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Dragonflies are capable of long-time hovering, fast forward
flight and quick manoeuvres. Scientists have always been
fascinated by their flight. Kinematic data such as stroke
amplitude, inclination of the stroke-planes, wing beat
frequency and phase-relation between the fore- and hindwings
were measured by taking high-speed pictures of dragonflies in
free-flight (e.g. Norberg, 1975; Wakeling and Ellington,
1997b) and tethered dragonflies (e.g. Alexander, 1984). Using
these data in quasi-steady analyses (not including the
interaction effects between forewing and hindwing), it was
shown that the lift coefficient required for flight was much
greater than the steady-state values measured from dragonfly
wings (Wakeling and Ellington, 1997a). This suggested that
unsteady wing motion and/or flow interaction between the
fore- and hindwings must play important roles in the flight of
dragonflies (Norberg, 1975; Wakeling and Ellington, 1997c).

Force measurement on a tethered dragonfly was conducted
by Somps and Luttges (1985). It was shown that over some
part of a stroke cycle, lift force was many times larger than that

measured from dragonfly wings under steady-state conditions.
This clearly showed that the effect of unsteady flow and/or
wing interaction was important. Flow visualization studies on
flapping model dragonfly wings were conducted by Saharon
and Luttges (1988, 1989), and it was shown that constructive
or destructive wing/flow interactions might occur, depending
on the kinematic parameters of the flapping motion. In these
studies, only the total force of the fore- and hindwings was
measured and, moreover, force measurements and flow
visualizations were conducted in separated works.

In order to further understand the dragonfly aerodynamics,
it was desirable to determine the aerodynamic force and flow
structure simultaneously and also to know the force on the
individual forewing and hindwing during their flapping
motions. Freymuth (1990) conducted force measurement and
flow visualization on an airfoil in hover modes. One of the
hover modes was for hovering dragonflies. Only mean
vertical force was measured. It was shown that large mean
vertical force coefficient could be obtained and the force was
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Aerodynamic force generation and mechanical power
requirements of a dragonfly (Aeschna juncea) in hovering
flight are studied. The method of numerically solving the
Navier–Stokes equations in moving overset grids is used.

When the midstroke angles of attack in the downstroke
and the upstroke are set to 52° and 8°, respectively (these
values are close to those observed), the mean vertical
force equals the insect weight, and the mean thrust is
approximately zero. There are two large vertical force
peaks in one flapping cycle. One is in the first half of the
cycle, which is mainly due to the hindwings in their
downstroke; the other is in the second half of the cycle,
which is mainly due to the forewings in their downstroke.
Hovering with a large stroke plane angle (52°), the
dragonfly uses drag as a major source for its weight-
supporting force (approximately 65% of the total vertical
force is contributed by the drag and 35% by the lift of the
wings).

The vertical force coefficient of a wing is twice as large
as the quasi-steady value. The interaction between the
fore- and hindwings is not very strong and is detrimental
to the vertical force generation. Compared with the case of
a single wing in the same motion, the interaction effect
reduces the vertical forces on the fore- and hindwings by
14% and 16%, respectively, of that of the corresponding
single wing. The large vertical force is due to the unsteady
flow effects. The mechanism of the unsteady force is that
in each downstroke of the hindwing or the forewing, a
new vortex ring containing downward momentum is
generated, giving an upward force.

The body-mass-specific power is 37·W·kg–1, which is
mainly contributed by the aerodynamic power.

Key words: dragonfly, Aeschna juncea, hovering flight, unsteady
aerodynamics, power requirements, Navier–Stokes simulation.
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related to a wake of vortex pairs that produced a downward
jet of stream. Wang (2000) used a computational fluid
dynamics (CFD) method to study the aerodynamic force and
vortex wake structure of an airfoil in dragonfly hovering
mode. Time variation of the aerodynamic force in each
flapping cycle and the vortex shedding process was obtained.
It was shown that large vertical force was produced during
each downstroke and the mean vertical force was enough to
support the weight of a typical dragonfly. During each
downstroke, a vortex pair was created. The large vertical
force was explained by the downward two-dimensional jet
induced by the vortex pair.

In the works of Freymuth (1990) and Wang (2000), only a
single airfoil was considered. Lan and Sun (2001c) studied two
airfoils in dragonfly hovering mode using the CFD method. For
comparison, they also computed the flow of a single airfoil.
For the case of the single airfoil, their results of aerodynamic
force and flow structure were similar to that of Freymuth’s
(1990) experiment and Wang’s (2000) computation. For the
fore and aft airfoils flapping with 180° phase difference
(counter stroking), the time variation of the aerodynamic force
on each airfoil was broadly similar to that of the single airfoil;
the major effect of interaction between the fore and aft airfoils
was that the vertical forces on both the airfoils were decreased
by approximately 20% in comparison with that of the single
airfoil.

The above works (Freymuth, 1990; Wang, 2000; Lan and
Sun, 2001c), which obtained aerodynamic force and flow
structure simultaneously, were done for airfoils. It is well
known that the lift on an airplane wing of large aspect ratio
can be explained by a two-dimensional wing theory. But for a
dragonfly wing, although its aspect ratio is relatively large, its
motion is much more complex than that of an airplane wing.
Three-dimensional effect should be investigated. Moreover,
the effect of aerodynamic interaction between the fore- and
hindwings in three-dimensional cases is unknown. The work
of Lan and Sun (2001c) on two airfoils flapping with 180°
phase difference showed that interaction between the two
airfoils was detrimental to their aerodynamic performance.
This result is opposite to the common expectation that wing
interaction of a dragonfly would enhance its aerodynamic
performance. It is of interest to investigate the interaction effect
in the three-dimensional case.

