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Oxidative stress has been defined as ‘a disturbance in the
pro-oxidant–antioxidant balance in favour of the former,
leading to potential damage’ (Sies, 1991). The brain consumes
a large quantity of oxygen, making it particularly susceptible
to oxidative stress. Natural formation of oxidants during
mitochondrial electron transport, auto-oxidation of some
neurotransmitters (e.g. norepinephrine, dopamine) and
initiation of events during hypoxia or ischemia, can result in
oxidant formation and subsequent tissue damage. Oxidative
stress can be traced primarily to formation of superoxide and
nitric oxide. Both molecules have important roles in health,
serving as regulators of blood flow and neurotransmission.
Perturbation in the production and/or metabolism of either
molecule can have pathologic consequences.

Principal sources of superoxide include electron leak during
mitochondrial electron transport, perturbed mitochondrial
metabolism and inflammatory responses to injury (Halliwell
and Gutteridge, 1999). The brain has potent defenses against
superoxide including dietary free-radical scavengers
(ascorbate, α-tocopherol), the endogenous tripeptide
glutathione, and enzymatic antioxidants. Enzymatic
antioxidants regulate superoxide concentration by dismutation
of superoxide to hydrogen peroxide (superoxide dismutase or
SOD; Fridovich, 1995), which is then converted to water
(peroxidases such as glutathione peroxidase and
peroxiredoxin) or dismuted to water and oxygen (catalase).

Although increased expression of these enzymes can occur in
response to ischemia (Fukui et al., 2002), endogenous
antioxidant capacity can be overwhelmed, leading to increased
superoxide and hydrogen peroxide concentrations.

Nitric oxide formation is both constitutive and inducible.
Ischemia-induced nitric oxide overproduction is in part caused
by glutamatergic-mediated increases in intracellular calcium
concentration, resulting in a calmodulin-dependent
upregulation of nitric oxide synthase (NOS; Dawson et al.,
1991; Garthwaite et al., 1988, 1989). Nitric oxide can be
consumed by reacting with hemoglobin (Ignarro et al., 1987;
Joshi et al., 2002). Flavohemoglobin-based enzymes (nitric
oxide reductase, nitric oxide dioxygenase) capable of
specifically metabolizing nitric oxide have been identified in
bacteria (Hausladen et al., 1998), and flavohemoglobin-like
activity has been identified in mammalian cells (Gardner et al.,
2001). Yet, an important non-enzymatic mechanism regulating
nitric oxide concentration is its reaction with superoxide
yielding peroxynitrite (Beckman et al., 1990).

Under pathophysiological conditions, excessive nitric oxide
production can elicit nitrosative damage (Espey et al., 2000)
via independent nitrosylation of protein heme sites (e.g.
cytochrome c; Schonhoff et al., 2003) or through its reaction
products with oxygen or other nitrogen oxides. Superoxide can
cause oxidative damage of iron/sulfur clusters of aconitase
(Gardner and Fridovich, 1991), an important enzyme in the
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Despite numerous defenses, the brain is vulnerable to
oxidative stress resulting from ischemia/reperfusion.
Excitotoxic stimulation of superoxide and nitric oxide
production leads to formation of highly reactive products,
including peroxynitrite and hydroxyl radical, which are
capable of damaging lipids, proteins and DNA. Use of
transgenic mutants and selective pharmacological
antioxidants has greatly increased understanding of the
complex interplay between substrate deprivation and
ischemic outcome. Recent evidence that reactive
oxygen/nitrogen species play a critical role in initiation of

apoptosis, mitochondrial permeability transition and
poly(ADP-ribose) polymerase activation provides
additional mechanisms for oxidative damage and new
targets for post-ischemic therapeutic intervention.
Because oxidative stress involves multiple post-ischemic
cascades leading to cell death, effective prevention/
treatment of ischemic brain injury is likely to require
intervention at multiple effect sites.
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tricarboxylic acid cycle. The major oxidative stress produced
by superoxide, however, is derived from its participation in
peroxynitrite formation (Beckman et al., 1990) and its
involvement in the iron-catalyzed Haber–Weiss reaction
(superoxide-driven Fenton chemistry; Liochev and Fridovich,
2002), causing hydrogen peroxide to be converted to hydroxyl
radical. Hydroxyl radical, peroxynitrite and peroxynitrite-
derived products (hydroxyl radical, carbonate radical and
nitrogen dioxide) all have the potential to react with and
damage most cellular targets including lipids, proteins and
DNA.

