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Summary

Aerodynamic force generation and mechanical power The vertical force coefficient of a wing is twice as large
requirements of a dragonfly Aeschna juncegin hovering  as the quasi-steady value. The interaction between the
flight are studied. The method of numerically solving the fore- and hindwings is not very strong and is detrimental
Navier—Stokes equations in moving overset grids is used. to the vertical force generation. Compared with the case of

When the midstroke angles of attack in the downstroke a single wing in the same motion, the interaction effect
and the upstroke are set to 52° and 8°, respectively (these reduces the vertical forces on the fore- and hindwings by
values are close to those observed), the mean vertical 14% and 16%, respectively, of that of the corresponding
force equals the insect weight, and the mean thrust is single wing. The large vertical force is due to the unsteady
approximately zero. There are two large vertical force flow effects. The mechanism of the unsteady force is that
peaks in one flapping cycle. One is in the first half of the in each downstroke of the hindwing or the forewing, a
cycle, which is mainly due to the hindwings in their new vortex ring containing downward momentum is
downstroke; the other is in the second half of the cycle, generated, giving an upward force.
which is mainly due to the forewings in their downstroke. The body-mass-specific power is 3W kg1, which is
Hovering with a large stroke plane angle (52°), the mainly contributed by the aerodynamic power.
dragonfly uses drag as a major source for its weight-
supporting force (approximately 65% of the total vertical
force is contributed by the drag and 35% by the lift of the  Key words: dragonflyAeschna junceahovering flight, unsteady
wings). aerodynamics, power requirements, Navier—Stokes simulation.

Introduction

Dragonflies are capable of long-time hovering, fast forwardneasured from dragonfly wings under steady-state conditions.
flight and quick manoeuvres. Scientists have always beerhis clearly showed that the effect of unsteady flow and/or
fascinated by their flight. Kinematic data such as strokeving interaction was important. Flow visualization studies on
amplitude, inclination of the stroke-planes, wing beafflapping model dragonfly wings were conducted by Saharon
frequency and phase-relation between the fore- and hindwingsd Luttges (1988, 1989), and it was shown that constructive
were measured by taking high-speed pictures of dragonflies ar destructive wing/flow interactions might occur, depending
free-flight (e.g. Norberg, 1975; Wakeling and Ellington,on the kinematic parameters of the flapping motion. In these
1997b) and tethered dragonflies (e.g. Alexander, 1984). Usirgjudies, only the total force of the fore- and hindwings was
these data in quasi-steady analyses (not including thmeasured and, moreover, force measurements and flow
interaction effects between forewing and hindwing), it wasvisualizations were conducted in separated works.
shown that the lift coefficient required for flight was much In order to further understand the dragonfly aerodynamics,
greater than the steady-state values measured from dragoriflyvas desirable to determine the aerodynamic force and flow
wings (Wakeling and Ellington, 1997a). This suggested thagtructure simultaneously and also to know the force on the
unsteady wing motion and/or flow interaction between théndividual forewing and hindwing during their flapping
fore- and hindwings must play important roles in the flight ofmotions. Freymuth (1990) conducted force measurement and
dragonflies (Norberg, 1975; Wakeling and Ellington, 1997c).flow visualization on an airfoil in hover modes. One of the

Force measurement on a tethered dragonfly was conductedver modes was for hovering dragonflies. Only mean
by Somps and Luttges (1985). It was shown that over someertical force was measured. It was shown that large mean
part of a stroke cycle, lift force was many times larger than thatertical force coefficient could be obtained and the force was
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related to a wake of vortex pairs that produced a downward Materials and methods
jet of stream. Wang (2000) used a computational fluid The model wings and their kinematics

dynamics (CFD) method to study the aerodynamic force and 1yq fore- and hindwings of the dragonfly are approximated

vortex wake structure of an airfoil in dragonfly hoveringy, o flat plates. The thickness of the model wings is 1% of
mode. Time variation of the aerodynamic force in each herec is the mean chord length of the forewing). The
flapping cycle and the vortex shedding process was obtaineganforms of the model wings (see Figh) are similar to those
It was shown that large vertical forc.e was produced durings he real wings (Norberg, 1972). The two wings have the
each downstroke and the mean vertical force was enough {9 me |ength, but the chord length of the hindwing is larger than
support the weight of a typical dragonfly. During eachy,a¢ of the forewing. The radius of the second moment of the
downstroke, a vortex pair was created. The large verticgle\ing area is denoted by (r2=[r%dS/S;, wherer is radial
force was explained by the downward two-dimensional jefjisiance and is the area of the forewing}=0.61R (R s the
induced by the vortex pair. wing length). The flapping motions of the wings in hovering
_In the works of Freymuth (1990) and Wang (2000), only &jign are sketched in FigB. The hindwing leads the forewing
s!nglie a}|rf0|l was conS|dered. Lan anq Sun (2001c) studied twg, phase by 180° (Norberg, 1975). The azimuthal rotation of
airfoils in dragonfly hovering mode using the CFD r.nethod'. FOfhe wing about the axis (see FigLC) is called ‘translation’,
comparison, they also computed the flow of a single airfoil, .,y the pitching (or flip) rotation of the wing near the end of
For the case of the single airfoil, their results of aerodynamig y,,if.stroke and at the beginning of the following half-stroke
force and flow structure were similar to that of Freymuth'Sg cajled rotation. The speed ratis called the translational
(1990) experiment and Wang’'s (2000) computation. For thgpeed.
fore and aft airfoils flapping with 180° phase difference " pe fiapping motion of a wing is simplified as follows. The

(counter stroking), the time variation of the aerodynamic forcgvmg translates downward and upward along the stroke plane
on each airfoil was broadly similar to that of the single airfoil;

. . / Phand rotates during stroke reversal (RiB). The translational
the major effect c_)f interaction between thg fqre and aft a"fo"?/elocity is denoted by and is given by:

was that the vertical forces on both the airfoils were decreased

by approximately 20% in comparison with that of the single uf = 0.5Tsin(2nvtc +y), (1)
airfoil.