In the present study, we extend our previous two-
dimensional study (Lan and Sun, 2001c) to a three-dimensional
case. As a first step, we study the case of hovering flight.
For the dragonfly Aeschna junceain free hovering flight,
detailed kinematic data were obtained by Norberg (1975).
Morphological data of the dragonfly (wing shape, wing size,
wing mass distribution, weight of the insect, etc.) are also
available (Norberg, 1972). On the basis of these data, the flows
and aerodynamic forces and the power required for producing
the forces are computed and analyzed. Because of the unique
feature of the motion, i.e. the forewing and the hindwing move
relative to each other, the approach of solving the flow
equations over moving overset grids is employed.

Materials and methods
The model wings and their kinematics

The fore- and hindwings of the dragonfly are approximated
by two flat plates. The thickness of the model wings is 1% of
c (where c is the mean chord length of the forewing). The
planforms of the model wings (see Fig.·1A) are similar to those
of the real wings (Norberg, 1972). The two wings have the
same length, but the chord length of the hindwing is larger than
that of the forewing. The radius of the second moment of the
forewing area is denoted by r2 (r2=∫Sf

r2dSf/Sf, where r is radial
distance and Sf is the area of the forewing); r2=0.61R (R is the
wing length). The flapping motions of the wings in hovering
flight are sketched in Fig.·1B. The hindwing leads the forewing
in phase by 180° (Norberg, 1975). The azimuthal rotation of
the wing about the z axis (see Fig.·1C) is called ‘translation’,
and the pitching (or flip) rotation of the wing near the end of
a half-stroke and at the beginning of the following half-stroke
is called rotation. The speed at r2 is called the translational
speed.

The flapping motion of a wing is simplified as follows. The
wing translates downward and upward along the stroke plane
and rotates during stroke reversal (Fig.·1B). The translational
velocity is denoted by ut and is given by:

ut
+ = 0.5πsin(2πτ/τc + γ)·, (1)

where the non-dimensional translational velocity ut
+=ut/U

(U is the reference velocity); the non-dimensional time
τ=tU/c (t is the time; c is the mean chord length of the
forewing, used as reference length in the present study);
τc is the non-dimensional period of the flapping cycle; and
γ is the phase angle of the translation of the wing. The
reference velocity is U=2Φnr2, where Φ and n are the stroke
amplitude and stroke frequency of the forewing, respectively.
Denoting the azimuth-rotational velocity as φ, we have
φ=ut/r2.

The angle of attack of the wing is denoted by α. It assumes
a constant value in the middle portion of a half-stroke. The
constant value is denoted by αd for the downstroke and by αu

for the upstroke. Around the stroke reversal, α changes with
time and the angular velocity (α) is given by:

α+ = 0.5α0
+{1 – cos[2π(τ – τr)/∆τr]} ·, (2)

where τr≤τ≤τr+∆τr, and the non-dimensional form α+=αc/U;
α0

+ is a constant; τr is the time at which the rotation starts; and
∆τr is the time interval over which the rotation lasts. In the time
interval of ∆τr, the wing rotates from α=αd to α=180°–αu.
Therefore, when αd, αu and ∆τr are specified, α0

+ can be
determined (around the next stroke reversal, the wing would
rotate from α=180°–αu to α=αd, and the sign of the right-hand
side of equation·2 should be reversed). The axis of the flip
rotation is located at a distance of 1/4 chord length from the
leading edge of the wing.

The Navier–Stokes equations and solution method

The Navier–Stokes equations are numerically solved using
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moving overset grids. For flow past a body in arbitrary motion,
the governing equations can be cast in an inertial frame of
reference using a general time-dependent coordinate
transformation to account for the motion of the body. The non-
dimensionalized three-dimensional incompressible unsteady

Navier–Stokes equations, written in the inertial coordinate
system oxyz(Fig.·1C), are as follows:

where u, v and w are three components of the non-dimensional
velocity and p is the non-dimensional pressure. In the non-
dimensionalization, U, c and c/U are taken as the reference
velocity, length and time, respectively. Re denotes the
Reynolds number and is defined as Re=cU/υ, where υ is
kinematic viscosity of the air. Equations·3–6 are solved using
an algorithm based on the method of artificial compressibility.
The algorithm was first developed by Rogers and Kwak (1990)
and Rogers et al. (1991) for a single-zone grid, and it was
extended by Rogers and Pulliam (1994) to overset grids. The
algorithm is outlined below.

The equations are first transformed from the Cartesian
coordinate system (x,y,z,τ) to the curvilinear coordinate system
(ξ,η,ζ,τ) using a general time-dependent coordinate
transformation. For a flapping wing, in order to make the
transformation simple, a body-fixed coordinate system
(o′x′y′z′) is also employed (Fig.·1C). In terms of the Euler
angles α and φ (defined in Fig.·1C), the inertial coordinates
(o,x,y,z) are related to the body-fixed coordinates (o′,x′,y′,z′)
through the following relationship:

Using equation·7, the transformation metrics in the inertial
coordinate system, (ξx,ξy,ξz,ξτ), (ηx,ηy,ηz,ητ) and (ζx,ζy,ζz,ζτ),
which are needed in the transformed Navier–Stokes equations,
can be calculated from those in the body-fixed, non-inertial
coordinate system, (ξx′,ξy′,ξz′), (ηx′,ηy′,ηz′) and (ζx′,ζy′,ζz′),
which need to be calculated only once. As a wing moves, the
coordinate transformation functions vary with (x,y,z,τ) such
that the grid system moves and always fits the wing. The body-
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Fig.·1. Sketches of the model wings, the flapping motion and the
reference frames. FW and HW denote fore- and hindwings,
respectively. OXYZis an inertial frame, with the X andY axes in the
horizontal plane; oxyzis another inertial frame, with the x andy axes
in the stroke plane; o′x′y′z′ is a frame fixed on the wing, with the x′
axis along the wing chord and y′ axis along the wing span. β, stroke
plane angle; φ, positional angle; α, angle of attack; R, wing length.
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fixed non-inertial frame of reference (o′,x′,y′,z′) is used in the
initial grid generation.

