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Oxidants, antioxidants and the ischemic brain
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Summary

Despite numerous defenses, the brain is vulnerable to apoptosis, mitochondrial permeability transition and
oxidative stress resulting from ischemia/reperfusion. poly(ADP-ribose) polymerase activation provides
Excitotoxic stimulation of superoxide and nitric oxide additional mechanisms for oxidative damage and new
production leads to formation of highly reactive products, targets for post-ischemic therapeutic intervention.
including peroxynitrite and hydroxyl radical, which are Because oxidative stress involves multiple post-ischemic
capable of damaging lipids, proteins and DNA. Use of cascades leading to cell death, effective prevention/
transgenic mutants and selective pharmacological treatment of ischemic brain injury is likely to require
antioxidants has greatly increased understanding of the intervention at multiple effect sites.
complex interplay between substrate deprivation and
ischemic outcome. Recent evidence that reactive
oxygen/nitrogen species play a critical role in initiation of Key words: brain, ischemia, oxidative stress, antioxidant.

Introduction

Oxidative stress has been defined as ‘a disturbance in tAdthough increased expression of these enzymes can occur in
pro-oxidant—antioxidant balance in favour of the formerresponse to ischemia (Fukui et al., 2002), endogenous
leading to potential damage’ (Sies, 1991). The brain consumastioxidant capacity can be overwhelmed, leading to increased
a large quantity of oxygen, making it particularly susceptiblesuperoxide and hydrogen peroxide concentrations.
to oxidative stress. Natural formation of oxidants during Nitric oxide formation is both constitutive and inducible.
mitochondrial electron transport, auto-oxidation of somedschemia-induced nitric oxide overproduction is in part caused
neurotransmitters  (e.g. norepinephrine, dopamine) anbly glutamatergic-mediated increases in intracellular calcium
initiation of events during hypoxia or ischemia, can result irconcentration, resulting in a calmodulin-dependent
oxidant formation and subsequent tissue damage. Oxidatiwgregulation of nitric oxide synthase (NOS; Dawson et al.,
stress can be traced primarily to formation of superoxide ant991; Garthwaite et al., 1988, 1989). Nitric oxide can be
nitric oxide. Both molecules have important roles in healthconsumed by reacting with hemoglobin (Ignarro et al., 1987;
serving as regulators of blood flow and neurotransmissioroshi et al., 2002). Flavohemoglobin-based enzymes (nitric
Perturbation in the production and/or metabolism of eitheoxide reductase, nitric oxide dioxygenase) capable of
molecule can have pathologic consequences. specifically metabolizing nitric oxide have been identified in

Principal sources of superoxide include electron leak durinbacteria (Hausladen et al., 1998), and flavohemoglobin-like
mitochondrial electron transport, perturbed mitochondriakctivity has been identified in mammalian cells (Gardner et al.,
metabolism and inflammatory responses to injury (HalliwelR2001). Yet, an important non-enzymatic mechanism regulating
and Gutteridge, 1999). The brain has potent defenses againdric oxide concentration is its reaction with superoxide
superoxide including dietary free-radical scavengergielding peroxynitrite (Beckman et al., 1990).

(ascorbate, a-tocopherol), the endogenous tripeptide Under pathophysiological conditions, excessive nitric oxide
glutathione, and enzymatic antioxidants. Enzymatigroduction can elicit nitrosative damage (Espey et al., 2000)
antioxidants regulate superoxide concentration by dismutatiovia independent nitrosylation of protein heme sites (e.g.
