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Pectoral fin motions for propulsion and maneuvering are
highly variable among fishes, but at least some of this variation
can be summarized by an axis in which fore–aft rowing
characterizes one extreme while dorso-ventral flapping
characterizes the opposite extreme (Breder, 1926; Lindsey,
1978; Webb and Blake, 1985; Walker and Westneat, 2002a,b).
The geometry of pectoral fin motion has important dynamic
consequences (the magnitude of lift and thrust generated
throughout the stroke cycle and how much energy is wasted in
the generation of thrust) that should affect how a fish exploits
resources in its environment (Walker and Westneat, 2000). In
order to explore the performance consequences of pectoral fin
motion in more detail, we need good comparative measures of
how different pectoral fin designs generate propulsive forces.

There have been many previous attempts to infer the
dynamics of pectoral fin propulsion in free-swimming fishes
from an analysis of either the pectoral fin kinematics (Webb,
1973; Blake, 1979, 1980; Geerlink, 1983; Archer and
Johnston, 1989; Gibb et al., 1994; Arreolla and Westneat,
1996; Gordon et al., 1996; Lauder and Jayne, 1996; Drucker
and Jensen, 1997; Walker and Westneat, 1997, 2002a; Hove et
al., 2001; Ramamurti et al., 2002) or the pectoral fin’s wake
geometry (Drucker and Lauder, 1999, 2000, 2001, 2003).
Investigations of pectoral fin energetics are few and have relied
on either oxygen consumption measures (Webb, 1974; Gordon
et al., 1989; Korsmeyer et al., 2002) or quasi-steady blade-
element models of real (Blake, 1979, 1980) or theoretical fish
(Walker and Westneat, 2000).

Blake’s model of the dynamics and energetics of pectoral fin
rowing (Blake, 1979, 1980) has been influential in the aquatic
locomotion literature. The major conclusions of the model are
that (1) while the acceleration reaction contributes to the work
budget, its positive and negative contributions to the mean
thrust cancel and (2) the overall mechanical efficiency, η, of
the fin is low relative to the efficiency of body-and-caudal
(BCF) swimming at preferred swimming speeds but is,
perhaps, higher than that of BCF swimming at slow swimming
speeds (no estimate of η for BCF swimming at slow speeds
was given so this last assertion cannot be evaluated).
Unfortunately, there was no attempt to verify the predictions
of the model with empirical data and, consequently, the
validity of the results remains in question.

The dynamics of pectoral fin propulsion have been inferred
indirectly by analysis of the center of mass kinematics. A
qualitative analysis of body displacement relative to stroke
cycle position in the flapping stroke of the shiner surfperch,
Cymatogaster aggregata, indicated that thrust is characteristic
of both down- and upstrokes and that positive and negative
lift alternate between strokes (Webb, 1973). The mean
acceleration over each halfstroke was used to estimate the net
downstroke thrust and upstroke thrust in the queen coris, Coris
frerei (Geerlink, 1983). A net negative thrust was found for the
downstroke and a net positive thrust was found for the
upstroke. The instantaneous accelerations of the body in the
bird wrasse, Gomphosus varius, were used to infer the
downstroke and upstroke forces (Walker and Westneat, 1997).
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The dynamics of pectoral fin rowing in the threespine
stickleback are investigated by measuring the
instantaneous force balance on freely swimming fish
throughout the stroke cycle and comparing the measured
forces with fin motions and an unsteady, blade-element
model of pectoral fin propulsion. Both measured and
modeled forces suggest that attached vortex and
circulatory forces and not inertial (added mass) forces
dominate the force balance. Peak forces occur at
midstrokes. There is no evidence for large force peaks at
the stroke transitions due to either rapid fin rotation

(supination) or rapid fin closure against the body. The
energetics of pectoral fin rowing are estimated using the
unsteady blade-element model and an indirect method
based on the center of mass dynamics. The results indicate
that the mechanical efficiency of pectoral fin rowing is low
(0.1–0.3) relative to a flapping mechanism and possibly
relative to axial undulation at comparable speeds.
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At all speeds, thrust was predominantly generated during the
upstroke but some thrust (between 12% and 22%) was
generated during the downstroke. By contrast, positive lift was
generated during the downstroke at all speeds but only at slow
speeds during the upstroke.

Recently, digital particle image velocimetry (DPIV) has
been used to measure the net force over each halfstroke in the
bluegill, Lepomis macrochirus, and the black surfperch,
Embiotoca jacksoni(Drucker and Lauder, 1999, 2000). In
contrast to previously described results for other fishes, the
sunfish at low speeds and black surfperch at moderate to high
speeds generated most of the thrust during the downstroke.
Similar to previous results, lift in both species was positive
during the downstroke and negative (or absent) during the
upstroke.

These alternative methods for inferring the dynamics of
pectoral fin propulsion (body displacement and DPIV) have
only been applied to fishes that present more of flapping stroke
than rowing stroke (with the exception, perhaps, ofL.
macrochirus, whose stroke is difficult to place along a
rowing–flapping axis). Similarly, all work on the energetics of
pectoral fin propulsion using oxygen consumption methods has
been applied only to fishes that present more of a flapping
stroke (Webb, 1974; Gordon et al., 1989; Korsmeyer et al.,
2002). Consequently, our only data on the dynamics and
energetics of the rowing stroke of fishes are from a blade-
element model whose results were not verified with any
empirically measured data, such as center of mass
displacement, oxygen consumption or wake geometry. The
dynamics of pectoral fin rowing were recently investigated
with a non-flexing, motor-driven fin resembling the planform
of the pectoral fin of the centrarchid fish, Micropterus
salmoides(Kato, 1999). Application of these results to the fins
of teleost fishes is limited, since teleost fins are highly flexible
and deform as a consequence of both elastic and fluid dynamic
stresses (Geerlink, 1983; Archer and Johnston, 1989; Gibb et
al., 1994; Lauder and Jayne, 1996; Westneat, 1996; Drucker
and Jensen, 1997; Westneat and Walker, 1997).

To rectify this major gap in our understanding of pectoral
fin function in fishes, the dynamics and energetics of a pectoral
fin rower, the threespine stickleback, Gasterosteus aculeatus,
are presented. This work has three goals. First, to measure
empirically the instantaneous lift and thrust balance on the
body throughout a complete stroke cycle. Second, to apply a
hydrodynamic model to measured fin kinematics in order to
estimate the various contributions and timings of circulatory
and added mass forces on net lift and thrust. The validity of
the model is checked by comparing the modeled and measured
estimates of lift and thrust. Third, to estimate the economic
effectiveness of the rowing stroke by estimating its mechanical
efficiency, which is the ratio of the useful to the total work
done by the fin on the water.