The time derivatives of the momentum equations are
differenced using a second-order, three-point backward
difference formula. To solve the time discretized momentum
equations for a divergence free velocity at a new time level, a
pseudo-time level is introduced into the equations, and a
pseudo-time derivative of pressure divided by an artificial
compressibility constant is introduced into the continuity
equation. The resulting system of equations is iterated in
pseudo-time until the pseudo-time derivative of pressure
approaches zero; thus, the divergence of the velocity at the new
time level approaches zero. The derivatives of the viscous
fluxes in the momentum equation are approximated using
second-order central differences. For the derivatives of
convective fluxes, upwind differencing based on the flux-
difference splitting technique is used. A third-order upwind
differencing is used at the interior points and a second-order
upwind differencing is used at points next to boundaries.
Details of this algorithm can be found in Rogers and Kwak
(1990) and Rogers et al. (1991). For the computation in the
present work, the artificial compressibility constant is set to
100 (it has been shown that when the artificial compressibility
constant varied between 10 and 300, the number of sub-
iterations changes a little but the final result does not change).

With overset grids, as shown in Fig.·2, for each wing there
is a body-fitted curvilinear grid, which extends a relatively
short distance from the body surface; in addition, there is a
background Cartesian grid, which extends to the far-field
boundary of the domain (i.e. there are three grids). The solution
method for a single grid is applied to each of the three grids.
The wing grids capture features such as boundary layers,
separated vortices and vortex/wing interactions. The

background grid carries the solution to the far field. The two
wing grids are overset onto the background Cartesian grid and
parts of the two wing grids overlap when the two wings move
close to each other. As a result of the oversetting of the grids,
there are regions of holes in the wing grids and in the
background grid. As the wing grids move, the holes and hole
boundaries change with time. To determine the hole-fringe
points, the method known as domain connectivity functions by
Meakin (1993) is employed. Intergrid boundary points are the
outer-boundary points of the wing grids and the hole-fringe
points. Data are interpolated from one grid to another at the
hole-fringe points and, similarly, at the outer-boundary points
of the wing grids. In the present study, the background grid
does not move and the two wing-grids move in the background
grid. The wing grids are generated by using a Poisson solver
that is based on the work of Hilgenstock (1988). They are of
O-H type grids. The background Cartesian grid is generated
algebraically. Some portions of the grids are shown in Fig.·2.

For far-field boundary conditions, at the inflow boundary,
the velocity components are specified as freestream conditions
while pressure is extrapolated from the interior; at the outflow
boundary, pressure is set equal to the free-stream static
pressure, and the velocity is extrapolated from the interior. On
the wing surfaces, impermeable wall and no-slip boundary
conditions are applied, and the pressure on the boundary is
obtained through the normal component of the momentum
equation written in the moving coordinate system. On the plane
of symmetry of the dragonfly (the XZplane; see Fig.·1A), flow-
symmetry conditions are applied (i.e. w and the derivatives of
u, v and p with respect to y are set to zero).

Evaluation of the aerodynamic forces

The lift of a wing is the component of the aerodynamic force
on the wing that is perpendicular to the translational velocity
of the wing (i.e. perpendicular to the stroke plane); the drag of
a wing is the component that is parallel to the translational
velocity. lf and df denote the lift and drag of the forewing,
respectively; lh and dh denote the lift and drag of the hindwing,
respectively. Resolving the lift and drag into the Z and X
directions gives the vertical force and thrust of a wing. Lf and
Tf denote the vertical force and thrust of the forewing,
respectively; Lh and Th denote the vertical force and thrust of
the hindwing, respectively. For the forewing:

Lf = lf cosβ + df sinφsinβ·, (8)

Tf = lf sinβ – df sinφcosβ·. (9)

These two formulae also apply to the case of the hindwing. The
coefficients of lf, df, lh, dh, Lf, Tf, Lh and Th are denoted as Cl,f,
Cd,f, Cl,h, Cd,h, CL,f, CT,f, CL,h and CT,h, respectively. They are
defined as:

etc., where ρ is the fluid density, Sf and Sh are the areas of the
fore- and hindwings, respectively. The total vertical force

(10)Cl,f =
lf

0.5ρU2(Sf + Sh)
,
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coefficient (CL) and total thrust coefficient (CT) of the fore-
and hindwings are as follows:

CL = CL,f + CL,h·, (11)

CT = CT,f + CT,h·. (12)

Data of hovering flight in Aeschna juncea

High-speed pictures of the dragonfly Aeschna junceain
hovering flight were taken by Norberg (1975), and the
following kinematic data were obtained. For both the fore- and
hingwings, the chord is almost horizontal during the
downstroke (i.e. αd≈β) and is close to the vertical during the
upstroke; the stroke plane angle (β) is approximately 60°; the
stroke frequency (n) is 36·Hz, the stroke amplitude (Φ) is 69°;
the hindwing leads the forewing in phase by 180°. The mass
of the insect (m) is 754·mg; forewing length is 4.74·cm;
hindwing length is 4.60·cm; the mean chord lengths of the fore-
and hindwings are 0.81·cm and 1.12·cm, respectively; the
moment of inertial of wing-mass with respect to the fulcrum
(I) is 4.54·g·cm–2 for the forewing and 3.77·g·cm–2 for the
hindwing (Norberg, 1972).