of superoxide to hydrogen peroxide (superoxide dismutase aytochromec; Schonhoff et al., 2003) or through its reaction

SOD; Fridovich, 1995), which is then converted to watemproducts with oxygen or other nitrogen oxides. Superoxide can
(peroxidases such as glutathione peroxidase anchuse oxidative damage of iron/sulfur clusters of aconitase
peroxiredoxin) or dismuted to water and oxygen (catalasefGardner and Fridovich, 1991), an important enzyme in the
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tricarboxylic acid cycle. The major oxidative stress produceaxidative stress in brain ischemia is to develop therapeutic
by superoxide, however, is derived from its participation ininterventions. To this end, innumerable pharmacological
peroxynitrite formation (Beckman et al., 1990) and itsantioxidants have been evaluated. Although these agents have
involvement in the iron-catalyzed Haber—Weiss reactiomeceived the greatest scrutiny for therapeutic potential, the
(superoxide-driven Fenton chemistry; Liochev and Fridovichsame agents can also be used to dissect the role of oxidative
2002), causing hydrogen peroxide to be converted to hydroxgtress in ischemic brain injury by assessing the impact of
radical. Hydroxyl radical, peroxynitrite and peroxynitrite- their purported mechanism of action on ischemia-induced
derived products (hydroxyl radical, carbonate radical andéhtracellular cascades and outcome. On the other hand, the
nitrogen dioxide) all have the potential to react with andstudy of pharmacological agents is limited by bioavailability
damage most cellular targets including lipids, proteins andnd undefined secondary effects when introduced intm an
DNA. vivo environment. Thus, transgenic and pharmacological
Direct measurement of reactive oxygen (ROS) and nitrogeimterventions can be viewed as complimentary tools to examine
(RNS) species concentrations in tissue subjected to ischemtaie role of oxidative stress in ischemic brain injury. This
reperfusion is problematic (Tarpey and Fridovich, 2001). Loweview will consider various possible contributions of
intracellular concentrations, short half-lives and the efficienbxidative stress to ischemic brain injury, with a focus on
and redundant systems that have evolved to scavengalidation of the mechanisnvia either transgenic or
ROS/RNS require that any detection technique must bpharmacological intervention (Fid).
sensitive and specific enough to compete with antioxidant
defenses against the species in question (Fridovich, 2003;
Glebska and Koppenol, 2003; Myhre et al., 2003; Zhao et Inhibition of lipid peroxidation
al., 2003). Additionally, the methods applied must have Free radical damage was one of the earliest mechanisms
intracellular access to monitor the intracellular milieu. Thispostulated to explain tissue demise after a cerebral ischemic
undoubtedly has contributed to confusion surrounding the roléasult (Flamm et al., 1978). Stroke research rapidly focused on
of these species in disease. Most commonly, ROS/RNS halipid metabolism for good reason. During cerebral ischemia,
been tracked by measuring stable metabolites (e.dree fatty acid concentrations are markedly increased, the
nitrates/nitrites) or ‘footprints’ of the reactions of theselargest increase being that of arachidonic acid (Bazan, 1970;
molecules with lipids (e.g. thiobarbituric acid adducts, 4-Marion and Wolfe, 1979; Rao et al., 1999; Siesjo and Wieloch,
hydroxynonenal), DNA (e.g. 8-hydroxyguanine) or proteins1983). Ca&*-activated phospholipases C ang Aesult in
(e.g. nitrotyrosine). Electrochemical and microdialysisphospholipid hydrolysis, while resynthesis of phospholipids
approaches have also proven useful in tracking superoxidequires ATP. As a result, ischemia-induced*daflux and
(Fabian et al., 1995) and hydroxyl radical (Globus et al., 1995nergy failure promote free fatty acid release and concomitant
concentrations. membrane damage. Free fatty acid metabolism has multiple
An alternative approach to the study of ROS/RNS imother adverse effects including inhibition of oxidative
ischemic brain is the use of either transgenic animals ghosphorylation (Wojtczak, 1976), oxidative conversion of
pharmacological agents to alter antioxidant potential. Fofree arachidonic acidsia the cyclo-oxygenase pathway to
example, if targeted disruption of a specific SOD genetieicosanoids (thromboxanes and prostaglandins) (Gaudet et al.,
coding sequence increases ischemic tissue damage, evided®80), free radical generation and lipid peroxidation-mediated
is provided that the enzyme plays a beneficial role in thehain reactions (Imaizumi et al., 1986; Watson et al., 1984),
response of brain to oxidative stress. This is further supporteahd cytotoxicity from lipid peroxidation products (e.g. 4-
if overexpression of the same gene results in increased tissigdroxynonenal; Kruman et al., 1997), which may stimulate
tolerance to ischemia. There are two major limitations to thapoptosis (Mattson et al., 2000).
use of transgenic mice in study of oxidative stress. First, Increased nitric oxide concentrations associated with
compensatory mechanisms, perhaps developed duringchemia may have dual effects on lipid peroxidation. Reaction
ontogeny so as to allow survival in the absence/overexpressiofi nitric oxide with superoxide causes formation of
of the gene, are rarely considered, particularly in the contexteroxynitrite that initiates lipid peroxidatiovia reaction of
of the experiment being performed (lbrahim et al., 2000lipids with its decomposition products hydroxyl radical and
Przedborski et al., 1992). Second, although progress istrogen dioxide (Brookes et al., 1998; Rubbo et al., 1994). In
being made in the use of conditional ‘knock-outs’ andcontrast, nitric oxide itself may directly inhibit lipid
‘overexpressors’, in which a selected gene’s expression jgeroxidation by intercepting alkoxyl and peroxyl radical
decreased/increased in response to a specific pharmacologicaérmediates thereby terminating chain propagation reactions
stimulus, most work continues to be performed with animalgNicolescu et al., 2002; Niziolek et al., 2003; Rubbo et al.,
that retain their knock-out (or overexpressing) statud994).