Direct measurement of reactive oxygen (ROS) and nitrogen
(RNS) species concentrations in tissue subjected to ischemia/
reperfusion is problematic (Tarpey and Fridovich, 2001). Low
intracellular concentrations, short half-lives and the efficient
and redundant systems that have evolved to scavenge
ROS/RNS require that any detection technique must be
sensitive and specific enough to compete with antioxidant
defenses against the species in question (Fridovich, 2003;
Glebska and Koppenol, 2003; Myhre et al., 2003; Zhao et
al., 2003). Additionally, the methods applied must have
intracellular access to monitor the intracellular milieu. This
undoubtedly has contributed to confusion surrounding the roles
of these species in disease. Most commonly, ROS/RNS have
been tracked by measuring stable metabolites (e.g.
nitrates/nitrites) or ‘footprints’ of the reactions of these
molecules with lipids (e.g. thiobarbituric acid adducts, 4-
hydroxynonenal), DNA (e.g. 8-hydroxyguanine) or proteins
(e.g. nitrotyrosine). Electrochemical and microdialysis
approaches have also proven useful in tracking superoxide
(Fabian et al., 1995) and hydroxyl radical (Globus et al., 1995)
concentrations.

An alternative approach to the study of ROS/RNS in
ischemic brain is the use of either transgenic animals or
pharmacological agents to alter antioxidant potential. For
example, if targeted disruption of a specific SOD genetic
coding sequence increases ischemic tissue damage, evidence
is provided that the enzyme plays a beneficial role in the
response of brain to oxidative stress. This is further supported
if overexpression of the same gene results in increased tissue
tolerance to ischemia. There are two major limitations to the
use of transgenic mice in study of oxidative stress. First,
compensatory mechanisms, perhaps developed during
ontogeny so as to allow survival in the absence/overexpression
of the gene, are rarely considered, particularly in the context
of the experiment being performed (Ibrahim et al., 2000;
Przedborski et al., 1992). Second, although progress is
being made in the use of conditional ‘knock-outs’ and
‘overexpressors’, in which a selected gene’s expression is
decreased/increased in response to a specific pharmacological
stimulus, most work continues to be performed with animals
that retain their knock-out (or overexpressing) status
throughout the entire ischemia/reperfusion interval. This
makes it difficult to determine when and how the gene product
influences ischemic injury.

The ultimate goal for understanding the mechanism of

oxidative stress in brain ischemia is to develop therapeutic
interventions. To this end, innumerable pharmacological
antioxidants have been evaluated. Although these agents have
received the greatest scrutiny for therapeutic potential, the
same agents can also be used to dissect the role of oxidative
stress in ischemic brain injury by assessing the impact of
their purported mechanism of action on ischemia-induced
intracellular cascades and outcome. On the other hand, the
study of pharmacological agents is limited by bioavailability
and undefined secondary effects when introduced into an in
vivo environment. Thus, transgenic and pharmacological
interventions can be viewed as complimentary tools to examine
the role of oxidative stress in ischemic brain injury. This
review will consider various possible contributions of
oxidative stress to ischemic brain injury, with a focus on
validation of the mechanism via either transgenic or
pharmacological intervention (Fig.·1).

Inhibition of lipid peroxidation
Free radical damage was one of the earliest mechanisms

postulated to explain tissue demise after a cerebral ischemic
insult (Flamm et al., 1978). Stroke research rapidly focused on
lipid metabolism for good reason. During cerebral ischemia,
free fatty acid concentrations are markedly increased, the
largest increase being that of arachidonic acid (Bazan, 1970;
Marion and Wolfe, 1979; Rao et al., 1999; Siesjo and Wieloch,
1983). Ca2+-activated phospholipases C and A2 result in
phospholipid hydrolysis, while resynthesis of phospholipids
requires ATP. As a result, ischemia-induced Ca2+ influx and
energy failure promote free fatty acid release and concomitant
membrane damage. Free fatty acid metabolism has multiple
other adverse effects including inhibition of oxidative
phosphorylation (Wojtczak, 1976), oxidative conversion of
free arachidonic acid via the cyclo-oxygenase pathway to
eicosanoids (thromboxanes and prostaglandins) (Gaudet et al.,
1980), free radical generation and lipid peroxidation-mediated
chain reactions (Imaizumi et al., 1986; Watson et al., 1984),
and cytotoxicity from lipid peroxidation products (e.g. 4-
hydroxynonenal; Kruman et al., 1997), which may stimulate
apoptosis (Mattson et al., 2000).

