
There is something intrinsically fascinating about organisms
that move differently than we do. It has been 30 years since my
first course in animal flight, but the sight of a hummingbird
hovering before a flower still causes me to stop and stare.
Salmon leaping, snails crawling, jellyfish pulsing – when faced
with the incredible variation in animal locomotion, one can’t
help but gaze and wonder: how do they do that? In most cases,
an answer (or at least a plausible theory) is readily available,
and two recent book-length overviews (Alexander, 2003;
Biewener, 2003) go far toward scratching one’s intellectual
itch. All the more fun, then, when the answer to the question of
‘how do they do that?’ is that no one knows. Until recently that
was the situation with insects and spiders that walk on water.

The fascination here is actually twofold. Before one can
understand how a water strider can move about, one has first
to explain how they can even stand on the water’s surface. In
this case, the explanation is well known. First, the attraction of
one water molecule to another requires that considerable
energy be expended to create new area of air–water interface.
Pure water has a surface energy of approximately 0.07·J·m–2

(Denny, 1993). Now, surface energy (J·m–2) is dimensionally
equivalent to a capillary tension (N·m–1), and it is in this
disguise that it will be employed here. Second, when a
hydrophobic object is pressed into the interface between air
and water, the water attempts to minimize its contact with the

object, often at the expense of creating new surface area. As a
result, when a water strider presses one of its hydrophobic legs
down onto the surface of a pond, a dimple is formed in the
water’s surface, and the surface is stretched (Fig.·1). The
vertical component of the resulting capillary force resists the
downward push of the leg (Fig.·2), and the water strider is
supported (e.g. Vogel, 1988; Denny, 1993).

This explanation leads to a classic example of biological
scaling. The capillary force that supports a water strider is
proportional to the perimeter of the legs in contact with the
liquid, and therefore scales roughly in proportion to some linear
dimension of the organism. In contrast, the weight of the animal
(the force pushing the legs downward) is proportional to the
animal’s volume, and therefore approximately to the cube of its
linear dimension. In other words, with an increase in size, the
tendency to sink into the water increases much more rapidly
than the ability to resist. As a consequence, standing on water
is a knack confined to small organisms. Hu et al. (2003) show
that large water striders have disproportionately longer legs,
allowing these insects to reach somewhat larger sizes than we
might expect. But the allometric change in leg length is not
sufficient to completely offset the drastic increase in mass, and
water striders are, indeed, confined to small body size.

This scaling argument has long been standard fare in
introductory biology classes, but in my experience, its

1601The Journal of Experimental Biology 207, 1601-1606
Published by The Company of Biologists 2004
doi:10.1242/jeb.00908

The mechanism by which surface tension allows water
striders (members of the genus Gerris) to stand on the
surface of a pond or stream is a classic example for
introductory classes in animal mechanics. Until recently,
however, the question of how these insects propelled
themselves remained open. One plausible mechanism –
creating momentum in the water via the production of
capillary waves – led to a paradox: juvenile water striders
move their limbs too slowly to produce waves, but
nonetheless travel across the water’s surface. Two recent
papers demonstrate that both water striders and water-
walking spiders circumvent this paradox by foregoing any
reliance on waves to gain purchase on the water. Instead

they use their legs as oars, and the capillary ‘dimple’
formed by each leg acts as the oar’s blade. The resulting
hydrodynamic drag produces vortices in the water, and
the motion of these vortices imparts the necessary fluid
momentum. These studies pave the way for a more
thorough understanding of the complex mechanics of
walking on water, and an exploration of how this
intriguing form of locomotion scales with the size of the
organism.

Key words: Gerris, water strider, capillary wave, Denny’s paradox,
spider.

Summary

Commentary

Paradox lost: answers and questions about walking on water

Mark W. Denny
Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950-3094, USA

e-mail: mwdenny@leland.stanford.edu

Accepted 2 February 2004

Introduction



presentation is immediately followed by a pertinent question.
Granted, small insects and spiders can stand on water, but how
do they move about? Early attempts at an answer led to an
apparent paradox.