throughout the entire ischemia/reperfusion interval. This Despite this, it has been difficult to confirm that lipid
makes it difficult to determine when and how the gene produgieroxidation is a primary and critical contributor to ischemic
influences ischemic injury. cell death as opposed to being a result of intracellular
The ultimate goal for understanding the mechanism obrganelle dysfunction mediated by oxidative stress (Watson,
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Fig. 1. Ischemia/reperfusion presents numerous opportunities for formation of reactive oxygen/nitrogen species and resultguatytissue
Simultaneously, numerous site-specific targets for therapeutic intervention are presented. It quickly becomes clearitmabirdniingle
pathway may be insufficient to provide persistent protection against oxidative stress. (1) Inhibition of lipid peroxidlatinibjt{@n of xanthine
oxidase; (3) the superoxide dismutases (SOD) and their mimetics; (4) catalase and glutathione peroxidase (GSHPX); (® @B8athio
mimetics; (6) nitric oxide synthase (NOS) inhibition; (7) metal chelators; (8) poly(ADP-ribose) polymerase (PARP) int8pitaitectiondrial
permeability transition inhibitors; (10) spin traps and peroxynitrite scavengers.s@peroxide; C@-, carbonate radical; 2., hydrogen
peroxide; GSSG, glutathione disulfid®H, hydroxyl radical;;NO2, nitrogen dioxide;NO, nitric oxide; ONOO, peroxynitrite; NAD,
nicotinamide adenine dinucleotide.

1998). Indeed, numerous pharmacological inhibitors of lipicallopurinol or oxypurinol. Allopurinol is oxidized by xanthine
peroxidation have been tested. The most notable is tirilazadxidase to oxypurinol, which binds to the active site of
a non-glucocorticoid steroid. Despite abundant preclinicakanthine oxidase causing xanthine oxidase inhibition. Thus,
evidence that tirilazad improved ischemic outcowi® its  either compound can be administered with the same net
putative action as inhibitor of lipid peroxidation (Kavanaghmechanistic effect.
and Kam, 2001), no effect on outcome from human stroke was Allopurinol decreases post-ischemic cerebral uric acid,
observed (Haley, 1998). It should be noted that virtually all okanthine and conjugated diene concentrations (Marro et al.,
the positive preclinical studies recorded only a short-termi994; Nihei et al., 1989), preserves ATP (Williams et al.,
outcome (i.e. several days post-ischemia), while human trials992), and reduces edema (Patt et al., 1988). Despite this,
measured the outcome after 3 months. Although it is clear thatudies employing the requisite physiological control and long-
lipid peroxidation occurs in response to oxidative stress antkrm outcome analysis of effects of xanthine oxidase inhibitors
that membrane disruption is disadvantageous to the cell, tlmm post-ischemic behavior and histology have not been
available outcome data are insufficient to allow the conclusioperformed. The results from short-term outcome studies in
that this mechanism is critical in defining ischemic outcomeadult rats have been mixed (Lindsay et al., 1991; Martz et al.,
1989). More encouraging results have been observed in
perinatal brain (Palmer et al., 1993, 1990; van Bel et al., 1998),
Inhibition of xanthine oxidase but no long-term outcome studies have been reported. As a
Metabolism of ATP leads to accumulation of hypoxanthineresult, despite biochemical evidence of diminished oxidative
(Morimoto et al., 1982). In non-ischemic tissue, xanthinestress from inhibition of hypoxanthine metabolism, evidence
oxidase exists as a nicotinamide adenine dinucleotide (NAD}pupporting xanthine dehydrogenase/oxidase activity as a major
reducing hydrogenase. During ischemia, 2Gstimulated contributor to ischemic outcome is modest. This is not
proteases cause irreversible partial cleavage of xanthireirprising because many other avenues for superoxide and
dehydrogenase to xanthine oxidase, which in turn catalyzés/drogen peroxide generation (e.g. inflammation) are
oxidation of hypoxanthine to xanthine. Xanthine oxidaseunaffected by xanthine oxidase inhibitors.