The above works (Freymuth, 1990: Wang, 2000; Lan an&/hgre the non—dimensiona} translational yeloai{tilzut/u_
Sun, 2001c), which obtained aerodynamic force and flokt) 1S the reference velocity); the non-dimensional time
structure simultaneously, were done for airfoils. It is wellt=tU/c (t is the time;c is the mean chord length of the
known that the lift on an airplane wing of large aspect ratid®r€Wing, used as reference length in the present study);
can be explained by a two-dimensional wing theory. But for &¢ IS the non-dimensional period of the flapping cycle; and
dragonfly wing, although its aspect ratio is relatively large, ity IS the phase angle of the translation of the wing. The
motion is much more complex than that of an airplane wing€ference velocity i&)=2¢nrz, where® andn are the stroke
Three-dimensional effect should be investigated. MoreovefMPlitude and stroke frequency of the forewing, respectively.

the effect of aerodynamic interaction between the fore- angenoting the azimuth-rotational velocity d& we have

hindwings in three-dimensional cases is unknown. The wor =ui/ra. o
of Lan and Sun (2001c) on two airfoils flapping with 180° The angle of attack of the wing is denotedobyit assumes

phase difference showed that interaction between the twd constant value in the middle portion of a half-stroke. The
constant value is denoted by for the downstroke and hyy

airfoils was detrimental to their aerodynamic performance; !
This result is opposite to the common expectation that wing" the upstroke. Around the stroke reversathanges with

interaction of a dragonfly would enhance its aerodynamifMe and the angular velocitgis given by:
performance. 'It is of'interest to investigate the interaction effect ot = 0.563{1 — cos[2TT —T)/AT]} )
in the three-dimensional case.

In the present study, we extend our previous twowheret,<t<t+AT:, and the non-dimensional forta=c&c/U;
dimensional study (Lan and Sun, 2001c) to a three-dimensionéj; is a constants; is the time at which the rotation starts; and
case. As a first step, we study the case of hovering flighf\tr is the time interval over which the rotation lasts. In the time
For the dragonflyAeschna juncean free hovering flight, interval of Aty, the wing rotates fronm=0g to a=180°-a.
detailed kinematic data were obtained by Norberg (1975)Therefore, whenaq, oy and Aty are specifiedgg can be
Morphological data of the dragonfly (wing shape, wing sizedetermined (around the next stroke reversal, the wing would
wing mass distribution, weight of the insect, etc.) are alsootate froma=180°-61y to a=aq, and the sign of the right-hand
available (Norberg, 1972). On the basis of these data, the flow&le of equatio? should be reversed). The axis of the flip
and aerodynamic forces and the power required for producimgtation is located at a distance of 1/4 chord length from the
the forces are computed and analyzed. Because of the unigeading edge of the wing.
feature of the motion, i.e. the forewing and the hindwing move
relative to each other, the approach of solving the flow  The Navier—Stokes equations and solution method
equations over moving overset grids is employed. The Navier—Stokes equations are numerically solved using
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A Navier—Stokes equations, written in the inertial coordinate
| systemoxyz(Fig. 1C), are as follows:
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whereu, v andw are three components of the non-dimensional
// ;( velocity andp is the non-dimensional pressure. In the non-
/ dimensionalization, ¢ and c/U are taken as the reference

/33 / velocity, length and time, respectivel\Re denotes the
L. V._/ .. Horizontal plane

Reynolds number and is defined Rs=cU/u, whereu is
kinematic viscosity of the air. EquaticBs6 are solved using

an algorithm based on the method of artificial compressibility.
The algorithm was first developed by Rogers and Kwak (1990)
and Rogers et al. (1991) for a single-zone grid, and it was
extended by Rogers and Pulliam (1994) to overset grids. The
algorithm is outlined below.

The equations are first transformed from the Cartesian
coordinate systenxfy,z,1) to the curvilinear coordinate system
(&,n,{,;t) using a general time-dependent coordinate
transformation. For a flapping wing, in order to make the
transformation simple, a body-fixed coordinate system
(o'Xy'Z) is also employed (Fid.C). In terms of the Euler
anglesa and ¢ (defined in FiglC), the inertial coordinates
(o,x,y,2) are related to the body-fixed coordinate’sx(y',z)
éhrough the following relationship:

C Stroke plane

Fig. 1. Sketches of the model wings, the flapping motion and th

reference frames. FW and HW denote fore- and hindwings, 0 . ina 000
respectivelyOXYZis an inertial frame, with th¥ andY axes in the %(D %OS} cosp —sinp COS\OS'mDD 0
horizontal planepxyzis another inertial frame, with theandy axes yd= g —sim 0 cox [Oy'O. (7

0,0

in the stroke planey'x'y'Z is a frame fixed on the wing, with tké g.ad . . .0
P 9 0Z0 Elsmpcosa cosp singsina JZ

axis along the wing chord anylaxis along the wing spaf, stroke

plane angleg, positional angleq, angle of attacki, wing length. Using equatio:¥, the transformation metrics in the inertial

coordinate systemé,&y.§z,&1), (Nx.Ny.NzNt) and x.Cy,Lz.4),

which are needed in the transformed Navier—Stokes equations,
moving overset grids. For flow past a body in arbitrary motioncan be calculated from those in the body-fixed, non-inertial
the governing equations can be cast in an inertial frame @ordinate system,§£.&y.&z), (Nx,Ny.Nz) and Cx,ly.(z),
reference using a general time-dependent coordinatghich need to be calculated only once. As a wing moves, the
transformation to account for the motion of the body. The noneoordinate transformation functions vary witky(z1) such
dimensionalized three-dimensional incompressible unsteadiat the grid system moves and always fits the wing. The body-
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fixed non-inertial frame of reference’ k',y',Z) is used in the background grid carries the solution to the far field. The two
initial grid generation. wing grids are overset onto the background Cartesian grid and

