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Dinoflagellates are microorganisms that swim using two
flagella: a transverse flagellum encircling the cellular antero-
posterior axis and a longitudinal one running posteriorly.
There are numerous reports about diurnal vertical migration
of dinoflagellates and their survival strategy is deeply linked
to their swimming motion (Ault, 2000; Eppley et al., 1968;
Franks, 1997; Horstmann, 1980; Kamykowski, 1981;
MacIntyre et al., 1997; Olli et al., 1997; Olsson and Granéli,
1991). It has conventionally been thought that the forward
thrust for swimming is provided by the transverse flagellum
and/or the longitudinal flagellum, that the transverse
flagellum produces cell rotation and that the longitudinal
flagellum controls cell orientation. These suggestions are
confirmed by observations of water movement around the
organism (Jahn et al., 1963; Peters, 1929). Further electron
microscopic studies (Honsell and Talarico, 1985) gave rise to
hypothesizes of mechanisms how a transverse flagellum
generates thrust (Gaines and Taylor, 1985; LeBlond and
Taylor, 1976; for reviews, see Levandowsky and Kaneta,
1987; Sleigh, 1991; Goldstein, 1992). However, a
quantitative examination of how the swimming motion
and flagellar motion are linked is lacking, which makes it
difficult to decide which flagellum is responsible for thrust
generation during swimming. To answer the question, it is
necessary to quantify the forces and moments generated by
each flagellum and to relate them to the swimming speed,
rotational speed, swimming trajectory and other swimming
variables.

In a previous study (Miyasaka et al., 1998), the motility of
Prorocentrum minimum(Fig.·1A) was investigated. Briefly, P.
minimumwas found to swim along a helical trajectory with the
same side of the cell always facing the axis of the trajectory
as, for example, lunar motion with respect to the Earth
(Fig.·1B). Net swimming speed was 95.3·µm and the Reynolds
number of the motion was 1.1310–3. The transverse flagellum
encircles the anterior end of the cell, and a helical wave is
propagated along it (Fig.·1A,E); this helical wave shows
different half-pitches between the nearer and farther parts
relative to the cellular antero-posterior axis (Fig.·1D). The
longitudinal flagellum produces a planar sinusoidal wave
propagated posteriorly (Fig.·1C).

In the present study, equations to describe the steady
swimming motion of P. minimumbased on resistive force
theory (Gray and Hancock, 1955) are presented and the
roles of both flagella are elucidated from the resulting
calculations.

Materials and methods
The coordinate systems

A cell of Prorocentrum minimum(Pavillard) Schiller is here
represented as a sphere of equivalent volume, moving steadily
along a helical trajectory, with the variables describing the cell
motion at first treated as unknowns. Two Cartesian coordinate
systems or frames are established; one is the ‘inertial frame’
(XI,YI,ZI), fixed relative to the laboratory, and the other is the
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Equations describing the motion of the dinoflagellate
Prorocentrum minimum, which has both a longitudinal
and a transverse flagellum, were formulated and
examined using numerical calculations based on
hydrodynamic resistive force theory. The calculations
revealed that each flagellum has its own function in cell
locomotion. The transverse flagellum works as a
propelling device that provides the main driving force or
thrust to move the cell along the longitudinal axis of its
helical swimming path. The longitudinal flagellum works

as a rudder, giving a lateral force to the cell in a direction
perpendicular to the longitudinal axis of the helix.
Combining these functions results a helical swimming
motion similar to the observed motion. Flagellar hairs
present on the transverse flagellum are necessary to make
the calculated cell motion agree with the observed cell
motion.

Key words: Prorocentrum minimum, flagella, hydrodynamic resistive
force theory, swimming, dinoflagellate.

Summary

Introduction

Functional roles of the transverse and longitudinal flagella in the swimming
motility of Prorocentrum minimum(Dinophyceae)

Iku Miyasaka*, Kenji Nanba, Ken Furuya, Yoshihachiro Nimura and Akira Azuma
Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo,

1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
*Author for correspondence (e-mail: miyasaka@aujaghi.fs.a.u-tokyo.ac.jp)

Accepted 14 June 2004



3056

‘cell frame’ (x,y,z), fixed relative to the cell. When the cell
moves along a helical trajectory, the position of the cell Rc in
the inertial frame is written in the inertial frame as: 

Rc = (VXt, RPcosΩct, RPsinΩct)T·, (1)

whereVX is net displacement speed, Ωc is the angular speed
of cell revolution, RP the radius of the path helix and t is
time, and superscript T indicates the transposed vector. The
transformation to the cell frame from the inertial frame
is performed by successive transformations using the
Eulerian angles ψ, Θ and Φ describing cell orientation
(Fig.·2A,B).

The transformation from the inertial frame (XI,YI,ZI), to the
first frame (X′,Y′,Z′), is performed using a matrix T1, describing
the rotation about the X1 axis at the angular speed Ωc as: 

(X′,Y′,Z′)T = Rc + T1 . (XI,YI,ZI)T·, (2) 
where

The transformation from the first frame, (X′,Y′,Z′), to the
second frame, (X′′ ,Y′′ ,Z′′ ), is performed using a matrix T2,
describing the orientation ψ of the cell about the Z′ axis as: 

(X′′ ,Y′′ ,Z′′ )T = T2 . (X′,Y′,Z′)T·, (4) 
where

The transformation from the second frame (X′′ ,Y′′ ,Z′′ ), to the
third frame (X′′′ ,Y′′′ ,Z′′′ ), is performed using a matrix T3,
describing the orientation Θ, of the cell about the Y′′ axis as: 

