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An extensive set of experiments on the flight aerodynamics
of a thrush nightingale Luscinia luscinia L. were described by
Spedding, Rosén and Hedenström (2003a), giving detailed
quantitative measurements of the wake. The wake structure
was complex, but the gradual changes in circulation of cross-
stream or spanwise wake elements and inferred changes in
three-dimensional (3D) wake topology supported an empirical
model that was self-consistent and provided sufficient
averaged vertical forces to balance weight in steady flight.
Since no previous quantitative wake measurements have been
reported at more than one flight speed for any particular bird
(or bat) species, the observations of change in structure with
flight speed as an independent, controllable parameter were
new, interpolating some rather large gaps in the literature.

A notable characteristic of aerodynamic studies using wake
analysis is that the results do not depend on, or reveal anything
directly about, the wing kinematics that create the disturbance.
While observations of wake structure were new and extensive,
they were related to the kinematics only by rather loose

inference. The kinematic basis for flight in birds and bats has
a long history of careful measurement (see, for example,
Brown 1953; Norberg, 1976) for classic treatments of birds and
bats, respectively). In turn, inferring aerodynamic quantities
from kinematics alone is also difficult. In the absence of any
better alternative, all such studies have been obliged to make
strong assumptions about the quasi-steady (and 2D)
aerodynamic properties of the wing sections as they accelerate
and deform during the wingbeat. A more recent study by
Hedrick et al. (2002) carried these calculations through to the
point of estimating circulations of wing sections, but this
process invoked exactly the same set of quasi-steady
assumptions about how the wing motion and air flow are
linked. Undoubtedly, much remains to be done to make this
connection clearer. This paper is a small step in this direction,
where a simple kinematic analysis is related to the measured
wake flow. The flow on the wing itself is inaccessible to the
flow experiments, but correlates of kinematic variation with
wing speed and wake structure will be sought.
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The wingbeat kinematics of a thrush nightingale
Luscinia luscinia were measured for steady flight in a wind
tunnel over a range of flight speeds (5–10·m·s–1), and the
results are interpreted and discussed in the context of a
detailed, previously published, wake analysis of the same
bird. Neither the wingbeat frequency nor wingbeat
amplitude change significantly over the investigated speed
range and consequently dimensionless measures that
compare timescales of flapping vs. timescales due to the
mean flow vary in direct proportion to the mean flow
itself, with no constant or slowly varying intervals. The
only significant kinematic variations come from changes in
the upstroke timing (downstroke fraction) and the
upstroke wing folding (span ratio), consistent with the
gradual variations, primarily in the upstroke wake,
previously reported.

The relationship between measured wake geometry and
wingbeat kinematics can be qualitatively explained by
presumed self-induced convection and deformation of the
wake between its initial formation and later measurement,
and varies in a predictable way with flight speed.
Although coarse details of the wake geometry accord well
with the kinematic measurements, there is no simple
explanation based on these observed kinematics alone that
accounts for the measured asymmetries of circulation
magnitude in starting and stopping vortex structures.
More complex interactions between the wake and wings
and/or body are implied.

Key words: wingbeat kinematics, vortex wake, thrush nightingale,
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The wingbeat kinematics were analysed for the same bird
under similar conditions as for the wake study. As in the wake
measurements, it is critical that the flight training be sufficient
to ensure consistent, repeatable, steady flight over the whole
range of studied flight speeds. The kinematic analysis allows
this requirement to be checked, and more importantly, for the
changing wake structure to be correlated with observed
changes in kinematics. This study becomes more compelling
in light of the rather complex wake structures revealed in the
wake analysis of Spedding, Rosén and Hedenström (2003a).

Materials and methods
Bird and flight training

The thrush nightingale Luscinia luscinia L. is a typical
migrating songbird with a rather low aspect ratio AR, i.e. length
to width ratio of the wing (AR=5.4), body mass ≈30·g and an
annual migration between its breeding range in Europe and
wintering range in south-east Africa (Moreau, 1972).

Initially four juvenile thrush nightingales were caught at
Ottenby Bird Observatory, Sweden, on their autumn migration
in August 2001. After 2 weeks of flight training, it became
clear that one bird was far more capable of prolonged and
stable flights. This bird was further trained to perch on a stick
mounted on the wind tunnel sidewall when not flying. During
flight tests, the stick was manually tilted downwards to initiate
flight. About 1·m upstream from the perch location a luminous
marker was placed in the airflow to serve as a reference point
for where the perch would reappear at the end of a flight
episode. The marker helped to direct the flight position of the
bird to the centre of the test section and repeated trials over 3
months converged towards stable and repeatable flights.

When running flow visualisation experiments the bird would
fly in reduced light conditions as required for the digital
particle image velocimetry (DPIV) measurements, but the high
speed camera recordings required about 2·kW of continuous
light. The thrush nightingale is a typical nocturnal migrant and
preferred the dark settings, as reflected in the broader range
of flight speeds recorded (4–11·m·s–1 in low-light conditions
compared with 5–10·m·s–1 by the high-speed cameras).
Previous experiments using thrush nightingales in the same
wind tunnel have produced the same range of observed flight
speeds as for this set-up, 5–10·m·s–1 (e.g. Pennycuick et al.,
1996). Here, in the digital video recordings, a typical flight
episode would last for 10–30·s (limited by the bird’s accurate
flight position in the test section), followed by a few minutes
of rest on the perch. The cycle could be repeated for about
90·min before the bird was put back in the aviary for a longer
rest. Typically one morning and one afternoon flight session
were performed each day. In total the training was scheduled
daily for 3 months prior to the start of experiments. The
experiments using flow visualisation and high-speed cameras
lasted for another 50 days (end 11 January, 2002). The bird
was released into the wild the following spring, seemingly
unaffected by the experience. For bird morphological
characteristics, see Table·1.