Indirect measures of instantaneous thrust and lift generated
by the fins are estimated from a force-balance model using the
digitized displacement of the center of mass (Walker and
Westneat, 1997, 2002a). This indirect measurement relies on

few assumptions (see Materials and methods) and allows the
measurement of lift and thrust in freely swimming fish. An
indirect measure of lift and thrust could be estimated more
accurately by tethering an individual to a force transducer, an
experimental technique that is common in insects but has never
been applied to fishes. Many of the assumptions (e.g. pectoral
fin dynamics alone balance weight and drag) of the indirect
force measurement method used in this study also apply to
direct force measurements from tethered individuals.
Similarly, the decomposition of the net lift and thrust into
circulatory and added mass components requires a (virtual
or physical) model. The major limitations to tethering
experiments are (1) simulating a specific speed and (2)
inducing the animal to activate the same kinematic patterns at
this simulated speed as it would if moving freely at this speed.
Direct measurements of circulatory forces on a fin would
involve either instrumenting the fin with a series of pressure
transducers or measuring the distribution of fluid velocities
around the fin using quantitative flow visualization, such as
DPIV. Neither method is technologically mature enough to
apply to the small, highly deformable fins of the stickleback.
DPIV is, with few exceptions (Anderson et al., 2001),
restricted to the wake behind a fin and can, consequently, only
give a summary (such as the mean lift and thrust over a stroke)
of the fluid dynamics of the fin stroke. While qualitative flow
imaging (Srygley and Thomas, 2002) has been successful in
identifying key fluid dynamic features at a fluid–wing
boundary (such as leading edge vortices), one cannot estimate
instantaneous forces with this technique. One possible solution
that might allow the estimate of the instantaneous force balance
on a flexible, pectoral fin is the recently developed defocusing
DPIV system used to measure the velocity distribution
throughout a volume of fluid surrounding a deforming object
(Pereira and Gharib, 2002).

To estimate the contribution of circulatory and added mass
forces and to explore the timings of these components, a
previously developed, unsteady blade-element model (Walker
and Westneat, 2000; Walker, 2002b) is further generalized to
allow its application to the stickleback kinematics. The chief
advantage of the model is its trivial computational burden,
allowing its rapid application to a diverse array of fin
movements. Despite its computational simplicity, the model
has been remarkably effective at recovering most of the
dynamic patterns identified by either robotic models or by
more sophisticated virtual models. While motor-driven robotic
fins offer an elegant method for investigating lift and thrust
generation on an oscillating plate, current robotic models are
not adequate for modeling stickleback fins because the
actuation mechanism necessary for the types of fin motions
presented by a stickleback pectoral fin (active control of
multiple joints) is far more complex than the mechanisms
found in current robotic fins and wings (active control of a
single joint).

A model for indirectly measuring mechanical power and
efficiency from measured body accelerations and wing
kinematics (Pennycuick et al., 2000) is generalized and applied
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to the stickleback data. These measured estimates of power and
efficiency are compared to modeled estimates of power and
efficiency computed from the blade-element model. Using a
model of oxycalorific equivalents and swimming muscle
efficiency, one can convert measures of O2 consumption to
estimates of the mean mechanical power over a stroke cycle or
compute an estimate of mechanical efficiency. Ward et al.
(2001) and Schultz and Webb (2002) have critically reviewed
some of the assumptions with this type of modeling. Even if
we had good estimates of muscle efficiency for stickleback,
respirometry for individual fish the size of sticklebacks
swimming at uniform speeds is not a viable option because of
constraints on the design of water tunnel respirometers (J.
Herskin and J. F. Steffenson, personal communication). One
advantage of the indirect measure and modeled measure of
mechanical power and efficiency is the ability to apply these
methods to smaller fish.

Materials and methods
Sticklebacks (Gasterosteus aculeatus Linnaeus 1758) are

small fish that inhabit coastal marine and freshwater
throughout much of the temperate northern hemisphere (Bell
and Foster, 1994). The sticklebacks in this study are
anadromous individuals that were captured in Rabbit Slough,
near Wasilla, AK, USA. Fish were filmed swimming in
freshwater in a flow tank designed after Vogel and LaBarbera
(1978). A centimeter grid was placed on the rear side of the
tank to calibrate video images. Water temperature in the flow
tank was maintained at 21±1°C. Fin stroke sequences were
filmed in lateral view at 250·Hz using a RedLake Motionscope
high-speed digital camera. Digital sequences were saved as
QuickTime® files and digitized using a modification of the
public domain NIH Image program (developed at the US
National Institutes of Health and available on the Internet at
http://rsb.info.nih.gov/nih-image/) for the Apple Macintosh
(the modification, which is available from the author upon
request). Eighteen sequences from six individuals swimming
at one of three speeds were archived for further analysis.
Following filming, fish were sacrificed in MS-222, measured
and weighed (Table·1). Fin aspect ratio and standardized first
through third moments of fin area (Ellington, 1984a) were
measured on the preserved specimens.

Kinematics

Stroke frequency (n), averaged over multiple (5–10) beats,
stroke angle (Φ) and stroke plane angle (β) were estimated
from all 18 sequences (methods following Walker and
Westneat, 1997).

Instantaneous fin geometry was measured for six sequences.
In order to justify the methods for measuring this geometry it
is necessary to describe the stickleback fin stroke qualitatively.
The largely fore–aft stroke is described and illustrated from a
left lateral view (Fig.·1). QuickTime® videos of selected
sequences are available at http://www.usm.maine.edu/
~walker/movies.html.

Immediately prior to the recovery stroke, the fin rotates
counterclockwise along the body. The first part of the recovery
stroke is characterized by the fin rays peeling off the body
starting with the leading edge ray and proceeding, ray by ray,
to the trailing edge ray. As the leading edge rays peel off the
body, the trailing rays continue to rotate counterclockwise
along the body. The point marked by the red arrow in Fig.·1A
illustrates the break point along the distal edge separating the

Feathered recovery strokeB

Closing against the bodyD

A Peeling off  the body

Pulling the leading edge backC

Fig.·1. These stills from a rowing stroke of the stickleback highlight
(A) how the sharp bend in the fin allows it to achieve a feathered
orientation as it is pulled off the body at the initiation of the recovery
stroke, (B) the feathered fin during the recovery stroke, (C) how the
sharp bend in the fin allows the fish to achieve a broadside
orientation by pulling the leading edge at the start of the power
stroke (rather than rigidly rotating the appendage as in a fruitfly) and
(D) the broadside orientation during the power stroke and close
against the body. The black arrows mark the distal edge of the fin
while the red arrows mark the location along the distal edge of the
sharp bend.
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hydrodynamically active leading edge region from the inactive
trailing region. The trailing edge ray peels off the body at about
the time it reaches the same dorso-ventral position as the
leading edge ray. The second part of the recovery stroke is
characterized by the fin translating anteriorly with the plane of
the fan pitched slightly ventrally (Fig.·1B). About the time the
leading edge ray reaches its most forward position, the fin rays
distinctly spread out, forming a larger surface area.

The power stroke begins with a rapid posterodorsal
translation of the leading edge ray. The dorsal translation of
the leading edge causes a clockwise rotation of the anterior fin
surface into a broadside orientation (Fig.·1C). A wave of fin
ray rotation passes posteriorly as the leading edge rays translate
posteriorly. During the posterior translation of the leading edge
surface, the trailing rays stop translating anteriorly but may
move slightly ventrally. The red arrow in Fig.·1C illustrates the
break point on the distal edge separating the leading edge
region, which is rapidly translating posteriorly, from the
trailing edge region, which has largely stopped translating.
During this time, the fin is sharply curved at this break point.
It is important to note that the fin does not rigidly rotate into a
broadside orientation but instead resembles the peeling of a
carpet off a floor by pulling one end back and up. Following
rotation, all fin rays simultaneously translated back toward the
body (Fig.·1D). The backstroke ended when the largely
posteriorly directed fin rays closed against the body.

To digitize the fin geometry throughout fin motion, the
positions of the dorsal fin base, ventral fin base, leading edge
tip and trailing edge tip were digitized in each frame. An
additional landmark was digitized to mark the break point
along the distal edge separating the active from inactive
regions of the fin during the first part of the recovery and power
strokes. Only the active part of the fin is modeled. During the
second part of each stroke, the entire fin is effectively active.