(X′′′ ,Y′′′ ,Z′′′ )T = T3 . (X′′ ,Y′′ ,Z′′ )·, (6) 

where

The transformation from the third frame (X′′′ ,Y′′′ ,Z′′′ ), to the
cell frame (x,y,z), is performed using the matrix T4, describing
the orientation Φ, of the cell about the X′′′ axis as:

(x,y,z)T = T4 . (X′′′ ,Y′′′ ,Z′′′ )T·, (8)

where

Therefore, the transformation from the inertial frame (XI,YI,ZI),
to the cell frame (x,y,z), is performed as:

(x,y,z)T = T4 . T3 . T2 . [Rc + T1 . (XI,YI,ZI)T]·. (10)

The unit direction vectors relative to the  swimming
trajectory epara, erad and etan, (Fig.·2A) are defined as:

(epara, erad, etan)T = T1 . (eXI, eYI, eZI)T·, (11)

where epara is parallel to the axis of the cylinder, erad is radial
to a circular transections of the cylinder and etan is tangential to
the circular transection and perpendicular to the cylinder’s axis.

The swimming velocity vc, and rotational velocity vc, in the
cell frame are transformed from those in the inertial frame as:

vc = (vx,vy,vz)T = T4 . T3 . T2 . T1 . (dRc/dt)·, (12)
and

vc = (ωx,ωy,ωz)T· (13)

Upper dots in Ψ, Θ and Φ and indicate time derivatives. Time
derivatives of the Eulerian angles, Ψ, Θ and Φ, are assumed
to be negligible compared with Ωc, because P. minimumcells
are observed to swim steadily along a helical trajectory with
the same side always facing the trajectory axis (Fig.·1B).

Formulae for the flagella

The flagellar waves of the transverse and longitudinal flagella
(Fig.·1A,B) are reconstructed as modified helical and sinusoidal
waves, respectively (Figs·2C, 3), using variables from
Miyasaka et al. (1998). Flagellar motion is formulated in the
cell frame. The coordinate’s origin is fixed at the cell’s centre.

The cell’s anterior end is represented by the intersection of
the spherical cell and x axis; the valval suture plane is
represented by plane x,y (Fig.·2C). While the basal parts of both
flagella in the observed cell are attached to the anterior end of
the cell, they are not included here in the flagellar model because
their effects on the motion of the cell are thought to be small.

Transverse flagellum

The transverse flagellum encircles the anterior end of the cell
and beats in a helical wave. It has two different pitches
depending on the distance from the cellular antero-posterior
axis (Fig.·1C–E; Miyasaka et al., 1998). The waveform is
formulated here as a helical wave whose axis is a baseline
circle of [xbt, rtcos(st/rt), rtsin(st/rt)]T (0østø2πrt), where xbt

and rt are the x coordinates and the radius of the circle,
respectively. The coordinate of a point on the transverse
flagellum rt(s,t) is formulated as: 

0 ø st ø ntλt·,
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where st is the length along the axis of the helix, at is the
amplitude, λt wavelength and nt wavenumber of the helical
wave, respectively (Fig.·2C). ϕ indicates the phase of this wave
and two different pitches of the flagellum are expressed by the
two alternative equations described below. ϕ0(st,t) is a non-
negative real number and:

ϕ0(st,t) = 2π(ftt – st/λt)mod(2π)·, (16)

where ft is the frequency of the helical wave. Therefore, when
s and t vary, ϕ0 varies within the range 0øϕ0,2π. ϕ switches
as when 0øϕ0,2πp:

as when 2πpøϕ0,2π:

where p is the ratio of a part corresponding to the remote part,
pf, from the antero-posterior axis of the cell to the wavelength
of the flagellum, λt, or pf/λt (Fig.·1D) and ranges as 0,p,1.
ϕ1 and ϕ2 indicate equations for ϕ in two ranges. As 2π(ftt –
st/λt) increases, ϕ0 changes in a saw-tooth-shaped wave with a

period of 2π, and ϕ shows a saw-tooth-shaped wave with
inclinations of 1/(2p) and 1/(2–2p) when ϕ=ϕ1 and ϕ=ϕ2,
respectively (Fig.·3A). When ϕ changes as described above,
cosϕ alternates between two pitches in the ratio p(1–p), as
observed in the transverse flagellum in side view (Figs·1D,
3B).

When time t advances, the wave is propagated along the
transverse flagellum, and the flagellar segments move along a
circular trajectory in the plane of zcos(st/rt)–ysin(st/rt)=0. The
transverse flagellum is assumed to encircle completely the
cellular antero-posterior axis (see Fig.·2C).

Longitudinal flagellum

The longitudinal flagellum moves as a wave in a plane
perpendicular to the valval suture plane (Fig.·1C). The
waveform is a sinusoidal wave in the xy plane whose centre
line (Fig.·2C) is: 

where xbl and ybl are the x and y coordinates of the point on
this line where s1=0. A point, r1(s1,t), on the waveform is
formulated as:
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Fig.·1. Prorocentrum minimummotility described in Miyasaka et al.
(1998). (A) P. minimumcell and directional terminology used in the
present study. (B) Swimming trajectory. (C) Sutural view, (D) valval
view, (E) anterior view, as indicated in A. Open arrows indicate wave
directions. AE, anterior end; a1, amplitude of the longitudinal
flagellum; ap, antero-posterior axis; at, amplitude of the transverse
flagellum; LF, longitudinal flagellum; PE, posterior end; pn, the half-
pitch corresponding to the adjacent parts to the ap axis of the
transverse flagellum; pf, remote part; Pp, pitch of helical swimming
trajectory; Rp, radius of helical swimming trajectory; S, suture of two
valves; TF, transverse flagellum; Θ the pitch angle of the cell against
the axis of the swimming trajectory; Θp, the pitch angle of the cell
against the axis of the swimming trajectory; θ1, angle between the
cellular antero-posterior axis and the center line of oscillation of
longitudinal flagellum; λ1, wavelength of the longitudinal flagellum;
λt, wavelength of the transverse flagellum.
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0 ø s1 ø n1λ1·,

where s1 is the length of the line along which the flagellum
wave propagates, r1(s1,t) are coordinates of a point on the
wave, a1 is amplitude, λ1 wavelength, f1 frequency and n1

wavenumber of the flagellar wave, and θ1 is the angle between
the wave’s centre line and cell’s antero-posterior axis.