Denny’s paradox
The problem, at least, is intuitive. If a water strider, initially

still, begins to move across the surface of a pond, it gains some
momentum. It can do so only by imparting an equal and
oppositely directed momentum to it surroundings, either the air
or the water. Because the density of air is so small, it seems
most likely that the insect moves by somehow creating
momentum in the water. This process is familiar to anyone who
has rowed a boat. The mass of the boat is propelled forward by
the backward-directed momentum of water pushed by the oars.
The question, then, is how does the insect push on the water?

It was at this point that the scientific study of water-strider
locomotion initially went astray. When faced with a basic
question in locomotion, it is often best to start by filming the
animal as it moves. Water striders can be brought into the
laboratory, where they busily dart about on the surface of water
in a shallow tray, and when lit with bright lights, their motion
is readily photographed. The most strikingly apparent aspect
of these photographs is the pattern of waves that is produced
each time an adult strider moves, waves that move in the
opposite direction from the insect. Could the momentum

associated with these waves be the momentum required for
locomotion?

The idea has a certain appeal. The relatively large water
waves with which we are most familiar propagate as a result
of the inertial interaction between the water’s mass and the
restoring force of gravity. In contrast, waves with the short
wavelengths produced by water striders (capillary waves)
move in part as a result of the interaction between mass and
surface tension. Wouldn’t it be lovely if the same property of
water that accounted for the water striders’ ability to stand
(surface tension), could also account for their ability to move?

There is a problem, however. As the wavelength, λ, of a pure
capillary wave increases, the speed of the wave, cc, slows down
(see Denny, 1993):

Here γ is the surface tension of the air–water interface and ρ
is the water’s density (approximately 1000·kg·m–3). In
contrast, the speed of a pure gravity wave, cg, increases with
an increase in wavelength:

where g is the acceleration of gravity, 9.81·m·s–2. In reality,
the speed of a surface wave is a combination of these
characteristics:

The net result of the combined influences of gravity and
surface tension is that there is a minimum speed at which
waves can move on the surface of a liquid (Fig.·3). Taking the
derivative of Eq. 3 with respect to wavelength and setting it
equal to zero, we find that the wavelength at minimum speed
is:

Inserting this value into Eq. 3, yields the minimum wave speed:

For an air–water interface, this minimum speed is
approximately 23·cm·s–1. Now, in order to produce a surface
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Fig.·1. A water strider standing motionless on the water’s surface.
Note the dimples where the feet contact the water.
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Fig.·2. Surface tension (which acts parallel to the
air–water interface) pulls upward on the leg of a
water strider.



wave, the object responsible must be moving at least as fast as
the wave it creates. Thus, the minimum speed of surface waves
sets a minimum speed at which the leg of a water strider must
move in order to make waves.

Therein lies the problem. 23·cm s–1 is a relatively high speed
for the leg of a small insect. For example, the middle leg of a
juvenile water strider may be only 2·mm long. In order for the
tip of this leg to move at 23·cm·s–1, the leg must swing with
an angular velocity of 115·rad·s–1. The entire propulsive stroke
(which involves a rotation of about 1.5·rad) must therefore
occur in about 13·ms. If the leg can’t rotate that fast, it can’t
produce waves. And if waves are the only means by which it
can impart momentum to the fluid, the inability to move the
legs at 23·cm·s–1 means that the animal can’t move about.

Indeed, juvenile water striders do not swing the tips of their
legs at 23·cm·s–1, and they do not produce waves. They do,
however, scamper over the water’s surface just fine. This
disparity between locomotory theory and organismal reality
(noted by briefly in Denny, 1993) became known as ‘Denny’s
paradox’ (Suter et al., 1997; Hu et al., 2003).

The role of a paradox
Paradoxes in locomotion have often been the impetus for

valuable research. For example, in 1936, based on theory and
measurements then available, Sir James Gray calculated that
the power a dolphin would expend to overcome
hydrodynamic drag was considerably greater than the power
available from its muscles. ‘Gray’s paradox’ spurred decades
of research on both the reduction of drag by the damping of
turbulent fluctuations and the energetics of mammalian
muscle. The current thought is that dolphins and whales have
somewhat less drag than Gray supposed, and that their
muscles produce substantially more power. As our
understanding improved, Gray’s paradox faded away, and it
is not even mentioned in recent texts (e.g. Alexander, 2003).
Similarly, an engineer, André Sainte-Laguë, used steady-

state aerodynamic theory to calculate that bumble bees should
not be able to fly (Magnan, 1934). Aside from making
engineers the butt of jokes among several generations of
science writers (see Dickinson, 2001), the ‘bumblebee
paradox’ served as a starting point for the recent revolution
in our understanding of insect flight. Steady-state
aerodynamics indeed cannot explain how a bumblebee flies
(Ellington, 1984); an understanding of the complexities
of small-scale, unsteady aerodynamics is necessary (e.g.
Ellington et al., 1996; Dickinson et al., 2000).