The time derivatives of the momentum equations argarts of the two wing grids overlap when the two wings move
differenced using a second-order, three-point backwardlose to each other. As a result of the oversetting of the grids,
difference formula. To solve the time discretized momentunthere are regions of holes in the wing grids and in the
equations for a divergence free velocity at a new time level, background grid. As the wing grids move, the holes and hole
pseudo-time level is introduced into the equations, and boundaries change with time. To determine the hole-fringe
pseudo-time derivative of pressure divided by an artificiapoints, the method known as domain connectivity functions by
compressibility constant is introduced into the continuityMeakin (1993) is employed. Intergrid boundary points are the
equation. The resulting system of equations is iterated iauter-boundary points of the wing grids and the hole-fringe
pseudo-time until the pseudo-time derivative of pressurgoints. Data are interpolated from one grid to another at the
approaches zero; thus, the divergence of the velocity at the néwle-fringe points and, similarly, at the outer-boundary points
time level approaches zero. The derivatives of the viscousf the wing grids. In the present study, the background grid
fluxes in the momentum equation are approximated usindgoes not move and the two wing-grids move in the background
second-order central differences. For the derivatives afrid. The wing grids are generated by using a Poisson solver
convective fluxes, upwind differencing based on the fluxthat is based on the work of Hilgenstock (1988). They are of
difference splitting technique is used. A third-order upwindO-H type grids. The background Cartesian grid is generated
differencing is used at the interior points and a second-ordatgebraically. Some portions of the grids are shown inZig.
upwind differencing is used at points next to boundaries. For far-field boundary conditions, at the inflow boundary,
Details of this algorithm can be found in Rogers and Kwalkhe velocity components are specified as freestream conditions
(1990) and Rogers et al. (1991). For the computation in thehile pressure is extrapolated from the interior; at the outflow
present work, the artificial compressibility constant is set tdooundary, pressure is set equal to the free-stream static
100 (it has been shown that when the artificial compressibilitpressure, and the velocity is extrapolated from the interior. On
constant varied between 10 and 300, the number of suthe wing surfaces, impermeable wall and no-slip boundary
iterations changes a little but the final result does not changeynditions are applied, and the pressure on the boundary is

With overset grids, as shown in F).for each wing there obtained through the normal component of the momentum
is a body-fitted curvilinear grid, which extends a relativelyequation written in the moving coordinate system. On the plane
short distance from the body surface; in addition, there is af symmetry of the dragonfly (t3€Z plane; see FiglA), flow-
background Cartesian grid, which extends to the far-fieldymmetry conditions are applied (ive and the derivatives of
boundary of the domain (i.e. there are three grids). The solutian v andp with respect to/ are set to zero).
method for a single grid is applied to each of the three grids.
The wing grids capture features such as boundary layers, Evaluation of the aerodynamic forces
separated vortices and vortex/wing interactions. The The lift of a wing is the component of the aerodynamic force
on the wing that is perpendicular to the translational velocity
of the wing (i.e. perpendicular to the stroke plane); the drag of
a wing is the component that is parallel to the translational
| Background grid velocity. I+ and dr denote the lift and drag of the forewing,
I respectively}n anddn denote the lift and drag of the hindwing,
- 7 respectively. Resolving the lift and drag into tAeand X

H directions gives the vertical force and thrust of a wingnd

FIIOX Tt denote the vertical force and thrust of the forewing,
6 < respectivelyLh and Th denote the vertical force and thrust of
LD L the hindwing, respectively. For the forewing:
S

»
BN

= Lt = lf cof3 + df singpsinB , (8)

CHHH T

T = It sinB — df sinp cosB . C)]

Bl Nimmira SN 0.EN

NP\ A
'\
4
ard
=

! These two formulae also apply to the case of the hindwing. The
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Cdf, Cih, Cd,h CLf, C1.f, CLh andCr p, respectively. They are
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etc., wherep is the fluid densitys and$, are the areas of the
Fig. 2. Some portions of the moving overset grids. fore- and hindwings, respectively. The total vertical force
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coefficient CL) and total thrust coefficienCf) of the fore-
and hindwings are as follows:

CL=CLt+CLn, (11) Analytical solution
Single grd
Cr=Cri+Crh. (12) Overset grid
Data of hovering flight in Aeschna juncea S
High-speed pictures of the dragonfdeschna juncean
hovering flight were taken by Norberg (1975), and the : s
following kinematic data were obtained. For both the fore- an
hingwings, the chord is almost horizontal during the L
downstroke (i.eog=B) and is close to the vertical during the 1.5

upstroke; the stroke plane ang® {s approximately 60°; the Ts
stroke frequencyn] is 36Hz, the stroke amplituded] is 69°;
the hindwing leads the forewing in phase by 180°. The mas
of the insect rf) is 754mg; forewing length is 4.7dm;
hindwing length is 4.68m; the mean chord lengths of the fore-
and hindwings are 0.8dm and 1.1Zm, respectively; the
moment of inertial of wing-mass with respect to the fulcrum
() is 4.54g cnr2 for the forewing and 3.7 cnr? for the
hindwing (Norberg, 1972).

On the basis of the above data, the parameters of the mot
wings and the wing kinematics are determined as follows. Th
lengths of both wingsR) are assumed to be 4, the
reference length (the mean chord length of the forewing 0 e T T e T T s
c=0.81cm; the reference velocity=2dnr=2.5ms™; the r/2a
Reynolds number Re=Uc/u=1350; the stroke period

d Fig. 3. Comparison between numerical and analytical solutions of a

Tc=U/Nc=8.58. v is set as 180" and 0° for the fore- an starting sphere. (A) Drag coefficien€{) vs non-dimensional time
hindwings, respectively. Norberg (1975) did not provide thE(Ts)_ (B) Azimuthal velocity ) vs non-dimensional radial distance