A blade-element (or strip) method was used to infer the
geometry of the fin from base to distal edge. The implemented
model assumes that the orientation of the fin base does not
itself rotate during the stroke, that the pitch of the fin varies
linearly from the fin base to the distal edge (that is, it twists
down its span), that the span of the fin is constant (that is, the
bony rays do not bend due to fluid dynamic loading) and that
there is no camber along a chord. The first three of these
assumptions are easily relaxed but would require more detailed
kinematic measures to account for the variation. While the
assumption of a constant fin base angle is met for the
stickleback because of the relative immobility of the joints
within its shoulder plate, this assumption (which, again, can be
relaxed if the appropriate kinematics are measured) is certainly
violated in some fishes (Drucker and Lauder, 2003). The last
assumption (zero camber) could be relaxed only with the
appropriate empirical force coefficients.

The fin stroke cycle begins with fin abduction and ends when
the fin closes against the body (any pause phase with the fin
against the body is not modeled). The stroke cycle has a period
(τ) that was divided into N=250/τ frames each of time
∆τ=1/250·s. Time was standardized not across the entire cycle

but within each stroke. Following this standardization, the total
time for each stroke is 0.5 and the standardized period (τ̂) is 1.
Finally, the fin, with span R, was arbitrarily divided along its
span into 11 elements with equal width, ∆r=R/11. The length-
specific radial position is r=r/R, where r is distance from the
fin base. In the following, the bracketed subscripts indicate that
a variable is a function of time (t) and/or radial position along
the span (r).

The position of the fin, γ(t), was estimated as the angle
between the leading edge ray, projected onto the stroke plane,
and a unit vector directed back along the x-axis. In this
coordinate system, γ(t) is 0° when the leading edge is back
against the body and 90° when perpendicular to the body axis.
The fin articulates at its base with an angle, θb, relative to the
horizontal and oscillates about a flapping axis with an angle, θf,
relative to the horizontal (θf is normal to the stroke plane).
While often modeled as the same angle, θb and θf differ in the
stickleback. The difference between the angles, θb–θf, is δ. As
the fin translates, it twists down its span. The pitch, α(r,t), of the
distal edge of the fin was estimated as the angle between the
distal edge chord and the fin base chord following the projection
of both chords into the sagittal plane. The distal edge chord was
measured for the active part of the fin only (from the leading
edge to the break point) and αR, therefore, reflects the pitch of
the functional portion of the fin. The pitch, α(r,t), at the radial
position r along the span is rα(r,t) while the geometric angle of
attack (angle relative to free stream), αg(r,t), is:

αg(r,t) = θb – δcosγ(t) + α(r,t)·. (1)

Because the data were digitized from a two-dimensional
lateral view (the xz plane), the coordinates of the third (y)
dimension had to be reconstructed using the known lengths of
the fin rays. This method assumes that spanwise deformations
of the fin rays are small relative to their length. Because the
reconstruction error is confined to the y-axis, estimates of α(r,t)

and γ(t) will be largely confined to that part of the stroke when
the fin is near its maximally adducted position (back against the
body). The accuracy of this pseudo-3-D method has previously
been tested using a data set in which the 3-D coordinates were
measured. The median absolute difference in the estimate of the
stroke angle between the measured-3-D and pseudo-3-D
coordinates was 3.5° (Walker and Westneat, 2002b).

Net force balance

In a fish swimming at a steady speed, lift and thrust must
balance weight and drag. I assume that the lift and thrust
generated by control surfaces other than the pectoral fins are
trivial relative to that generated by the oscillating pectoral fins,
and, therefore, the instantaneous thrust and lift acting on the
body is effectively equal to that generated by the fins (this
assumption is discussed further in the Discussion). The
instantaneous force on the body of a freely swimming fish
cannot be directly measured, but its fore–aft (Fx) and up–down
(Fz) components can be estimated by simply multiplying either
the fore–aft or up–down acceleration component by the mass
of the accelerating system. I refer to this estimate of the
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instantaneous force as the measured force (as opposed to the
modeled force, which is estimated from the unsteady, blade-
element model – see below). From the measured force
components, measured lift and thrust were estimated by:

Lmeasured(t)= (MF + MAz)(dUz/dt) + W·, (2)

Tmeasured(t)= (MF + MAx)(dUx/dt) + D·, (3)

where MF is mass of the fish, MAx and MAz are the added
masses in the direction of thrust (x-axis) or lift (z-axis), dU/dt
is the acceleration of the body in the direction of thrust or lift,
D is the dead-drag on the body, and W is the weight of the fish
in water. The added mass of the body associated with fore–aft
or up–down acceleration was not directly measured but
estimated using empirically derived coefficients measured for
bodies of revolution with similar dimensions (Brennen, 1982):

MA = r-́πρµ(ldmaxbmax)/2·, (4)

where ρ is the density of freshwater at 20°C,l is standard
length, dmax is maximum body depth, bmax is maximum body
breadth, and the added mass coefficients (µ) in the fore–aft (x)
or up–down (z) direction are 0.405 and 0.9255, respectively
(Brennen, 1982). The added mass of the median and caudal
fins, which would contribute little in the x and zdirections, was
not included in this model. D was estimated for a body of
revolution using (Hoerner, 1965):

D = GρAwetU2CD·, (5)

where U is the free stream speed, A is the wetted area of the
body according to:

CD is the dead-drag coefficient of the body:

and ƒ is the fineness ratio, l(dmaxbmax)–G.
Body acceleration was estimated by using numerical

differentiation. To measure displacement of the body, a
landmark near the approximate center of mass was located and
digitized frame-by-frame. Center of mass displacement in 18
sequences from six individuals was digitized. Each sequence
consisted of two stroke cycles and began and ended with the
fin maximally abducted (end of the recovery stroke). While
the entire two-cycle sequence was digitized and fit with a
spline function (see below), only the central fin beat,
beginning with fin abduction and ending with the fin closing
against the body, was compared among sequences. In order
to determine the error in the estimate of body displacement,
three arbitrarily chosen sequences were each digitized three
times. The grand mean deviation (averaged over all points
and sequences) was 0.0039·cm (0.00054·SL) for the x
(anteroposterior) axis and 0.0047·cm (0.00065·SL) for the z
(dorsoventral) axis.

The displacement data were smoothed and twice

differentiated using a quintic spline function. The optimal
smoothing parameter for the spline was estimated using the
true predicted mean-squared error (MD=3) criterion (Woltring,
1985, 1986). In a large simulation study, the MSE quintic
spline algorithm performed well compared with other
published numerical differentiation algorithms (Walker, 1998)
and is available in the software QuickSAND (available from
the author upon request). The mean standard deviation for the
three sequences digitized three times each was 0.363·pixels on
the x-axis and 0.41·pixels on the y-axis. In addition to digitizing
error, measurement error includes the component due to the
transformation to a discrete (pixel) space. This component has
a maximum error of 0.5·pixels; a reasonable assumption of its
average is 0.25·pixels. The total variance, which is the sum of
the squares of these two components, was used as the predicted
MSE.