Forces and moments acting on the flagella

The hydrodynamic forces and moments acting on the
flagella are given by hydrodynamic resistive force theory (Gray
and Hancock, 1955). The thrust and moment generated by a
flagellar segment are derived from its velocity relative to the
fluid, resistive force coefficients associated with the fluid
viscosity and the length of the flagellar segment (Gray and
Hancock, 1955). The relative velocity is calculated using the
Stokes’ solution for the flow around a sphere (Jones et al.,
1994) and the resistive force is calculated for various
configurations and arrangements of flagellar appendages or
hairs (Brennen, 1974; Gray and Hancock, 1955; Holwill and
Sleigh, 1967; Lighthill, 1976).

Gray and Hancock (1955) formulated the hydrodynamic
force dFf

H generated by a flagellar element of length dl and
having a relative velocity V to the fluid, as: 

dFf
H = –CNVNdl – CTVTdl·, (21)

where VN and VT are the velocity components in the normal
and tangential directions to the flagellar shaft, respectively. CN

and CT are the drag coefficients in the normal and tangential
directions to the flagellar shaft, respectively. They proposed
that CN and CT for a smooth-surfaced flagellum were: 

respectively, where λ is the flagellar wavelength along the
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Fig.·2. Illustration of the coordinate systems and their transformation.
(A) The helical swimming trajectory is shown on a cylinder. VX is the
net displacement speed of the cell, where Ωc is the angular speed of
the cell, Rp is the radius of the cylinder and t is time. epara, etan and
erad are the unit direction vectors where eparais parallel to the axis of
the cylinder, erad is radial to a circular transections of the cylinder
and etan is tangential to the circular transection whose plane is
perpendicular to the cylinder’s axis. (XI,YI,ZI) is the inertial frame
fixed relative to the laboratory and (X′,Y′,Z′) is a coordinate translating
with the cell and rotating with the cell and is rotating about X′ axis
(identical to XΙ axis) at the angular speed of Ωc. epara, etan and erad are
the components parallel to the net displacement, tangential and radial
to the swimming trajectory. (X′,Y′,Z′)T=Rc+T1.(XΙ,YΙ,ZΙ)T, where
superscript T indicates the transposed vector, Rc is the position of the
cell in the inertial frame (see Equation·1) and T1 is a matrix indicating
the rotational movement of the cell defined in Equation·3,
respectively. (B) Transformations between the coordinates
(X′,Y′,Z′)T (X′′ ,Y′′ ,Z′′ )T (X′′′ ,Y′′′ ,Z′′′ )T (x,y,z)T, where Ω, Θ and
Φ are the Eulerian angles indicating cell orientation and T2–T4 are
defined in Equations·4–7, to define the cell frame (x,y,z). (C) Model
of the P. minimumcell and flagella in the cell frame. a1, amplitude of
longitudinal wave; at, amplitude of transverse wave; rt radius of the
circle along which the transverse wave is propagating; xbt, x
coordinate of the circle along which the transverse wave is
propagating.
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flagellar shaft, d is the diameter of the flagellum and µ is the
fluid viscosity. Lighthill (1976) improved these equations as:

Holwill and Sleigh (1967) investigated the hydrodynamics
of a Chrosophyte flagellum, which has small thin rigid hairs
attached perpendicularly to the flagellar shaft. They proposed
that the CN and CT of such a hispid flagellum were given by
the sum of the drag coefficients of the flagellar shaft and
flagellar hairs:

respectively, where lh is the length of flagellar hairs, nsecis the
number of rows of flagellar hairs in cross section, nlen is the
number of rows of flagellar hairs per unit length of flagellum,

and θi is the angle between the moving direction of the flagellar
shaft and the ith flagellar hair. Superscripts f and h indicate
the flagellum and flagellar hairs, respectively. The drag
coefficients Cf

N, Cf
T, Cf

T and Cf
N are derived from Equations·24

and 25 using the dimensions of the flagellar shaft and hairs.
The alignment of the flagellar hairs has not been observed
because they do not remain after fixation for electron
microscopy. Holwill and Sleigh (1967) hypothesised two types
of hispid flagellum having two and nine rows of flagellar hairs,
or nh

sec=2 and nh
sec=9 in Equations·26 and 27. The nh

sec=2
flagellum is hypothesised to have two rows of flagellar hairs
on the opposite side of the flagellar shaft. The nh

sec=9 flagellum
is hypothesised to have nine rows, based on the idea that
the alignment of the hairs corresponds to that of the nine
microtubule pairs in the flagellar shaft.