rate of wing rotation during stroke reversal. Reavis and Luttge( (123).
(1988) made measurements on similar dragonflies and it wi
found that maximundg was 10000-30000deg.s™L. Here, ¢ is
set as 2000deg.s ™}, giving ¢y=1.1 andAt,=3.36. motion of a sphere, because the boundary layer is still very
thin, the flow around the sphere can be adequately treated by
) potential flow theory, and the flow velocity around the sphere
Results and analysis and the drag (added-mass force) on the sphere can be obtained
Test of the solver analytically. The acceleration of the sphere during the initial
A single-grid solver based on the computational methodtart is a cosine function of time; after the initial start, the
described above was developed by Lan and Sun (2001a). It wgshere moves at constant speddt).( In the numerical
tested by the analytical solutions of the boundary layer flow onalculation, the Reynolds number [basedigrand the radius
aflat plate (Lan and Sun, 2001a) and by the measured unstedédy of the sphere] is set as3.0ig.3A shows the numerical
forces on a flapping model fruit fly wing (Sun and Wu, 2003)and analytical drag coefficient€d) vs non-dimensional time
A moving overset-grid solver for two-dimensional flow based(ts) (C¢=drag/0.50Usma?; 1s=tUs/2a). Between 1s=0 and
on the above method was developed by the same authors a0.2, the numerical result is in very good agreement with the
it was tested by comparison with the analytical solution of thanalytical solution. Fig3B shows the azimuthal velocitye]
starting flow around an elliptical airfoil (Lan and Sun,atts=0.1 as a function af/2a (r is radial distance) with fixed
2001b,c). The two-dimensional moving overset-grids solver iszimuthal anglev2. The numerical result agrees well with the
extended to three dimensions in the present study. The thresmalytical solution outside the boundary layer.
dimensional moving overset-grids solver is tested here in threeIn the second test, the flow around the starting sphere is
ways. First, the flow past a starting sphere is considered, faomputed by the single-grid code, and the results computed
which the approximate solution of the Navier—Stokesusing the single grid and moving overset grid are compared
equations is known. Second, the code is tested by comparigaiso in Fig.3). They are in good agreement. For the case of
with the results of the single grid. Finally, the code is testethe single grid, the grid is of O-O type, where the numerical
against experimental data of a flapping model fruit fly wing bycoordinates &n,{) lie along the standard spherical
Sane and Dickinson (2001). coordinates. It has dimensions %66x129. The outer
As afirst test, it is noted that in the initial stage of the startinfpoundary is set at 30from the sphere. The non-dimensional
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time step is 0.01. Grid sizes of*6B1x81 and 4827x51 were  computation, the wing grid has dimensions of 3852
also used. By comparing the results from these three grids,dtound the wing section, in normal direction and in spanwise
was shown that the grid size of X@®®x129 was appropriate direction, respectively; the outer boundary of the wing grid is
for the computation. For the case of moving overset grids, thepproximately 2.0 from the wing. The background Cartesian
grid system consists of two grids: one is the curvilinear grid ofrid has dimensions of 885x80 and the outer boundary is
the sphere and the other is the background Cartesian grid. TRéc from the wing. The non-dimensional time step is 0.02. The
outer boundary of the sphere grid is atalfedbm the sphere grid density test was conducted and it was shown that the
surface and the out-boundary of the background grid & 30above overset grids were appropriate for the computation. In
from the sphere. The grid density is made similar to that of thEig. 4A,B, the flapping amplitude is 60° and the midstroke
single grid. angle of attack is 50°; in FigC,D, these quantities are 180°

In the third test, the set-up of Sane and Dickinson (2001) iand 50°, respectively. The magnitude and trends with variation
followed and the aerodynamic forces are computed for thever time of the computed lift and drag forces are in reasonably
flapping model fruit fly wing. The computed lift and drag good agreement with the measured results.
are compared with the measured values in &igin the

The total vertical force and thrust; comparison with insect

Expaimertal dat weight

- - -—

0.4 B A C;%i:g:;n ata . In the calculation, the',- wings start the flapping mc.)tio'n _in st.ill
0.3 N\, air and the calculation is ended when periodicity in
0.2 \\ aerodynamic forces and flow structure is approximately

Z ol \ reached (periodicity is reached approximately 2—3 periods after

2 o the calculation is started).

o 01 Fig.5 shows the total vertical force and thrust coefficients
_' in one cycle, computed by two grid systems, grid system 1 and
-0.2 grid system 2. In both grid systems, the outer boundary of the
-0.3

wing-grid was set at about Zrom the wing surface and that
of the background grid at aboutetfdom the wings. For grid
system 1, the wing grid had dimensionsx2Bx45 in the
normal direction, around the wing and in the spanwise
direction, respectively, and the background grid had
dimensions 9872x46 in theX (horizontal),Z (vertical) andY
directions, respectively (Fig. shows some portions of grid
system 1). For grid system 2, the corresponding grid
dimensions were 4110563 and 12889x64. For both grid
systems, grid points of the background grid concentrated in
the near field of the wings where its grid density was
approximately the same as that of the outer part of the wing
grid. As seen in Figp, there is almost no difference between
the force coefficients calculated by the two grid systems.
Calculations were also conducted using a larger computational
domain. The domain was enlarged by adding more grid points
to the outside of the background grid of grid system 2. The
calculated results showed that there was no need to put the
outer boundary further than that of grid system 2. It was
concluded that grid system 1 was appropriate for the present
study. The effect of time step value was considered and it was
found that a numerical solution effectively independent of the
time step was achieved &t<0.02. ThereforeAt=0.02 was
used in the present calculations.

e S From Fig.5, it is seen that there are two lai@e peaks in
0 0.2 03 0.75 1 one cycle, one in the first half of the cycle (while the hindwing
Strokecycle is in its downstroke) and the other in the second half of the

Fig.4. Comparison of the calculated and measured lift and dra‘g]yCIe (while the fc?feW'”g IS In its downstroke).. It ShPUId be
forces. The experimental data are reproduced fro3@gD of Sane  noted that by having two largé peaks alternatively in the
and Dickinson (2001). (A,B) The midstroke angle of attack is 50irst and second halves of a cycle, the flight would be smoother.
and stroke amplitude is 60°; (C,D) the midstroke angle of attack idveragingCr (andCr) over one cycle gives the mean vertical
50° and stroke amplitude is 180°. force coefficient CL) [and the mean thrust coefficier@(]:
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C1=1.35 andC7t=0.02. TheC. value of 1.35 gives a vertical hindwings. Fig6 gives the vertical force and thrust
force of 756mg, approximately equal to the insect masscoefficients of the fore- and hindwings. The hindwing
(754mg). The computed mean thrust hd) is close to zero. produces a larg€ h peak during its downstroke (the first half
That is, the force balance condition is approximately satisfieaf the cycle) and very small_h in its upstroke (the second