further oxidizes xanthine to produce uric acid, superoxide and
hydrogen peroxide (Parks and Granger, 1986). Thus, xanthine
oxidase inhibitors have been subjected to extensive scrutiny ~ The superoxide dismutases and their mimetics
with respect to antioxidant potential. Most work has used either As stated above, superoxide is a key constituent in oxidative
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stress. It is derived from various sources at different stages sichemia/reperfusion and suggest a therapeutic role for SOD
reperfusion. There are three major endogenous superoxidametics that localize in the extracellular compartment.
dismutases. Cu,Zn-SOD (SOD1) is principally found in the Recent pharmacological advances have allowed the advent
cytosolic and lysosomal fractions, but is also in theof potent SOD mimetics. Although bovine SOD has shown
mitochondrial intermembrane space (Okado-Matsumoto ansbme therapeutic potential (Liu et al., 1989), its short-half life
Fridovich, 2001). MnSOD (SOD2) is found in the in circulation, inability to penetrate the blood—brain barrier and
mitochondrial matrix. Both Cu,Zn-SOD and MnSOD arepotential antigenicity have limited its appeal. Several major
abundant in neural tissue and for this reason have receivethsses of SOD mimetics have been reported to date (Sheng et
greatest scrutiny. Knock-out and overexpressing mutants fal., 2002a): Mn(ll) cyclic polyamines (Riley, 2000), Mn(lll)
both isozymes have been created, but direct comparison sélen derivatives (Baker et al., 1998), Mn(lll) porphyrins
the relative importance of the two enzymes has not beefBatinic-Haberle, 2002; Batinic-Haberle et al., 2002) and
made. Cu,Zn-SOD overexpression reduces ischemic damaggble cyclic nitroxides (Goldstein et al., 2003a; Kwon et al.,
resulting from ischemia/reperfusion (Yang et al.,, 1994)2003; Sugawara et al., 2001). All eliminate superoxide in
However, neither Cu,Zn-SOD overexpression nor Cu,Zn-SORatalytic fashion, with catalytic rate constants being in excess
targeted deletion alter the outcome from permanent focalf 1P M—1s-1 except in the case of nitroxides. With nitroxides
ischemia (Chan et al., 1993; Fujimura et al., 2001), indicatinthe catalytic rate constant, involving nitroxide/oxoammonium
the requirement of reperfusion for this enzyme to play a rolecation redox couple, is limited by the very slow nitroxide
In contrast, MnSOD targeted deletion worsens the outcomexidation with superoxide (<8M-1s7) and is <16M-1s1
from both temporary and permanent middle cerebral artergt pH7.4 (Goldstein et al., 2003a). The compounds variously
occlusion (Kim et al., 2002; Murakami et al., 1998). Cu,Zn-have selective SOD-like properties [Mn cyclic(ll) polyamines
SOD overexpression has been shown to inhibit post-ischem({Salvemini et al., 1999)], modest catalase-like activity [Mn(lll)
mitogen-activated protein kinase activation (Noshita et alsalen derivatives (Baker et al., 1998) and Mn(lll) porphyrins
2002), the Bad cell death signaling pathway (Saito et al(Day et al., 1997)], potential to oxidize nitric oxide [oxoMn(V)
2003), caspase activation (Sugawara et al.,, 2002b), earbalen derivatives) (Sharpe et al., 2002) and Mn(lll) porphyrins
mitochondrial cytochrome release (Fujimura et al., 2000), (Spasojevic et al.,, 2000) and oxidized nitroxides, i.e.