Sampling and analysis of wingbeat kinematics

The number of steady flight episodes analysed at each flight
speed U were 5, 5, 5, 4, 5 and 4 at 1·m·s–1 intervals from 5 to
10·m·s–1. 

A RedLake digital video camera system (MotionScope
PCI500, USA, operating at frame rate 125·s–1, shutter speed
1/1850·s) was mounted 4·m downstream from the bird’s flight
position. The location of the camera far back in the first diffuser
causes a negligible effect on the airflow around the bird (see
Pennycuick et al., 1997). From the camera AVI-output, strings
of JPEGs were extracted and used for the analysis.

Time sequences of y, z coordinates (Fig.·1A) of the wingtip
and shoulder joint for both wings (mean presented) were
digitised using a custom program written in PV-WAVE
(Visual Numerics, USA) command language, the same
language used for accessing and calculating quantities in the
wakes database. The body width was used as a reference length
scale to calculate physical distances. 

The projected wingspan b′(t) (m), was measured from tip to
tip, throughout the wingbeat cycle. b′d is the projected span
at mid downstroke ±10° from horizontal (Fig.·1A). The
horizontal position is defined as a line connecting the left and
right shoulder joints. b′u is the equivalent measure for the
upstroke (Fig.·1A). In the upstroke the wing is moving rapidly,
almost vertically, so registrations of the wingtip in the
horizontal position are scarce and the data were interpolated
graphically from a diagram of b′(y,z) constructed from b′(t)
sequences. The span ratio, R, is calculated from

R = b′u / b′d·. (1)

The wingtip position in the vertical ztip was calculated as the
vertical distance between the wingtip and the horizontal line,
hence ztip=0 is a wing held in the horizontal position (Fig.·1A).
The beginning and end of a wing stroke were defined as the
points where ztip reaches maximum values above (ztip,max) and
below (ztip,min) the horizontal, respectively (Fig.·1A). The
downstroke ratio τ is the ratio of the downstroke duration to
the total stroke period where start and stop points of the
downstroke and upstroke were determined by the maximum
and minimum values of ztip.

The wingbeat frequency f and wingbeat amplitude, A1, were
derived from fitting a single frequency sine function to the
wingtip trace, so the vertical direction of the wingtip is
described by

ztip(t) = A0 + A1sin(ωt+ϕ)·, (2)
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Table·1. Morphological characteristics of the thrush
nightingale

Symbol Mean value Units

Body mass m 0.030 kg
Semi span b 0.131 m
Wing area S 0.0126 m2

Aspect ratio AR 5.4
Mean chord c 0.048 m
Wing loading Q 23 N·m–2
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where A0 is the offset of the wingbeat, A1 is the amplitude
(which varies from +A1 to –A1), ω is the radian frequency 2πf
and ϕ is the arbitrary phase offset to account for initial phase
value of the sequence. This measure of amplitude in the tunnel-
fixed reference frame (rather than body-fixed coordinates) does
not account for variations in the body tilt angle and hence
underestimates the wingtip excursion relative to the body at
low speeds when the body tilt angle increases. However, it is
the tunnel reference frame that can be more simply related to
the wake geometry in Spedding, Rosén and Hedenström
(2003a).

1/f, the stroke period, is denoted T. The horizontal stroke
wavelength λ (see Fig.·1B) of a wingbeat cycle was calculated
from wingbeat frequency and speed U as

λ = (1/f)U = TU·. (3)

The reduced frequency k is proportional to the ratio of two
time scales, the average time required for the mean flow to pass
over the mean chord, tc=c/U, and the time taken for one
wingbeat, T=1/f. It is conventionally expressed in terms of the
mean half chord, c/2, and radian frequency, ω=2πf, as

k = ωc / 2U·. (4)

The magnitude of k is frequently used as an indicator of
the relative importance of unsteady terms in the
aerodynamics, and in classical, small amplitude theories, it is
exactly this (e.g. Theodorsen, 1934). Some caution is due in
a simple-minded application of this number to complex
geometries and kinematics of animal flight, but very
generally when k is on the order of 0.1 then unsteady effects
can usually be ignored, while k of order 1 signals a probable
strong influence of unsteady phenomena (see also remarks by
Spedding, 1993).

A similar measure, K, can be constructed from the ratio of
mean tip speed in the vertical (wtip) to forward flight speed:

K= wtip / U·. (5)

Since the arc length s travelled by the wingtip is s=φb, and
this is accomplished twice per wingbeat cycle, then

wtip = 2φbf ,
and

K = 2φbf / U . (6)

Note that K incorporates a measure of the wingbeat amplitude
through the inclusion of the stroke angle, φ. The inverse of K
is commonly encountered as the advance ratio, J, and when
written

J = K–1 = UT / 2φb·, (7)

it can be seen that when J=K=1, the forward distance travelled
per wingbeat, UT, is equal to the distance traced by the tip with
respect to the body.