In the calculation, the stroke plane angle, the midstroke angléslf of the cycle); this is true for the forewing, but its
of attack for the downstroke and the upstroke have been setdmwnstroke is in the second half of the cycle. Comparinggig.
B=52°,a4=52° andoy=8°, respectively. These valuesffoag  with Fig.5 shows that the hindwing in its downstroke is
anday give an approximately balanced flight and they are closeesponsible for the largé. peak in the first half of the cycle,

to the observed value$460°; during the downstroke the and the forewing in its downstroke is responsible for the large
chord is almost horizontal (i.eq=), and during the upstroke C_ peak in the second half of the cycle. The contributions to

the chord is close to vertical]. the mean total vertical force by the forewing and hindwing are
_ _ _ 42% and 58%, respectively. The vertical force on the hindwing
The forces of the forewing and the hindwing is 1.38 times that on the forewing. Note that the area of the

The total vertical force (or thrust) coefficient is the sum ofhindwing is 1.32 times that of the forewing. That is, the
the vertical force (or thrust) coefficient of the fore- andrelatively large vertical force on the hindwing is mainly due to
its relatively large size.

The vertical force and thrust coefficients of a
wing are the results of the Ilift and drag
coefficients of the wing. The corresponding lift
and drag coefficient€f, Cdt, Cih and Cq,h are
shown in Fig.7. For the hindwingCq,h is larger
thanCh during the downstroke of the wing, and
Bis large (52°). As a result, a large parGofh is
from Cq,h (approximately 65% oF his fromCq,n
and 35% is fronCi). This is also true for the
forewing. That is, the dragonfly uses drag as a
major source for its weight-supporting force when
hovering with a large stroke plane angle.
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Fig.5. Non-dimensional angular velocity of flip rotatiod* and azimuthal  forewing Crf) and hindwing CLn) and (B) thrust
rotation ¢*) of (A) hindwing and (B) forewing; (C) time courses of total coefficients of the forewingQrs) and the hindwing
vertical force coefficient@L) and (D) total thrust coefficien€f) in one cycle. (Ct,n) in One cycle.
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Fig. 7. (A) Time courses of lift coefficients of forewingi§) and
hindwing Ci,n) and (B) drag coefficients of the forewinGq(s) and
the hindwing Cq,h) in one cycle.

The mechanism of the large vertical force . w
As shown in Fig6, the peak value @ h is approximately _13 T T R B
3.0 (that of CLt is approximately 2.6). Note that in the 0 0.25 0.5 0.75 1
definition of the force coefficient, the total area of the fore- ant D
hindwings &§+S,) and the mean flapping velocity are used 1k
as reference area and reference velocity, respectively. For t : p 7 X

used as reference area and reference velocity, respective
the peak value of the vertical force coefficient would be
3.0¢[(S+S)/S xUZ(U/2)2=2.1. Similarly, for the forewing, -
the peak value would be XBS+S)/S]xU2/(TiU/2)2=2.4. 2,7 '25‘ — '0'5‘
Since the thrust coefficient€ts and Crn are small,Cp¢ ' Strokéc |
. ycle

and C_h can be taken as the coefficients of the resultan.
aerodynamic force on the fore- and hindwings, respectiveI)Fig-B- (A) Time courses of vertical force coefficients of forewing
The above shows that the peak value of resultant aerodynan(CL) and single forewing Gusf); (B) thrust coefficients of the
force coefficient for the forewing or hindwing is 2.1-2.4 (When::?)r:f\“lf\il::ri]gnt(sg‘)thinﬁinscjl\r/]v?r!ZC(fLor:fg:]ndg chglf)e h(i(rizj W‘i’r?;galh)fggcde

. ) . . , s
usmg. the area of the corresponding wing and t.he Instanta'nec(D) thrust coefficients of the hindwindCt,n) and single hindwing
velocity as reference area and reference velocity, respec'ﬂvelj(CT «) in one cycle.
This value is approximately twice as large as the steady-ste”
value measured on a dragonfly windRat=730-1890 [steady-
state aerodynamic forces on the fore- and hindwings of thehe effect of interaction between the fore- and hindwings
dragonfly Sympetrum sanguineumere measured in a wind  In order to investigate the interference effect between the
tunnel by Wakeling and Ellington (1997a); the maximumfore- and hindwings, we computed the flow around a single
resultant force coefficient, obtained at an angle of attack dbrewing (and also a single hindwing) performing the same
~60°, was approximately 1.3]. flapping motion as above. FigA,B gives vertical forceQsf)

There are two possible reasons for the large vertical forcand thrustCr sf) coefficients of the single forewing, compared
coefficients of the flapping wings: one is the unsteady flowvith C_ s andCr+, respectively. The differences betwe@nss
effect; the other is the effect of interaction between the foreandC, s and betweeT sfandCr f show the interaction effect.
and hindwings (in the steady-state wind-tunnel test, interactioA similar comparison for the hindwing is given in F8§,D.
between fore- and hindwings was not considered). For both the fore- and hindwings, the vertical force coefficient

hindwing, if its own area and the instantaneous velocity ar & 0 S
=3
3}
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on a single wing (i.e. without interaction) is a little lai Tip vortex
than that with interaction. For the forewing, \ D
interaction effect reduces the mean vertical f LEV f
coefficient by 14% of that of the single wing; for
hindwing, the reduction is 16% of that of the sir
wing. The interaction effect is not very large ani . ¢ B .
detrimental to the vertical force generation. -: z /) / starting
fa! ﬁ'\a// vortex
The unsteady flow effect (A ““"“('Vortex ring

The above results show that the interaction e b X from last cycle
between the fore- and hindwings is small and, more
is detrimental to the vertical force generation. There
the large vertical force coefficients produced by
wings must be due to the unsteady flow effect. Her¢
flow information is used to explain the unste
aerodynamic force.