DNA fragmentation (Fujimura et al., 1999) and poly(ADP-oxoammonium cations (Goldstein et al., 2004)], and ability to
ribose) polymerase (PARP) activation (Narasimhan et algliminate peroxynitrite [Mn(lll) salen derivatives (Sharpe et
2003). Cumulatively, these data indicate a potential proal., 2002), Mn(lll) porphyrins (Ferrer-Sueta et al., 2003)
apoptotic role for superoxide in ischemia/reperfusion. This caand oxoammonium cations (Goldstein et al., 2004)] or
be abated by SOD overexpression and potentially by treatmepéroxynitrite-derived products such as nitrogen dioxide radical
with  SOD mimetic compounds. However, constitutive (nitroxides; Goldstein et al., 2004, 2003b) and carbonate
transgenic SOD overexpression prohibits prediction of theadical [Mn(lll) porphyrins (Ferrer-Sueta et al., 2003) and
length of any potential pharmacological therapeutic windownitroxides (Goldstein et al., 2004)]. Reactivity of antioxidants
for treatment efficacy during reperfusion. Furthermore, ndowards a wide range of ROS/RNS would make them more
studies have evaluated effects of SOD overexpression on thiersatile antioxidants, i.e. protective in different cellular
long-term outcome from ischemia/reperfusion, and thus thenvironments. Mn(lll) porphyrins have been most intensively
stability of the protection afforded is unknown. investigated in models of cerebral ischemia/reperfusion. The
Extracellular SOD (SOD3) is also expressed in brain but ircationic Mn(lll) porphyrins,ortho N-ethylpyridylporphyrin
substantially lower concentrations than SOD1 or SODZMnTE-2-PyP*, AEOL 10113) and dertho N,N-
(Marklund, 1984). EC-SOD, a tetrameric protein, is secretediethylimidazolylporphyrin (MnTDE-2-Im®™, AEOL 10150)
into the extracellular compartment (Tibell et al., 1987). EChave both been shown to provide potent protection against
SOD has a heparin binding domain that allows adherendafarct formation when given as late as @fter onset of
to the glycocalyx (Sandstrom et al., 1992). EC-SOD igeperfusion from 9fin of temporary middle cerebral artery
presumed to provide defense against superoxide present in theclusion (Mackensen et al., 2001; Sheng et al., 2002b). This
extracellular space (e.g. produced by membrane-boundas associated with post-ischemic decreases in aconitase
NAD(P)H oxidase or secreted by inflammatory cells; Oury etnactivation, 8-hydroxyguanine formation and cytokine
al., 1992). The relatively low EC-SOD concentration in wholeexpression (Bowler et al., 2002; Mackensen et al., 2001).
brain may be misleading with respect to its importance tdong-term outcome studies and effects on apoptotic responses
ischemic events. The extracellular compartment is small anghve not yet been reported for these drugs.
thus EC-SOD concentration in the extracellular compartment
may be sufficient to provide biological relevance. Indeed, EC-
SOD overexpressing mice have increased tolerance to both Catalase and glutathione peroxidase
focal and global cerebral ischemia (Sheng et al., 1999a, 2000),SOD dismutates superoxide to hydrogen peroxide and
while EC-SOD knock-outs exhibit enhanced damage (Shengxygen. Hydrogen peroxide has modest oxidative potential and
et al.,, 1999b). These data implicate an important rolean freely cross cell membranes. Through the iron-catalyzed
for extracellular superoxide in the pathogenesis oHaber—Weiss reaction (superoxide-driven Fenton chemistry),



Oxidants, antioxidants and the ischemic br&@25

hydrogen peroxide can be converted to hydroxyl radicaénzymatic activity available to the developing brain for the
(Halliwell and Gutteridge, 1999). Elimination of hydrogen conversion of superoxide-generated hydrogen peroxide to
peroxide is therefore critical to the efficacy of SOD in reducingvater and oxygen (Fullerton et al., 1998). The same argument
oxidative stress. Catalase and glutathione peroxidase serve thigggests that endogenous concentrations of catalase and
purpose. Both are present in the brain although glutathionglutathione concentrations are sufficient in the adult brain to
peroxidase activity is sevenfold greater than that of catalaggocess superoxide, should its dismutation to hydrogen
(Marklund et al., 1982). Further, while glutathione peroxidasgeroxide be enhanced by a SOD mimetic.
is present in the cytosol, catalase is localized mainly in There has been some attempt to test efficacy of exogenously
peroxisomes. As a result, the more ubiquitous presence afiministered catalase in adult ischemia/reperfusion models
glutathione peroxidase predicts it to be the more importanwith mixed results, possibly due to the question of
enzyme in responding to increased hydrogen peroxide. bioavailability of proteins that must cross the blood—brain
Both glutathione peroxidase-overexpressing and knock-ougarrier (Forsman et al., 1988; Liu et al., 1989). Catalase
mice have been studied in the context of focal cerebrahhibitors, such as 3-aminotriazole, have not been evaluated in
ischemia/reperfusion. Overexpression reduces necrotic arde context of ischemia. Therefore, there is insufficient
apoptotic cell death, astrocytic/microglial activation andpharmacological information to conclude that catalase,
inflammatory cell infiltration (Ishibashi et al., 2002; Weisbrot-particularly in the presence of normal glutathione peroxidase
Lefkowitz et al., 1998). In contrast, intracerebroventricularconcentrations, plays a central role in the response of brain to
infusion of exogenous glutathione peroxidase failed to improveschemia. This, however, should be tempered by the possibility
outcome from global forebrain ischemia/reperfusion (Yano ethat the importance of catalase may increase if superoxide
al., 1998). This difference might be attributable to differenceproduction and SOD activity are increased.