On the basis of the above data, the parameters of the model
wings and the wing kinematics are determined as follows. The
lengths of both wings (R) are assumed to be 4.7·cm; the
reference length (the mean chord length of the forewing)
c=0.81·cm; the reference velocity U=2Φnr2=2.5·m·s–1; the
Reynolds number Re=Uc/υ≈1350; the stroke period
τc=U/nc=8.58. γ is set as 180° and 0° for the fore- and
hindwings, respectively. Norberg (1975) did not provide the
rate of wing rotation during stroke reversal. Reavis and Luttges
(1988) made measurements on similar dragonflies and it was
found that maximum α was 10·000–30·000·deg.·s–1. Here, α is
set as 20·000·deg.·s–1, giving α0

+≈1.1 and ∆τr=3.36.

Results and analysis
Test of the solver

A single-grid solver based on the computational method
described above was developed by Lan and Sun (2001a). It was
tested by the analytical solutions of the boundary layer flow on
a flat plate (Lan and Sun, 2001a) and by the measured unsteady
forces on a flapping model fruit fly wing (Sun and Wu, 2003).
A moving overset-grid solver for two-dimensional flow based
on the above method was developed by the same authors and
it was tested by comparison with the analytical solution of the
starting flow around an elliptical airfoil (Lan and Sun,
2001b,c). The two-dimensional moving overset-grids solver is
extended to three dimensions in the present study. The three-
dimensional moving overset-grids solver is tested here in three
ways. First, the flow past a starting sphere is considered, for
which the approximate solution of the Navier–Stokes
equations is known. Second, the code is tested by comparing
with the results of the single grid. Finally, the code is tested
against experimental data of a flapping model fruit fly wing by
Sane and Dickinson (2001).

As a first test, it is noted that in the initial stage of the starting

motion of a sphere, because the boundary layer is still very
thin, the flow around the sphere can be adequately treated by
potential flow theory, and the flow velocity around the sphere
and the drag (added-mass force) on the sphere can be obtained
analytically. The acceleration of the sphere during the initial
start is a cosine function of time; after the initial start, the
sphere moves at constant speed (Us). In the numerical
calculation, the Reynolds number [based on Us and the radius
(a) of the sphere] is set as 103. Fig.·3A shows the numerical
and analytical drag coefficients (Cd) vs non-dimensional time
(τs) (Cd=drag/0.5ρUs2πa2; τs=tUs/2a). Between τs=0 and
τs≈0.2, the numerical result is in very good agreement with the
analytical solution. Fig.·3B shows the azimuthal velocity (uθ)
at τs=0.1 as a function of r/2a (r is radial distance) with fixed
azimuthal angle π/2. The numerical result agrees well with the
analytical solution outside the boundary layer.

In the second test, the flow around the starting sphere is
computed by the single-grid code, and the results computed
using the single grid and moving overset grid are compared
(also in Fig.·3). They are in good agreement. For the case of
the single grid, the grid is of O-O type, where the numerical
coordinates (ξ,η,ζ) lie along the standard spherical
coordinates. It has dimensions 100×65×129. The outer
boundary is set at 30a from the sphere. The non-dimensional
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time step is 0.01. Grid sizes of 68×41×81 and 46×27×51 were
also used. By comparing the results from these three grids, it
was shown that the grid size of 100×65×129 was appropriate
for the computation. For the case of moving overset grids, the
grid system consists of two grids: one is the curvilinear grid of
the sphere and the other is the background Cartesian grid. The
outer boundary of the sphere grid is at 1.4a from the sphere
surface and the out-boundary of the background grid is 30a
from the sphere. The grid density is made similar to that of the
single grid.

In the third test, the set-up of Sane and Dickinson (2001) is
followed and the aerodynamic forces are computed for the
flapping model fruit fly wing. The computed lift and drag
are compared with the measured values in Fig.·4. In the

computation, the wing grid has dimensions of 109×50×52
around the wing section, in normal direction and in spanwise
direction, respectively; the outer boundary of the wing grid is
approximately 2.0c from the wing. The background Cartesian
grid has dimensions of 90×85×80 and the outer boundary is
20c from the wing. The non-dimensional time step is 0.02. The
grid density test was conducted and it was shown that the
above overset grids were appropriate for the computation. In
Fig.·4A,B, the flapping amplitude is 60° and the midstroke
angle of attack is 50°; in Fig.·4C,D, these quantities are 180°
and 50°, respectively. The magnitude and trends with variation
over time of the computed lift and drag forces are in reasonably
good agreement with the measured results.

The total vertical force and thrust; comparison with insect
weight

In the calculation, the wings start the flapping motion in still
air and the calculation is ended when periodicity in
aerodynamic forces and flow structure is approximately
reached (periodicity is reached approximately 2–3 periods after
the calculation is started).

Fig.·5 shows the total vertical force and thrust coefficients
in one cycle, computed by two grid systems, grid system 1 and
grid system 2. In both grid systems, the outer boundary of the
wing-grid was set at about 2c from the wing surface and that
of the background grid at about 40c from the wings. For grid
system 1, the wing grid had dimensions 29×77×45 in the
normal direction, around the wing and in the spanwise
direction, respectively, and the background grid had
dimensions 90×72×46 in the X (horizontal), Z (vertical) and Y
directions, respectively (Fig.·2 shows some portions of grid
system 1). For grid system 2, the corresponding grid
dimensions were 41×105×63 and 123×89×64. For both grid
systems, grid points of the background grid concentrated in
the near field of the wings where its grid density was
approximately the same as that of the outer part of the wing
grid. As seen in Fig.·5, there is almost no difference between
the force coefficients calculated by the two grid systems.
Calculations were also conducted using a larger computational
domain. The domain was enlarged by adding more grid points
to the outside of the background grid of grid system 2. The
calculated results showed that there was no need to put the
outer boundary further than that of grid system 2. It was
concluded that grid system 1 was appropriate for the present
study. The effect of time step value was considered and it was
found that a numerical solution effectively independent of the
time step was achieved if ∆τ≤0.02. Therefore, ∆τ=0.02 was
used in the present calculations.

