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Individual differences are often sufficiently large as to
make it difficult to quantify a behaviour and to distinguish its
underlying components (Gotceitas and Colgan, 1988; Mather
and Anderson, 1993; Wilson et al., 1993). However,
individual variation may constitute an important aspect of
behavioural selection (Clark and Ehlinger, 1987; Gotceitas
and Colgan, 1988; Colgan et al., 1991). For example, it might
ensure fitness of a population when resources are limited
(Magurran, 1986a; Gotceitas and Colgan, 1988).
Nevertheless, analyses of behavioural performance often
focus on general phenomena of entire populations, and
idiosyncratic aspects are noted secondarily. Moreover, studies
on individuality often concern higher order behaviours, such
as, in the case of teleost fish, foraging, fear avoidance,
aggression, predator inspection, mating strategies, parental
care and sociability (Gervai and Csányi, 1986; Magurran,
1986a,b; Clark and Ehlinger, 1987; Huntingford and Giles,
1987; Gotceitas and Colgan, 1988; Francis, 1990; Murphy and
Pitcher, 1991; Colgan et al., 1991; Wilson et al., 1993;
Budaev, 1997; Coleman and Wilson, 1998; Budaev and
Zhuikov, 1998; Budaev et al., 1999a,b). While these
behaviours all involve motor activity, they are often quantified
on the basis of socio-biological descriptors, such as inspection
rates, or proximity to other fish. However, less attention has

been paid to the possibility of individual differences in the
underlying basic patterns of motor activity.

Swimming is actually composed of highly organized spatial
and temporal patterns even in a relatively homogeneous
environment (Kleerekoper et al., 1974; Steele, 1983). Some of
these patterns are complex and cannot be characterized with
the tools of classical kinematics, as they may exhibit nonlinear
properties, such as persistence (the tendency to repeat a
given sequence), redundancy (the relationship between the
uncertainty of a signal and its length) and scale invariance (a
tendency for a signal to have the same structure when
observed on different temporal or spatial scales) (Faure et al.,
2003). Indeed, nonlinear measures have been used to
characterize locomotion and the behavioural repertoires in
various species, including invertebrates (Dicke and Burrough,
1988; Cole, 1995), fish (Coughlin et al., 1992; Alados and
Weber, 1999; Brewer et al., 2001), birds (Viswanathan et al.,
1996; Ferriere et al., 1999) and mammals (Paulus et al., 1990;
Marghitu et al., 1996; Alados et al., 1996; Alados and
Huffman, 2000).

The present study was designed to (1) apply five nonlinear
measures and one linear measure as descriptors of goldfish
swimming trajectories in order to quantify this locomotor
behaviour and (2) to develop a discriminant analysis that would

The Journal of Experimental Biology 207, 697-708
Published by The Company of Biologists 2004
doi:10.1242/jeb.00811

Goldfish swimming was analysed quantitatively to
determine if it exhibits distinctive individual spatio-
temporal patterns. Due to the inherent variability in fish
locomotion, this hypothesis was tested using five nonlinear
measures, complemented by mean velocity. A library was
constructed of 75 trajectories, each of 5·min duration,
acquired from five fish swimming in a constant and
relatively homogeneous environment. Three nonlinear
measures, the ‘characteristic fractal dimension’ and
‘Richardson dimension’, both quantifying the degree to
which a trajectory departs from a straight line, and
‘relative dispersion’, characterizing the variance as a
function of the duration, have coefficients of variation

less than 7%, in contrast to mean velocity (30%). A
discriminant analysis, or classification system, based on
all six measures revealed that trajectories are indeed
highly individualistic, with the probability that any two
trajectories generated from different fish are equivalent
being less than 1%. That is, the combination of these
measures allows a given trajectory to be assigned to its
source with a high degree of confidence. The Richardson
dimension and the ‘Hurst exponent’, which quantifies
persistence, were the most effective measures.

Key words: fish, behaviour, individuality, locomotion, velocity,
nonlinear dynamics, complexity, discriminant analysis.
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allow us to ask if a given trajectory could be assigned to an
individual within the experimental pool. It was found that,
despite the apparent variability of trajectories, our protocol
could reliably achieve such a classification.

Materials and methods
Animals

Mature goldfish (Carassius auratus L.) were purchased
from a commercial hatchery (Hunting Creek Fisheries, Inc.,
Thurmont, MD, USA). Upon arrival in the laboratory, the
animals were adapted to laboratory conditions for at least one
week. Five female fish with similar body length (9–12·cm)
were chosen randomly. They were maintained together in a
rectangular glass aquarium (92·cm×41·cm×31·cm; 75·litre),
using deionised water conditioned with NovAqua (0.13·ml·l–1;
Novalek Inc., Hayward, CA, USA), Instant Ocean (16·mg·l–1;
Aquarium Systems, Mentor, OH, USA), Aquarium Salt
(0.125·g·l–1; Jungle Labs, Cibolo, TX, USA), Copper Safe
(0.32·ml·l–1; Mardel Laboratories, Inc., Harbor City, CA,
USA) and pH Stabilizer 7.2 (0.125·g·l–1; Jungle Labs). Water
quality was monitored regularly and was the same for holding
and experimental tanks (temperature 22±1°C; pH 7±0.2;
dissolved oxygen saturated, 8·p.p.m.). Fish were fed on a
regular 48-h schedule. A 12·h:12·h light:dark cycle was
supplied by room lights (360·lux at the water surface). All
video recordings were made during the light period.

Swimming environment

A cylindrical Plexiglas tank (20·litre, 50·cm diameter) was
used for the experiments. The water column was
comparatively shallow (10·cm deep) to prevent fish from
swimming out of the camera’s focal plane and to minimise
errors due to changing swimming depth. To reduce
mechanosensory and visual cues, the tank was mounted on an
anti-vibration table and its wall and lid were translucent white.
Its bottom was clear to allow video recording from below.