in model type (focal versus global) or intracellular
bioavailability of glutathione peroxidase when administered
intracerebroventricularly. The progeny of cross-breeding a Glutathione depletion
glutathione peroxidase knock-out and a Cu,Zn-SOD Glutathione is a tripeptidg-{-glutamylL-cysteinylglycine)
overexpressor caused a loss of protection that was otherwi®t is the reductant for glutathione peroxidase. Oxidation of
afforded by overexpression of Cu,Zn-SOD (Crack et al., 2001}he cysteine sulfhydryl groups joins two glutathione (GSH)
However, the glutathione peroxidase knockout alone wasiolecules with a disulfide bridge to form glutathione disulfide
insufficient to worsen cerebral ischemia/reperfusion injuryfGSSG). NADPH-dependent glutathione reductase catalyzes
(Crack et al., 2001), consistent with overlap in function withrecovery of glutathione. Normally, the brain maintains a high
catalase. Cumulatively, these data implicate an important rolatio of GSH/GSSG for antioxidant defense. Depletion of total
for glutathione peroxidase in brain ischemia/reperfusionglutathione and a decreased GSH/GSSG ratio are markers for
although the relative contributions of glutathione peroxidasexidative stress in ischemic brain and as long als ity be
and catalase have not been clarified. required to restore concentrations to normal values following
Selective pharmacological antagonists of glutathionean ischemic insult (Namba et al., 2001; Park et al., 2000).
peroxidase have not been studied. Ebselen is a synthet8&chemic outcome is worsened by pharmacological depletion
mimetic of glutathione peroxidase (Muller et al., 1984). It isof glutathione (Vanella et al., 1993), but improved by
not selective in that it also inhibits protein kinase C, 5-administration of a glutathione mimetic, glutathione
lipooxygenase, cyclooxygenase and NADPH oxidasenonoisopropyl ester, YM737 (Gotoh et al., 1994)Neacetyl
(Schewe, 1995). Thus, inferences from the efficacy of this drugysteine, a glutathione precursor. No study of glutathione
in the context of ischemia/reperfusion regarding the role ofeductase mutants in cerebral ischemia paradigms has been
glutathione peroxidase must be limited. Ebselen has beegported.
shown to be protective in several ischemia models (Imai et al.,
2003; Kondoh et al., 1999) and is currently being studied in
ongoing clinical trials (Saito et al., 1998; Yamaguchi et al., Nitric oxide synthase inhibition
1998). Since the original suggestion that nitric oxide synthesis
Although a catalase-overexpressing mouse strain exisfgdays a role in cerebral ischemia (Marshall and Kontos, 1990),
(Chen et al., 2003), it has not been studied in the context ofver 800 research reports have addressed this issue. Nitric
cerebral ischemia/reperfusion. An alternative method is toxide is enzymatically synthesized fromarginine and is
examine catalase deficiency. The developing brain providesmaassively increased by ischemia (Wei et al., 1999). Three
natural model for this in that both catalase and glutathioneitric oxide synthases (NOS) have been reported (eNOS,
peroxidase are poorly expressed. Cu,Zn-SOD overexpressioNOS and iNOS), so named because of their originally defined
in  neonatal mice worsens the outcome fromendothelial (eNOS) and neuronal (nNOS) localization, or
ischemia/reperfusion (Fullerton et al., 1998). In contrasability to be upregulated when induced (iNOS). Initially, the
Cu,Zn-SOD overexpression in adult mice improves thdield was confusing because NOS inhibitors were not selective
outcome (Yang et al., 1994). This difference is probablyand were given in large doses. Some ischemic outcome studies
attributable to inadequate catalase and glutathione peroxidafeind improved outcome using NOS inhibitors, while others



3226 D. S. Warner, H. Sheng and I. Batinic-Haberle

found worsened outcome. It soon became apparent that tbe al., 1992). Unfortunately, histological/behavioral outcome
effect of NOS inhibition was dependent upon which isoformstudies have failed to find consistent benefit from this strategy
was being inhibited. Pharmacologic eNOS inhibition would(Fleischer et al., 1987; Kumar et al., 1988), possibly due to its
be expected to worsen outcome, secondary to cerebrshort-half-life. Further, deferoxamine does not chelate copper
vasconstriction and reduced blood flow. This is supported bipn, which can also catalyze the Haber—Weiss reaction. There
studies of eNOS-deficient mice (Lo et al., 1996) that havées an exception to this, however. Consistent observations
worsened ischemic outcomes. In contrast, upregulation aff deferoxamine-mediated improvement in post-ischemic/
eNOS activity by treatment with 3-hydroxy-3-methylglutaryl hypoxic outcome have been made in perinatal brain (Palmer et
(HMG)-CoA reductase inhibitors (e.g. simvistatin) causedal., 1994; Peeters-Scholte et al., 2003; Sarco et al., 2000).