The measured inclination angles of the wingtip trace are
ψkin,d and ψkin,u (deg.) for the down- and upstrokes (Fig.·1B),
respectively. Values for ψkin are calculated from 2A1 and λ as

ψkin = arctan(2A1/λ)·, (8)
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Fig.·1. Schematic drawing to show how kinematics were measured
from the wingtip trace. (A) Bird in rear view. ztip is the vertical position
of the wingtip at any instance of the wingbeat. When the wingtip is at
a maximum vertical distance from the horizontal, ztip,max and ztip,min are
defined. The amplitude A1 (m), was derived from fitting a single
frequency sine function to the wingtip trace, hence 2A1 represents the
peak-to-peak swing of the wingtip over a full wingbeat. The projected
wingspan, b′, is measured from tip to tip. When the wing is in the
horizontal position at downstroke b′d is measured. Similarly, b′u is
measured in horizontal position for the upstroke. The span ratio R=
b′u/b′d. (B) Side view of the flight path through still air. The inclination
angle ψ of the wingtip path to the horizontal line was calculated from
a line fitted between ztip,max and ztip,min for the upstroke ψkin,u and
downstroke ψkin,d separately. Stroke wavelength λ is the distance the
wingtip travelled during downstroke, λd, and upstroke, λu.
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using λd and λu for wavelengths of downstroke and upstroke,
respectively (Fig.·1B).

Measuring the wake topology

The method used for estimating the velocity field behind a
bird in the wind tunnel is described by Spedding et al. (2003b)
and this particular analysis of the thrush nightingale is
accounted for in detail by Spedding, Rosén and Hedenström
(2003a).

Inclination angles of the wake

The inclination angle of the wake was estimated using two
different methods:

Method 1: wake trace

The flapping wings generate sections of wake on the down
and upstroke that can be reasonably well approximated as
plane sections (Spedding, Rosén and Hedenström, 2003a)
(ψtrace, Fig.·2). The inclination angle of these sections was
estimated by drawing a line parallel to the section plane. At
low speeds this section is defined by a line from the centre of
the start vortex Γ+ to the centre of the dominating (stop)
vortex Γ– at the end of downstroke. ψtrace is the angle between
this line and the horizontal. At higher speeds, where a full
stroke wavelength could not be captured in a single image, a
line was fit to the wake trace originating from a mid up- or
downstroke.

Method 2: induced flow

Alternatively, the mean inclination angle could be taken
from a line normal to the direction of induced downwash at the

centre of the vortex structure (ψind, Fig.·2). So derived, ψind

may be supposed to be a reasonable measure of the average
direction of the mean resultant force from that part of the
wingbeat. When the induced flow is normal to the wake plane,
then ψind=ψtrace.

ψind and ψtrace were measured from upstroke and downstroke
segments separately using wake data sampled behind the mid-
wing position and central-body position only (Spedding, Rosén
and Hedenström, 2003a). The analysis included only segments
of the wake that were typical for steady flight.

Results
Characteristic results

The flight of the thrush nightingale (in both kinematic and
wake experiments) was characterised by indicators of stable
and relaxed flight. The bird had a closed bill and the head was
moving up and down in synchrony with the beating motion
of the wings, as is typical of natural flight in birds observed
in the wild, i.e. it was not flying with the head fixed in space
as when manoeuvring. The feet were fully tucked up and the
tail furled at higher speeds as typical for cruising flight.
Although quantifiable differences in degree exists, the most
striking qualitative feature is the similarity of the kinematics
across the full range of flight speeds (Fig.·3). The strongly
pronated leading edge is in shade during the downstroke,
whose progress can be followed in the right-hand columns of
Fig.·3A–C, where U=5, 7 and 10·m·s–1, respectively. During
this time the wings are almost fully extended. The wings are
then sharply flexed during the ensuing upstroke. During the
flexed upstroke the inner, arm wing is drawn close to the
body, while the outer, hand wing remains further extended
out into the flow. As the wing moves through the horizontal
plane in the upstroke at frames c→d, c→d and d→e of
Fig.·3A–C, respectively, it is the outer primary wing feathers
that are most exposed to the oncoming air. The degree of
tail spread decreases with increasing U and the tail is fully
furled at the higher flight speeds. It is also notable that the
bird has a high body tilt angle at low speeds, but at higher
speeds the body is aligned closely with the horizontal;
measured tilt angles range between 25° and 10° for flight
speeds from 5 to 10·m·s–1. The change in wingbeat
kinematics and geometry as a function of flight speed U
involve incremental changes in the quantitative descriptors of
this motion, rather than any sharp qualitative change in the
motions themselves.

Time traces describing some of these parameters (vertical
position and projected wingspan) can be seen in Fig.·4 for
U=10·m·s–1. No extra smoothing is imposed on the raw data
here, and within the measurement resolution the vertical
position is a regular periodic function, which can be quite well
fit with a single frequency component sine wave. The projected
wingspan is more complex, reflecting the folding of the wing
itself. The time traces are quite repeatable over the eight
wingbeats shown. The extensive training makes it simple to
find useable traces of this kind.

M. Rosén, G. R. Spedding and A. Hedenström 
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Fig.·2. Schematic drawing of the vertical centreplane cross section of
a wake generated by a downstroke at low speed. The positive start
vortex and the negative stop vortex are indicated as circles. The
inclination angle of the wake plane, ψtrace, with respect to the
horizontal was obtained by fitting a straight line between the start (Γ+)
and stop vortex (Γ–) at low speeds and a line parallel to the wake trace
at intermediate and high speeds. The direction of the induced
downwash was estimated from an average in a rectangular box in the
centre of the wake just above the wake trace. The inclination angle of
the induced downwash (ψind) was then calculated relative to the
vertical.
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Wingbeat kinematics from high-speed filming

Timing of the wingbeat cycle

The amplitude of the wingbeat does not change significantly
with U (Fig.·5, Table·2). Similarly, the asymmetry of the
angular excursion, as measured by A0, remains almost constant
(Table·2). The wingbeat frequency, f, is a very weak U-shape,
with a mean of 14.4·Hz and a minimum of 14.0·Hz at 6·m·s–1

(Fig.·6, Table·2). The overall variation in f is only 7% between
the extreme values at 6 and 10·m·s–1, respectively.