In the present model, CN and CT are obtained from Lighthill
(1976) and Holwill and Sleigh (1967), and the wavelength for
each flagellum is calculated from Equations·15–20. The
dimensions of the flagella and flagellar hairs were measured
from electron micrographs of P. minimum in Honsell and
Talarico (1985), which shows a smooth-surfaced longitudinal
flagellum and a transverse flagellum with flagellar hairs. The
longitudinal flagellum (LF) is regarded as smooth-surfaced
with a diameter of 0.4·µm. Three types of transverse flagellum
have been assumed, to allow for testing of the effect of the
existence of flagellar hairs and their alignment: smooth-
surfaced without flagellar hairs (sTF), bearing hairs in two
rows (h2TF) and bearing hairs in nine rows (h9TF), projected
on the transverse flagellum. The diameter of the transverse
flagellum and the length and diameter of a flagellar hair are
assumed to be 0.2·µm, 0.8·µm and 0.06·µm, respectively. The
density of the flagellar hairs on the transverse flagellum is
assumed to be eight hairs per micrometer, based on the electron
micrographs in Honsell and Talarico (1985). The flagellar hairs
on the transverse flagellum are assumed to be arranged at even
angle intervals, and one of the flagellar hairs is assumed to be
oriented in the direction of the movement relative to the cell
frame. Therefore θi=2π(i–1)/nh

sec, where i=1,2,…nh
sec. The

number of flagellar hairs around the flagellar transection nh
sec

was assumed to be two for h2TF and nine for h9TF.
The velocity of a flagellar element with reference to the cell

frame vflag is:

where r represents rt(st,t) or r1(s1,t), with values taken from
Miyasaka et al. (1998). The fluid velocity around the cell body
is described by the Stokes’ flow because of its small Reynolds
number (Jones et al., 1994). When a sphere of radius rc moves
with a linear velocity of vc and an angular velocity of ωc, the
flow due to the cell translation vtran and rotation vrot, at point
r in the cell frame according to Stokes’ law is:

(29)
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Fig.·3. Two-pitches model of the transverse flagellar wave. (A) ϕ0

(broken line) and ϕ (solid line) which alternate between ϕ1 and ϕ2.
(B) cosϕ (solid line) and sinϕ (broken line). ϕ indicates the phase of
this wave and it switches between ϕ1 and ϕ2. ϕ1=ϕ0/2p is the equation
for ϕ when 0<ϕ0<2π, and ϕ2=(ϕ0–2π)/2(1–p) is the equation for ϕ
when 2πp″ϕ0<2π, where p is the ratio of a half pitch corresponding
to the remote part of the antero-posterior axis of the cell to a
wavelength and ϕ0 is the minimum non-negative value for
2π(ftt–s/λt)–2πm, where t, s, ft, λt and m are time, length along the
circle where the transverse flagellum wave propagates, the frequency
and wavelength of the helical wave and a positive integer that
minimizes ϕ0(s,t), respectively.
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and

respectively, where r is the distance from r to the origin of the
cell frame, or the centre of the sphere (Lamb, 1932). The
passive fluid velocities caused by the flagellar motion are
assumed to be negligibly small in comparison with those
caused by the cell motion, vtran and vrot. Based on this
assumption, the terms in Equation·21 are:

VT = (V . e)e (32)
and

VN = V – VT·, (33)

where s represents sl or st. e indicates a unit tangential vector
to the flagellar shaft as:

e = dr / dl·, (34)

and V indicates total velocity of flagellar element relative to
the fluid as: 

V = (dr/dt) + vc 3 r – vtran – vrot·. (35)

The force produced by the flagellar element is given by
substitution of Equations 24–35 into Equation 21 and the
moment dMf

H generated by the element is given as:

dMf
H = r 3 dFf

H·. (36)

Inertial, buoyant and gravitational forces and moments
acting on the flagella, and inertial force and moment acting on
the added mass of flagella, are assumed to be negligibly small
in comparison with those produced via hydrodynamic
resistance.

Forces and moment acting on the cell

The forces and moments acting on the cell body arise from
the inertia of the cell body, inertia of the added mass of the
cell, hydrodynamic forces caused by the cell, gravity and the
buoyancy of the cell. However, the Reynolds number of the
swimming motion of the cell, which is 1.1310–3, shows that
the hydrodynamic force and moment dominate the motion, and
inertial forces and moments are negligibly small in comparison
of hydrodynamic ones. The hydrodynamic drag force and
moment are represented by the drag force Fc

H and moment Mc
H

required by the hydrodynamic resistance to move a sphere of
radius rc at velocity vc and rotational velocity vc as: 

Fc
H = –6πµrcvc·, (37)

and
Mc

H = –8πµrc3vc·, (38)

respectively, where µ is the viscosity of the fluid. The force
arising from gravity and buoyancy on the motion depends on
the densities of the cell body and medium, which are

1.0823103·kg·m–3 and 1.0213103·kg·m–3, respectively
(Kamykowski et al., 1992). Gravitational and buoyant forces
acting on the model cell are 8.23310–12·N and 7.76310–12·N,
respectively, and their resultant force 4.7310–13·N is much
smaller than the hydrodynamic force acting on the cell moving
in the fluid at the speed around 100·µm·s–1, which is in the region
of 10–11·N. Gravitational and buoyant forces acting on the cell
do not generate moment to rotate the cell body because the cell
body is represented by a sphere with a homogeneous density.

Equations of motion

The equations of motion used to simulate steady motion of
the cell can be written as:

Σ∫dFf
H + Fc

H = 0·, (39)
and

Σ∫dMf
H + Mc

H = 0·, (40)

where the inertial, gravitational and buoyant forces and
moments are neglected and there are no other external forces
and moments. Equations·39 and 40 are solved to find vx, vy, vz,
ωx, ωy an ωz, and the hydrodynamic forces and moments
generated by the flagella and acting on the cell are evaluated.
Equations·12–14 are solved for variables describing the cell
motility in the inertial frame VX, Ωc, Rp, ψ, Θ and Φ.