Translucent white plastic sheets were mounted on the inside
frame of the table with a small hole in the bottom sheet for
the camera lens. Illumination was from above with a circular
fluorescent bulb (approximately 350·lux at the water surface)
and from below with four floodlights (approximately 250·lux
at the bottom of the tank). New conditioned water was used
for each recording session.

Data acquisition and experimental design

Approximately 30·min prior to all recording sessions, fish
were transferred to a translucent white container
(20·cm×15·cm×10·cm) filled with aerated, conditioned water,
to be marked for automated motion tracking. Two markers
were applied with instant adhesive (Quick Tite; Locktite Corp.,
Avon, OH, USA) along the ventral midline of the fish to
specify its position on the video image. They were made of
double-sided black tape (1·cm×1·cm) with a dot
(approximately 4·mm diameter) of white nail polish painted in
the centre. For this purpose, the fish was removed from the
water, the ventral midline was exposed and the skin was gently
dried. The markers were applied between the paired pelvic and
pectoral fins and onto the lower jaw in less than 1.5·min, after
which the fish recovered in fresh aerated water for at least
10·min. This procedure had no obvious impact on behaviour
and, in most cases, the marker remained in place for several
days.

To analyse locomotion (see also Faure et al., 2003),
recordings of the ventral view of the fish were obtained from
below at 30·Hz using a digital camcorder (Canon Optura;
Canon USA, Jamesburg, NJ, USA). Each recording session
started 30·s after the fish was introduced into the experimental
tank and lasted 15·min. Video capturing software (Adobe
Premiere; Adobe Systems Inc., San José, CA, USA) was used
to subdivide a recording session into three 5-min trajectories.
Five such recording sessions, each obtained on a different day,
were collected from five fish and used to construct a library of
75 trajectories.
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Fig.·1. (A) Swimming trajectories. The graph shows a representative trajectory from a single fish recorded over a 5-min period with a sampling
frequency of 30·Hz. (B) The corresponding instantaneous velocity as a function of time. The arrow indicates a period of inactivity that was
confirmed by direct examination of the video recording.
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Data analysis

Commercial motion analysis software (WinAnalyze;
Mikromak GmbH, Erlangen, Germany) provided frame-to-
frame data on the X and Y position of the markers (Fig.·1A).
Only the central marker data were used for the calculations
reported in this paper. The X and Y position data as functions
of time were used as primary data for the multivariate analysis
described below. The five nonlinear measures chosen for this
study were computed with software of our own construction;
the mean velocity was then taken as the 5-min average of the
instantaneous velocity [(dx/dt)2+(dy/dt)2]0.5.

A pragmatic criterion for choosing each nonlinear measure
was that it should provide a quantitative value that could be
assigned to a trajectory, allowing for statistical comparisons
between groups of data. A brief description of these nonlinear
measures is presented here; a more detailed mathematical
description, including additional references to the primary
literature, is given in Rapp et al. (2002).

1. The characteristic fractal dimension (CFD)

The CFD measures the degree to which a trajectory departs
from a straight-line path (Katz and George, 1985; Katz, 1988).
It is a measure of the total distance travelled from point to point
(or frame to frame) relative to the maximum separation of any
two points in the series. In other words, it is an approximation,
equal to the distance travelled divided by the diameter of
the experimental tank. It is sensitive to the duration of the
observation period and to the speed of motion (see Rapp et al.,
2002). It has a minimum value of 1 but does not have an upper
limit. Since, in the present application, the fish is swimming in
a cylindrical tank, a circular motion of constant velocity would
be equivalent to a straight line. As the trajectory deviates from
circular motion, the CFD increases. This measure has been
used to analyse a variety of complex geometrical patterns
(Rinaldo et al., 1993; Rodriguez-Iturbe and Rinaldo, 1997).

2. The Richardson dimension (DR)

The DR is also an estimate of the degree to which a trajectory
departs from a straight line (Richardson, 1960; Mandelbrot,
1983). In contrast with the CFD, DR also quantifies how
the estimate of a curve changes with the precision of the
measurement. It is an example of the generic class of
dimension measures that have been applied to the analysis of
the classical problem of fractal geometry, namely ‘How long
is the coast line of Britain?’ (Mandelbrot, 1967). Stated
operationally, for a fixed step length one counts the number
of steps required to walk around the coast (or, as in our
application, along the fish’s trajectory). The length of the
stride, i.e. the distance covered with each step, is then reduced
and the number of steps required using this new step length is
determined. The process is repeated and the log of the number
of steps required is plotted as a function of the log of the step
length. Thus, DR is a measure for scale invariance. The slope
of this curve is used to determine DR. As for the CFD, a value
of 1 is obtained from a straight line. The value of 2 is the
maximum possible DR and it represents a theoretical limit

when a trajectory covers the entire two-dimensional surface.
Given the differences between the factors influencing the CFD
and DR, they can diverge.

Measures of fractal analysis comparable to CFD and DR

have been used to describe behavioural sequences, such as
swimming and foraging in clownfish (Coughlin et al., 1992),
trails in mites (Dicke and Burrough, 1988), reproductive
behaviour in fathead minnows (Alados and Weber, 1999),
social behaviour in chimpanzees (Alados and Huffmann, 2000)
and head lifting during feeding behaviour in ibex (Alados et
al., 1996).