The successful single frequency sine fit is a consequence of
a highly repeatable wing stroke time traces. The 10 point/cycle
sampling rate is sufficient to show that smaller scale
fluctuations are unlikely to appear in the wingbeat trace. This
was tested by approximating the time traces in a Fourier series.
The function ztip(t) digitised over N discrete points can be
expressed as a discrete sum of Fourier coefficients:

A reconstructed series can then be built from a truncated series
of the first nc coefficients only, as:

As nc increases, the difference between ztip and zr diminishes.
If the true kinematics are close to a simple harmonic function,
a reasonable approximation can be found from the first term
only. The sum of the 0–3 terms from the Fourier series is
shown as the solid line in Fig.·7. The time derivative, zr′′ can
be calculated by analytical differentiation of the series
approximation, and is shown as a broken line. The inflection
points at mid up- and downstroke are partly an artefact of the
reconstruction from a reduced set of coefficients, but also
reflect a departure from pure harmonic motion at the base
frequency (Fig.·7).

Since f changes only a little, the reduced frequency k
(equation·4) declines systematically with U, ranging from
approximately 0.4 to 0.2 over U=5–10·m·s–1 (Fig.·8).
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Fig.·3. Rear view of the thrush nightingale in the wind tunnel. Consecutive frames spaced at 0.008·s intervals showing a complete wingbeat at
U=5·m·s–1 (A), 7·m·s–1 (B) and 10·m·s–1 (C), starting with the upstroke (a) to the transition between upstroke/downstroke (e,f) and through the
downstroke (j) to the transition between downstroke/upstroke.
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Moreover, since A1, hence φ, does not change significantly with
U, then J(U) is also a simple function, not significantly
different from a straight line, whose constant slope can be
predicted from

∆J / ∆U = 1 / 2φbf·. (11)

Equation·11 evaluates to 0.12·s·m–1, and the fitted slope in
Fig.·8 is 0.11·s·m–1.

In Fig.·9 the vertically and horizontally projected wingtip
traces for three different speeds have been plotted side by side
to show how the wingbeat patterns vary qualitatively over the
speed range. The plots are on a grid with aspect ratio of 1, and
show wingtip trace ztip (open circles) and the projected
wingspan b′ (filled circles) over the course of several
wingbeats. Since the wingbeat frequency f is approximately
constant (Fig.·6), the wavelength λ of the wingbeat cycle
increases with increasing U. In fact, this is the only notable
difference between the projected wing traces, which otherwise
appear similar in form. The exception to this otherwise
geometric similarity is the slightly increased time spent on the

upstroke, visible in Fig.·9 as an increasing percentage of non-
hatched area, and measured by decreasing downstroke fraction,
τ in Fig.·10.
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Fig.·5. Amplitude A1 (m) derived from a single frequency sine fit to
the wingtip trace. 2A1 represents the peak-to-peak swing of the
wingtip over a full wingbeat. There is no significant dependence of
A1 on U. (ANOVA: A1=0.0009U+0.073; N=28, r2=0.06, P>0.05). For
details see Table·2. Values are means ± S.E.M.

Table·2. Vertical direction of the wingtip over time as
described by a single frequency sine fit

U
(m s–1) N A0 (m) A1 (m) f (Hz)

5 5 –0.015 0.075 14.1
6 5 –0.015 0.077 14.0
7 5 –0.016 0.084 14.2
8 4 –0.016 0.079 14.2
9 5 –0.014 0.081 14.8
10 4 –0.014 0.079 15.0
Mean ± S.D. –0.015±0.001 0.079±0.003 14.4±0.4

Single frequency sine fit, see equation·2.
U, airspeed; N, number of sequences analysed; A0, offset of

wingbeat; A1, amplitude; f, wing beat frequency.
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Fig.·6. Wingbeat frequency f (Hz) as function of flight speed U. The
variation between maximum and minimum f is small, only 7%.
(ANOVA: f=0.060U2–0.73U+16.25; N=28, r2=0.18, P<0.05). For
details see Table·2. Values are means ± S.E.M.
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The maximum wingspan, measured at mid-downstroke, did
not change significantly with flight speed, but the ratio of the
span during the upstroke to that of the downstroke increased
with increasing speed (Fig.·11).

Kinematics and wakes

Of the primitive kinematics parameters measured in the
previous section, the only systematic variations with flight
speed were in the downstroke ratio τ, the span ratio R and, to
some degree, the wingbeat frequency f. As far as can be
measured from these data, there are no significant quantitative
or qualitative changes in wingbeat amplitude and it is only the
relative contribution of the upstroke within the wingbeat cycle
that can be associated with variation in U. This restricted range
of variation in kinematics can be linked with measured wake
structure.