Unsteady model of fin dynamics and energetics

The dynamics of unsteady, oscillating foils can be modeled
with reasonable accuracy using a simple, unsteady blade-
element model (Walker and Westneat, 2000; Sane and
Dickinson, 2002; Walker, 2002b). A blade-element model
allowing for both unsteady circulatory and added mass forces
for a limb oscillating about its root was developed previously
(Walker and Westneat, 2000). Accuracy of the model (tested
by comparison with robotic oscillating plates) is discussed in
the original paper and, more thoroughly, in Walker (2002b).
The kinematics of the model are similar to that of Fung (1993),
but allowed the flapping axis to be arbitrary (not necessarily
0°), and to that of DeLaurier (1993), but allowed for large
amplitude motions. Because θfÞθb in the stickleback, the
model is further generalized here.

The normal, vn(r,t), and chordwise, vx(r,t), flow due to fin
translation and rotation are:

vn(r,t) = ḣ(r,t) cos[α(r,t) + δsinγ(t)] + Un(t) sin[αg(r,t)] + 
[xo – xr(r)]c(r,t)α(r,t)·, (8)

vx(r,t) = –ḣ(r,t) sin[α(r,t) + δsinγ(t)] + Un(t) cos[αg(r,t)]·. (9)

The first component of equations·8 and 9 is due to the fin
element translating with a speed, ḣ(r,t)=rRγ(t), due to fin
oscillation. The second component is due to the fish translating
through the water at speed U, where the component of U
normal to the leading edge is:

Un(t) = U[1 – |cosγ(t)|sinθf]·. (10)

The third component (in equation·8) is due to the fin rotating
around a spanwise axis located xr(r)c(r,t) from the leading edge
and a chordwise center of incident flow located xoc(r,t) from the
leading edge, where xo or xr(r) is a percent distance along the
chord and c(r,t) is chord length. The first component of
equations·8, 9 gives rise to the translational circulatory force,
and the third component gives rise to the rotational circulatory
force (Ellington, 1984b; Dickinson et al., 1999); the second
component is absent from the hovering situations considered
by Ellington and Dickinson.

The (hydrodynamic) angle of attack, or angle of incidence,

1.328
(7)CD = (1 + f–e-∑ + 0.11f–2) ,

Re!

! d2
max+ b2

max

8
(6)Awet = 0.7l × 2π ,
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α′(r,t), is ±tan–1(vn(r,t)/vx(r,t)) where the ± takes the sign of
vx(r,t). This angle is used to estimate the lift and drag
coefficients (see below) and the components of the combined
translational and rotational forces normal to and parallel with
the fin chord:

dFn(r,t) = dL′(r,t) cosα′(r,t) + dD′(r,t) sinα′(r,t)·, (11)

dFx(r,t) = dL′(r,t) sinα′(r,t) + dD′(r,t) cosα′(r,t)·. (12)

(dFn(r,t) is positive out from the medial surface of the fin,
while dFx(r,t) is positive toward the leading edge.) dL′(r,t) and
dD′(r,t), the components of the translational and rotational
circulatory forces normal to and parallel with the local
stream, are:

dL′(r,t) = Gρv2
(r,t)c(r,t)C′L(r,t)∆r·, (13)

dD′(r,t) = Gρv2
(r,t)c(r,t)C′D(r,t)∆r·, (14)

where v2
(r,t) = v2

n(r,t) + v2
x(r,t)·, (15)

∆r is the width of the chord element, and C′L(r,t) and C′D(r,t) are
the lift and drag coefficients (see below). The combined
translational and rotational circulatory lift and thrust on a blade
element are:

dLc(r,t) = {dFn(r,t) cos[αg(r,t)] + dFx(r,t) sin[αg(r,t)]}
[sinγ(t) cos2θf + sin2θf]·, (16)

dTc(r,t) = {–dFn(r,t) sin[αg(r,t)] + dFx(r,t) cos[αg(r,t)]}
[sinγ(t) sin2θf + cos2θf]·. (17)

The added mass force normal to the fin element is:

whereµn is the added mass coefficient of the fin section (a
value of 1.0 was used). The section lift and thrust components
of dFa(r,t) are:

dLa(r,t) = dFa(r,t) cos[αg(r,t)][sinγ(t) cos2θf + sin2θf]·, (19)

dTa(r,t) = –dFa(r,t) sin[αg(r,t)][sinγ(t) sin2θf + cos2θf]·. (20)

The sectional power needed to oscillate the fins against the
water is:

dPc(r,t) = dFn(r,t){ ḣ(r,t) cos[α(r,t) + δsinγ(t)] + 
[xp – xr(r)]c(r,t)α(r,t)} + dFx(r,t)ḣ(r,t) sin[α(r,t) + δ]·, (21)

and the power need to accelerate the water is:

dPa(r,t) = dFa(r,t){ ḣ(r,t) cos[α(r,t) + δsinγ(t)] + 
[xp – xr(r)]c(r,t)α(r,t)} ·. (22)

Sectional lift, thrust and power are summed along the span
and multiplied by two to give the total modeled lift [Lmodeled(t)],
thrust [Tmodeled(t)] and power [Pmodeled(t)] for the pair of fins.
Note that while the total modeled force includes a lateral
component, this component is not reported because there is no
measured lateral component for comparison. The mechanical
efficiency, η, is a measure of the percentage of total work done
by the fin on the water that is useful (that is, contributes to

thrust; another way to think of this is the percentage of the total
work that is not wasted). The quasi-steady estimate of the
mechanical efficiency is:

Coefficient model

In a previous blade-element model, lift and drag coefficients
derived from a robotic wing oscillating at a Reynold’s number
(Re) of 192 (Dickinson et al., 1999) were used to model the
dynamics of rowing and flapping propulsion because these
were the only ones available that accounted for the augmented
effect of an attached leading edge or trailing edge vortex
(Walker and Westneat, 2000). These unsteady coefficients
additionally include the effects of an unmeasured induced
velocity component. Scale (Re) has only a small effect on
CL(r,t) and CD(r,t) in the range 102<Re<105 (Usherwood and
Ellington, 2002), which suggests that the robotic wing
coefficients should give good estimates of force magnitudes
for any oscillating airfoil in this range. Because of time delays
in the generation of force production on impulsively started
plates, CL(r,t) and CD(r,t) were reduced by the Wagner function
(Fung, 1993):

where τ(r,t) is the number of chord lengths traveled following
stroke reversal.

A measured force model of power and efficiency

The quasi-steady model of pectoral fin energetics requires
accurate estimates of detailed fin kinematics and assumes that
circulatory and added mass forces dominate the force balance
and that these forces can be accurately estimated with quasi-
steady coefficients. Pennycuick et al. (2000) made the novel
suggestion that measured forces (specifically Lmeasured) be
used in place of the modeled forces to compute mean work
and power. Their method assumed a vertical stroke plane (θb

and θf=0), a constant pitch of 0° down the span throughout
the stroke, and a constant CL down the span at any one time
in the stroke cycle (Pennycuick et al., 2000). Note that the
equal CL assumption is only compatible with the two
kinematic assumptions if the local stream vector is dominated
by either the free stream component or a flapping component
(that is, gliding or hovering). The kinematic assumptions,
however, are easily relaxed, and the relevant normal force
coefficient, Cn, can be computed by rearranging equations
given above. Such an exercise would prove fruitless for the
stickleback stroke since Cn must change radically along the
fin’s span, at least during the recovery stroke and the stroke
transitions.

Given the detailed kinematics of a fin or wing, however, it
is possible to drop the equal coefficient assumption as well and
collapse the problem of finding the normal force at the

(24)C′F(r,t) = CF(r,t) ,1 –








2

4 + τ(r,t)

TmodeledU

Pmodeled
(23)ηmodeled= .