3. The Lempel–Ziv complexity (LZC) 

The LZC is a sequence-sensitive measure that characterizes
the structure of time-varying signals as a series of symbols
(Lempel and Ziv, 1976; Ziv and Lempel, 1978). The spatial
difference in the fish’s position between two consecutive points
in time is compared, generating a time series of incremental
distance travelled. This distance function is simplified by
partitioning it into a binary symbol sequence about the median
increment size. For example, a typical sequence might be
‘aabaabbab’ where ‘a’ symbolises values less than the median
and ‘b’ symbolises those greater. Then, the LZC is calculated
for the resulting symbol sequence. It reflects the number of
sub-strings in the sequence (e.g. aab) and the rate at which they
occur. This measure will therefore give information about the
redundancy (or lack thereof) of a trajectory, for example about
the irregularity of its velocity. Kurths et al. (1995) used this
method for analysing heart rate variability in an investigation
of predictors of sudden cardiac death, while Gu et al.
(1994) and Xu et al. (1998) found differences in the
electroencephalograms (EEGs) of healthy controls and
psychotics with symbolic dynamics. Subsequently, it was
shown that the complexity of multichannel EEGs of healthy
controls is sensitive to changes in behaviour (Watanabe et al.,
2002; this reference includes a review of the associated
literature). The value of LZC increases approximately linearly
with the number of measurements in the time series and attains
a maximum with random numbers (Rapp et al., 2001a). For
data sets of the length used in this study (9000), a maximum
of approximately 700 would be expected.

4. The Hurst exponent (HE)

The HE measures persistence – the tendency of large
displacements to be followed by large displacements (e.g. an
increase is followed by an increase) and small displacements
to be followed by small displacements – and anti-persistence,
which is the tendency of large displacements to be followed by
small displacements (e.g. an increase is followed by a
decrease) and vice versa(Hurst, 1951; Hurst et al., 1965;
Feder, 1988; Bassingthwaighte et al., 1994). In other words, it
describes how deterministic a trajectory is, i.e. the extent to
which a future component of the trajectory is specified by
components of its past. Theoretically, its range of possible
values is 0 to 1, with 0.5 as the crossover point between anti-
persistence and persistence (since it is estimated from the
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log–log plot of variability versusepoch length, uncertainty in
curve fitting can expand this range slightly). An HE of 0.5
would be obtained if the trajectory was indistinguishable from
a random walk. Biological applications of the HE have
included investigations of heart interbeat interval sequences
(DePetrillo et al., 1999; Sherman et al., 2000) and pulmonary
dynamics (Zhang and Bruce, 2000).

5. Relative dispersion (R. Disp.)

R. Disp. measures the dependence of signal variance on the
duration of the dataset. It ranges from 1.0 to 1.5 (Boffetta et
al., 1999) and quantifies the change in the uncertainty in a time
series’ mean value as the observation period increases.
Practically, the R. Disp. is the slope of the linear region of a
log–log plot of the coefficient of variation of a signal versus
the length of the data set. Its primary applications have been
in the analysis of the physics of turbulent flow (Pedersen et al.,
1996; Willis et al., 1997) but it has also been used in the
quantitative characterization of pulmonary perfusion (Klocke
et al., 1995; Capderou et al., 2000).

All of the algorithms used to calculate these measures
are sensitive to noise in the data, non-stationarities in the
underlying dynamics and the temporal duration of the
examined epoch. For example, filtered noise can mimic low-
dimensional chaotic attractors (Rapp et al., 1993) and, if
inappropriately applied, the method of surrogate data (which
is used to validate dynamical calculations) can give false-
positive indications of non-random structure (Rapp et al., 1994,
2001b). These are central concerns if one is trying to establish
the absolute value of one of these measures, such as the true
value of the DR. However, this is a less crucial consideration
in the present investigation because we do not presume to
calculate the value of any measure in an absolute sense. Rather,
we are computing approximations of these empirical measures,
which nonetheless may be of value in the classification of
these signals. The efficacy of these computed values in the
classification was assessed quantitatively in the course of the
discriminant analysis, as described below.

Discriminant analysis

A multivariate discrimination was constructed to ask
specific questions about the behavioural data. For example,
can locomotor performance be distinguished between
individual fish? For this purpose, each swimming trajectory
was represented by its set of values calculated for the five
nonlinear measures described above plus its mean velocity.
Since it was possible that no measure alone would provide
consistent results for such discrimination, all the measures
were incorporated into the discriminant analysis and then their
relative contributions to the classification process were
assessed, as described in the Results section. The discriminant
analysis is thus based on these six measures, and calculations
were made between the sets of values defining individual
trajectories in a matrix consisting of a six-dimensional space.
All statistical procedures used are explained in mathematical
detail by Rapp et al. (2002). PSAME(Fish A, Fish B) is defined

as the probability that the six-dimensional measurement
distributions corresponding to Fish A and Fish B were drawn
from the same parent distribution. The estimate of failure in
a pairwise discrimination is PERROR(Fish A, Fish B). This is
the theoretically estimated probability that a trajectory from
Fish A will be incorrectly classified as a Fish B trajectory and
vice versa. Note that PERROR is not the same as PSAME and
can be much larger. For example, a previous report (Rapp et
al., 2002) included an example in which PSAME=3.2×10–13

while PERROR=0.32, which is relatively large, given that
the maximum possible error in a pairwise discrimination
(the error rate corresponding to random assignment) is
PERROR=0.5. A disparity between PERRORand PSAME occurs
because they address different questions. PSAME determines if
the means of two multivariate distributions are significantly
different. For cases where only one measure is used, PSAME

is identical to the probability calculated in a t-test. PSAME can
be very small even when the two distributions overlap.
However, if the distributions do overlap, which is the case
here, there can be considerable error in a between-group
classification.