Fig.·12 shows vertical centre plane cross sections of the
wake at flight speeds of 5, 8 and 11·m·s–1, complementing
those shown in Spedding, Rosén and Hedenström (2003a)

given for 4, 7 and 10·m·s–1). At U=5·m·s–1, the downstroke
wake is the most notable feature, beginning with a strong cross-
stream starting vortex (+ arrow in Fig.·12). By contrast, the
stopping vortex (– arrow) is more diffuse and weak. While the
upstroke appears to be mostly aerodynamically inactive, as
indicated by the low-magnitude induced flow vectors in the
upstroke part of Fig.·12, and it was only by including
contributions to the total circulation from elements that appear
during the upstroke traces that a satisfactory crude balance
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between weight and vertical impulse could be achieved in
Spedding, Rosén and Hedenström (2003a). The trace upstroke
vorticity in Fig.·12A is thus important.

At 8·m·s–1 the downstroke again begins with a strong
starting vortex, while the stopping vortex and upstroke leave
behind a complex pattern of vorticity, which can now be seen
throughout the entire upstroke region. The induced flow and
its downward component are more noticeable, indicating
upstroke generation of lift (at the expense of additional
drag).

At 11·m·s–1 the wake pattern trails through the entire
wingbeat, with neither the beginning nor end of the downstroke
being particularly distinct. This implies a mode of flight that
most closely resembles a constant circulation model, with an
aerodynamically loaded wing on both down- and upstroke
(Rayner, 1986; Spedding, 1987), although the constant
shedding of cross-stream vorticity is not the same as the
proposed absence of such shedding in the constant circulation
model.

Just as in the kinematics analysis, the most evident
qualitative variations in wake structure come from the relative
magnitude of the contribution from the upstroke.

Wake geometry

The angle of the induced downwash ψind, the actual wake
trace ψtrace defined by the core vortex structures, and the path
of the wingtip ψkin as it progresses through the air (equation·8)
are presented in Fig.·13A,B (downstroke) and Fig.·13C,D
(upstroke). There are significant differences between the
kinematics data and the data from the actual wake
measurements. Also, the two different wake measurements
differ in both upstroke and downstroke. Most of the differences
simply show that the wake does not remain frozen in place on
the path left by the wing trace. Others indicate interactions

between upstroke and downstroke components. These will be
discussed in context in the next section.

Discussion
Basic principles

The Joukouski lift, L′, per unit span of an aerofoil section is

L′ = ρΓU·. (12)

If the lift required is a constant (for steady weight support),
then in a constant density (ρ) environment, as U increases the
circulation Γ required decreases. The demands on the lifting
surface are reduced (the wings can operate at a smaller angle
of attack and lift coefficient) because the mass flow available
for downward deflection has increased. The same
interpretation can be made from the wake. Simplifying greatly,
suppose a wing pair of span 2b, moves at speed U, then the
area A of a rectangular wake left behind during some
characteristic time, Tc, would be A=2bUTc. The wake impulse
over this segment is then

I = ρΓA·. (13)

Because A rises as U increases (the wings are tracing out a
larger area per unit time), we arrive at the same conclusion,
that Γ need not be so large at high U to provide a given reaction
force.

The demands of weight support thus become easier to satisfy
as flight speed increases. The drag on the wings and body rises
steeply, however (as U2), and the wings/wake must also
generate a net horizontal force to balance the sum of all drag
components. In the absence of a separate thrust generator, the
wake geometry itself must be arranged to produce the thrust.
The differing functions of the downstroke and upstroke
account for this.
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Downstroke ratio decreases with U

The differing roles of the down- and upstrokes were seen
in the traces of Fig.·9, and quantitatively in Fig.·10. The
downstroke ratio τ decreases significantly from values of close
to 0.5 at low speed to about 0.45 at high speeds. At low speeds,

the largest contributor to weight support is the downstroke,
which is responsible for the generation of a large-scale
structure with properties similar to a vortex loop (Spedding,
Rosén and Hedenström, 2003a). This structure lies at a
relatively small angle to the horizontal (Fig.·13B), and so most

Fig.·12. Composite colour-coded spanwise vorticity with superimposed velocity field vectors for flight speeds U=5, 8 and 11·m·s–1. Data are
from the vertical centreplane. Velocity vectors are shown at half resolution. The vorticity is mapped symmetrically about a 10-step colour bar.
The resolution of the colour bar matches the worst-case uncertainty in the measurement, so all visible features exist. The colour bar is rescaled
to local absolute maxima at each different flight speed; these are ±700, 280 and 200·s–1, respectively. The regions corresponding to a starting
and stopping vortex are indicated by a (+) and (–) arrow, respectively. The stroke wavelength λ is shown as a black bar and the wingspan, 2b,
and mean chord, c, is shown for reference. For more details and examples of wakes at other speeds (4, 7 and 10·m·s–1; see Spedding et al.,
2003a).
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of the impulse, directed normal to the plane of the structure,
points upwards. The forward component is comparatively
small because at low speeds the total viscous and pressure
drags are also small. The direct contribution of the upstroke
to weight support is difficult to ascertain (Spedding, Rosén
and Hedenström, 2003a), but it appears not to be zero.
Nevertheless, a large drag penalty from an exotic upstroke
motion cannot be balanced by the downstroke structure, and
so the direct contribution of the upstroke to weight support
can be inferred to be small. As U increases, the downstroke
can more readily provide an increasing thrust component,
while the upstroke assumes a more significant role in weight
support. As the wake structures left behind during the upstroke
become more evident (Spedding, Rosén and Hedenström,
2003a; Fig.·12), it occupies a larger fraction of the total
wingbeat.

A decrease of τ with increasing U has been observed also in
other species (Park et al., 2001; Tobalske and Dial, 1996), and
even if the absolute range of τ varies between species it
commonly starts at about 0.5 at the slowest flight speeds
measured in a wind tunnel.