Using the acquired solutions, the power P done by the entire
flagellum against the hydrodynamic force is given by
integrating an inner product of flagellar velocity vector V and
the hydrodynamic force dFf

H as:

P = ∫V . dFf
H·. (41)

The conversion efficiencies from the power done by flagellar
movement against the hydrodynamic force to cell’s motion are
given by a ratio of a sum of power done by the flagellum (a)
of the cell, ΣP. The efficiency of the flagellar motion into
swimming and rotation is given as:

where vc.Fc
H and vc.Mc

H are the hydrodynamic power for
motion and rotation of the cell, respectively. Efficiency for the
cell’s swimming along the swimming path ηpathand for its net
travelling along a linear distance ηlinear are given as:

respectively, where vparais the component of vc in the direction
of epara.

Model simulations

Seven model cells are considered in simulation: a cell with
a longitudinal flagellum (LF), with a hispid transverse

,

(43)
vc . Fc

H

ΣP
ηpath=

(44)
vpara. Fc

H

ΣP
ηlinear=

and

, (42)
vc . Fc

H + vc . Mc
H

ΣP
η =

, (31)* *dr

ds
dl =

(30)vrot = vc 3 r








–1 +
rc3

r3
,
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flagellum (h2TF and h9TF), with a smooth transverse
flagellum (sTF), with a longitudinal flagellum plus a hispid
transverse flagellum (LF+h2TF and LF+h9TF) or with a
longitudinal flagellum plus a smooth transverse flagellum
(LF+sTF). Cells with a transverse flagellum are examined for
changes in the ratio of swimming speed to wave propagation
speed VX/ftλt, the ratio of rotational frequency to flagellar
frequency Ωc/ft, and efficiency η, as a function of the
amplitude-to-wavelength ratio πat/λt, to allow direct
comparisons with data obtained for other flagellated organisms
in previous studies (Chwang and Wu, 1971, 1974; Coakley and

Holwill, 1972; Higdon, 1979; Holwill, 1966; Holwill and
Burge, 1963; Holwill and Sleigh, 1967; Lighthill, 1976). All
calculations were performed using a Macintosh G3 equipped
with Mathematica version 4.1 (Wolfram Research, IL, USA).

Results
Movement of cells

The results of the calculations gave distinctively different
movement patterns for each of the seven model cells (Table·1,
Fig.·4). The traces of the swimming trajectories fall into three

A

B
C

D

E

G
F

20 µm

Fig.·4. Schematic illustrations of
the movement of the model cell
(Table·1). Cell motility variables
and abbreviations are given in
Table·1. The cells are viewed
along the YI axis except in G,
which is viewed along the XI axis
(see Fig.·2). The position and
orientation of the cell is shown at
intervals of 0.25·s, except F,
where the time interval is 1·s. The
spheres representing cells are
divided into eight regions labelled
(from left to right) 1–4 and 5–8 on
the upper and lower hemispheres,
respectively. Arrows indicate the
swimming trajectory and direction
of turning. (A) LF+h2TF, (B)
LF+h9TF, (C) LF+Stf, (D) h2TF,
(E) h9TF, (F) Stf, (G) LF.

Table·1. Motilities of modelP. minimum cells with various flagellar compositions

Observed cell (N=7)* Model cells

LF+hTF LF+h2TF LF+h9TF LF+sTF h2TF h9TF sTF LF

|vc| (µm·s–1) 107.7±54.6 129.4 118.9 55.8 118.1 110.0 18.2 36.4
VX (µm·s–1) 95.3±46.0 113.4 92.2 26.2 118.1 110.0 18.2 0
Ωc (rad·s–1) 7.04±1.45 9.05 4.27 –4.02 10.0 4.34 –4.78 4.52
RP (µm) 7.49±2.33 6.4 15.5 12.5 0 0 0 1.54
Ψ (rad) –0.26 –0.34 –0.37 0 0 0 1.57
Θ (rad) 0.51±0.12 –0.21 –0.48 0.37 0 0 0 –0.39
Φ (rad) 2.7 2.4 3.1 0 0 0 1.57

|vc|, swimming speed along the trajectory;VX, net displacement speed; Ωc, angular speed; ψ, Θ, Φ, Eulerian angles indicating cell
orientation;RP, radius of helical swimming trajectory.

*Observed values are means ±S.D. from Miyasaka et al. (1998).
LF, longitudinal flagellum; TF, transverse flagellum; h2TF, transverse flagellum bearing hairs in two rows; h9TF, transverse flagellum

bearing hairs in nine rows; sTF, smooth transverse flagellum (hairless).
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types. Cells with both transverse and longitudinal flagella
move along a helical trajectory. Those with a transverse
flagellum swim along a linear trajectory and rotate at more than
twice the speed of the corresponding cell with a longitudinal
flagellum (Table·1, Fig.·4D–F). The LF cell swims along a
circular trajectory, rotating sideways and making no net
displacement (Fig.·4G).

Flagellar hairs on the transverse flagellum determined the
direction of cell rotation and the speed of cell displacement and
rotation. Cells that have hairs on the transverse flagellum
rotated in a right-handed direction, i.e. in the same direction as
the wave propagation of the transverse flagellum (Table·1,
Fig.·4A,B,D,E), while cells LF+sTF and sTF rotated in a left-
hand direction (Fig.·4C,F). Swimming speed decreased from
h2TF, through h9TF and sTF for cells without a longitudinal
flagellum. Addition of a longitudinal flagellum does not change
the order. Cells with a larger value of CT/CN for the transverse
flagellum swam faster (Table·1).