From Fig.·5, it is seen that there are two large CL peaks in
one cycle, one in the first half of the cycle (while the hindwing
is in its downstroke) and the other in the second half of the
cycle (while the forewing is in its downstroke). It should be
noted that by having two large CL peaks alternatively in the
first and second halves of a cycle, the flight would be smoother.
Averaging CL (and CT) over one cycle gives the mean vertical
force coefficient (CL) [and the mean thrust coefficient (CT)]:

M. Sun and S. L. Lan

Fig.·4. Comparison of the calculated and measured lift and drag
forces. The experimental data are reproduced from fig.·3C,D of Sane
and Dickinson (2001). (A,B) The midstroke angle of attack is 50°
and stroke amplitude is 60°; (C,D) the midstroke angle of attack is
50° and stroke amplitude is 180°.
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CL=1.35 and CT=0.02. The CL value of 1.35 gives a vertical
force of 756·mg, approximately equal to the insect mass
(754·mg). The computed mean thrust (11·mg) is close to zero.
That is, the force balance condition is approximately satisfied.
In the calculation, the stroke plane angle, the midstroke angles
of attack for the downstroke and the upstroke have been set as
β=52°, αd=52° and αu=8°, respectively. These values of β, αd

and αu give an approximately balanced flight and they are close
to the observed values [β≈60°; during the downstroke the
chord is almost horizontal (i.e. αd≈β), and during the upstroke
the chord is close to vertical].

The forces of the forewing and the hindwing

The total vertical force (or thrust) coefficient is the sum of
the vertical force (or thrust) coefficient of the fore- and

hindwings. Fig.·6 gives the vertical force and thrust
coefficients of the fore- and hindwings. The hindwing
produces a large CL,h peak during its downstroke (the first half
of the cycle) and very small CL,h in its upstroke (the second
half of the cycle); this is true for the forewing, but its
downstroke is in the second half of the cycle. Comparing Fig.·6
with Fig.·5 shows that the hindwing in its downstroke is
responsible for the large CL peak in the first half of the cycle,
and the forewing in its downstroke is responsible for the large
CL peak in the second half of the cycle. The contributions to
the mean total vertical force by the forewing and hindwing are
42% and 58%, respectively. The vertical force on the hindwing
is 1.38 times that on the forewing. Note that the area of the
hindwing is 1.32 times that of the forewing. That is, the
relatively large vertical force on the hindwing is mainly due to

its relatively large size.
The vertical force and thrust coefficients of a

wing are the results of the lift and drag
coefficients of the wing. The corresponding lift
and drag coefficients Cl,f, Cd,f, Cl,h and Cd,h are
shown in Fig.·7. For the hindwing, Cd,h is larger
than Cl,h during the downstroke of the wing, and
β is large (52°). As a result, a large part of CL,h is
from Cd,h(approximately 65% of CL,h is from Cd,h

and 35% is from Cl,h). This is also true for the
forewing. That is, the dragonfly uses drag as a
major source for its weight-supporting force when
hovering with a large stroke plane angle.
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The mechanism of the large vertical force

As shown in Fig.·6, the peak value of CL,h is approximately
3.0 (that of CL,f is approximately 2.6). Note that in the
definition of the force coefficient, the total area of the fore- and
hindwings (Sf+Sh) and the mean flapping velocity U are used
as reference area and reference velocity, respectively. For the
hindwing, if its own area and the instantaneous velocity are
used as reference area and reference velocity, respectively,
the peak value of the vertical force coefficient would be
3.0×[(Sf+Sh)/Sh]×U2/(πU/2)2=2.1. Similarly, for the forewing,
the peak value would be 2.6×[(Sf+Sh)/Sf]×U2/(πU/2)2=2.4.
Since the thrust coefficients CT,f and CT,h are small, CL,f

and CL,h can be taken as the coefficients of the resultant
aerodynamic force on the fore- and hindwings, respectively.
The above shows that the peak value of resultant aerodynamic
force coefficient for the forewing or hindwing is 2.1–2.4 (when
using the area of the corresponding wing and the instantaneous
velocity as reference area and reference velocity, respectively).
This value is approximately twice as large as the steady-state
value measured on a dragonfly wing at Re=730–1890 [steady-
state aerodynamic forces on the fore- and hindwings of the
dragonfly Sympetrum sanguineumwere measured in a wind
tunnel by Wakeling and Ellington (1997a); the maximum
resultant force coefficient, obtained at an angle of attack of
~60°, was approximately 1.3].

There are two possible reasons for the large vertical force
coefficients of the flapping wings: one is the unsteady flow
effect; the other is the effect of interaction between the fore-
and hindwings (in the steady-state wind-tunnel test, interaction
between fore- and hindwings was not considered).

The effect of interaction between the fore- and hindwings

In order to investigate the interference effect between the
fore- and hindwings, we computed the flow around a single
forewing (and also a single hindwing) performing the same
flapping motion as above. Fig.·8A,B gives vertical force (CL,sf)
and thrust (CT,sf) coefficients of the single forewing, compared
with CL,f and CT,f, respectively. The differences between CL,sf

and CL,f and between CT,sf and CT,f show the interaction effect.
A similar comparison for the hindwing is given in Fig.·8C,D.
For both the fore- and hindwings, the vertical force coefficient
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on a single wing (i.e. without interaction) is a little larger
than that with interaction. For the forewing, the
interaction effect reduces the mean vertical force
coefficient by 14% of that of the single wing; for the
hindwing, the reduction is 16% of that of the single
wing. The interaction effect is not very large and is
detrimental to the vertical force generation.