π
4

(18)dFa(r,t) = ρc2
(r,t)vn(r,t)µn∆r ,
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spanwise center of force. The total force on a fin at any point
in the stroke cycle is:

Fmeasured(t)= [L′2(t) + T′2(t)]G·, (25)

where L′(t) = Lmeasured(t)/{2[sinγ(t) cos2θf + sin2θf]} ·, (26)

T′(t) = Tmeasured(t)/{2[sinγ(t) sin2θf + cos2θf]} ·. (27)

The normal force coefficient on an airfoil is k(t) sinα′(r,t), hence:

where k(t) is an unknown proportionality factor that is constant
along the span but varies over time. Substituting Fmeasured(t)for
FN(t) and rearranging, this proportionality factor becomes:

The spanwise center of force (or mean moment) is:

rF(t) = (ρ∆r/2)k(t) ∑[rc(r,t)v2
(r,t) sinα′(r,t)]/Fmeasured(t)·. (30)

Using the standardized center of force, rF(t)=rF(t)/R, the
‘measured’ power, summed over both fins, is:

Pmeasured(t)= Fmeasured(t){ ḣ(r,t) cos[rF(t) α(R,t) + δsinγ(t)] + 
[xo – xr(r)]c(r,t)rFα(R,t)} ·. (31)

The ‘measured’ mechanical efficiency is:

where the means are taken over the stroke cycle.

Standardization

Measured and modeled forces are compared among
sequences by standardizing using:

where A is the summed area of both pectoral fins, and r2 is the
radial second moment of area.

Results
Morphometrics

The pectoral fin of the Gasterosteus aculeatusarticulates
with the body at a relatively steep angle (θb=69.0±3.0°), has a
modest aspect ratio for fish (AR=3.0±0.2) and high size-
standardized radial moments of area (r̄ 1=0.61±0.02,
r̄ 2=0.66±0.02, r̄ 3=0.69±0.02) (Table·1).

Kinematics

The stroke of the threespine stickleback is qualitatively
described and illustrated above (see Materials and methods/
Kinematics). Additionally, animated GIF and QuickTime®

videos of selected sequences are available at
http://www.usm.maine.edu/~walker/movies.html. As speed

increases from 1.4·L·s–1 to 2.8·L·s–1, the stroke plane angle
from the vertical (β), which is numerically equivalent to the
flapping angle (θf), decreases from 61.3° to 54.5° (P=0.04), the
stroke angle increases from 94.7° to 104° (P=0.04), and the
frequency increases from 4.3·Hz to 4.8·Hz (P=0.05) (Table·2).
These kinematic changes are modest, which should not be
surprising given that the top speed measured in this study is
about half the pectoral fin powered critical swimming speed
measured for this species.

The geometric angle of attack, αg, at the distal chord
decreases rapidly from 90° to ~15° during the first part of the
recovery stroke, decreases to about –15° near the end of the
recovery stroke, and rapidly rises to near 90° during the power
stroke (Fig.·2). The values above 90° at the end of the power
stroke indicate that the distal chord is positively twisted
(positive α).

(33)CF(t) = ,
F(t)

ρA(2r2nΦ)2

TmeasuredU

Pmeasured
(32)ηmeasured= ,

ρ∆r

2
(29)k = 2Fmeasured(t) ∑c(r,t)v2

(r,t)sinα′(r,t)  .
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Fig.·2. Angles of attack for the distal fin chord. The time axis has
been standardized within the recovery (R) and power (P) strokes.
The boxplot represents the 10th (lower bar), 25th (lower edge of
box), 50th (bar in box), 75th (upper edge of box) and 90th (upper
bar) percentiles. (A) Geometric angle of attack, which shows a
relatively feathered distal chord during the recovery stroke and
broadside distal chord during the power stroke. (B) Hydrodynamic
angle of attack (angle of incidence) showing the very small angles
during the recovery stroke and very large angles during the power
stroke.



1932

The angle of incidence, α′(R,t), at the distal chord rapidly
decreases to a plateau of about 5° during the first part of the
recovery stroke (Fig.·2). The transition from the recovery to
the power stroke is characterized by the α′(R,t) at the distal
segment decreasing to about –10° near the end of the recovery
stroke, rapidly increasing to about +10° at maximum abduction
and rapidly decreasing to about –80° at the beginning of the
power stroke. Note that α′(R,t) in Fig.·2 slightly differs from
previously published estimates from the same data (Walker
and Westneat, 2002a) because the previous data were based on
normal and chordwise flow estimates (equations·8,·9 above)
that failed to include the generalization for the angled fin base
[δsinγ(t)].

Inspection of the accelerations for the three sequences
digitized three times each indicates the robustness of the
acceleration estimates (Fig.·3). Acceleration estimates were
converted to measured force coefficients for 18 sequences at
three different speeds (12.6·cm·s–1, 18·cm·s–1and 23.4·cm·s–1).
These speeds will be referred to as low, medium and high,
respectively. Each CT and CL curve was interpolated to 21
points at 0.05τ̂ increments using a cubic spline. Using these
binned values, C

–
F is the grand mean CT or CL, averaged over

all sequences, for any single time increment, while CF is the
group mean CT or CL, averaged over all sequences within one
speed class, for any single time increment (where the group is
low, medium or high speed).

Force coefficients are illustrated in Fig.·4. Measured thrust
coefficients, CT, are negative and small (peak C

–
T=–0.25)

throughout the recovery stroke. Immediately following the
stroke transition, CT rises to large, positive values (peak
C
–

T=1.25). The peak CT at high speeds is significantly greater

than the peaks at low and medium speeds (Tukey HSD,
P<0.05). The power stroke peak C

–
T occurs at 0.75τ̂. While

peak CT occurs at 0.75τ̂ at the two lower speeds, it occurs at
0.65τ̂ at high speeds. Measured CL gradually rises to
moderately positive values (peak C

–
L=–0.59) during the

recovery stroke and falls to very small negative values (peak
C
–

L=–0.09) during the power stroke. There is no difference in
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Table 1. Body and fin morphometry for six stickleback (Ga1–Ga6) in this study

Ga1 Ga2 Ga3 Ga4 Ga5 Ga6 Mean±S.E.M.

L (cm) 6.64 6.80 7.68 7.31 7.11 7.22 7.13±0.37
M (g) 4.28 3.68 4.69 4.18 4.10 3.44 4.06±0.44
θb (deg.) 68.0 73.3 72.2 66.8 66.7 67.0 69.0±3.0
AR 3.0 2.8 2.7 3.0 3.2 3.2 3.0±0.2
r1 0.61 0.60 0.62 0.61 0.58 0.62 0.61±0.02
r2 0.67 0.65 0.67 0.66 0.62 0.67 0.66±0.02
r3 0.70 0.68 0.71 0.69 0.65 0.70 0.69±0.02

L, length; M, mass; θb, angle of fin base relative to horizontal; AR, aspect ratio; r, non-dimensional radial position along fin span.

Table 2. Kinematics of pectoral fin rowing at two relative
swimming speeds

N 1.4·L·s–1 2.8·L·s–1 P

β (deg.) 20 61.3 54.5 0.0374
Φ (deg.) 20 94.7 104 0.04
n 18 4.3 4.8 0.053
k 18 0.73 0.43 0.003

β, stroke plane angle; Φ, stroke angle; n, stroke frequency; N,
number of fish; k, proportionality coefficient.