First, the case of the single wing is considered. ¥
shows the iso-vorticity surface plots at various ti
during one cycle. In order to correlate force and
information, we express time during a stroke cycle
non-dimensional parametér,such that=0 at the sta
of the cycle and=1 at the end of the cycle. After |
downstroke of the hindwing has just startée0(125
Fig. 9A), a starting vortex is generated near the tra
edge of the wing, and a leading edge vortex (LE
generated at the leading edge of the wing; the LE\
the starting vortex are connected by the tip vort
forming a vortex ring. Through the downstr
(Fig. 9B,C), the vortex ring grows in size and mc
downward. At stroke reversal (betweér0.36 ant
#=0.65), the wing rotates and the LEV is shed. DL
the upstroke, the wing almost does not produce
vorticity. The vortex ring produced during | f=0375
downstroke is left below the stroke plane (RD-F)
and will convect downwards due to its self-indu  Fig.9. (A—F) Iso-vorticity surface plots at various times in one cycle (single
velocity. The vortex ring contains a downward jet hindwing). Note that th& axis is along the body of the dragonfly andXize
below). We thus see that, in each cycle, a new v plane is the plane of symmetry of the insécton-dimensional time. The
ring carrying downward momentum is produc magnitude of the non-dimensional vorticity is 1.
resulting in an upward force. This qualitatively expl:
the unsteady vertical force production. Fif. shows the On the basis of the above analysis of the aerodynamic
velocity vectors projected in a vertical plane that is parallel tdorce mechanism, we give a preliminary explanation for why
and 0.®R from the plane of symmetry of the insect. Thethe forewing—hindwing interaction is not strong and is
downward jet is clearly seen. detrimental. The new vortex ring, which is responsible for

Fig. 11 shows the iso-vorticity surface plots for the fore- andhe large aerodynamic force on a wing, is generated by the
hindwings (in the first half of the cycle the hindwing is in itsrapid unsteady motion of the wing at a large angle of attack.
downstroke; in the second half of the cycle the forewing is iAs a result, the effect of the wake of the other wing is
its downstroke). Similar to the case of the single wing, just afterelatively small. Moreover, the wake of the other wing
the start of the first half of the cycle, a new vortex ring igoroduces downwash velocity, resulting in the detrimental
produced by the hindwing (Fi@1A); this vortex ring grows effects.
in size and convects downwards (FigA—C). Similarly, just
after the start of the second half of the cycle, a new vortex ring Power requirements
is produced by the forewing (FiglD), which also grows As shown above, the computed vertical force is enough
in size and convects downwards as time increases1Fig. to support the insect weight and the horizontal force is
gives the corresponding velocity vector plots. The qualitativepproximately zero; i.e. the force balance conditions of
explanation of the large unsteady forces on the fore- andovering are satisfied. Here, we calculate the mechanical
hindwings is similar to that for the single wing. power output of the dragonfly. The mechanical power includes

f=0625
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the aerodynamic power (work done against the aerodynamic
torques) and the inertial power (work done against the torques
due to accelerating the wing-mass).

As expressed in equati@® of Sun and Tang (2002), the
aerodynamic power consists of two parts, one due to the
aerodynamic torque for translation and the other to the
aerodynamic torque for rotation. The coefficients of these two
torques (denoted b$o a,tandCo a,; respectively) are defined
as:

B Qayt

Coat= 050U + S)c (13)
_ Qar

Co.ar= —O.5pU2(Sf +S)c ) (14)

whereQa tandQa rare the aerodynamic torques around the axis
of azimuthal rotationz axis) and the axis of pitching rotation,
respectivelyCo,a,tandCo,arare shown in Figl3A,B. As can
be seenCq,atis much larger thako,a,r

The inertial power also consists of two parts (see
equation35 of Sun and Tang, 2002): one due to the inertial
torque for translation and the other to the inertial torque for
rotation. The coefficient of inertial torque for translation
(Co,ip) is defined as:

Co,it=

| .
050G + @ 7

where@" is the non-dimensional angular acceleration of wing
translation.Cq,it is shown in Figl3C. The inertial torque for
rotation cannot be calculated since the moment of inertial of
wing-mass with respect to the axis of flip rotation is not
available. Because most of the wing-mass is located near the
axis of flip rotation, it is expected that the inertial torque for
rotation is much smaller than that for translation. That is, both
the aerodynamic and inertial torques for rotation might be
much smaller than those for translation. In the present study,
the aerodynamic and inertial torques for rotation are neglected
in the power calculation.

The power coefficient&p), i.e. power non-dimensionalized
by 0.U3(S+Sy), is:

(15)

Cp=Cpat Cpii, (16)
where Cpa=Cat*, (7)
Cp,i = Cq,id* . (18)

Cp of the fore- and hindwings is shown in Figt. In the figure,
contributions toCp by the aerodynamic and inertial torques
(represented b§p aandCp,i, respectively) are also shown. For
the forewing (Fig14A), the time course @, is similar to that

of Cp,ain the downstroke and to that G, in the upstroke;

i.e. the aerodynamic power dominates over the downstroke and

Fig. 10. Velocity vectors in a vertical plane parallel to andRGrém

the plane of symmetry at various times in one cycle (single
hindwing). The horizontal arrow at the top left represents the
reference velocityl). 7, non-dimensional time.
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the inertial power dominates over the upstr
This is also true for the hindwing (Fig4B).

IntegratingCp over the part of a wingbeat cy:
where it is positive gives the coefficient
positive work Ciy) for translation. IntegratinGp
over the part of the cycle where it is nega
gives the coefficient of ‘negative’ worlC{y) for
‘braking’ the wing in this part of the cycl€yy
and Cy for the forewing are 8.33 and —2.
respectively. For the hindwing, they are 8.93
—1.14, respectively.