The force and moment vectors generated by each flagellum
were also calculated and decomposed into the components in the
epara, eradand etandirections (Fig.·2A and Equation·11), according
to the thrust and moment function (Table·2). The transverse
flagellum provided over 90% of the thrust force Fparato drive the
cell, and all the longitudinal moment Mparato rotate the cell and
the longitudinal flagellum in the LF+h2TF and LF+h9TF cells.
While the contribution of the longitudinal flagellum to the thrust
Fparawas less than 10%, the flagellum generated the lateral force,
Ftan, to make the swimming trajectory helical. In cells with only
a transverse flagellum (h2TF, h9TF and sTF cells), the flagellum
did not generate Ftan (Table·2). In the LF cell, the longitudinal
flagellum generated Ftan and Mpara but no Fpara, and the cell
swam along a circular path.

The net efficiencies η ranged from 2.3 to 7.3% among the
seven model cells (Table·3). Comparison of η with the
travelling efficiency ηpath indicates a nearly one-third
reduction in efficiency due to rotation in the h2TF and
LF+h2TF cells. In the LF+sTF cell, the advancing efficiency

ηlinear is one-quarter of ηpath, which is attributed a greater
deviation from the travelling path. In the LF cell ηlinear was
zero because the cell swims along a circular trajectory without
advancing.

Characterization of the transverse flagellum

The mechanism of thrust generation by the transverse
flagellum, which is the main forward thrust generator
(Table·2), was investigated and we describe the result of the
simulation for the h2TF cell (Fig.·5A) as a simplest case.

The motion and thrust generation of a flagellar segment of
a given unit length are described as follows. When a transverse
flagellum propagates a quasi-helical wave around the cell
body, the flagellar segment moves along a planar circular
trajectory (Fig.·5A). The thrust vector generated by the
flagellar segment depends on the phase of the wave. The
integration of the thrust over a period gives forward thrust,

I. Miyasaka and others

Table·2. Forces and moments generated by each flagellum in model cells

Fpara Ftan Frad Mpara Mtan Mrad

Model cell Flagellum (10–12·N) (10–12·N) (10–12·N) (10–17·Nm) (10–17·Nm) (10–17·Nm)

LF+h2TF h2TF 11.7 1.6 –4.4 8.0 1.4 –2.1
LF 0.51 4.7 4.4 –3.8 –1.4 2.1

LF+h9TF h9TF 9.2 5.0 –4.0 2.6 1.8 –1.2
LF 0.75 2.4 4.0 –0.58 –1.8 1.2

LF+sTF sTF 1.0 0 0 –1.34 –1.0 0.39
LF 1.8 5.0 0 –0.57 1.0 –0.39

h2TF h2TF 12.7 0 0 5.17 0 0
h9TF h9TF 11.2 0 0 2.0 0 0
sTF sTF 1.97 0 0 –2.23 0 0
LF LF 0 7.9 0 2.9 0 0

F and M indicate force and moment; subscripts para, tan and rad indicate components parallel, tangential and radial to the direction of net
displacement, respectively.

See Table 1 for abbreviations pertaining to model cells and flagella.

Table·3. Efficiency of model P. minimum cells with various
flagellar compositions

Model cell

Efficiency LF+h2TF LF+h9TF LF+sTF h2TF h9TF sTF LF

η (%) 3.5 2.3 2.4 4.2 2.4 2.6 7.3
ηpath(%) 2.9 2.1 1.9 3.0 2.2 0.7 5.2
ηlinear (%) 2.2 1.4 0.5 3.0 2.2 0.7 0.0

η, net efficiency, is the efficiency of the transformation of flagellar
hydrodynamic power to the cell’s kinetic power composed of linear
and rotational motions; ηpath, travelling efficiency, is the efficiency
of transformation flagellar hydrodynamic power to the cell’s
hydrodynamic power for travelling along the swimming path; ηlinear,
advancing efficiency, is the efficiency of the transformation of
flagellar hydrodynamic power to the cell’s hydrodynamic power for
advancing a straight line along the central axis of helix.

See Table 1 for abbreviations pertaining to model cells.
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because the thrust strength is asymmetric between forward and
backward directions (Fig.·5B,C). There are two reasons for this
assmmetry. One is the Stokes’ flow field caused by the cell
translation and rotation. This attenuates the hydrodynamic
force generated adjacently to the cell body. The hydrodynamic
thrust force decreases in strength by the term containing rc/r in
Equations·29 and 30. The forward thrust is generated at a
remote part of the cell surface and becomes larger than the
backward thrust, which is generated at a nearby part of the cell.

The second is the asymmetry of the waveform, introduced to
the model by Equations 5 and 18. Because of this asymmetry,
the thrust generated during the backward motion of the
flagellar segment is larger than that of the forward motion
(Fig.·5C). Therefore, the integrated hydrodynamic force in the
direction x component results in a forward thrust in the hTF
cell.

The component tangential to the baseline circle causes the
moment around the cell’s antero-posterior axis to rotate the cell
(Fig.·5C); this and the radial component balance each other
between the counterpart of the transverse flagellum.
Simulations were made of the relationship between the
wavenumber and the resultant thrust. When there are four
waves in the transverse flagellum, the thrust and moment are
constant because most of the force components in the radial
direction counterbalance each other (Fig.·6A). While this does
not change if the wavenumber is an odd number, it does change
when the wavenumber is not an integer. The forward thrust
generated by a transverse flagellum with wavenumbers of 3.5
and 4.5 oscillates, depending the phase of the wave (Fig.·6A).
The forward thrust by a cell with a longitudinal flagellum also
fluctuates. It fluctuates, however, when the wavenumber on the
longitudinal flagellum is an integer (Fig.·6A). The fluctuation
of the forward thrust by a cell with a longitudinal flagellum is
apparently a result of the center line of the longitudinal
flagellum not penetrating the center of the spherical cell
(Fig.·6A). The ratio of fluctuation to the mean thrust of the
longitudinal flagellum is larger than that of the transverse
flagellum, i.e. the transverse flagellum provides a stable force
and moment. This feature of the transverse flagellum is
attributed to its radial symmetry around the cellular antero-
posterior axis. This feature makes the transverse flagellum
unable to generate a force to change the swimming direction
of the cell. It is reasonable that the longitudinal flagellum
works to change the cell orientation while the transverse
flagellum is at rest (Miyasaka et al., 1998).

