both
calculations. Thus, the results presented here are, in a senséheoretical and practical statistical analysis. P.E.R. and C.J.C.
worst-case calculation. thank Tanya Schmah of the Mathematical Institute, Warwick
University for essential leadership in the implementation of
Individuality the nonlinear measures and during the development of the

We have found that the discriminant analysis usingliscriminant analysis system. This work has been sponsored
swimming trajectories and nonlinear dynamical measureBy the Defense Advanced Projects Agency (DARPA),
established in a convincing manner that fish locomotion isontract No. N66001-00-C-8012.
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