increased intra-ischemic blood flow and reduced infarct sizBerhaps this is attributable to low endogenous expression of
(Amin-Hanjani et al., 2001; Endres et al., 1998). Use otatalase and glutathione peroxidase, which might make the
selective nNOS antagonists (O’Neill et al., 2000) and nNOSleveloping brain particularly prone to hydrogen peroxide
knockout mice (Huang et al., 1994), confirmed that neuronalccumulation (Fullerton et al., 1998).
production of nitric oxide contributes to ischemic cell death.
iINOS has been associated with oxidative stress (Han et al.,
2002), and modifying its activity may have therapeutic Poly(ADP-ribose) polymerase inhibitors
potential (Parmentier et al., 1999). However, nitric oxide may PARP was first introduced to the ischemia literature with the
also serve as an antioxidant against products of the Fentogport that PARP knock-out mice exhibited profoundly
reaction (Chiueh, 1999). At the same time, INOS expressiodiminished cerebral infarct sizes when compared to wild-type
has been implicated as a critical factor for promoting posteounterparts (Eliasson et al., 1997). Poly(ADP-ribose) is
ischemic neurogenesis (Zhu et al.,, 2003). Further, iINOSynthesized from NAD by PARP and degraded by poly(ADP-
expression may contribute to increased tolerance of brain tibose) glycohydrolase (PARG). PARP is activated in response
ischemia induced by preconditioning stimuli (Kapinya et al.to DNA damage as a repair mechanism but also causes NAD
2002) as does eNOS upregulation (Hashiguchi et al., 20049nd ATP depletion, potentially exacerbating ischemic injury.
The fact that eNOS and nNOS are2Gdependent, while A principal source of DNA damage is likely to be peroxynitrite
iINOS is not, can be used to distinguish among them fdformation from superoxide and nitric oxide, mediated by
mechanistic purposes. NMDA receptor activation (Giovannelli et al., 2002; Mandir
The relevance of nitric oxide was increased with the report al., 2000). Cu,Zn-SOD overexpressing mice do not exhibit
that the diffusion-limited reaction between superoxide angbost-ischemic PARP activation (Narasimhan et al., 2003).
nitric oxide gives rise to peroxynitrite (Beckman et al., 1990)Effects of pharmacological antioxidants on PARP activation
The highly reactive peroxynitrite provided a mechanistic basibave not been reported. Pharmacological PARP antagonists
for oxidative stress derived from increased nitric oxidehave provided protection in several ischemia models
production caused by ischemia/reperfusion (Eliasson et alAbdelkarim et al., 2001; Plaschke et al., 2000), one of which
1999). Studies confirmed increased peroxynitrite formatioriollowed outcome for up to 30 days post-ischemia (Ding et al.,
occurring in parallel with upregulation of INOS (Suzuki et al.,2001). Similarly, treatment with systemic NAD improved
2002) and lack of peroxynitrite formation in nNOS knockoutsischemic outcome (Yang et al.,, 2002). PARP activation
(Eliasson et al., 1999). Nitric oxide has also been shown temains a plausible mechanism to explain downstream effects
inhibit mitochondrial respiratiomia competition with oxygen of oxidative stress on ischemic outcome.
for cytochrome oxidase (Brown and Borutaite, 1999) and play
a role in the initiation of apoptosis (Bonfoco et al., 1995).