Paradox solved
Although not in the same league as Gray’s paradox or the

bumblebee paradox, Denny’s paradox nonetheless tweaked the
curiosity of a variety of scientists and engineers, and recent
work suggests that it has been solved. The initial breakthrough
came with a study not of water striders (the organism in which
the paradox was framed), but rather of an oddball spider that
walks on water. Suter et al. (1997) glued the leg of the fisher
spider Diomedes tritonto a sensitive drag transducer, and with
the leg in its natural posture brought its tip into contact with
the surface of a smoothly flowing surface of water. Even
though the speed of the water was less than 23·cm·s–1 and no
waves were produced, the leg encountered substantial drag.
Suter and his coworkers hypothesized that this drag was due
not to a surface phenomenon (such as waves), but rather to
conventional pressure drag resulting from the pattern of flow
around the leg’s dimple. By arbitrarily assuming that the drag
coefficient of the dimple was half that of a circular cylinder,
Suter et al. estimated that the drag on the dimple could account
for 60–98% of the overall force on the leg at velocities
<0.2·m·s–1. Suter et al. thus solved Denny’s paradox by clearly
demonstrating that surface waves were not the only mechanism
by which an organism on the water’s surface could create
momentum in the water.

The study left several questions unanswered, however.
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Although Suter et al. measured a drag force under steady flow,
they did not quantify the pattern of flow that was responsible. In
particular, their experiments did not allow them to describe what
happens as the leg’s motion stops at the end of a rowing stoke.
Exactly how is momentum imparted to the water? Furthermore,
all their measurements were conducted at a flow speed below
the critical wave speed. What happens when waves are present?

These questions served as the basis for the recent study by
Hu et al. (2003). Through careful use of high-speed video and
the presence of dye and particles in the water, Hu et al. showed
that the locomotory motion of each rowing leg of the water
strider Gerrus remigisimparts momentum to the water through
the formation of surface waves, but, more importantly, also
through the formation of a hemispherical, dipolar vortex. This
unusual vortical structure can be visualized as half of a typical
toroidal vortex ring in which the ring has been sliced parallel
to its axis of symmetry. The ‘cut surface’ of the torus lies at
the water’s surface, and each vortex travels in the opposite
direction from the water strider at a speed of approximately
V=4·cm·s–1 (Fig.·4)

Having visualized the flow imparted to the water by the
strider, Hu et al. easily calculated the associated momentum.
Because the vortex is approximately hemispherical, it volume
is JπR3, where R is the radius of the hemisphere (about 4·mm
for an adult strider). The mass of each vortex is thus
Mv=JπρR3, its momentum is MvV, and the overall momentum
imparted to the water by the two rowing legs is 2MvV,
approximately 10–5·kg·m·s–1. The strider itself has a mass of
approximately 10–5·kg and moves at a speed of 1·m s–1, so it,
too, has a momentum of 10–5·kg·m·s–1. In other words, even
when surface waves are produced (as they are by adult striders)
the waves account for at most a negligible fraction of the
overall momentum necessary for locomotion. Here, then, is
conclusive proof from freely moving animals that Denny’s
paradox can be circumvented.

In fact, the rowing locomotion of water striders appears to
be quite efficient. When an insect of mass Mi moves forward
at speed U, it its body has a kinetic energy equal to GMiU2. In
terms of the animal’s locomotion this is ‘useful’ energy. In the
process of accelerating its body, however, the strider does work
on the water. To a first approximation, this ‘wasted’ energy is
MvV2 (that is, half the mass of a vortex times the square of its
velocity for each of the two vortices). This information can be
used to construct an index of the hydrodynamic efficiency of
this form of locomotion:

A water strider with a mass of 0.01·g moves forward at
100·cm·s–1 after producing vortices with a radius of 4·mm that
move backwards at a velocity of 4·cm·s–1. Inserting these
values into Eq. 6, we find that the efficiency of this rowing
stroke is about 96%! By utilizing vortices to propel a large
volume of water backwards at a low speed, water striders
create a large amount of momentum with the expenditure of
little work.