Increased nitric oxide concentrations associated with
ischemia may have dual effects on lipid peroxidation. Reaction
of nitric oxide with superoxide causes formation of
peroxynitrite that initiates lipid peroxidation via reaction of
lipids with its decomposition products hydroxyl radical and
nitrogen dioxide (Brookes et al., 1998; Rubbo et al., 1994). In
contrast, nitric oxide itself may directly inhibit lipid
peroxidation by intercepting alkoxyl and peroxyl radical
intermediates thereby terminating chain propagation reactions
(Nicolescu et al., 2002; Niziolek et al., 2003; Rubbo et al.,
1994).

Despite this, it has been difficult to confirm that lipid
peroxidation is a primary and critical contributor to ischemic
cell death as opposed to being a result of intracellular
organelle dysfunction mediated by oxidative stress (Watson,
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1998). Indeed, numerous pharmacological inhibitors of lipid
peroxidation have been tested. The most notable is tirilazad,
a non-glucocorticoid steroid. Despite abundant preclinical
evidence that tirilazad improved ischemic outcome via its
putative action as inhibitor of lipid peroxidation (Kavanagh
and Kam, 2001), no effect on outcome from human stroke was
observed (Haley, 1998). It should be noted that virtually all of
the positive preclinical studies recorded only a short-term
outcome (i.e. several days post-ischemia), while human trials
measured the outcome after 3 months. Although it is clear that
lipid peroxidation occurs in response to oxidative stress and
that membrane disruption is disadvantageous to the cell, the
available outcome data are insufficient to allow the conclusion
that this mechanism is critical in defining ischemic outcome.

Inhibition of xanthine oxidase
Metabolism of ATP leads to accumulation of hypoxanthine

(Morimoto et al., 1982). In non-ischemic tissue, xanthine
oxidase exists as a nicotinamide adenine dinucleotide (NAD)-
reducing hydrogenase. During ischemia, Ca2+-stimulated
proteases cause irreversible partial cleavage of xanthine
dehydrogenase to xanthine oxidase, which in turn catalyzes
oxidation of hypoxanthine to xanthine. Xanthine oxidase
further oxidizes xanthine to produce uric acid, superoxide and
hydrogen peroxide (Parks and Granger, 1986). Thus, xanthine
oxidase inhibitors have been subjected to extensive scrutiny
with respect to antioxidant potential. Most work has used either

allopurinol or oxypurinol. Allopurinol is oxidized by xanthine
oxidase to oxypurinol, which binds to the active site of
xanthine oxidase causing xanthine oxidase inhibition. Thus,
either compound can be administered with the same net
mechanistic effect.

Allopurinol decreases post-ischemic cerebral uric acid,
xanthine and conjugated diene concentrations (Marro et al.,
1994; Nihei et al., 1989), preserves ATP (Williams et al.,
1992), and reduces edema (Patt et al., 1988). Despite this,
studies employing the requisite physiological control and long-
term outcome analysis of effects of xanthine oxidase inhibitors
on post-ischemic behavior and histology have not been
performed. The results from short-term outcome studies in
adult rats have been mixed (Lindsay et al., 1991; Martz et al.,
1989). More encouraging results have been observed in
perinatal brain (Palmer et al., 1993, 1990; van Bel et al., 1998),
but no long-term outcome studies have been reported. As a
result, despite biochemical evidence of diminished oxidative
stress from inhibition of hypoxanthine metabolism, evidence
supporting xanthine dehydrogenase/oxidase activity as a major
contributor to ischemic outcome is modest. This is not
surprising because many other avenues for superoxide and
hydrogen peroxide generation (e.g. inflammation) are
unaffected by xanthine oxidase inhibitors.