Fig.·3. Repeated measurements of body acceleration in (A) fore–aft
and (B) up–down directions. The green, blue and red colors represent
three different sequences while the replication within each color
represents three different digitizations of the same sequence using
different marks on the fish body (each located near the center of
mass). The time axis has been standardized within the recovery (R)
and power (P) strokes.
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peak CL between speeds during the recovery stroke, but the
minimum CL during the power stroke of the high speeds is
more positive than those for the low and middle speeds (Tukey
HSD, P<0.05). The recovery stroke peak C

–
L occurs at 0.3τ̂

while the power stroke minimum C
–

L occurs at 0.8τ̂. The

recovery stroke peak CL occurs at 0.3τ̂ for both the low and
high speeds but at 0.35τ̂ for the middle speeds. The power
stroke minimum CL occurs at 0.8τ̂ for both low and middle
speeds and at 0.85τ̂ for the high speeds.

The quasi-steady model was applied to six sequences, three
each at speeds of 12.6·cm·s–1 and 18·cm·s–1 (Fig.·5). Both the
modeled and measured CT and CL curves for the six sequences
were interpolated to 21 points at 0.05τ̂ increments using a cubic
spline. Mean coefficients for each time increment were
computed for the measured and modeled coefficients. Values
for the two speeds were pooled. Note that the measured mean
coefficients differ from the grand mean coefficients above
because they include the values of only the six sequences that
were modeled.

The peak negative CT,modeledduring the recovery stroke is
significantly more negative than the peak negative CT,measured

(t-test, P=0.05). Similarly, the peak CT,modeledduring the power
stroke is significantly greater than the peak CT,measured(t-test,
P=0.002). The modeled thrust during the recovery stroke is
dominated by the circulatory component (Fig.·5). During the
power stroke, the broad modeled thrust peak is due to a large,
positive added mass component that peaks at 0.65τ̂ and a large,
circulatory component that peaks at 0.75τ̂ (Fig.·5). Both the
average and the peak circulatory thrust are larger than the
average and peak added mass thrust (Table·3). The timing of

Fig.·4. Distribution of coefficients of measured thrust (CT) and lift
(CL) throughout the standardized stroke cycle. The time axis has
been standardized within the recovery (R) and power (P) strokes.
The red, green and blue lines are cubic splines fit to the data at 12.6,
18.0 and 23.4·cm·s–1, respectively. Peak CT does not differ between
speeds. Peak CL for the 12.6·cm·s–1 group is significantly greater
than the peak CL for the 18.0 and 23.4·cm·s–1 groups. Interpretation
of the boxplot as in Fig.·2.
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Fig.·5. Comparison of measured (black) and modeled (colored) coefficients of thrust (CT) and lift (CL) throughout a standardized stroke cycle.
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measured peak thrust during the power stroke does not differ
from the timing of the modeled and circulatory peak thrust but
is significantly later than the timing of the added mass peak
thrust (Table·3).

While the peak CL,modeleddoes not differ from CL,measured

(P=0.07), the modeled lift curve presents two recovery stroke
peaks, in contrast to the measured lift curve, which presents a
single peak (Fig.·5). The two peaks in the modeled curve result
from the interaction between the single, positive peak of the
circulatory lift curve and the single, negative peak of the added
mass lift curve (Fig.·5). The timing of the measured peak lift
during the recovery stroke does not differ from the timing of
the modeled, circulatory or added mass peak lift (Table·3),
although the mean timing of the peak lift for the added mass
model reflects the maximum positive lift occurring either much
earlier (two sequences) or later (four sequences) than the
measured peak (Fig.·5).

The input power estimated from the quasi-steady and
measured force models have similar shapes but the quasi-
steady model produces power maxima that are over twice those
of the measured force model (Fig.·6). Mechanical efficiency
estimated from the quasi-steady model (ηmodeled) ranges from
0.10 to 0.22, while that estimated by the measured force model
(ηmeasured) ranges from 0.13 to 0.29 (Table·4).

Discussion
Notes on the method for estimating the force balance

Lift and thrust balances were estimated for free-swimming
sticklebacks. The accuracy of these estimates is a function
of the accuracy of several components: measured body
accelerations in the anterior-posterior and dorso-ventral
directions, measured body mass, measured weight in water,
modeled added mass and modeled parasite drag. Measured
acceleration error affects both the magnitude of the lift and
thrust and the shape of the lift and thrust curves. The error in
the measured mass and added mass of the fish affects the scale
of the curve but not its shape. The error in estimating the
parasite drag and the weight (in water) of the fish affects only
the position of the curve along the y-axis. The error due to
estimating the mass of the fish is trivial, while the error in the
estimation of the added mass is unknown. The errors in
estimating the weight in water and the parasite drag are
unknown but the fact that the thrust and lift coefficients are
near zero when the fin is against the body suggests that any
error in the estimate of weight and drag is small.

By far the largest error component is that due to estimating
accelerations, and this error can influence both the shape of the
curve and the magnitude of the peaks. The error in the
acceleration estimates has two sources: precision, or the ability
to repeatedly measure the same value, and accuracy, or the
ability to measure the true value. The precision of the
acceleration estimates can be estimated using the three
sequences that were measured three times each. Within any
sequence, there are three estimates of the maximum forward
acceleration during the power stroke and the maximum upward
acceleration during the recovery stroke. The percent deviation
of any one estimate from the mean of the three estimates is
|Amax–Amax|/Amax×100. The maximum percent deviations for
the maximum forward acceleration were 6%, 9% and 11% for
the three different sequences. The maximum percent deviations
for the maximum upward acceleration were 9%, 14% and 33%
for the three different sequences.

Precise estimates suggest accurate estimates, but this may
not be the case if there is some unknown factor that
consistently biases the numerical differentiation method. The
MSE quintic spline algorithm has a consistent downward bias

J. A. Walker

Table 3. Measured, modeled and decomposed coefficients of
thrust and lift averaged over the stroke cycle

CT CL

Model Recovery Power Recovery Power

Measured –0.16 0.51 0.34 –0.01
Model –0.30 0.72 0.34 –0.14
Circulatory –0.35 0.48 0.51 –0.05
Added mass 0.05 0.23 –0.18 –0.09

Table 4. Measured and modeled efficiencies (η) for the six
measured sequences compared to the expected efficiencies (at
the same reduced frequency, k) for the spanwise twisting and
the root-rotating fins modeled in Walker and Westneat (2000)

Sequence k ηmeasured ηmodeled ηexp (twist) ηexp (RR)

1 0.88 0.16 0.20 0.08 0.19
2 0.65 0.13 0.16 0.09 0.24
3 0.71 0.13 0.13 0.09 0.23
4 0.74 0.27 0.15 0.09 0.22
5 0.58 0.29 0.22 0.09 0.27
6 0.47 0.24 0.10 0.07 0.33

Mean 0.67 0.20 0.16 0.09 0.25

Fig.·6. Measured (black) and modeled total (red) and circulatory
(green) power required to oscillate the fins. The time axis has been
standardized within the recovery (R) and power (P) strokes.
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in the estimate of maximum accelerations (Walker, 1998). This
bias could be corrected if there were a known relationship
between bias and some measurable parameter summarizing the
data. One potential parameter is the relative noise, ν (or
roughness parameter), in the data (Corradini et al., 1993):

where σsignal is the standard deviation of the smoothed
displacement (after removing any net translation over the
stroke cycle) and σnoise is the standard deviation of the
difference between the raw and smoothed values (again, after
removing the net translation). The ν for the six, modeled
sequences ranged from 18% to 36% in the x-direction and from
58% to 122% in the z-direction. Unfortunately, the relationship
between ε and ν at these levels of error has not been explored
but an extrapolation of the data from Walker (1998) suggests
that the bias for the MSE quintic spline algorithm in this range
of ν lies between –25% and –50%.