Simulations were made of the relationship between the
wavelength and the resultant speed and rotational frequency.
The speed ratio VX/(ftλt), frequency ratio Ωc/ft and net
efficiency η change as functions of πat/λt, in h2TF, h9TF and
sTF cells (Fig.·7). The net efficiency η peaks at πat/λt≅ 0.7 in
the h2TF cell and at πat/λt≅ 1.0 in h9TF and sTF cells (Fig.·7C).

Discussion
Waveforms of P. minimumflagella were formulated and

examined by means of a numerical model based on the
hydrodynamic resistive theory. The motility of the observed
cells was reproduced by the LF+h2TF cell (Table·1, Fig.·4A),
and this model proved to be a potent device for quantitatively
treating the motility of P. minimum.

What are the functions of the two flagella in swimming? The
results of the calculations lead to the following conclusions. In
cells with only a transverse flagellum, the flagellum generates
Fparaand Mpara (Table·2), and the cells swim along a straight
line (Table·1, Fig.·4). In the LF cell, the flagellum generates

Flagellar 
movement

Thrust=2×10–5 N

Thrust=2×10–5 N

x=xbt
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Fig.·5. Thrust made by flagellar shaft and flagellar hairs of the
transverse flagellum in an hTF cell during a cycle of the transverse
flagellum. Thick gray lines indicate the trajectory of a segment on the
flagellum and the small arrows on the line indicate the direction and
strength of the thrust. The change of force vectors are drawn at
intervals of 1.4·ms. (A) hTF cell and flagellar trajectory’s plane.
Coordinate system ξ, ψ and ζ are set as ξ=x, and as the trajectory of
the segment is included in ψ–ζ plane. (B) Flagellar movement and the
generated force vectors in ξ–ψ plane. (C) Flagellar movement and the
generated force vectors in ξ–ζ plane.
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Ftan and Mpara, but no Fpara, and the cell makes no net
displacement but rotates sideways (Fig.·4). While net
efficiency η is highest for the LF cell among the model cells,
the advancing efficiency ηlinear is zero for this cell (Table·3).
The motion of the LF+h2TF cell appears to be the sum of the
two types described above: the transverse flagellum contributes
96% of Fparaand all of Mpara, while the longitudinal flagellum
generates 75% of Ftan (Table·2). The longitudinal flagellum of
this cell generates negative Mparaand 4% ofFpara, while that
of the LF cell generates positive Mpara and noFpara. This
indicates that the central line of the longitudinal flagellum is
kept stable by its angle with the antero-posterior axis, and this
stability enables the longitudinal flagellum to generateFpara.
The roles of the two flagella in LF+h9TF and LF+sTF cells can
be explained similarly, while the motion of the LF+sTF cell
(Fig.·6C) and its low travelling efficiency ηlinear (Table·3) also
resemble those of the LF cell because the sTF generates less

force and moment than h2TF or h9TF does, allowing the
properties of the longitudinal flagellum to dominate (Table·2).
To summarise, the transverse flagellum provides thrust to
move the cell along the longitudinal axis of the helical
swimming path and rotates the cell about its antero-posterior
axis. The longitudinal flagellum makes the swimming
trajectory helical, and retards cell rotation.

For microorganisms, there are two advantages of active
swimming over passive movement by gravity and buoyancy:
faster movement and the ability to search for a more suitable
place for survival. The former increases the rate of diffusion
between the cell surface and the matrix fluid, by means of which
it exchanges dissolved substances. For example, when a
spherical microorganism with a diameter of 10·µm moves
relative to the matrix fluid at speeds of 10·µm·s–1 and
100·µm·s–1, the flux of dissolved substances across the cell
surface increases by 2% and 40%, respectively, relative to a
stationary cell (Lazier and Mann, 1989). A moving organism
can also search for appropriate concentration gradients. For this
purpose, a helical swimming path is more useful than a straight
one in spite of the longer distance for the same displacement.
This is because a helical swimming path enables detection of
three-dimensional components of a gradient whereas a straight
path allows detection of only one dimension (Crenshaw, 1996).
For a P. minimumcell, the transverse flagellum enables the cell
to achieve a high swimming speed. Addition of a longitudinal
flagellum to the h2TF cell did not cause it to swim faster or
more efficiently, as shown in smaller net displacement speed
VX, or lesser efficiencies (η, ηpath and ηlinear) in the LF+h2TF
cell than in the h2TF cell (Tables 1, 3). The longitudinal
flagellum, however, gives a cell the ability to search in the fluid,
because it makes the swimming trajectory helical, allowing the
cell to swim in a three-dimensional gradient and widening the
fluid volume through which the cell passes. Turning the cell in
a favourable direction also requires a longitudinal flagellum
(Hand and Schmidt, 1975; Miyasaka et al., 1998).