Geometry of the wake and its induced flow

Following the classical textbook treatments, where a
velocity field can be conveniently described as the flow
induced by the presence of a certain distribution of vortex
elements, one searches for similar experimental descriptions
of the measured flows. In Spedding, Rosén and Hedenström

(2003a), it was noted that the true wake flows behind a flapping
bird were complex and the most appropriate reduction of the
velocity fields to simpler forms generated by a small number
of vortex lines in three dimensions was an intricate exercise.

To make a correspondence between wing kinematics and
wake structure, a simpler data subset is considered here; only
the vertical centreplane velocity fields and their associated
spanwise vorticity distributions, as in Fig.·12. Fig.·14
summarizes the three different wake inclination angles, ψind,
ψtrace and ψkin, for the downstroke and upstroke, as a function
of flight speed U, condensing the full measurements of Fig.·13.

In the downstroke (Fig.·14A), all three angles have
measurably different trends with increasing U, but the same
measures from the upstroke (Fig.·14B) are similar in both
sign and magnitude. The differences in downstroke can be
explained in a qualitative manner in two steps.

(1) ψtrace�ψkin. Since the relative changes in both wingbeat
frequency f (Fig.·6) and downstroke ratio τ (Fig.·10) are small
compared with ∆U/U=2/3 [where U is a characteristic flight
speed, e.g. (Umax–Umin), the advance ratio, J=1/K, increases
almost in direct proportion to U, and the inclination angle of
the path of the wingtip trace, ψkin, decreases similarly. The
decrease of ψkin with U is a poor predictor, however, of the
position of the vortex wake structure as measured by ψtrace,
which increases with U. First, we note that the wake structure
is measured about 17.5 chord lengths downstream from the
bird and so represents the pattern as the flow has evolved over
about 2.4λ at 5·m·s–1 and 1.3λ at 10·m·s–1 (or 2.4T and 1.3T,
respectively). During this time, the wake has moved by self-
induced convection, downwards from its starting point; let us
denote the vertical component of this velocity wself. Since the
starting vortex is created first in the wingbeat cycle, at any later
time it has had longer to move than other parts, and ψtrace,
measured under the connecting line from start vortex to stop
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vortex, will always be lower than the trace of the wingtip ψkin.
At the lowest flight speed of 5·m·s–1, the strength of shed
vortices is higher, induced downwash velocities are higher, and
wself will be higher compared with the forward speed. As U
increases, wake element circulations decrease, and the ratio
wself/U decreases rapidly. At Umax, ψtrace is almost equal to ψkin,
approaching it from below.

(2) ψind is derived from the mean measured downwash angle
at the mid-point of a wake element. At low flight speeds, the
downwash is tilted further aft than would be inferred from the
isolated wake vorticity (at the centreplane only) left behind
during the downstroke. The arguments for the measured ψtrace,
based mainly on self-induced wake motion, do not apply
because the trend for ψind is opposite; it starts higher than ψtrace

and then declines with increasing U.
There is no simple correlate with the measured wingbeat

kinematics to explain the magnitude and trend of ψind(U).
Spedding, Rosén and Hedenström (2003a) reported no
significant out-of-plane deformations of the inferred 3D wake
structures, even though the supporting data are sparse. There
are no obvious trends with amplitude (Fig.·5) or stroke plane
inclination angle (M.R., G.R.S. and A.H., unpublished data
from high-speed side-view sequences) to indicate a
commensurate change in large-scale kinematics, which would
then in any case be inconsistent with the previous discussion
of ψtrace vs. ψkin.

Fig.·3 shows a strong pronation of the leading edge during
mid-downstroke for all three flight speeds (Fig.·3Ai, Bh, Ci).
The middle case (7·m·s–1) has the largest projected area of the
wing on to the image plane. Strong pronation will lead to an
effective aerodynamic angle of attack that gives a backward
component to the induced downwash. As U increases, this
component will become comparatively smaller, and so the net
downwash angle should increase, decreasing ψind. The
decrease of ψind is actually delayed until middle-range flight
speeds, due to the increased pronation up to that point. Lacking
detailed data on the 3D flow field close to the wing and on
similar details of the wing kinematics, these explanations are
speculative. Nevertheless, the trend of ψind(U) seems very
likely to be linked most closely with variations in the effective
local angle of attack of the wing, and it would be interesting
to know more.

The upstroke wake angles in Fig.·14B all decrease in
magnitude with decreasing U. The same considerations apply
as for the corresponding downstroke angles (with appropriate
changes in sign), but since the wake flow is weaker, then so
are departures due to self-deformation or convection. ψind is
consistently smaller in magnitude at lower flight speeds (closer
to horizontal) than both ψtrace and ψkin, and the explanation is
again likely to be related to details of effective angle of attack
during the upstroke.

While the relationships between ψtrace,  ψind and ψkin are not
completely obvious a priori, they can be understood in a
consistent way. They are clearly significantly different from
the most simple ideas about wingbeat kinematics and
aerodynamics – the vortex wake does not lie frozen along the

wingtip trace, the downwash is not normal to the plane of the
wake and the wake structure could not readily be predicted or
inferred from the wing motions alone. Appropriate and as-yet-
unrealizable computations would be required to properly
calculate the unsteady flow field. When that time arrives, data
such as these can serve as diagnostics for comparison.