The unsteady flow effect

The above results show that the interaction effect
between the fore- and hindwings is small and, moreover,
is detrimental to the vertical force generation. Therefore,
the large vertical force coefficients produced by the
wings must be due to the unsteady flow effect. Here, the
flow information is used to explain the unsteady
aerodynamic force.

First, the case of the single wing is considered. Fig.·9
shows the iso-vorticity surface plots at various times
during one cycle. In order to correlate force and flow
information, we express time during a stroke cycle as a
non-dimensional parameter, t, such that t=0 at the start
of the cycle and t=1 at the end of the cycle. After the
downstroke of the hindwing has just started (t=0.125;
Fig.·9A), a starting vortex is generated near the trailing
edge of the wing, and a leading edge vortex (LEV) is
generated at the leading edge of the wing; the LEV and
the starting vortex are connected by the tip vortices,
forming a vortex ring. Through the downstroke
(Fig.·9B,C), the vortex ring grows in size and moves
downward. At stroke reversal (between t≈0.36 and
t≈0.65), the wing rotates and the LEV is shed. During
the upstroke, the wing almost does not produce any
vorticity. The vortex ring produced during the
downstroke is left below the stroke plane (Fig.·9D–F)
and will convect downwards due to its self-induced
velocity. The vortex ring contains a downward jet (see
below). We thus see that, in each cycle, a new vortex
ring carrying downward momentum is produced,
resulting in an upward force. This qualitatively explains
the unsteady vertical force production. Fig.·10 shows the
velocity vectors projected in a vertical plane that is parallel to
and 0.6R from the plane of symmetry of the insect. The
downward jet is clearly seen.

Fig.·11 shows the iso-vorticity surface plots for the fore- and
hindwings (in the first half of the cycle the hindwing is in its
downstroke; in the second half of the cycle the forewing is in
its downstroke). Similar to the case of the single wing, just after
the start of the first half of the cycle, a new vortex ring is
produced by the hindwing (Fig.·11A); this vortex ring grows
in size and convects downwards (Fig.·11A–C). Similarly, just
after the start of the second half of the cycle, a new vortex ring
is produced by the forewing (Fig.·11D), which also grows
in size and convects downwards as time increases. Fig.·12
gives the corresponding velocity vector plots. The qualitative
explanation of the large unsteady forces on the fore- and
hindwings is similar to that for the single wing.

On the basis of the above analysis of the aerodynamic
force mechanism, we give a preliminary explanation for why
the forewing–hindwing interaction is not strong and is
detrimental. The new vortex ring, which is responsible for
the large aerodynamic force on a wing, is generated by the
rapid unsteady motion of the wing at a large angle of attack.
As a result, the effect of the wake of the other wing is
relatively small. Moreover, the wake of the other wing
produces downwash velocity, resulting in the detrimental
effects.

Power requirements

As shown above, the computed vertical force is enough
to support the insect weight and the horizontal force is
approximately zero; i.e. the force balance conditions of
hovering are satisfied. Here, we calculate the mechanical
power output of the dragonfly. The mechanical power includes
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the aerodynamic power (work done against the aerodynamic
torques) and the inertial power (work done against the torques
due to accelerating the wing-mass).

As expressed in equation·20 of Sun and Tang (2002), the
aerodynamic power consists of two parts, one due to the
aerodynamic torque for translation and the other to the
aerodynamic torque for rotation. The coefficients of these two
torques (denoted by CQ,a,tand CQ,a,r, respectively) are defined
as:

where Qa,tand Qa,rare the aerodynamic torques around the axis
of azimuthal rotation (z′ axis) and the axis of pitching rotation,
respectively. CQ,a,tand CQ,a,rare shown in Fig.·13A,B. As can
be seen, CQ,a,t is much larger than CQ,a,r.

The inertial power also consists of two parts (see
equation·35 of Sun and Tang, 2002): one due to the inertial
torque for translation and the other to the inertial torque for
rotation. The coefficient of inertial torque for translation
(CQ,i,t) is defined as:

where φ̈+ is the non-dimensional angular acceleration of wing
translation. CQ,i,t is shown in Fig.·13C. The inertial torque for
rotation cannot be calculated since the moment of inertial of
wing-mass with respect to the axis of flip rotation is not
available. Because most of the wing-mass is located near the
axis of flip rotation, it is expected that the inertial torque for
rotation is much smaller than that for translation. That is, both
the aerodynamic and inertial torques for rotation might be
much smaller than those for translation. In the present study,
the aerodynamic and inertial torques for rotation are neglected
in the power calculation.

The power coefficient (Cp), i.e. power non-dimensionalized
by 0.5ρU3(Sf+Sh), is:

Cp = Cp,a+ Cp,i·, (16)

where Cp,a= CQ,a,tφ+·, (17)

Cp,i = CQ,i,tφ+·. (18)

Cp of the fore- and hindwings is shown in Fig.·14. In the figure,
contributions to Cp by the aerodynamic and inertial torques
(represented by Cp,aand Cp,i, respectively) are also shown. For
the forewing (Fig.·14A), the time course of Cp is similar to that
of Cp,a in the downstroke and to that of Cp,i in the upstroke;
i.e. the aerodynamic power dominates over the downstroke and

(15)CQ,i,t =
I

0.5ρ(Sf + Sh)c3
φ̈+ ,

(14)CQ,a,r=
Qa,r

0.5ρU2(Sf + Sh)c
,

(13)CQ,a,t=
Qa,t

0.5ρU2(Sf + Sh)c
,
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the inertial power dominates over the upstroke.
This is also true for the hindwing (Fig.·14B).