Clearly, there is a great need for further exploration in this
area if we are going to advance our knowledge of locomotor
control from studies of freely moving animals. Nevertheless,
the reasonable consistency between repeated estimates of
accelerations from the same sequence, between estimates of
accelerations among sequences and between accelerations and
the quasi-steady model suggests the method should be
exploited more often.

Dynamics of pectoral fin rowing

Recent work on robotic insect wings has elegantly shown
the importance of an attached vortex augmenting the
circulatory force during the translational and, in Drosophila,
the rotational phases of the stroke cycle (pronation and
supination in Drosophila are confined to short intervals
bounding the stroke transitions; Ellington et al., 1996;
Dickinson et al., 1999). The absence of a peak in the measured
force curves (Fig.·4) near the transition from recovery to power
stroke suggests that circulatory forces at this point in the stroke
cycle are trivial. This result may seem surprising given the
rapid change in the angle of attack during this part of the stroke
(Fig.·2). Again, as described in the Materials and methods, this
change in attack angle is only occurring at the extreme leading
edge region of the fin (a relatively small area). Following this
rotation of the leading edge, the subsequent rays are simply
translated posteriorly.

The quasi-steady circulatory forces based on the unsteady
coefficients are significantly greater than the measured forces.
The power stroke force maxima is generated by a fin that is
translating with the distal half at an attack angle, α′ , of ~70°
(Fig.·2). The equilibrium drag coefficient for a flat plate at 70°
to the flow at the Re relevant to stickleback swimming is 1.1
(Hoerner, 1965) while the corresponding unsteady coefficient
is 3.0. The high maximum CT,circulatory, relative to CT,measured,
raises the possibility that the unsteady coefficients are too high
to accurately model the dynamic environment of the
stickleback fin, perhaps because the unsteady coefficients were

measured at a smaller Re. The range of noise–signal ratios, ν,
discussed above suggests that, alternatively, the measured
force estimates are too low because the quintic spline algorithm
has a consistent downward bias in the estimation of maximum
second derivatives (Walker, 1998).

At the Re of pectoral fin rowing in the stickleback, the
acceleration reaction should have a large influence on the force
balance. To optimize the acceleration reaction, the fin should
oscillate along a horizontal stroke plane with the fin surface
oriented normal to its motion along its entire span throughout
the stroke. For the six digitized fin sequences, the acceleration
reaction component of the thrust balance would have an
optimal peak CT,AddedMassof about 1.8 occurring at the stroke
transition (0.5τ̂) (Fig.·6). By contrast, CT,measuredat 0.5τ̂ does
not differ from 0, which suggests that the stickleback’s fin
motion is not optimizing the acceleration reaction. Indeed, the
estimated acceleration reaction curve has a much smaller
(CT,AddedMass=0.88) and later (0.65τ̂) peak (Fig.·6). Instead of
dominating the force balance, the acceleration reaction
contributes about half as much to the thrust balance as the
circulatory force (Table·3). The estimated acceleration reaction
at 0.5τ̂ is much smaller than the optimal acceleration reaction
at 0.5τ̂ because the fin is beautifully feathered at this point in
the stroke cycle and simply cannot accelerate a large volume
of fluid with this orientation. While the modeled acceleration
reaction is significantly less than the modeled circulatory force,
the shape of the CT and, especially, CL curves suggests that the
influence of the acceleration reaction may be even less than
indicated by the model.

The acceleration reaction model presented for the
stickleback differs radically from that presented for the
angelfish, Pteryphylum emekei(Blake, 1979). Blake (1979)
argued that the positive contribution to the thrust balance at
the beginning of the power stroke canceled the negative
contribution to the thrust balance at the end of the power stroke
with the net result of zero contribution of the acceleration
reaction to the thrust balance. Given the kinematics used by
Blake (1979), in which the fin was apparently oriented
broadside to its motion throughout the entire power stroke, the
acceleration reaction during the power stroke should have
resembled the second half of the optimal acceleration reaction
curve in Fig.·6.

Reduced recovery stroke drag

A major influence on the mechanical efficiency of the
rowing fin is the recovery stroke geometry (Walker and
Westneat, 2000; Walker, 2002a). For efficient rowing, the
recovery stroke should generate little drag or lift. Reduced
loading can be achieved by minimizing fin speed, fin area or
fin angle of attack. Animals with jointed limbs typically
minimize average limb speed by flexing the limbs (actively or
passively) during the recovery stroke (Walker, 2002a; this
works because speed is a function of both angular velocity and
radial distance from the limb base). Limb area is reduced in
some animals by collapsing webbed limbs or swimming hairs
(Hughes, 1958; Nachtigall, 1974; Koehl, 1993). Limb angle of

(34)ν = × 100
σnoise

σsignal
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attack is reduced in larger animals by feathering the appendage
(Walker, 2002a).

Stickleback fins are supported by bony fin rays that lack
movable joints, except at the fin base, and the rays are too stiff
to allow the passive flexion necessary for substantial speed
reduction. While adducting the fin rays can reduce fin area,
sticklebacks do not exploit this mechanism to reduce loading
during the recovery stroke. The primary kinematic mechanism
used by sticklebacks to reduce loading during the recovery
stroke is angle of attack reduction by fin feathering. Feathering
requires the stickleback to twist its fin down its span. While
the kinematic model used to estimate forces on the recovery
stroke assumed that the fin twisted linearly along the span, the
much smaller measured drag relative to modeled drag suggests
that the stickleback is able to feather its fin more effectively
than expected by the model.

Feathering the appendage presents a second obstacle to
efficient swimming because the fin must be rotated into the
feathered orientation. Any form of stiff rotation would generate
substantial drag. As an alternative, the stickleback peels its fin
off its body. By rotating the trailing portion of the fin dorsally
along the body while the leading region peels off in a feathered
orientation, the fin generates little drag.

The final obstacle presented by a feathered appendage is the
optimal rotation back into a broadside orientation to start the
power stroke. Instead of stiffly rotating into a broadside
orientation, a wave of re-orientation passes from leading edge
to trailing edge. This kinematic mechanism results in a
resultant force that is largely confined to the frontal plane,
producing thrust and lateral forces with very little lift. By
contrast, a rapid, stiff rotation about a spanwise axis lying
posterior to the chordwise center of pressure would generate
thrust and a large, negative lift.

While the net drag during the recovery stroke is small,
substantial lift is generated. This lift balances the weight of the
fish but it is unclear if the stickleback maintains negative
buoyancy to balance the lift necessarily generated by a fin that
cannot feather more optimally (because of the higher αm

toward the fin base) or if the fin is generating lift in order to
balance an obligately negatively buoyant body.

Energetics

The mean ηmodeled(0.16) and ηmeasured(0.2) lie in between
the mean optimal η of twisted (0.08) and perfectly feathered
(0.24) rowing fins oscillating at equivalent reduced
frequencies. Stickleback rowing efficiency is expected to be
better than that of the model twisted fin for several reasons.
First, the stickleback fins expand distally, a shape that has been
shown to optimize rowing performance (Blake, 1981). Second,
the stickleback fin articulates with the body at an angle of 69°
compared with an angle of 90° for the model fin. The average
angle of attack along the span in the stickleback fin should be
less than that for the model twisted fin. Finally, the dynamic
data discussed above, and possibly these energetic data,
suggest that the stickleback may be able to feather its fin along
its span better than expected by a linearly twisted model.