Two classification criteria were used for PSAME and
PERROR. The first classification is based on the minimum
Mahalanobis distance (Lachenbruch, 1975). In the context of
the six-dimensional measure space, the Mahalanobis distance
is a generalized mathematical distance between the vector
from the single trajectory that is to be classified and the
collection of measure vectors calculated from all of the
trajectories obtained from one of the fish. The test trajectory
is deemed to be a member of the group corresponding to the
smallest Mahalanobis distance. The second procedure for
classifying a trajectory is based on the Bayesian likelihood
(McLachlan, 1992). The trajectory’s vector is classified
into the group corresponding to the maximum Bayesian
membership probability. Both classification schemes
incorporate a correction for correlations between the
measures, ensuring that dynamically similar measures do not
bias the classification results. In practice, the two procedures
usually give identical results. Cases where results differ
correspond to classification with low confidence levels.
Finally, as the descriptive analysis did not reveal consistent
time-dependent differences between three successive 5-min
trajectories for most measures, this variable was not
incorporated into the discriminant analysis.

A distinction should be made between the out-of-sample
classifications used in this study and within-sample
classification. When an out-of-sample classification is
performed, the trajectory to be classified is removed from the
library before the classification was calculated. For this reason,
the error rates of classifications are always greater than, or at
best equal to, the error rates obtained using within-sample
classifications, where the trajectory to be classified remains in
the library during the calculation. If the number of elements in
each group is small (here, there are 15 trajectories for each
fish), the disparity between within-sample and out-of sample
classifications can be large. A comparison showing how

H. Neumeister and others
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within-sample classifications can give unrealistically
optimistic results is given in Watanabe et al. (2002).

Results
Characterization of swimming trajectories

A representative trajectory (Fig.·1A) is characterized by a
predominance of swimming along the circumference of the
cylindrical tank (‘wall hugging’ effect; Warren and Callaghan,
1975; Steele, 1983; Kato et al., 1996), which is occasionally
interrupted by swimming across the centre and by changing
speed (very fast swimming is indicated by a clear separation
between successive data points) and/or direction. Periods of
fast swimming were observed as swimming in circles along the
wall, without significant change in direction, and as occasional
fast sprints across the centre of the tank. Additionally, fish did
not only swim forward but sometimes propelled themselves

backward, which is not obvious with visual inspection of a
trajectory. In general, a trajectory gives the impression of
moderate irregularity. However, there are also restricted areas
signalled by path components of higher density, mostly along
the wall, and visual inspection of the video tapes suggests they
correspond to small turning movements of the fish while facing
the wall or to periods of inactivity. Swimming in the centre
occurs in a different way as the fish swims more calmly and
slowly without generating a dense accumulation of path
components. The instantaneous velocity calculated from the
trajectory in Fig.·1A is shown as a function of time in Fig.·1B.
It reveals high variability within the 5-min recording period.
During this epoch, the instantaneous velocity of this trajectory
ranged from 0·mm·s–1 to 460·mm·s–1, with a mean value of
49±45·mm·s–1 (mean ± S.D.). The velocity trace displays
several fast bursts, prolonged periods of slower swimming and
periods of inactivity. For this trajectory, the characteristic

fractal dimension (CFD) is 1.609, indicating that the
trajectory is not straight (if straight, CFD=1). The
Richardson dimension (DR) is 1.002, which would
appear to suggest minimal deviation from a straight
line and therefore to be in conflict with the CFD.
As previously mentioned, the DR additionally
incorporates sensitivity to the measurement scale
while the CFD depends upon the duration of
observation. The two measures can also diverge in the
case of noisy data or data digitised over a small range
of values. However, repeated analysis of individual
trajectories indicated that the measurements are not
compromised by noise or a limited range. The
Lempel–Ziv complexity (LZC) of this trajectory is
242. Since the expectation for a purely random
trajectory is approximately 700, this result therefore
indicates that velocity does not vary randomly. The
Hurst exponent (HE) is 0.938, indicating that the
trajectory is highly persistent; in other words, its
components are determined, or preserved, and thus
the trajectory corresponds to uniform or consistent
motion. Finally, the relative dispersion (R. Disp.) is
1.188. This value is close to the midrange of this
measure and indicates that the mean value of the time
series is relatively stable as a function of time.

Swimming trajectories of different fish are
dissimilar in appearance (Fig.·2). The distribution of
path components in the centre versusthe periphery of
the tank seems to be most variable. For example, the
three consecutive 5-min trajectories of Fish 2 in
Fig.·2A show more time spent in the centre of the tank
than do the three consecutive trajectories of Fish 5 in
Fig.·2B, which indicate relatively little time spent in
the centre or traversing it. Instead, in Fig.·2B there is
rather more accumulation of path components near
the wall, sometimes forming dense patches, which are
not seen in the trajectories of Fig.·2A. In addition,
there is session-to-session variation in an individual
fish’s trajectories, as seen by comparing the first
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Fig.·2. Variability between trajectories. (A) Three consecutive 5-min
recordings obtained from Fish 2 during its first visit to the tank. (B) Three
consecutive 5-min trajectories from Fish 5 recorded during its first visit to the
tank. Differences between Fish 2 and Fish 5 are distinct. (C) Three consecutive
5-min recordings from Fish 5 during its fifth visit to the tank. Visual
comparison of B and C suggests the presence of a high degree of intra-
individual variability, which was confirmed quantitatively with the nonlinear
measures.



702

(Fig.·2B) and fifth (Fig.·2C) recording sessions of Fish 5. In
the fifth session, there is a greater tendency to explore the
centre than in the first session. This difference is reflected in a
significant difference between the mean velocities of the two
15-min sessions (62.6·mm·s–1 vs58.8·mm·s–1; P<0.002). Also,
there is greater variability between the three successive
trajectories of the fifth session than between those in the first
session; indeed, the third 5-min trajectory of Fig.·2C more
closely represents those of the first session (2B) than the two
trajectories preceding it, as it is denser at the periphery and
exhibits a smaller number of excursions to the centre of the
tank.