Integrating Cp over the part of a wingbeat cycle
where it is positive gives the coefficient of
positive work (C+

W) for translation. Integrating Cp

over the part of the cycle where it is negative
gives the coefficient of ‘negative’ work (C–

W) for
‘braking’ the wing in this part of the cycle. C+

W
and C–

W for the forewing are 8.33 and –2.16,
respectively. For the hindwing, they are 8.93 and
–1.14, respectively.

The body-mass-specific power (P*) is defined
as the mean mechanical power over a flapping
cycle divided by the mass of the insect, and it can
be written as follows (Sun and Tang, 2002):

P* = 0.5ρU3(2Sf + 2Sh)(CW,f/τc + CW,h/τc)/m·,
(19)

where CW,f and CW,h are the coefficients of work
per cycle for the fore- and hindwings,
respectively. When calculating CW,f or CW,h, one
needs to consider how the negative work fits into
the power budget. There are three possibilities
(Weis-Fogh, 1972; Ellington, 1984). One is that
the negative power is simply dissipated as heat
and sound by some form of an end stop, then it
can be ignored in the power budget. The second
is that in the period of negative work, the excess
energy can be stored by an elastic element, and
this energy can then be released when the wing
does positive work. The third is that the flight
muscles do negative work (i.e. they are stretched
while developing tension, instead of contracting
as in ‘positive’ work) but the negative work uses
much less metabolic energy than an equivalent
amount of positive work and, again, the negative
power can be ignored in the power budget. That is, out of these
three possibilities, two ways of computing CW,f or CW,h can be
taken. One is neglecting the negative work, i.e.:

CW,f = (C+
W)forewing·, (20)

CW,h = (C+
W)hindwing·. (21)

The other is assuming the negative work can be stored and
released when the wing does positive work, i.e.:

CW,f = (C+
W + C–

W)forewing·, (22)

CW,h = (C+
W + C–

W)hindwing·. (23)

Here, equations 20 and 21 are used, and the computed P* is
37·W·kg–1 (when equations·22 and 23 are used, P* is
30·W·kg–1).

Discussion
Comparison with previous two-dimensional results

Wang (2000) and Lan and Sun (2001c) have presented two-

dimensional (2-D) computations based on wing kinematics
similar to those used in this study. Wang (2000) investigated
a single airfoil; Lan and Sun (2001c) investigated both a single
airfoil and fore and aft airfoils. It is of interest to make
comparisons between the present three-dimensional (3-D) and
the previous 2-D results.

The CL value (single airfoil) computed by Wang (2000) is
approximately 1.97 [in fig.·4 of Wang (2000), maximum of ut

is used as reference velocity and the CL value is approximately
0.8; if the mean of ut is used as reference velocity, the CL value
becomes 0.8×(0.5π)2=1.97]; approximately the same CL value
(single airfoil) was obtained by Lan and Sun (2001c). In the
present study, the CL values for the single forewing and single
hindwing are 1.51 and 1.64, respectively, approximately 20%
less than the 2-D value. This shows that the 3-D effect on CL

is significant. The wing length-to-chord ratio is not small
(approximately 5); one might expect a small 3-D effect. But
for a flapping wing (especially in hover mode), the relative
velocity varies along the wing span, from zero at the wing base
to its maximum at the wing tip, which can increase the 3-D
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effect. Note that although CL is reduced by the 3-D effect
significantly, the time course of CL of the forewing or the
hindwing is nearly identical to that of the airfoil (compare
Fig.·6A with fig.·3 of Wang, 2000).

Lan and Sun’s results for the fore and aft airfoils showed
that the interaction effect decreased the vertical forces on the
airfoils by approximately 22% compared with that of the single
airfoil (Lan and Sun, 2001c). For the fore- and hindwings in
the present study, the reduction is approximately 15%,
showing that 3-D forewing–hindwing interaction is weaker
than in the 2-D case.

Aerodynamic force mechanism and forewing–hindwing
interaction

Recent studies (e.g. Ellington et al., 1996; Dickinson et al.,
1999; Wu and Sun, 2004) have shown that the large unsteady
aerodynamic forces on flapping model insect wings are mainly
due to the attachment of an LEV or the delayed stall
mechanism. This is also true for the fore- and hindwings in the

present study. The LEV dose not shed before the end of
the downstroke of the fore- or hindwing (Fig.·11). If the
LEV sheds shortly after the start of the downstroke, the LEV
would be very close to the starting vortex, and a vortex ring
that carries a large downward momentum (i.e. the large
aerodynamic forces) could not be produced. Generation of a
vortex ring carrying large downward momentum is equivalent
to the delayed stall mechanism.

Data presented in Fig.·8 show that the forewing–hindwing
interaction is not very strong and is detrimental. In obtaining
these data, the wing kinematics observed for a dragonfly in
hovering flight (e.g. 180° phase difference between the
forewing and the hindwing; no incoming free-stream) have
been used. Although some preliminary explanation has been
given for this result, we cannot currently distinguish whether
or not this result will exist when the phasing, the incoming flow
condition, etc., are varied. Analysis based on flow simulations
in which the wing kinematics and the flight velocity are
systematically varied is needed.
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Power requirements compared with quasi-steady results and
with Drosophila results

Wakeling and Ellington (1997b,c) computed the power
requirements for the dragonfly Sympetrum sanguineum. In
most cases they investigated, the dragonfly was in
accelerating and/or climbing flight. Only one case is close to
hovering (flight SSan 5.2); in this case, the flight speed is
rather low (advance ration is approximately 0.1) and the
resultant aerodynamic force is close to the insect weight (see
fig.·7D of Wakeling and Ellington, 1997b; fig.·5 of Wakeling
and Ellington, 1997c). Their computed body-mass-specific
aerodynamic power is 17.1·W·kg–1 (see table·3 of Wakeling
and Ellington, 1997c; note that we have converted the
muscle-specific power given in the table to the body-mass-
specific power), only approximately half the value calculated
in the present study. Lehmann and Dickinson (1997) and Sun

and Tang (2002), based on experimental and CFD studies,
respectively, showed that for fruit flies, calculation by
quasi-steady analysis might under-estimate the aerodynamic
power by 50%. A similar result is seen for the hovering
dragonflies.