The superoxide dismutases and their mimetics
As stated above, superoxide is a key constituent in oxidative
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Fig.·1. Ischemia/reperfusion presents numerous opportunities for formation of reactive oxygen/nitrogen species and resultant tissue injury.
Simultaneously, numerous site-specific targets for therapeutic intervention are presented. It quickly becomes clear that inhibition of a single
pathway may be insufficient to provide persistent protection against oxidative stress. (1) Inhibition of lipid peroxidation; (2) inhibition of xanthine
oxidase; (3) the superoxide dismutases (SOD) and their mimetics; (4) catalase and glutathione peroxidase (GSHPx); (5) glutathione (GSH)
mimetics; (6) nitric oxide synthase (NOS) inhibition; (7) metal chelators; (8) poly(ADP-ribose) polymerase (PARP) inhibitors; (9) mitochondrial
permeability transition inhibitors; (10) spin traps and peroxynitrite scavengers. O2.–, superoxide; CO3.–, carbonate radical; H2O2, hydrogen
peroxide; GSSG, glutathione disulfide; .OH, hydroxyl radical; .NO2, nitrogen dioxide; .NO, nitric oxide; ONOO–, peroxynitrite; NAD,
nicotinamide adenine dinucleotide.
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stress. It is derived from various sources at different stages of
reperfusion. There are three major endogenous superoxide
dismutases. Cu,Zn-SOD (SOD1) is principally found in the
cytosolic and lysosomal fractions, but is also in the
mitochondrial intermembrane space (Okado-Matsumoto and
Fridovich, 2001). MnSOD (SOD2) is found in the
mitochondrial matrix. Both Cu,Zn-SOD and MnSOD are
abundant in neural tissue and for this reason have received
greatest scrutiny. Knock-out and overexpressing mutants for
both isozymes have been created, but direct comparison of
the relative importance of the two enzymes has not been
made. Cu,Zn-SOD overexpression reduces ischemic damage
resulting from ischemia/reperfusion (Yang et al., 1994).
However, neither Cu,Zn-SOD overexpression nor Cu,Zn-SOD
targeted deletion alter the outcome from permanent focal
ischemia (Chan et al., 1993; Fujimura et al., 2001), indicating
the requirement of reperfusion for this enzyme to play a role.
In contrast, MnSOD targeted deletion worsens the outcome
from both temporary and permanent middle cerebral artery
occlusion (Kim et al., 2002; Murakami et al., 1998). Cu,Zn-
SOD overexpression has been shown to inhibit post-ischemic
mitogen-activated protein kinase activation (Noshita et al.,
2002), the Bad cell death signaling pathway (Saito et al.,
2003), caspase activation (Sugawara et al., 2002b), early
mitochondrial cytochrome c release (Fujimura et al., 2000),
DNA fragmentation (Fujimura et al., 1999) and poly(ADP-
ribose) polymerase (PARP) activation (Narasimhan et al.,
2003). Cumulatively, these data indicate a potential pro-
apoptotic role for superoxide in ischemia/reperfusion. This can
be abated by SOD overexpression and potentially by treatment
with SOD mimetic compounds. However, constitutive
transgenic SOD overexpression prohibits prediction of the
length of any potential pharmacological therapeutic window
for treatment efficacy during reperfusion. Furthermore, no
studies have evaluated effects of SOD overexpression on the
long-term outcome from ischemia/reperfusion, and thus the
stability of the protection afforded is unknown.

Extracellular SOD (SOD3) is also expressed in brain but in
substantially lower concentrations than SOD1 or SOD2
(Marklund, 1984). EC-SOD, a tetrameric protein, is secreted
into the extracellular compartment (Tibell et al., 1987). EC-
SOD has a heparin binding domain that allows adherence
to the glycocalyx (Sandstrom et al., 1992). EC-SOD is
presumed to provide defense against superoxide present in the
extracellular space (e.g. produced by membrane-bound
NAD(P)H oxidase or secreted by inflammatory cells; Oury et
al., 1992). The relatively low EC-SOD concentration in whole
brain may be misleading with respect to its importance to
ischemic events. The extracellular compartment is small and
thus EC-SOD concentration in the extracellular compartment
may be sufficient to provide biological relevance. Indeed, EC-
SOD overexpressing mice have increased tolerance to both
focal and global cerebral ischemia (Sheng et al., 1999a, 2000),
while EC-SOD knock-outs exhibit enhanced damage (Sheng
et al., 1999b). These data implicate an important role
for extracellular superoxide in the pathogenesis of

ischemia/reperfusion and suggest a therapeutic role for SOD
mimetics that localize in the extracellular compartment.

Recent pharmacological advances have allowed the advent
of potent SOD mimetics. Although bovine SOD has shown
some therapeutic potential (Liu et al., 1989), its short-half life
in circulation, inability to penetrate the blood–brain barrier and
potential antigenicity have limited its appeal. Several major
classes of SOD mimetics have been reported to date (Sheng et
al., 2002a): Mn(II) cyclic polyamines (Riley, 2000), Mn(III)
salen derivatives (Baker et al., 1998), Mn(III) porphyrins
(Batinic-Haberle, 2002; Batinic-Haberle et al., 2002) and
stable cyclic nitroxides (Goldstein et al., 2003a; Kwon et al.,
2003; Sugawara et al., 2001). All eliminate superoxide in
catalytic fashion, with catalytic rate constants being in excess
of 106·M–1·s–1, except in the case of nitroxides. With nitroxides
the catalytic rate constant, involving nitroxide/oxoammonium
cation redox couple, is limited by the very slow nitroxide
oxidation with superoxide (<103·M–1·s–1) and is <106·M–1·s–1