An initial overall impression of the nonlinear dynamical
analysis can be obtained by determining the range and
variability of each measure determined across all five fish.
These results are stated in Table·1. The coefficient of
variation, CV=(S.D./mean)×100%, provides a quantitative
characterization of the degree of spread in the observed
dynamical measures. A high degree of variation is observed
for some measures. The mean velocity has the highest CV
(30.2%) and a nearly 10-fold range in values, and the CV of
the LZC is also high (25.7%). By contrast, the CVs of the CFD,
the DR and the R. Disp. are less than 7%. With the exception
of DR, the mean values of the nonlinear measures are all
consistent with properties of a complex dynamical behaviour.

The data summarized in Table·1 are displayed separately for
each fish in Table·2. The latter results were obtained by
averaging the values from all recording sessions (five per fish)
and all trajectories (three for each recording session).
Appreciably different values were obtained for each fish.
Nevertheless, given the large S.D.s, the between-fish
distributions overlap. Mean velocity values are similar for Fish
2 and Fish 4 and for Fish 3 and Fish 5. This pattern was
repeated for two of the nonlinear measures, CFD and DR, but
not for the other three. In general, there did not seem to be a
consistent relationship between the mean values of different
parameters and individual fish, suggesting that the measures,
which, with the exception of mean velocity, are empirical,
reflect different properties of the swimming trajectories.

Three of the six measures have time-dependent changes
during the 15-min recording periods. Mean velocity decreased
by 77% from the first to the last 5-min recordings (from
58.41·mm·s–1 to 45.01·mm·s–1), and the mean CFD decreased
by 5% from 1.62 to 1.54. By contrast, the average LZC
increased by 15% from 214 to 248, while the other measures
did not change appreciably. Since the data were pooled for
multiple exposures of the five fish, a repeated-measures
analysis of variance (ANOVA) was used to ask if there were
significant changes in a given measure between the three
subsequent 5-min epochs of a 15-min recording session. The
results, shown in Table·3, indicate significant differences
(P<0.015) between subsequent 5-min trajectories for mean
velocity and CFD. Also, in the case of LZC, the first 5-min
trajectory was significantly different from both the second and
third ones. These time-dependent changes in the six measures
relative to each other during a 15-min recording are illustrated
in Fig.·3. Values for each measure are normalized with respect
to the corresponding values obtained in the first 5-min
trajectory. The repeated-measures ANOVA was also used to
ask if there were differences between the five subsequent
sessions in which data were collected from each fish, and the
results were negative. Since the changes that occurred within
a 15-min recording session were minimal, the discriminant
analysis did not treat successive 5-min trajectories separately.

Discriminant analysis classifies individual fish

Three questions were addressed in the discriminant analysis:

H. Neumeister and others

Table 1. Measured ranges of dynamical measures

Measure Min. Max. Mean S.D. CV (%)

Mean velocity 8.9 86.6 51.5 15.6 30.2
(mm·s–1)

CFD* 1.24 1.79 1.62 0.10 6.2
DR* 1.00 1.11 1.03 0.03 2.4
LZC 91 379 235 60.42 25.7
HE 0.57 1.13 0.82 0.13 14.9
R. Disp.* 1.07 1.33 1.20 0.07 5.8

*Identifies measures with a coefficient of variation (CV) less then
10%.

CFD, characteristic fractal dimension; DR, Richardson dimension;
LZC, Lempel–Ziv complexity; HE, Hurst exponent; R. Disp.,
relative dispersion.

Table 2. Mean dynamical measures for each fish

Measure Fish 1 Fish 2 Fish 3 Fish 4 Fish 5

Velocity (mm·s–1) 34.88±13.72 49.49±5.38 61.23±17.02 49.85±8.89 61.79±13.23
CFD 1.51±0.12 1.63±0.03 1.67±0.09 1.61±0.05 1.70±0.07
DR 1.03±0.02 1.02±0.01 1.03±0.02 1.01±0.01 1.07±0.02
LZC 213±60 269±41 197±45 199±23 279±52
HE 0.96±0.11 0.70±0.07 0.86±0.07 0.83±0.07 0.74±0.09
R. Disp. 1.14±0.05 1.26±0.05 1.16±0.05 1.18±0.06 1.24±0.05

Values are means ±S.D.
CFD, characteristic fractal dimension; DR, Richardson dimension; LZC, Lempel–Ziv complexity; HE, Hurst exponent; R. Disp., relative

dispersion.
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(1) based on the application of these six dynamical measures,
would it be possible to conclude that the five fish are different;
(2) given a trajectory and its dynamical characterization, would
it be possible to correctly determine which fish produced the
trajectory and (3) of the six measures used, which ones were
the most effective in discriminating between different fish?
These questions were addressed by performing a discriminant
analysis based on the six measures, with each fish providing a
total of 15 trajectories. For this analysis, no distinction was
made between first, second and third 5-min trajectories. Using
these measures, we calculated PSAME(Fish A, Fish B), which
is the probability that the six-dimensional measurement

distributions corresponding to Fish A and Fish B were drawn
from the same parent distribution (see Materials and methods).
The results from the 10 possible pairwise discriminations are
shown in Table·4. As an example from that table, it is seen that
PSAME(1, 2)=0.19×10–5; that is, the probability that Fish 1 and
Fish 2 trajectories were produced by the same fish is 0.19×10–5.
We conclude that Fish 1 and Fish 2 have very different
dynamical profiles. The largest value of PSAME is PSAME(3,
4)=0.9×10–2. While Fish 3 and Fish 4 are the most similar, even
in this case the probability that these trajectories were obtained
from the same fish is less than 1%. Given the very low value
of PSAME, it might be supposed that a classification of a single
trajectory amongst the five fish would be highly accurate.
However, this is not necessarily the case.