Span ratio and wing flexing

One measure that characterises the unusually flexible
geometry of bird wings is the span ratio R. It increases linearly
with U (Fig.·11), and its effect can be seen qualitatively in
Fig.·9. Flexion of the wing during the upstroke is thought to
be essential in providing positive thrust in cruising flight and
in avoiding excess drag in slow speed flight. The wake
measurements in Spedding, Rosén and Hedenström (2003a)
and Fig.·12 suggest a lifting upstroke at most flight speeds and
this is supported by the gradual increase of R with U in Fig.·11.
This idea is consistent with the corresponding decrease of τ
with U in Fig.·10. The mid-downstroke effective wingspan
does not change significantly with U but the mid-upstroke
does, so the change in R is mostly related to changes in the
upstroke (see Fig.·11).

R is also reported to increase with U in the black-billed
magpie Pica pica, pigeon Columba livia, ringed turtle-dove
Streptopelia risoria and cockatiel Nymphicus hollandicus
(Tobalske and Dial, 1996; Hedrick et al, 2002). This simple
relationship is not universal, however. In the case of the barn
swallow Hirundo rustica, R has been observed to decrease with
U. R falls from 0.5 to 0.15 at flight speeds between 4 and
13·m·s–1 (Park et al., 2001). Both the morphology and flight of
the barn swallow are very different from that of the thrush
nightingale (the swallow is lighter, with thinner, more pointed
wings; wing loading Q=13·N·m–2; AR=7.4). The barn swallow
is adapted for slow manoeuvring flight and exhibits an
intermittent flight style with a characteristic wingbeat pause at
high speed, which is not present in the thrush nightingale. The
morphological and behavioural differences ought to be manifest
in the wake structure and it would be useful to conduct
combined wake and kinematic studies such as the present study
on the barn swallow, partly to provide a test of the generality
of the conclusions for the thrush nightingale wake.

Not only does the projected wingspan change between
downstroke and upstroke, the relative folding of the wing also
changes. The most notable difference is that the primary wing
feathers are more exposed to the oncoming air than the arm
section of the wing in the flexed upstroke. It is usually assumed
that the inner part of the wing is responsible for most of the
active aerodynamics generated in the upstroke. Here it appears
that when any part of the wing is aerodynamically active
during the upstroke in the thrush nightingale, it is the hand
section of the wing (e.g. Fig.·3). The notion of the importance
of the arm wing for the upstroke circulation originates from an
analysis of the wake of a kestrel in flapping flight where the
arm evidently was important (Spedding, 1987), and this idea
agreed well with long-standing kinematic data (Brown, 1953).
The results presented here suggest a more varied phenomenon.
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Frequency is near constant

The wingbeat frequency is relatively constant, with only a
weak U-shape across the speed range (Fig.·6). This feature of
thrush nightingale flight was also reported by Pennycuick et al.
(1996). Consequently, reduced frequency parameters such as k
and J (equations·4, 7) cannot be constant. That is indeed shown
in Fig.·8, where k decreases and J increases, both almost
linearly with increasing U. Apparently it is unimportant for the
bird to maintain a constant reduced frequency over its range of
flight speeds, and there is no attempt to adjust f and/or A1 to
achieve even short ranges of constant k or J. The ratio of
timescales between stroke period and a mean flow convective
time does not seem to be the determining factor in selection of
flapping frequency.

A number of theoretical models predict optimal reduced
frequencies for flapping flight. In a 2D, direct numerical
simulation about pitching and rotating wing segments at
Reynolds number Re=103, Wang (2000) finds an optimal
reduced frequency equivalent to k≈0.2 for values of
K=1/J�0.2, or J<5.0. k and J are never this low for thrush
nightingale flight (Fig.·8). Hall et al. (1997) constructed an
unsteady inviscid model (with quasi steady viscous
corrections) for large amplitude flapping flight and showed
optimal advance ratios of between G and S for minimum power
loss. This translates to 0.3<J<0.4 for our definition of J, which
is based on φ rather than fixed 2π as an amplitude measure.
The optimal values of k and J produced by these different
formulations are quite close to each other, although, as noted
by Wang (2000), it is not clear why this should be. In Wang’s
simulation the optimal frequency is determined by natural
timescales of growth and shedding of both leading and trailing
edge vortices. The result of Hall et al. (1997) also concerns a
ratio of advective to wing cycle times, but for entirely different
reasons as there are no separation vortices in their inviscid
model. In the thrush nightingale the measured value of k never
falls to Wang’s optimum of 0.2 and J does not fall to the
0.3–0.4 range predicted by Hall et al. (1997).

The perils in simply comparing apparently similar values of
a reduced frequency parameter are further illustrated by
reference to the thorough and careful analysis of Lewin and
Haj-Hariri (2003). In a numerical solution of the 2D flow
around a heaving aerofoil they define a usual Strouhal number
St by

St = fAw / U·, (14)

where all the symbols have their usual meanings and Aw is the
wake amplitude, from vortex peak to vortex peak. It is related
here to the half-wingbeat amplitude very approximately as
Aw=2A1. The authors carefully describe the dependence of their
solutions on k and St, and find a broad optimum range of St
between 0.3 and 0.5. Defined similarly, St=0.46 at U=5·m·s–1

and St=0.23 at U=10·m·s–1 here. The numbers are seemingly
in agreement. However, St is essentially proportional to the
product of k and a heaving (or flapping amplitude). In Lewin
and Haj-Hariri (2003), k ranges from 2 to 10, and here k ranges
from 0.42 to 0.84. The flapping frequencies are much lower,

but amplitudes are much higher, and similar values of St do
not necessarily entail similar values of k. Lewin and Haj-Hariri
point out that neither St nor k, by themselves, are sufficient to
characterise the different flow regimes (also noted and
investigated by Jones et al., 1996; Jones and Platzer, 1997),
and so once again, some caution is required in interpretation.