Although little has been reported on efforts to bring nitric oxide ~ Mitochondrial permeability transition inhibitors
inhibitors to clinical investigation, there is no doubt that nitric The concept is relatively new that the mitochondrial
oxide plays a pivotal role in mediating oxidative stresspermeability transition (MPT) pore plays an important role in
(Mikkelsen and Wardman, 2003). response of brain to ischemia (Friberg and Wieloch, 2002;
Kristian and Siesjo, 1996). €aoverload causes translocation
of cyclophilin-D from the matrix to the MPT pore that activates
Metal chelators the pore allowing flux of solutes from the matrix to the
Free iron is released from protein storage in the ischemiatermembrane space (Tanveer et al., 1996). Persistent MPT
brain, providing substrate for the iron-catalyzed Haber—Weisallows mitochondrial swelling and disruption of the outer
reaction, resulting in hydroxyl radical formation from mitochondrial membrane, loss of the hydrogen ion gradient,
hydrogen peroxide. Iron chelators such as deferoxamine asmd failure of oxidative phosphorylation. Other factors,
logical candidates to probe the role of these reactions imcluding oxidative stress, open the MPT pore. Therefore,
ischemic brain. Deferoxamine-treatment has been associategidative stress can initiate MPT which, in turn, potentiates
with reduced lipid peroxidation, improved post-ischemicoxidative stress. It is tempting to speculate that MPT allows
vasoreactivity, cerebral perfusion and ATP recovery (Hurn etelease of proapoptotic factors (e.g. cytochrazhénto the
al., 1995; Liachenko et al., 2003; Nayini et al., 1985; Nelsomrytosol (Brown and Borutaite, 1999). However, release of
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proapoptotic factors has been shown to be MPT-independeatter blood—brain barrier breakdown. This distinction is
(Kobayashi et al., 2003), albeit modulated by oxidative stressnportant. More important is the implication that because
(Morita-Fujimura et al., 2001) and potentially corrected bycommencement of treatment ah 4fter onset of ischemia was
Cu,Zn-SOD overexpression (Sugawara et al., 2002a). Of notefficacious, only oxidative stress occurring more thanadter
inhibition of the MPT by drugs that might interact with onset of ischemia has importance for ischemic outcome.
cyclophilin-D (e.g. cyclosporine A; Li et al., 2000; Waldmeier
et al.,, 2003) or antibodies to MPT pore elements (Perez
Velazquez et al., 2003) provide ischemic neuroprotection with Conclusions
reduced mitochondrial swelling and inhibition of cytochrome The above outline presents data for several mechanisms of
crelease. Cumulatively, MPT provides a convergence betweexidative damage in ischemic and post-ischemic brain, leaving
various oxidative and anti-oxidative forces that are likely tdittle doubt that oxidative stress is a major contributor to
have major impact on ischemic outcome. ischemic brain injury. The advent of transgenic mutants and
relatively selective pharmacological antioxidants has allowed
improved definition of the varied mechanisms of oxidative
Spin traps stress and potential targets for therapeutic intervention.
Chemists have developed a variety of methods to ‘captur€€onspicuously absent from extant data, with the exception of
ROS allowing their detection and quantification. A classid\KY-059, are long-term outcome studies designed to assess
application of this technology in the study of ischemic brain ighe stability of protection from ischemia afforded by gene
use of salicylate, which reacts with hydroxyl radical to form amutations and drugs having purported efficacy as antioxidants.
relatively stable adduct, 2,3-DHBA. This has been useful il.ong-term studies are critical in predicting clinical efficacy.
microdialysis studies, allowing near-real time measurement dflthough there is substantial evidence that many oxidative
hydroxyl radical production (Globus et al., 1995; Zhang angbathways contribute to damage resulting from ischemia/
Piantadosi, 1994). Taking a different approach, in addition toeperfusion, it seems unlikely that any one pathway is
nitroxide spin probes, nitrone spin traps were developed tsufficiently critical to singularly define outcome. Because most
capture ROS, allowing detection by electron paramagnetimterventions are targeted at specific mechanisms of oxidative
spectroscopy. Recognizing the potential for nitrones talamage, it seems likely that combined therapeutic mechanisms
scavenge ROS, it was postulated that these compounds migtitl be required to substantively and persistently alter outcome
present therapeutic potential (Britigan et al., 1991). Indeedrom an ischemic insult.
early rodent studies found consistent benefit from the spin
trap a-phenylN-t-butyl-nitrone (PBN) against both global The authors acknowledge NIH grant PO1 HL4244, DOD
and focal ischemic insults (Yue et al., 1992; Zhao eCOMRP (BC024326) and the Christopher Reeve Paralysis
al., 1994). More important, the second generation spin trag;oundation (BA1-013-1).
NXY-059 (disodium 4-[(tert-butylimino)-methyllbenzene-1,3-
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