PERROR is a theoretical prediction of the pairwise
classification error, using the between-group Mahalanobis
distance. In the present study, using six measures, the
theoretical PERROR for the 10 pairwise calculations was less
than 0.07 in eight cases and ranged from 0.003 (Fish 2vsFish
4) to a maximum of 0.1118 (Fish 3vsfish 4).

The error rate also can be determined empirically by
performing a classification. The results of an out-of-sample
classification are shown in Table·5 for both minimum
Mahalanobis distance and maximum Bayesian likelihood
criteria, respectively. For example, the entry 13/12 in the Fish
1–Fish 1 box means that 13 out of 15 Fish 1 trajectories were
classified as Fish 1 using the minimum distance criterion and
12 were correctly classified as Fish 1 using the maximum
likelihood criterion. The entry 2/3 in the Fish 1–Fish 5 box

Table 3. Statistical comparison of 5-min trajectories

1st vs3rd 1st vs2nd 2nd vs3rd 
5·min 5·min 5·min

Measure t P t P t P

Mean velocity 5.20 <0.0001* 3.15 0.002* 2.49 0.015*
(mm·s–1)

CFD 4.3 0.001* 2.05 0.04* 2.51 0.01*
DR –1.18 0.240 –1.70 0.09 0.30 0.767
LZC –2.83 0.006* –2.47 0.0162* –5.3 0.599
HE –0.18 0.857 0.78 0.435 –0.98 0.332
R. Disp. 0.34 0.732 –0.24 0.81 0.60 0.548

Repeated-measures ANOVA for significant testing across the five-
min periods (*P<0.015); d.f.=68.

CFD, characteristic fractal dimension; DR, Richardson dimension;
LZC, Lempel–Ziv complexity; HE, Hurst exponent; R. Disp., relative
dispersion.

Fig.·3. Time-dependent adaptation. Values of the six measures
averaged over all fish are displayed. Separate means are calculated
for each trajectory of 5-min duration. The displayed values are
normalized against the average value obtained during the first 5-min
period. Asterisks identify statistically significant differences
(P<0.015) compared with the first 5-min period.
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Table 4. PSAME, the probability that two fish are the same

Fish 1 2 3 4 5

1 0.19×10–5 0.61×10–2 0.19×10–4 0.38×10–4

2 0.15×10–7 0.71×10–9 0.36×10–6

3 0.90×10–2 0.70×10–6

4 0.81×10–7

5

PSAME is calculated with the between-group Mahalanobis
distance.

Table 5. Classification results obtained with fish trajectories

Assigned classification (frequency)

Fish 1 2 3 4 5

1 13/12 0/0 0/0 0/0 2/3
2 3/2 11/12 0/0 0/0 1/1
3 5/3 0/0 8/8 0/2 2/2
4 2/1 1/1 7/2 5/11 0/0
5 1/1 0/0 3/3 0/0 11/11

Trajectories of individual fish were classified using two criteria
(minimum Mahalanobis distance/maximum Bayesian likelihood).
The source of the trajectory is listed to the left, and its assigned
classification is on the upper row. The identity line is in bold.
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means that two Fish 1 trajectories were classified as Fish 5
using minimum distance and three Fish 1 trajectories were
classified as Fish 5 using maximum likelihood as the criterion.
Thus, more than 75% of the trajectories from Fish 1, 2 and 5
were correctly classified with both criteria. Also, a comparison
based on mean velocity alone suggests similarities between
Fish 1 and 4 and between Fish 3 and 5; the discriminant
analysis, which uses six measures, does not often confuse these
fish.

The expectation error rate is the error rate that would be
observed if the classifications were performed randomly. There
are five fish. If trajectories were assigned randomly, four out
of five trajectories would be misclassified. This gives an
expectation error rate of 80%. For these data, the overall error
rate using minimum Mahalanobis distance as the classification
criterion is 36%. The overall error rate using the maximum
Bayesian likelihood is 28%.

The third question to be addressed with discrimination
analysis asked, ‘of the measures used, which were the most
effective in discriminating between different fish?’. This
question is not easily answered when there are five groups (five
fish) as opposed to only two. In the case of a pairwise, two-
group comparison, a measure’s coefficient of determination
establishes the amount of total between-group variance that can
be accounted for by the measure (Flury and Riedwyl, 1988).
Then, the larger a measure’s coefficient of determination, the
more effective it is in discriminating between groups. A large
coefficient of determination corresponds to a large between-
group Mahalanobis distance (specifically, the partial derivative
of the coefficient of determination with respect to the
Mahalanobis distance is positive). The effectiveness of the six
measures in the 10 pairwise between-group discriminations has
been assessed empirically. Table·6 gives the rank ordering of
the coefficients of determination for each measure for each
pairwise discrimination (ordered from the largest to the
smallest). For example, when Fish 1 and Fish 2 are compared,
the HE is most effective in discriminating between the two
groups while the DR is the least effective. When the rank
ordering of the 10 pairwise discriminations is compared, none
of the measures stands out as being exceptionally effective.
However, if the rank order is treated as a score for each pair,

the data indicate that the DR and the HE have the lowest
cumulative scores, suggesting they are the most effective.
Interestingly, the mean values of these two measures (Table·1)
are consistent with trajectories that are relatively stable or
determined (i.e. mean of HE=0.82 indicates a high degree of
persistence and mean DR=1.06 indicates high similarity to a
straight line trajectory). The lack of a consistent pattern in the
results presented in Table·6 is not surprising, since our results
established that the fish trajectories are highly individualistic
(Table·4) using a statistic, PSAME, that combines all six
measures. Another approach for obtaining an estimate of the
comparative effectiveness of each dynamical measure is to
calculate each measure’s average coefficient of determination,
taking the average over the 10 pairwise discriminations. These
average values are shown in Table·7 and again suggest that DR

and the HE are the most effective measures when used alone.