The mean efficiency estimated by the quasi-steady blade-
element model is exactly that estimated by a quasi-steady
model for the rowing fin of the angelfish (Blake, 1979, 1980).
As the models differ in the geometry of the angle of attack, the
source of the empirical force coefficients and, importantly, the
model of drag on the fins (Walker and Westneat, 2000), this
similarity is partly coincidence. Blake (1979) used a dead-drag
measure of a fish with its pectoral fins extended out from its
body as the measure of parasite drag. But the parasite drag that
a rowing fish has to work against does not include the pressure
drag produced by extended pectoral fins because these have a
time-averaged pressure distribution that results in net thrust,
not drag on the ‘vehicle’. Consequently, the fins only need to
work against the parasite drag of the body and any viscous drag
on the pectoral fins (the viscous drag on the pectoral fins was
not included in the model of mechanical efficiency because of
the difficulty of estimating this parameter for a deforming,
oscillating body). A similar argument was made for fishes that
power swimming by body and caudal fin undulations, although
these authors argue that the body does not even work against
its own viscous drag and, consequently, the concept of
efficiency (for a self-propelled, undulating fish) is meaningless
(Schultz and Webb, 2002).

The measured efficiencies in this study are supported by the
only other comparable data collected by an independent
method: an optimal efficiency of 0.15 measured from the
motor-controlled rowing stroke of a stiff fin modeled on the
pectoral fin of the largemouth bass, Micropterus salmoides
(Kato, 1999). Combined, the quasi-steady model, the
measured-force model and the motor-driven physical model all
indicate that rowing is a relatively inefficient means of
transport, at least relative to a flapping-fin mechanism (Walker
and Westneat, 2000).

This conclusion, that rowing is an inefficient propulsive
mechanism, raises an interesting paradox. Marine sticklebacks
are anadromous fishes, migrating hundreds of kilometers
between the open ocean and spawning sites in either estuaries
or freshwater streams (Wootton, 1976; Cowen et al., 1991).
Marine sticklebacks power these steady cruising behaviors
using only pectoral fin rowing. Indeed, they lack the band of
slow, oxidative (red) muscle fibers in their axial musculature
(te Kronnie et al., 1983) that is necessary for powering steady,
BCF locomotion (Jayne and Lauder, 1994).

Why don’t sticklebacks have the high aspect ratio, tapered,
flapping pectoral fins common to fishes that swim with greater
endurance (Walker and Westneat, 2000, 2002a; Bellwood and
Wainwright, 2001; Fulton et al., 2001)? The design of the
stickleback shoulder and fin could reflect a trade-off between
optimal designs for continuous swimming and other behaviors
such as low-speed maneuvering or nest fanning. Alternatively,
rowing could reflect an ontogenetic constraint due to the lowRe
experienced by the fins of juvenile sticklebacks. Anadromous
juvenile sticklebacks have been found hundreds of kilometers
offshore, and available data indicate that these juveniles have the
endurance to actively swim long distances (Stevens, 1993). The
mean Re for a 20·mm stickleback swimming from 1·BL·s–1 to
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3·BL·s–1 is approximately 50 to 60. Available published data
suggest that no aquatic animals swim by flapping appendages
below Re≈80–100 (Walker, 2002a), which supports the
hypothesis that juvenile sticklebacks must row to swim
effectively. While viscous forces on a fin are strongly
influencing fin performance at Re<100, a simulated comparison
of rowing and flapping fins showed that rowing is not expected
to outperform flapping until an Re less than ~20 is reached
(Walker, 2002a). Furthermore, rowing fins at these low Re(<50)
must use a combination of reduced fin area and recovery stroke
speed (see above) in order to outperform flapping because
feathering is not an effective mechanism in this Re range
(Walker, 2002a). If juveniles have the same recovery stroke
kinematics as found in adults, the efficiency of the juvenile fin
stroke should be much lower than if it were oscillating with a
flapping geometry. This suggests that active swimming at
Re<100 is not a constraint on the design of the stickleback fin.

Conclusions

The threespine stickleback swims at sub-burst speeds by
generating thrust from paired pectoral fins that present a
stereotypical rowing stroke. While the rowing stroke is
inefficient relative to a flapping stroke (Walker and Westneat,
2000), the design of the stickleback fin, with its multiple,
independently actuated bony struts supporting a thin, flexible
membrane, results in less wasted energy than would occur if
the fin were rowing as a stiff, flat plate. This design feature,
which is common to actinopterygian fishes (Lauder and
Drucker, in press; Westneat et al., in press), presents a difficult
challenge for constructing detailed models of pectoral fin
function (specifically) or the performance consequences of
pectoral fin design variation (more generally). Addressing
either this specific or more general question will require a joint
research effort combining the state-of-the-art computational,
visual and physical modeling tools (Gharib et al., 2002; Lauder
and Drucker, in press; Mittal, in press; Triantafyllou et al., in
press) with the more traditional methods exploited here.

List of symbols
A total pectoral fin area
Awet wetted area of fish body
bmax maximum body breadth
c mean chord
c(r) chord length
CF group mean force
C
–

F grand mean force
CD parasite drag coefficient on body
C′D(r,t) sectional drag coefficient
CL mean lift coefficient
C′L(r,t) sectional lift coefficient
CT mean thrust coefficient
D parasite drag of body
dDa(r,t) aft component of added mass force
dDc(r,t) aft component of circulatory force
dD′(r,t) circulatory drag

dFa(r,t) added mass force
dFn(r,t) normal component of circulatory force
dFx(r,t) chordwise component of circulatory force
dLa(r,t) upward component of added mass force
dLc(r,t) upward component of circulatory force
dL′(r,t) circulatory lift
dmax maximum body depth
dPa(r,t) sectional inertial power
dPc(r,t) sectional circulatory power
dTa(r,t) added mass thrust
dTc(r,t) circulatory thrust
ƒ fineness ratio
Fmeasured measured force on fin
FN(t) normal force on fin
Fx fore–aft component of measured force on body
Fz dorso-ventral component of measured force on 

body
h(r,t) heaving velocity
k(t) proportionality coefficient
l standard length of fish body
Lmeasured(t) indirectly measured lift on body
Lmodeled(t) modeled lift on body
MA fish added mass
MF fish mass
n stroke frequency
Pmodeled(t) modeled power on body
R fin length
r non-dimensional radial position along fin span
r radial position along fin span
r2 radial second moment of area
Re Reynold’s number
rF(t) radial center of force along fin span
T period of stroke cycle
t time in stroke cycle
Tmeasured(t) indirectly measured thrust on body
Tmodeled(t) modeled thrust on body
U free stream speed of flow
Un(t) normal component of free stream
v(r,t) velocity of fin element
vn(r,t) normal velocity of fin element
vx(r,t) chordwise velocity of fin element
W weight of body in water
xi non-dimensional chordwise location of center 

of incident flow
xr(r) non-dimensional chordwise location of center 

of rotation
∆r width of fin blade element
Φ stroke angle
α(r,t) fin pitch
αg(t) geometric angle of attack
αR pitch of the functional portion of the fin
α′(r,t) angle of incidence
β stroke plane angle (relative to vertical)
γ(t) azimuthal position of fin
δ angle between fin base and flapping axis
η mechanical efficiency
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µ added mass coefficient
θb angle of fin base relative to horizontal
θf flapping axis (normal to stroke plane)
ρ water density
τ stroke period
τ̂ standardized stroke period
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