It would be extremely interesting if the thrush nightingale
were found to be operating at a preferred reduced frequency,
because it would imply a close coupling or resonance between
fluid dynamical timescales of the mean and fluctuating
motions. Then the notion of preferred wingbeat kinematic
styles might be supportable. However, the constant frequency
data do not show this. The fact that the wingbeat frequency of
the thrush nightingale only varies by 7% over the range of U
investigated suggests that other factors ultimately dictate the
frequency selection. These might include preferred strain rates
in muscles and tendons, preferred mechanical resonances
dictated by the morphology, or preferred parameter ranges in
the associated physiological systems.

The wingbeat frequency of a thrush nightingale studied at
the same facility in Lund by Pennycuick et al. (1996) showed
a similarly weak dependence on U. The slightly lower absolute
values of f are consistent with the 10% smaller mass.

Concluding remarks

This paper serves both as a record of the wing kinematics
that produce the wake structures observed in Spedding, Rosén
and Hedenström (2003a) and also as corroborating evidence
for some of the points discovered there. [Note that it is not an
exhaustive attempt to quantify all aspects of thrush nightingale
kinematics but is restricted to a dataset that can be compared
to the wake data presented in Spedding, Rosén and
Hedenström (2003a).] One notable feature of both the wake
studies and the associated wing kinematic parameters is the
absence of any sign of a discontinuous or sudden variation in
any of the measured quantities with U. Much speculation has
arisen concerning the possible existence of gaits in animal
flight (Rayner, 1993; Tobalske, 2000; Hedrick et al., 2002), but
none of the quantitative experimental data covering a
continuous range of flight speeds (as opposed to one or two
instances) show any measured quantity with abrupt variation,
commensurate with some qualitative change in flight style.
The data from this paper, and its companion wakes study
(Spedding, Rosén and Hedenström, 2003a) are the only source
of quantitative data for aerodynamic measurements at more
than one single flight speed, and offer no support for the notion
of gaits. If it seems convenient to continue to describe
categories such as ‘slow flight’ and ‘fast flight’, it should be
noted that there is no particular (aerodynamic, mechanical,
physiological) reason for singling out two, or any other
number, of discrete conditions that appear simply as points
on a smoothly varying continuum. If behavioural and/or
ecologically interesting points are identified, such as minimum
power speed, or maximum range speed, then these occur
because of their location on equally smooth curves that predict
or measure mechanical or metabolic power requirements, and
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not because they represent qualitatively different wake
structures or wing kinematics.

The variations observed in overall wake geometry can be
explained by, or at least reconciled with, the overall wing
kinematic data, although observed wake structures and their
position would not be easy to deduce from the kinematics
alone.

Technology does not yet permit time-resolved, 3D DPIV
studies of the wake at these flow speeds, and safety
considerations limit the proximity of the bird (and its field of
vision) to the laser light sheet. As a result, some care and
caution is required in making limited inferences back from
some complex flow structure to conditions on the wing when
it was originally created.

One feature of the wake that is not yet adequately explained
through the available kinematic data is the strong asymmetry
between starting and stopping vortices at the beginning and end
of the downstroke. This asymmetry has been noted in all
quantitative wake studies of slow speed flapping flight
(Spedding et al., 1984, 2003a,b; Spedding, 1986) but cannot
be readily identified with a similar asymmetry in the wingbeat.
Fig.·3 shows that the wings meet much closer together at the
end of the downstroke than after the upstroke and interference
between the wings and the shed vorticity was suggested by
Spedding (1986). Fig.·7 shows that acceleration magnitudes of
the wingtip do not differ at the end of each half-stroke. The
diffuse distribution of vorticity produced at the end of the
downstroke, at the very least, is a significant nuisance in
calculating wake-based force estimates (Spedding et al.,
2003a) and the story of its origin is likely to be interesting.

Finally, as in Spedding et al. (2003a), we should recall that
these conclusions have been obtained from studies in just one
species, and the generality of the results is not yet clear. The
success of the present work in associating many wake features
with their generating kinematic conditions bodes well for
future studies using other wing geometries and kinematics.

This work was supported by the Knut and Alice
Wallenberg foundation, Carl Tryggers foundation and the
Swedish Research Council (to A.H.). The experiments were
carried out under licence from the Lund/Malmö Ethical
Committee.

List of symbols
A area
A1 amplitude
Ao offset of amplitude
Aw wake amplitude
AR aspect ratio
b semi wingspan
b′ projected wingspan
c mean chord
f wingbeat frequency
g acceleration due to gravity
I wake impulse

J advance ratio
K reduced frequency based on wingtip speed
k reduced frequency based on mean wing chord
L′ lift per unit span
m body mass
Q wing loading
R span ratio
Re Reynolds number
S wing area
s arc length
St Strouhal number
T stroke period
Tc characteristic time
t time
U flight speed
wself vertical component of self-induced convection
wtip vertical wingtip velocity
ztip vertical wingtip position
Zr approximation of ztip

Γ circulation
φ stroke angle
ϕ phase offset
λ stroke wavelength
ρ air density
τ downstroke fraction of wingbeat
ω radian frequency
ψind inclination angle of induced flow
ψkin inclination angle of wingtip trace
ψtrace inclination angle of wake trace

Subscripts u and d denote upstroke and downstroke,
respectively.
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