Discussion
The results demonstrate that a set of nonlinear measures can

be used in a discriminant analysis, or classification system, to
distinguish between swimming trajectories of individual fish.
That is, any two trajectories generated from different fish
are distinguishable with a high confidence level. This
discrimination is possible only when those nonlinear measures,
along with the linear measure mean velocity, are applied
collectively, as no single measure has a high coefficient of
determination. The results also show that the nonlinear
measures used here potentially provide a perspective on a
basic behaviour, swimming in a sparse environment, that
complements insights obtained with more classical kinematic
measures. In general, the values for the different measures
suggest that swimming is not purely random but is rather
complex, with detectable redundancy.

Interpretation of fish locomotion with nonlinear measures

Although they are empirical, the tools of nonlinear
dynamical analysis are increasingly being used in the analysis
of biological phenomena (Faure and Korn, 2001; Giesinger,
2001), including continuously recorded behavioural
sequences. One rationale is that, since these measures are
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Table 6. Rank ordering of the coefficients of determination

Compared fish 1st 2nd 3rd 4th 5th 6th

Fish 1 vsFish 2 HE R. Disp. V
– CFD LZC DR

Fish 1 vsFish 3 V
– CFD HE R. Disp. LZC DR

Fish 1 vsFish 4 HE V
– DR CFD R. Disp. LZC

Fish 1 vsFish 5 DR HE R. Disp. V
– CFD LZC

Fish 2 vsFish 3 HE R. Disp. LZC V
– CFD DR

Fish 2 vsFish 4 LZC DR HE R. Disp. CFD V
–

Fish 2 vsFish 5 DR V
– CFD LZC HE R. Disp.

Fish 3 vsFish 4 DR V
– CFD HE R. Disp. LZC

Fish 3 vsFish 5 LZC DR R. Disp. HE CFD V
–

Fish 4 vsFish 5 DR LZC CFD R. Disp. HE V
–

V
–, mean velocity.
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sensitive to the spatio-temporal structure of a sequence, they
might reveal hidden structures in those continuous signals.
Indeed, studies have shown that the examination of
behavioural data that appeared to be random can reveal highly
non-random components when analysed with sequence-
sensitive nonlinear measures. For example, a number of
behaviours have been described as fractal, from spontaneous
locomotion (Dicke and Burrough, 1988; Coughlin et al., 1992;
Motohashi et al., 1993; Cole, 1995) and foraging (Alados and
Weber, 1999) in diverse species to social behaviour in
chimpanzees (Alados and Huffman, 2000) and feeding-related
activities in goats (Alados et al., 1996). Related tools have also
been used to successfully analyse the pattern of transitions
between periods of active swimming and inactivity (Faure et
al., 2003). As discussed below, this type of analysis might be
effectively employed to reveal subtle changes in locomotion
not revealed with classical means.

The five nonlinear measures applied in the present study are
empirical measures of complexity of swimming behaviour, and
each reduces a trajectory into a single value. With the
exception of the Richardson dimension, the values of these
nonlinear measures are consistent with the notion that goldfish
swimming in even a relatively sparse environment is a mixture
of random and nonlinear deterministic activities. Their
empirical nature may explain the finding that two of the
measures, the characteristic fractal dimension and Richardson
dimension, which are expected to reflect similar properties,
often diverged. 

The degree of complexity exhibited in locomotor behaviour
and other behavioural patterns can depend on the environment
(Coughlin et al., 1992; Motohashi et al., 1993; Anderson et al.,
1997). Spatial and temporal complexity of foraging
trajectories, for example, can be correlated to the pattern of
occurrence of food sources (Cole, 1995; Viswanathan et al.,
1996). Similarly, some bird species exhibit nonlinearities in
vigilance behaviour (Ruxton and Roberts, 1999), and
correlations have been drawn between fractal complexity and
the ability to cope with the environment, such as in the
presence of toxins or stress (Alados et al., 1996; Alados and
Weber, 1999; Alados and Huffman, 2000). One can thus
speculate that fish exposed to an environment more

heterogeneous than that used in the present study would
generate swimming trajectories with higher values of CFD and
DR, indicative of a more fractal nature. Such an experimental
design would give more insight into what extent the
environment might influence the nonlinear properties and their
underlying components. 

The nonlinear measures and discriminant analysis employed
here may then be applied to detect subtle changes in
behavioural sequences altered by changes in the environment.
Fish behaviour is increasingly important in toxicology, and it
has already been shown that fractal dimension could serve as
a sensitive measure for quantifying differences in locomotor
activity during sublethal exposure to toxic contaminants
(Motohashi et al., 1993; Alados and Weber, 1999; Brewer et
al., 2001). The application of multiple measures, including a
linear one, may well enhance such discriminations. Indeed,
preliminary data, obtained using this methodology to
distinguish swimming trajectories of goldfish exposed to low
dosages of Malathion, a pesticide and neurotoxin, confirm this
expectation (Neumeister et al., 2001). 

Exposure to a novel environment for a continuous period or
for several discrete periods will, in general, result in a gradual
decrease of locomotor activity over the course of several days
or weeks (Russell, 1973; Warren and Callaghan, 1976; Clark
and Ehlinger, 1987). Novelty represents a potentially stressful
situation (Russell, 1973; Csányi and Tóth, 1985; Gervai and
Csányi, 1986). For example, male guppies initially show high
velocity swimming at the periphery of an open field, and it has
been suggested that this activity is related to some degree of
fear (Warren and Callaghan, 1976). In the present study, a
relatively small but significant decrease during the 15-min
period was not only detected in mean velocity but also in CFD
and Lempel–Ziv complexity. The results in the CFD are
consistent with reports that fractal dimension decreases in
conditions characterized as stressful (Alados et al., 1996;
Alados and Weber, 1999; Alados and Huffman, 2000).
Nevertheless, this modification with time can be subtle, and it
remains to be seen if further development of the discriminant
analysis would benefit by treating successive 5-min trajectories
separately.