at pH·7.4 (Goldstein et al., 2003a). The compounds variously
have selective SOD-like properties [Mn cyclic(II) polyamines
(Salvemini et al., 1999)], modest catalase-like activity [Mn(III)
salen derivatives (Baker et al., 1998) and Mn(III) porphyrins
(Day et al., 1997)], potential to oxidize nitric oxide [oxoMn(V)
salen derivatives) (Sharpe et al., 2002) and Mn(III) porphyrins
(Spasojevic et al., 2000) and oxidized nitroxides, i.e.
oxoammonium cations (Goldstein et al., 2004)], and ability to
eliminate peroxynitrite [Mn(III) salen derivatives (Sharpe et
al., 2002), Mn(III) porphyrins (Ferrer-Sueta et al., 2003)
and oxoammonium cations (Goldstein et al., 2004)] or
peroxynitrite-derived products such as nitrogen dioxide radical
(nitroxides; Goldstein et al., 2004, 2003b) and carbonate
radical [Mn(III) porphyrins (Ferrer-Sueta et al., 2003) and
nitroxides (Goldstein et al., 2004)]. Reactivity of antioxidants
towards a wide range of ROS/RNS would make them more
versatile antioxidants, i.e. protective in different cellular
environments. Mn(III) porphyrins have been most intensively
investigated in models of cerebral ischemia/reperfusion. The
cationic Mn(III) porphyrins, ortho N-ethylpyridylporphyrin
(MnTE-2-PyP5+, AEOL 10113) and di-ortho N,N′-
diethylimidazolylporphyrin (MnTDE-2-ImP5+, AEOL 10150)
have both been shown to provide potent protection against
infarct formation when given as late as 6·h after onset of
reperfusion from 90·min of temporary middle cerebral artery
occlusion (Mackensen et al., 2001; Sheng et al., 2002b). This
was associated with post-ischemic decreases in aconitase
inactivation, 8-hydroxyguanine formation and cytokine
expression (Bowler et al., 2002; Mackensen et al., 2001).
Long-term outcome studies and effects on apoptotic responses
have not yet been reported for these drugs.

Catalase and glutathione peroxidase
SOD dismutates superoxide to hydrogen peroxide and

oxygen. Hydrogen peroxide has modest oxidative potential and
can freely cross cell membranes. Through the iron-catalyzed
Haber–Weiss reaction (superoxide-driven Fenton chemistry),
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hydrogen peroxide can be converted to hydroxyl radical
(Halliwell and Gutteridge, 1999). Elimination of hydrogen
peroxide is therefore critical to the efficacy of SOD in reducing
oxidative stress. Catalase and glutathione peroxidase serve this
purpose. Both are present in the brain although glutathione
peroxidase activity is sevenfold greater than that of catalase
(Marklund et al., 1982). Further, while glutathione peroxidase
is present in the cytosol, catalase is localized mainly in
peroxisomes. As a result, the more ubiquitous presence of
glutathione peroxidase predicts it to be the more important
enzyme in responding to increased hydrogen peroxide.

Both glutathione peroxidase-overexpressing and knock-out
mice have been studied in the context of focal cerebral
ischemia/reperfusion. Overexpression reduces necrotic and
apoptotic cell death, astrocytic/microglial activation and
inflammatory cell infiltration (Ishibashi et al., 2002; Weisbrot-
Lefkowitz et al., 1998). In contrast, intracerebroventricular
infusion of exogenous glutathione peroxidase failed to improve
outcome from global forebrain ischemia/reperfusion (Yano et
al., 1998). This difference might be attributable to differences
in model type (focal versus global) or intracellular
bioavailability of glutathione peroxidase when administered
intracerebroventricularly. The progeny of cross-breeding a
glutathione peroxidase knock-out and a Cu,Zn-SOD
overexpressor caused a loss of protection that was otherwise
afforded by overexpression of Cu,Zn-SOD (Crack et al., 2001).
However, the glutathione peroxidase knockout alone was
insufficient to worsen cerebral ischemia/reperfusion injury
(Crack et al., 2001), consistent with overlap in function with
catalase. Cumulatively, these data implicate an important role
for glutathione peroxidase in brain ischemia/reperfusion,
although the relative contributions of glutathione peroxidase
and catalase have not been clarified.

Selective pharmacological antagonists of glutathione
peroxidase have not been studied. Ebselen is a synthetic
mimetic of glutathione peroxidase (Muller et al., 1984). It is
not selective in that it also inhibits protein kinase C, 5-
lipooxygenase, cyclooxygenase and NADPH oxidase
(Schewe, 1995). Thus, inferences from the efficacy of this drug
in the context of ischemia/reperfusion regarding the role of
glutathione peroxidase must be limited. Ebselen has been
shown to be protective in several ischemia models (Imai et al.,
2003; Kondoh et al., 1999) and is currently being studied in
ongoing clinical trials (Saito et al., 1998; Yamaguchi et al.,
1998).