The body-mass-specific powd?*] is definec
as the mean mechanical power over a fla
cycle divided by the mass of the insect, and it
be written as follows (Sun and Tang, 2002):

P* = 0.50U3(2S + 25)(Cw /Tc + Cw /te)/m,
(19)

whereCw f andCw,h are the coefficients of wo
per cycle for the fore- and hindwin
respectively. When calculatingw s or Cw n, One
needs to consider how the negative work fits
the power budget. There are three possibi
(Weis-Fogh, 1972; Ellington, 1984). One is |
the negative power is simply dissipated as
and sound by some form of an end stop, th
can be ignored in the power budget. The se
is that in the period of negative work, the ex
energy can be stored by an elastic element
this energy can then be released when the
does positive work. The third is that the fli
muscles do negative work (i.e. they are stret
while developing tension, instead of contrac
as in ‘positive’ work) but the negative work u
much less metabolic energy than an equivi
amount of positive work and, again, the nege

A New vortex ring byHW D New vorte;_r‘isg byFW

“ Ay
s

PE o)

L
7=0.875

Fig.11. Iso-vorticity surface plots at various times in one cycle (fore- and
hindwings). Note that th& axis is along the body of the dragonfly, and X®
plane is the plane of symmetry of the insett.non-dimensional time. The
magnitude of the non-dimensional vorticity is 1.

power can be ignored in the power budget. That is, out of theskmensional (2-D) computations based on wing kinematics
three possibilities, two ways of computi@g s or Cw,hcan be  similar to those used in this study. Wang (2000) investigated

taken. One is neglecting the negative work, i.e.:

Cw,f= (CW)forewing )

Cwh= (CTN)hindwing .

The other is assuming the negative work can be stored and
released when the wing does positive work, i.e.:

Cw,t = (Ciy + Cw)forewing »

Cw,h = (Ciy *+ C)hindwing -

a single airfoil; Lan and Sun (2001c) investigated both a single
(20) airfoil and fore and aft airfoils. It is of interest to make
comparisons between the present three-dimensional (3-D) and
(21)  the previous 2-D results.
The CL value (single airfoil) computed by Wang (2000) is
approximately 1.97 [in figd of Wang (2000), maximum
is used as reference velocity and €hevalue is approximately
(22)  0.8;if the mean ofi is used as reference velocity, figvalue
(23) becomes 0.80.5m)2=1.97]; approximately the sand& value
(single airfoil) was obtained by Lan and Sun (2001c). In the

Here, equations 20 and 21 are used, and the comptitesd  present study, th€ values for the single forewing and single
37Wkg? (when equation®2 and 23 are usedP* is hindwing are 1.51 and 1.64, respectively, approximately 20%

30W kg. less than the 2-D value. This shows that the 3-D effecon
is significant. The wing length-to-chord ratio is not small
) . (approximately 5); one might expect a small 3-D effect. But
Discussion for a flapping wing (especially in hover mode), the relative
Comparison with previous two-dimensional results velocity varies along the wing span, from zero at the wing base

Wang (2000) and Lan and Sun (2001c) have presented twtw its maximum at the wing tip, which can increase the 3-D
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effect. Note that althougldL is reduced by the 3-D effect present study. The LEV dose not shed before the end of
significantly, the time course d@_ of the forewing or the the downstroke of the fore- or hindwing (Fidl). If the
hindwing is nearly identical to that of the airfoil (compareLEV sheds shortly after the start of the downstroke, the LEV
Fig. 6A with fig. 3 of Wang, 2000). would be very close to the starting vortex, and a vortex ring
Lan and Sun’s results for the fore and aft airfoils showedhat carries a large downward momentum (i.e. the large
that the interaction effect decreased the vertical forces on tleerodynamic forces) could not be produced. Generation of a
airfoils by approximately 22% compared with that of the singlevortex ring carrying large downward momentum is equivalent
airfoil (Lan and Sun, 2001c). For the fore- and hindwings irto the delayed stall mechanism.
the present study, the reduction is approximately 15%, Data presented in Fi§. show that the forewing—hindwing
showing that 3-D forewing—hindwing interaction is weakerinteraction is not very strong and is detrimental. In obtaining
than in the 2-D case. these data, the wing kinematics observed for a dragonfly in
hovering flight (e.g. 180° phase difference between the
Aerodynamic force mechanism and forewing-hindwing  forewing and the hindwing; no incoming free-stream) have
interaction been used. Although some preliminary explanation has been
Recent studies (e.g. Ellington et al., 1996; Dickinson et algiven for this result, we cannot currently distinguish whether
1999; Wu and Sun, 2004) have shown that the large unsteadynot this result will exist when the phasing, the incoming flow
aerodynamic forces on flapping model insect wings are mainlgondition, etc., are varied. Analysis based on flow simulations
due to the attachment of an LEV or the delayed stalin which the wing kinematics and the flight velocity are
mechanism. This is also true for the fore- and hindwings in theystematically varied is needed.
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Fig. 12. Velocity vectors in a vertical plane parallel to andrGrém
the plane of symmetry at various times in one cycle (fore- anu
hindwings). The horizontal arrow at the top left represents thFig.13. Time courses of aerodynamic torque coefficients for
reference velocityl). 7, non-dimensional time. translation Cg,a) and rotation €o,a) of (A) forewing and (B)
hindwing in one cycle; (C) time courses of inertial torque coefficient
for translation Cq,iY) in one cycle.
Power requirements compared with quasi-steady results ant
with Drosophila results