Classifying trajectories

Multivariate discriminant analysis, which allowed us to
classify swimming trajectories to the fish that generated them,
has a long and successful history in the physical and biological
sciences (Lachenbruch, 1975; McLachlan, 1992). The
combination of discriminant analysis with nonlinear measures
is, however, comparatively recent (Rapp et al., 2002; Watanabe
et al., 2002). In the present study, a discriminant analysis based
on six measures was used to characterize between-group
differences and to classify individuals amongst the groups,
with each fish defining its own group. Five fish were used
and five recordings consisting of three consecutive 5-min
trajectories were obtained from each fish. Thus, in the language
of discriminant analysis, there are five groups, 15 elements in
each group and six-dimensional measure space.

Table 7. Mean coefficient of determination

Mean coefficient of 
Measure determination

Mean velocity (mm·s–1) 0.247
CFD 0.233
DR 0.382
LZC 0.287
HE 0.351
R. Disp. 0.298

CFD, characteristic fractal dimension; DR, Richardson dimension;
LZC, Lempel–Ziv complexity; HE, Hurst exponent; R. Disp.,
relative dispersion.
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As outlined above, we addressed a sequence of three
questions. First, we asked if we are able to conclude that the
fish are different, computing PSAME for each pair of fish.
Although direct visual observation of the fish did not suggest
that their swimming behaviour was dramatically different, the
calculations of PSAME indicate that trajectories are highly
individual, and each fish has a very different swimming profile.

We then addressed the problem of classification of
individual 5-min trajectories among the five possible groups,
by calculating PERROR for each pairwise classification. As
expected (see Results), PERRORis larger than PSAME, with an
average value of 5.7%. However, PERROR is a theoretical
estimate of the error in a pairwise classification based on the
between-group Mahalanobis distance (Lachenbruch, 1975).
An empirical test of this classification was produced by
computing an out-of-sample classification that used the
minimum individual-to-group Mahalanobis distance as the
classification criterion. It gave an error rate of 36%, in contrast
to the expected error rate obtained with random assignment of
80%. The error rate using maximum Bayesian likelihood as the
assignment criterion was even less, 28%. 

It might seem surprising that, while the average PERROR is
5.7%, the empirically determined classification error rate is
greater. Yet, PERROR is the predicted error rate in a single
pairwise classification. The empirically determined error rate
is more appropriately compared against a classification
procedure based on a sequence of pairwise classifications in
which several individual pairwise errors accumulate to produce
the overall result. When the distinction between pairwise and
global error is taken into account, it is seen that the error rates
are similar.

The third question concerned the identification of the
measure or measures that were most successful in
discriminating between fish. This was investigated by
calculating the coefficient of determination in each pairwise
classification for each measure. The results indicated that no
single measure emerged as the most effective. However, it was
possible to conclude that the nonlinear measures were more
effective than the mean velocity, with the most effective being
the HE and DR, values which are consistent with the general
conclusion that fish swimming in a sparse environment have a
relatively low degree of complexity.

It should be recognized that the ability to classify any given
trajectory is limited. To introduce an analogy, we can prove
that fingerprints are highly individual but we can’t usually base
a positive identification on a single fingerprint. We should
point out that these conclusions are dependent on the measures
used in this study. The application of additional measures to
these data might result in an improvement in the classification
calculations. Thus, the results presented here are, in a sense, a
worst-case calculation.

Individuality

We have found that the discriminant analysis using
swimming trajectories and nonlinear dynamical measures
established in a convincing manner that fish locomotion is

highly individualistic. Recent ethological and psychological
studies have revealed individual differences in many species
(Clark and Ehlinger, 1987; Bell, 1991; Mather and Anderson,
1993; Boissy and Bouissou, 1995). As already mentioned,
most of these studies concerned higher order behaviours. To
our knowledge, idiosyncratic variability in fish swimming has
not been the subject of previous investigations, although it has
been noted (Kleerekoper et al., 1974). Locomotion serves a
range of behaviours in fish, including exploration, foraging and
social interactions. Individuality in these behaviours can be
expected to benefit survival of individuals and, therefore, of
the population. For example, it may increase access to food
sources by enhancing the search efficiency of shoaling fish
(Gotceitas and Colgan, 1988; Colgan et al., 1991).
Additionally, it can provide a competitive advantage to some
individuals, such as the dominant ones within a hierarchy
based upon boldness (Budaev, 1997; Wilson et al., 1993).
Again, this would contribute to the fitness of the population by
guaranteeing survival of individuals in the case of limited
resources (Magurran, 1986a; Gotceitas and Colgan, 1988).
Thus, the variations observed here may have functional
relevance. 

Three categories of mechanisms have been proposed to
underlie behaviours that are unique to one individual as
opposed to another, namely a variable environment, social
effects and phenotypic variability (reviewed in Magurran,
1986a). In that context, the present study was designed to
quantitatively characterise swimming of one fish alone in a
sparse and constant environment, minimising any affective
contribution to the resulting pattern. The results demonstrate
that, with the appropriate analytical tools, it is possible to
conclude that this elementary behaviour exhibits individuality.
Thus, we suggest that this property reflects phenotypic
differences of either genetic or experiential origin. Such
differences are not simply related to environmental
conditions, body size or sex, as these factors were controlled
in this study. Rather, they may be embedded in underlying
intrinsic processes. It has been suggested that a population
benefits from varying phenotypes, or differences in
individuals, by being better adapted to environmental
conditions (Clark and Ehlinger, 1987). In this context, it
would be interesting to know how the individuality observed
in the present study would change in other conditions, such as
a more heterogeneous environment or one requiring social
interactions.
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