Although a catalase-overexpressing mouse strain exists
(Chen et al., 2003), it has not been studied in the context of
cerebral ischemia/reperfusion. An alternative method is to
examine catalase deficiency. The developing brain provides a
natural model for this in that both catalase and glutathione
peroxidase are poorly expressed. Cu,Zn-SOD overexpression
in neonatal mice worsens the outcome from
ischemia/reperfusion (Fullerton et al., 1998). In contrast
Cu,Zn-SOD overexpression in adult mice improves the
outcome (Yang et al., 1994). This difference is probably
attributable to inadequate catalase and glutathione peroxidase

enzymatic activity available to the developing brain for the
conversion of superoxide-generated hydrogen peroxide to
water and oxygen (Fullerton et al., 1998). The same argument
suggests that endogenous concentrations of catalase and
glutathione concentrations are sufficient in the adult brain to
process superoxide, should its dismutation to hydrogen
peroxide be enhanced by a SOD mimetic.

There has been some attempt to test efficacy of exogenously
administered catalase in adult ischemia/reperfusion models
with mixed results, possibly due to the question of
bioavailability of proteins that must cross the blood–brain
barrier (Forsman et al., 1988; Liu et al., 1989). Catalase
inhibitors, such as 3-aminotriazole, have not been evaluated in
the context of ischemia. Therefore, there is insufficient
pharmacological information to conclude that catalase,
particularly in the presence of normal glutathione peroxidase
concentrations, plays a central role in the response of brain to
ischemia. This, however, should be tempered by the possibility
that the importance of catalase may increase if superoxide
production and SOD activity are increased.

Glutathione depletion
Glutathione is a tripeptide (γ-L-glutamyl-L-cysteinylglycine)

that is the reductant for glutathione peroxidase. Oxidation of
the cysteine sulfhydryl groups joins two glutathione (GSH)
molecules with a disulfide bridge to form glutathione disulfide
(GSSG). NADPH-dependent glutathione reductase catalyzes
recovery of glutathione. Normally, the brain maintains a high
ratio of GSH/GSSG for antioxidant defense. Depletion of total
glutathione and a decreased GSH/GSSG ratio are markers for
oxidative stress in ischemic brain and as long as 72·h may be
required to restore concentrations to normal values following
an ischemic insult (Namba et al., 2001; Park et al., 2000).
Ischemic outcome is worsened by pharmacological depletion
of glutathione (Vanella et al., 1993), but improved by
administration of a glutathione mimetic, glutathione
monoisopropyl ester, YM737 (Gotoh et al., 1994), or N-acetyl
cysteine, a glutathione precursor. No study of glutathione
reductase mutants in cerebral ischemia paradigms has been
reported.

Nitric oxide synthase inhibition
Since the original suggestion that nitric oxide synthesis

plays a role in cerebral ischemia (Marshall and Kontos, 1990),
over 800 research reports have addressed this issue. Nitric
oxide is enzymatically synthesized from L-arginine and is
massively increased by ischemia (Wei et al., 1999). Three
nitric oxide synthases (NOS) have been reported (eNOS,
nNOS and iNOS), so named because of their originally defined
endothelial (eNOS) and neuronal (nNOS) localization, or
ability to be upregulated when induced (iNOS). Initially, the
field was confusing because NOS inhibitors were not selective
and were given in large doses. Some ischemic outcome studies
found improved outcome using NOS inhibitors, while others



3226

found worsened outcome. It soon became apparent that the
effect of NOS inhibition was dependent upon which isoform
was being inhibited. Pharmacologic eNOS inhibition would
be expected to worsen outcome, secondary to cerebral
vasconstriction and reduced blood flow. This is supported by
studies of eNOS-deficient mice (Lo et al., 1996) that have
worsened ischemic outcomes. In contrast, upregulation of
eNOS activity by treatment with 3-hydroxy-3-methylglutaryl
(HMG)-CoA reductase inhibitors (e.g. simvistatin) caused
increased intra-ischemic blood flow and reduced infarct size
(Amin-Hanjani et al., 2001; Endres et al., 1998). Use of
selective nNOS antagonists (O’Neill et al., 2000) and nNOS
knockout mice (Huang et al., 1994), confirmed that neuronal
production of nitric oxide contributes to ischemic cell death.
iNOS has been associated with oxidative stress (Han et al.,
2002), and modifying its activity may have therapeutic
potential (Parmentier et al., 1999). However, nitric oxide may
also serve as an antioxidant against products of the Fenton
reaction (Chiueh, 1999). At the same time, iNOS expression
has been implicated as a critical factor for promoting post-
ischemic neurogenesis (Zhu et al., 2003). Further, iNOS
expression may contribute to increased tolerance of brain to
ischemia induced by preconditioning stimuli (Kapinya et al.,
2002) as does eNOS upregulation (Hashiguchi et al., 2004).
The fact that eNOS and nNOS are Ca2+-dependent, while
iNOS is not, can be used to distinguish among them for
mechanistic purposes.