Wakeling and Ellington (1997b,c) computed the powerand Tang (2002), based on experimental and CFD studies,
requirements for the dragonfympetrum sanguineunmn  respectively, showed that for fruit flies, calculation by
most cases they investigated, the dragonfly was iquasi-steady analysis might under-estimate the aerodynamic
accelerating and/or climbing flight. Only one case is close tpower by 50%. A similar result is seen for the hovering
hovering (flight SSan 5.2); in this case, the flight speed idragonflies.
rather low (advance ration is approximately 0.1) and the It is of interest to note that the value Bf for the
resultant aerodynamic force is close to the insect weight (seagonfly in the present study (8Vkg™) is not very
fig. 7D of Wakeling and Ellington, 1997b; fi§.of Wakeling  different from that computed for a fruit fly (30 kg=%; Sun
and Ellington, 1997c). Their computed body-mass-specifiand Tang, 2002), even though their sizes are greatly different
aerodynamic power is 17W kg! (see tabl@ of Wakeling  (the wing length of the fruit fly is 0.8m and that of the
and Ellington, 1997c; note that we have converted thdragonfly is 4.&m). For the fruit fly, the mechanical power
muscle-specific power given in the table to the body-masss mainly contributed by aerodynamic power (Sun and Tang,
specific power), only approximately half the value calculatec®®002). It is approximately the case with the dragonfly in the
in the present study. Lehmann and Dickinson (1997) and Supresent study (see Fifj4). From equatiod5 of Sun and

Stroke cycle
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A List of symbols
Upstroke Downstroke .
5¢ c mean chord length of forewing
4 3 _ Caf drag coefficient of forewing
F Forewng A Can  drag coefficient of hindwing
- 3F (o NG Cif lift coefficient of forewing
O LE R )/ N Cih lift coefficient of hindwing
5 F " L N CL total vertical force coefficient
21 ¥4 AN 47,7 \\ ‘\\ CL total mean vertical force coefficient
© 0E= S o Ve N > CLt vertical force coefficient of forewing
15_ A 74 AN \/ CLh  vertical force coefficient of hindwing
Tk = N CLst  vertical force coefficient of single forewing
_2 L1 1 1 1 | 1 1 1 1 1 1 1 1 | 1 1 1 1 1 11 1 1 H
0 028 0s 07e 1 Cish vertlga] force coefficient of single hindwing
Cp coefficient of power
Cpa coefficient of aerodynamic power
B Downstroke Upstroke Chpii coefﬁc@ent of inertial power .
SE Coar coefficient of aerodynamic torque for rotation
aF . Coat coefficient of aerodynamic torque for translation
£ AN Hindwing Co,it coefficient of inertial torque for translation
_ 3 3 / \\ c, Cr total thrust coefficient
O 2F /) O Coa Cr total mean thrust coefficient
s .E/) Nooo| T Coi Crs  thrust coefficient of forewing
1/ ——< > = .. . .
S k7 N AN N BPEN Crn thrust coefficient of hindwing
0Ff e = Crst  thrust coefficient of single forewing
o \ ,
E AN s \//_f Crsh  thrust coefficient of single hindwing
-1F ~__" N~ ’ .. .
: Cw;s  coefficient of work per cycle of forewing
Y T ] C\iv‘h coefficient of work per cycle of hindwing
Stroke cycle CYV coeff!c!ent of p03|t|ye work
Cw coefficient of negative work
Fig.14. Time courses of power coefficients of forewing (A) andg mean drag of a wing
hindwing (B) in one cycleCp, power coefficientCp o coefficient of g drag of forewing

power due to aerodynamic forc€p,, coefficient of power due to dh

inertial force. drag of hindwing

I moment of inertial of wing-mass

It lift of forewing
Ih lift of hindwing
L total mean vertical force
Tang (2002), the aerodynamic torque of a wing can be writteky vertical force of forewing
as: Lh vertical force of hindwing
L m mass of the insect
Qa,tH FudR, @), flapping frequency
whered is the mean drag of the wingj is the radius of the 0,0,0' origins of the two inertial frames of reference and
first moment of the drag normalized By When the majority the non-inertial frame of reference
of the power is due to aerodynamic torqu®, can be p non-dimensional fluid pressure
approximated as: p* body-mass-specific power
P* O n®RIIL , (25) Qat aerodynamic torques around the axis of azimuthal

rotation ¢ axis)
whered/L is the ratio of the mean drag to the mean verticaQar aerodynamic torques around the axis of pitching

force of the wing. For the fruit fly, this ratio is around 1 (Sun rotation

and Tang, 2002). For the dragonfly in the present study, since radial position along wing length

a large part of the vertical force is contributed by the drag, this radius of the second moment of wing area of
ratio is not very different from 1. We assume thafor the forewing

two insects is not very different. TheR¥ depends mainly 74 radius of the first moment of wing drag

on n®R (half the mean tip speed). The dragonfiRsis R wing length

approximately 16 times that of the fruit fly; but itsp Re Reynolds number

(36 Hzx69°) is approximately 1/14 of that of the fruit fly & area of one wing (forewing)

(240Hzx150°). This explains wh¥?* of the dragonfly is not S area of one wing (hindwing)
very different from that of the fruit fly. t time
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f non-dimensional timef£0 and 1 at the start and end Ellington, C. P. (1984). The aerodynamics of hovering insect flight. (6). Lift
of a cycle, respectively) gnd power requirementBhil. Trans. R._Soc. Lond@ 305 145—18;.
T h ff . Ellington, C. P., van den Berg, C. and Willmott, A. P(1996). Leading edge
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Th thrust of hindwing Freymuth, P. (1990). Thrust generation by an airfoil in hover modes.
uv,w  non-dimensional velocity componentsxyy,z Fluids. 9, 17-24.
. . . y P y Hilgenstock, A. (1988). A fast method for the elliptic generation of three
directions, respectivel
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Ut translational velocity of a wing in CFM'88 (ed. S. Sengupta, J. Hauser, P. R. Eiseman and J. F. Thompson),
uf non-dimensional translational velocity of a wing pp. 137-146. Swansea, UK: Pineridge Press Ltd. , _
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u azimuthal velocit
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U rererence ve ocity Mech.149 135-147.
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0 Press.
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p density of fluid grids using a defect correction approa&hAA Paper 94-0523.
T non-dimensional time Saharon, D. and Luttges, M.(1988). Visualization of unsteady separated
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Tr time when pitching rotation starts (non-dimensional) 5ap Paper 88-0569.
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