How does the waveform of the transverse flagellum work in
the observed cell motility? The net efficiency η reaches an
optimum when πat/λt≅ 0.7 in the h2TF cell and πat/λt≅ 1.0 in
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Fig.·6. Temporal changes in the forces and moments generated the
flagellum and cell. (A) Temporal changes of the thrust resulting in
net displacement Fpara generated by various types of cells with a
flagellum: as h2TF cell with a transverse flagellum of wavenumber
of 4.5 (dot-dashed line), h2TF cell with a transverse flagellum of
wavenumber of 3.5 (gray line), h2TF cell with a transverse
flagellum of wavenumber of 4.0 (solid line) and LF cell with a
longitudinal flagellum (broken line). (B) Temporal changes in force
in the direction parallel to net displacement Fpara, in the hTF+LTF
cell generated by the transverse flagellum (dot-dashed line), the
longitudinal flagellum (broken line), sum of the two types of
flagella (gray line) and drag force by the cell body (solid line).
(C) Temporal changes in the moment around the antero-posterior
axis of the cellMpara, in the hTF+LTF cell generated by the
transverse flagellum (dot-dashed line), the longitudinal flagellum
(broken line), sum of the two types of flagella (gray line) and drag
force by the cell body (solid line).
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h9TF and sTF cells, respectively (Fig.·7). The amplitude-to-
wavelength ratio πat/λt for the optimum efficiency is larger
than those found in past studies on flagella of spermatozoa or
bacteria (Anderson, 1974; Holwill and Burge, 1963; Holwill
and Peters, 1974; Holwill and Sleigh, 1967). This feature of

the transverse flagellum is attributed to its position, which is
so close to the cell surface that the contribution of the no-slip
condition of the fluid caused by the Stokes’ flow field is
significant. When the model does not include the no-slip
condition on the cell surface, as in the case of the flagellum
being sufficiently remote from the cell surface, the resultant
linear velocity is a half of the observed swimming speed. This
suggests that the no-slip condition on the cell surface
contributes to effective propulsion by the transverse flagellum.

Our results clearly demonstrate in terms of hydrodynamics
that the existence of flagellar hairs on a transverse flagellum
reverses the cell’s rotational direction, as previously noted by
Gaines and Taylor (1985). The smooth-surfaced transverse
flagellum generates less thrust and moment than the observed
cells (Table·1). The LF+h9TF cell has a smaller Ωc than the
actual cell, while the LF+h2TF cell has a Ωc close to the real
cells (Table·1). Although the arrangement of flagellar hairs in
P. minimumhas not yet been published, the simulations suggest
that the transverse flagellum possesses flagellar hairs arranged
to form two rows in a cross section of the flagellum projecting
perpendicularly to the direction of the flagellar movement.

In conclusion, we propose the functions of the two flagella
of P. minimumare as follows: the transverse flagellum acts as
a propulsion device, to move the cell along the longitudinal
axis of the helical swimming path and rotate it about its
antero-posterior axis; the longitudinal flagellum acts as a
rudder, to produce a helical swimming trajectory, and controls
the orientation of the cell. Flagellar hairs on the transverse
flagellum are probably present because they are necessary to
produce simulated cell motion, in agreement with that
observed in P. minimum. This is the first numerical evaluation
of the functions of the transverse and longitudinal flagella of a
dinoflagellate.

List of symbols and abbreviations
at amplitude of the helix
C drag coefficient
d diameter of the flagellum
epara, erad, etan unit direction vectors relative to the 

swimming trajectory
f (superscript) flagellum hair
F force
f1 frequency of the longitudinal flagellar wave
Fc

H drag force
Ff

H hydrodynamic force
ft frequency of the transverse helical wave
h (superscript) flagellar hair
l length
LF, l (subscript) longitudinal flagellum
M moment
Mc

H drag moment
Mf

H moment generated by the flagellar element
n1 wavenumber of the longitudinal flagellar  

wave
nlen number of rows of the flagellar hair per unit

length of flagellum
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Fig.·7. The cell swimming motion as a function of the amplitude-to-
wavelength ratio πat/λt in model cells with a transverse flagellum.
Solid, broken and dot-dashed lines indicate h2TF, h9TF and sTF cells,
respectively. Horizontal and vertical lines show the average value for
observed cells (Miyasaka et al., 1998; Table·1). (A) Speed ratio
VX/(ftλt). (B) Frequency ratio Ωc. (C) Efficiency η. at, amplitude of
transverse flagellum wave; λt, wavelength of transverse flagellum
wave; VX, net displacement speed of cell; ft, frequency of transverse
flagellum wave; Ωc, angular speed of cell. See Table·1 for model cell
abbreviations.



3066

nsec number of rows of flagellar hairs in cross
section

nt wavenumber of the transverse flagellar wave
P power
p ratio of a half pitch
r radius
r position vector of a point on a flagellum
Rc position of the cell in the inertial frame
RP radius of the path helix
s1 length along the axis of the longitudinal 

flagellar wave
st length along the axis of the transverse flagellar 

wave
T (superscript) transposed vector
T matrix
t (subscript) transverse flagellum
t time
TF transverse flagellum
V relative velocity
vc swimming velocity
vflag velocity of a flagellar element
VX net displacement speed
XI, YI, ZI Cartesian coordinates ‘inertial frame’
x, y, z Cartesian coordinates ‘cell frame’
θ angle between the wave’s centre line and

cell’s antero-posterior axis
ϕ phase of helical wave
η swimming efficiency 
ξ, ψ, ζ coordinates
ψ, Θ, Φ Eulerian angles describing cell orientation
ΘP pitch angle of the cell against the axis of the 

swimming trajectory
vc rotational velocity 
Ωc angular speed of cell revolution
ηlinear advancing efficiency
ηpath travelling efficiency
λt wavelength of the helix 
µ fluid viscosity
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