It is of interest to note that the value of P* for the
dragonfly in the present study (37·W·kg–1) is not very
different from that computed for a fruit fly (30·W·kg–1; Sun
and Tang, 2002), even though their sizes are greatly different
(the wing length of the fruit fly is 0.3·cm and that of the
dragonfly is 4.7·cm). For the fruit fly, the mechanical power
is mainly contributed by aerodynamic power (Sun and Tang,
2002). It is approximately the case with the dragonfly in the
present study (see Fig.·14). From equation·15 of Sun and
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Fig.·12. Velocity vectors in a vertical plane parallel to and 0.6R from
the plane of symmetry at various times in one cycle (fore- and
hindwings). The horizontal arrow at the top left represents the
reference velocity (U). t, non-dimensional time.
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Tang (2002), the aerodynamic torque of a wing can be written
as:

Qa,t ∝ rddR·, (24)

where d is the mean drag of the wing; rd is the radius of the
first moment of the drag normalized by R. When the majority
of the power is due to aerodynamic torque, P* can be
approximated as:

P* ∝ rdnΦRd/L·, (25)

where d/L is the ratio of the mean drag to the mean vertical
force of the wing. For the fruit fly, this ratio is around 1 (Sun
and Tang, 2002). For the dragonfly in the present study, since
a large part of the vertical force is contributed by the drag, this
ratio is not very different from 1. We assume that rd for the
two insects is not very different. Then, P* depends mainly
on nΦR (half the mean tip speed). The dragonfly’s R is
approximately 16 times that of the fruit fly; but its nΦ
(36·Hz×69°) is approximately 1/14 of that of the fruit fly
(240·Hz×150°). This explains why P* of the dragonfly is not
very different from that of the fruit fly.

List of symbols
c mean chord length of forewing
Cd,f drag coefficient of forewing
Cd,h drag coefficient of hindwing
Cl,f lift coefficient of forewing
Cl,h lift coefficient of hindwing
CL total vertical force coefficient
CL total mean vertical force coefficient
CL,f vertical force coefficient of forewing
CL,h vertical force coefficient of hindwing
CL,sf vertical force coefficient of single forewing
CL,sh vertical force coefficient of single hindwing
Cp coefficient of power
Cp,a coefficient of aerodynamic power
Cp,i coefficient of inertial power
CQ,a,r coefficient of aerodynamic torque for rotation
CQ,a,t coefficient of aerodynamic torque for translation
CQ,i,t coefficient of inertial torque for translation
CT total thrust coefficient
CT total mean thrust coefficient
CT,f thrust coefficient of forewing
CT,h thrust coefficient of hindwing
CT,sf thrust coefficient of single forewing
CT,sh thrust coefficient of single hindwing
CW,f coefficient of work per cycle of forewing
CW,h coefficient of work per cycle of hindwing
C+

W coefficient of positive work
C–

W coefficient of negative work
d mean drag of a wing
df drag of forewing
dh drag of hindwing
I moment of inertial of wing-mass
lf lift of forewing
lh lift of hindwing
L total mean vertical force
Lf vertical force of forewing
Lh vertical force of hindwing
m mass of the insect
n flapping frequency
O,o,o′ origins of the two inertial frames of reference and 

the non-inertial frame of reference
p non-dimensional fluid pressure
P* body-mass-specific power
Qa,t aerodynamic torques around the axis of azimuthal 

rotation (z′ axis)
Qa,r aerodynamic torques around the axis of pitching 

rotation
r radial position along wing length
r2 radius of the second moment of wing area of 

forewing
rd radius of the first moment of wing drag
R wing length
Re Reynolds number
Sf area of one wing (forewing)
Sh area of one wing (hindwing)
t time
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power due to aerodynamic force; Cp,i, coefficient of power due to
inertial force.
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t non-dimensional time (t=0 and 1 at the start and end 
of a cycle, respectively)

Tf thrust of forewing
Th thrust of hindwing
u,v,w non-dimensional velocity components in x,y,z

directions, respectively
ut translational velocity of a wing
ut

+ non-dimensional translational velocity of a wing
uθ azimuthal velocity
U reference velocity
X,Y,Z coordinates in inertial frame of reference (Z in 

vertical direction)
x,y,z coordinates in inertial frame of reference (z

perpendicular to stroke plane)
x′,y′,z′ coordinates in non-inertial frame of reference
α geometric angle of attack
αd midstroke geometric angle of attack of downstroke
αu midstroke geometric angle of attack of upstroke
α angular velocity of flip rotation
α+ non-dimensional angular velocity of flip rotation
α0

+ a constant
β stroke plane angle
γ phase angle of the translation of a wing
∆τr duration of wing rotation or flip duration (non-

dimensional)
υ kinematic viscosity
ξ,η,ζ transformed coordinates
ρ density of fluid
τ non-dimensional time
τr time when pitching rotation starts (non-dimensional)
τc period of one flapping cycle (non-dimensional)
φ azimuthal or positional angle
Φ stroke amplitude
φ angular velocity of azimuthal rotation
φ+ non-dimensional angular velocity of azimuthal 

rotation
φ̈+ non-dimensional angular acceleration of azimuthal 

rotation
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