The relevance of nitric oxide was increased with the report
that the diffusion-limited reaction between superoxide and
nitric oxide gives rise to peroxynitrite (Beckman et al., 1990).
The highly reactive peroxynitrite provided a mechanistic basis
for oxidative stress derived from increased nitric oxide
production caused by ischemia/reperfusion (Eliasson et al.,
1999). Studies confirmed increased peroxynitrite formation
occurring in parallel with upregulation of iNOS (Suzuki et al.,
2002) and lack of peroxynitrite formation in nNOS knockouts
(Eliasson et al., 1999). Nitric oxide has also been shown to
inhibit mitochondrial respiration via competition with oxygen
for cytochrome oxidase (Brown and Borutaite, 1999) and play
a role in the initiation of apoptosis (Bonfoco et al., 1995).
Although little has been reported on efforts to bring nitric oxide
inhibitors to clinical investigation, there is no doubt that nitric
oxide plays a pivotal role in mediating oxidative stress
(Mikkelsen and Wardman, 2003).

Metal chelators
Free iron is released from protein storage in the ischemic

brain, providing substrate for the iron-catalyzed Haber–Weiss
reaction, resulting in hydroxyl radical formation from
hydrogen peroxide. Iron chelators such as deferoxamine are
logical candidates to probe the role of these reactions in
ischemic brain. Deferoxamine-treatment has been associated
with reduced lipid peroxidation, improved post-ischemic
vasoreactivity, cerebral perfusion and ATP recovery (Hurn et
al., 1995; Liachenko et al., 2003; Nayini et al., 1985; Nelson

et al., 1992). Unfortunately, histological/behavioral outcome
studies have failed to find consistent benefit from this strategy
(Fleischer et al., 1987; Kumar et al., 1988), possibly due to its
short-half-life. Further, deferoxamine does not chelate copper
ion, which can also catalyze the Haber–Weiss reaction. There
is an exception to this, however. Consistent observations
of deferoxamine-mediated improvement in post-ischemic/
hypoxic outcome have been made in perinatal brain (Palmer et
al., 1994; Peeters-Scholte et al., 2003; Sarco et al., 2000).
Perhaps this is attributable to low endogenous expression of
catalase and glutathione peroxidase, which might make the
developing brain particularly prone to hydrogen peroxide
accumulation (Fullerton et al., 1998).

Poly(ADP-ribose) polymerase inhibitors
PARP was first introduced to the ischemia literature with the

report that PARP knock-out mice exhibited profoundly
diminished cerebral infarct sizes when compared to wild-type
counterparts (Eliasson et al., 1997). Poly(ADP-ribose) is
synthesized from NAD by PARP and degraded by poly(ADP-
ribose) glycohydrolase (PARG). PARP is activated in response
to DNA damage as a repair mechanism but also causes NAD
and ATP depletion, potentially exacerbating ischemic injury.
A principal source of DNA damage is likely to be peroxynitrite
formation from superoxide and nitric oxide, mediated by
NMDA receptor activation (Giovannelli et al., 2002; Mandir
et al., 2000). Cu,Zn-SOD overexpressing mice do not exhibit
post-ischemic PARP activation (Narasimhan et al., 2003).
Effects of pharmacological antioxidants on PARP activation
have not been reported. Pharmacological PARP antagonists
have provided protection in several ischemia models
(Abdelkarim et al., 2001; Plaschke et al., 2000), one of which
followed outcome for up to 30 days post-ischemia (Ding et al.,
2001). Similarly, treatment with systemic NAD improved
ischemic outcome (Yang et al., 2002). PARP activation
remains a plausible mechanism to explain downstream effects
of oxidative stress on ischemic outcome.

Mitochondrial permeability transition inhibitors
The concept is relatively new that the mitochondrial

permeability transition (MPT) pore plays an important role in
response of brain to ischemia (Friberg and Wieloch, 2002;
Kristian and Siesjo, 1996). Ca2+ overload causes translocation
of cyclophilin-D from the matrix to the MPT pore that activates
the pore allowing flux of solutes from the matrix to the
intermembrane space (Tanveer et al., 1996). Persistent MPT
allows mitochondrial swelling and disruption of the outer
mitochondrial membrane, loss of the hydrogen ion gradient,
and failure of oxidative phosphorylation. Other factors,
including oxidative stress, open the MPT pore. Therefore,
oxidative stress can initiate MPT which, in turn, potentiates
oxidative stress. It is tempting to speculate that MPT allows
release of proapoptotic factors (e.g. cytochrome c) into the
cytosol (Brown and Borutaite, 1999). However, release of
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proapoptotic factors has been shown to be MPT-independent
(Kobayashi et al., 2003), albeit modulated by oxidative stress
(Morita-Fujimura et al., 2001) and potentially corrected by
Cu,Zn-SOD overexpression (Sugawara et al., 2002a). Of note,
inhibition of the MPT by drugs that might interact with
cyclophilin-D (e.g. cyclosporine A; Li et al., 2000; Waldmeier
et al., 2003) or antibodies to MPT pore elements (Perez
Velazquez et al., 2003) provide ischemic neuroprotection with
reduced mitochondrial swelling and inhibition of cytochrome
c release. Cumulatively, MPT provides a convergence between
various oxidative and anti-oxidative forces that are likely to
have major impact on ischemic outcome.

Spin traps
Chemists have developed a variety of methods to ‘capture’

ROS allowing their detection and quantification. A classic
application of this technology in the study of ischemic brain is
use of salicylate, which reacts with hydroxyl radical to form a
relatively stable adduct, 2,3-DHBA. This has been useful in
microdialysis studies, allowing near-real time measurement of
hydroxyl radical production (Globus et al., 1995; Zhang and
Piantadosi, 1994). Taking a different approach, in addition to
nitroxide spin probes, nitrone spin traps were developed to
capture ROS, allowing detection by electron paramagnetic
spectroscopy. Recognizing the potential for nitrones to
scavenge ROS, it was postulated that these compounds might
present therapeutic potential (Britigan et al., 1991). Indeed,
early rodent studies found consistent benefit from the spin
trap α-phenyl-N-t-butyl-nitrone (PBN) against both global
and focal ischemic insults (Yue et al., 1992; Zhao et
al., 1994). More important, the second generation spin trap,
NXY-059 (disodium 4-[(tert-butylimino)-methyl]benzene-1,3-
disulfonate N-oxide), has been found to improve ischemic
outcome in primates when measured at 10 weeks after
permanent occlusion of the middle cerebral artery, even when
treatment was begun as late as 4·h after onset of ischemia
(Marshall et al., 2003). NXY-059 has been shown to maintain
Akt activation and inhibit cytochrome c release after ischemia
(Yoshimoto et al., 2002). There are no reports regarding its
direct effect on oxidative damage to cellular constituents in
vivo. The compound is in Phase III clinical trials after being
found tolerable at proposed therapeutic concentrations in
humans (Lees et al., 2003). The implications of this work at
the clinical level could be substantial.

Mechanistically, in the presence of free radicals, nitrones
undergo oxidation to nitroxide radicals. Goldstein et al.
(2003a) have shown that stable nitroxides can be reduced to
hydroxylamine and oxidized to oxammonium cation, and thus
can act catalytically to eliminate superoxide. However, no data
are presently available to justify the catalytic role of nitrones
based on the formation of nitroxides. Based on its poor
blood–brain barrier penetration, the protection afforded by
NXY-059 against transient focal cerebral ischemia may be the
result of the events occurring at the blood/endothelial interface
(Kuroda et al., 1999), or indicate that the drug enters the brain

after blood–brain barrier breakdown. This distinction is
important. More important is the implication that because
commencement of treatment at 4·h after onset of ischemia was
efficacious, only oxidative stress occurring more than 4·h after
onset of ischemia has importance for ischemic outcome.

Conclusions
The above outline presents data for several mechanisms of

oxidative damage in ischemic and post-ischemic brain, leaving
little doubt that oxidative stress is a major contributor to
ischemic brain injury. The advent of transgenic mutants and
relatively selective pharmacological antioxidants has allowed
improved definition of the varied mechanisms of oxidative
stress and potential targets for therapeutic intervention.
Conspicuously absent from extant data, with the exception of
NKY-059, are long-term outcome studies designed to assess
the stability of protection from ischemia afforded by gene
mutations and drugs having purported efficacy as antioxidants.
Long-term studies are critical in predicting clinical efficacy.
Although there is substantial evidence that many oxidative
pathways contribute to damage resulting from ischemia/
reperfusion, it seems unlikely that any one pathway is
sufficiently critical to singularly define outcome. Because most
interventions are targeted at specific mechanisms of oxidative
damage, it seems likely that combined therapeutic mechanisms
will be required to substantively and persistently alter outcome
from an ischemic insult.
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