Open questions
As with most ground- (or water-)breaking studies, those of

Suter et al. (1997) and Hu et al. (2003) lead to further
questions. It is now clear that water striders and aquatic spiders
can row themselves over the water using their legs as oar shafts
and the dimples in the water’s surface as the oars’ blades. But
the shape of these blades is extremely dynamic. As a leg moves
backward, the shape of the dimple adjusts to the instantaneous
force placed upon it both by the leg and by the flow relative to
the dimple. Whereas the shape of the static dimple can be
described accurately (see, for example, Princen, 1969), I know
of no attempt to account for the complex interaction among
surface tension, fluid momentum, viscosity and pressure that
must take place in the moving dimple. Without at least a
description of how the shape of the dimple changes through
the power stroke, it is unlikely that we will be able to account
for the precise manner in which vortices are produced.

There is also a potential problem associated with surface
tension itself. For example, the dimple of a water strider’s leg
moving at a steady velocity is akin to a bubble rising through
a liquid (beer, for example). In both cases, the pattern of flow
in the liquid is due to the motion of an air–water interface. Fluid
dynamicists have long realized that this type of motion is
unusual in that, unlike motion relative to a solid object, fluid
motion relative to an air–water interface allows for slippage of
water at the interface itself. For example, the theoretical drag
coefficient of a small air bubble rising in water is only 2/3 that
of a buoyant sphere made from a solid material (Happel and
Brenner, 1973), and slippage at the air–water interface may help
to explain why the apparent drag coefficient measured by Suter
et al. (1997) is lower than might be expected. Furthermore, there
can be discrepancies between the theoretical drag coefficient for
a bubble and that measured in an actual fluid. Small bubbles
rising in beer move slower than simple theory predicts; instead,
they act as if the air–water interface has some ‘stiffness’
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Fig.·4. As a water strider sweeps its middle legs backward,
momentum is produced in the water associated with hemispherical
vortices.



(Happel and Brenner, 1973). The apparent solidity of the
bubble’s surface may be due to surface-active agents in the
interface. As these molecules are swept back by the flow, they
can accumulate at the downstream end of the bubble, and
thereby resist slippage in much the same fashion as the surface
of a solid. One supposes that surface-active molecules might
accumulate along the surface upstream of a water strider’s leg,
thereby affecting the flow. Alternatively, in 1913 Boussinesq
(as cited in Happel and Brenner, 1973) pointed out that surface
tension is a static property of a fluid, and therefore it may be
inappropriate to use it to explain dynamic processes such as
flow around a bubble or dimple. Building on this thought,
Boussinesq explained the anomalous motion of small bubbles
by hypothesizing that under nonsteady flow (and even in the
absence of surface-active molecules), an air–water interface can
exhibit an intrinsic elasticity. I should note that bubbles rising
in beer are smaller than the leg dimples of water striders and
move at a substantially slower speed [that is, they have a lower
Reynolds number (see below)], but the issue of slippage at the
air–water interface and the possibility of surface elasticity may
nonetheless have important consequences for any attempt to
precisely model the drag acting on the leg of a water strider or
spider.

There is also much to be learned about the scaling of surface
locomotion. Hu et al. (2003) note that in order for vortices to
be shed from the leg of a water strider, the Reynolds number
of the dimple must be greater than approximately 100. As
suggested by Hu et al., one can calculate Reynolds number
using L, the length of the distal segment of the leg (the tarsus),
as an estimate of the flow-wise dimension of the dimple:

Here u is the speed of the dimple over the water (which we
approximate using the velocity of the rowing leg relative to the
insect’s body) and ν is the kinematic viscosity of water
(approximately 10–6·m2·s–1 for pure water). If Re >100, the
product of tarsus length and leg velocity must therefore exceed
approximately 10–4·m2·s–1. Given that smaller bugs are likely
to have both smaller legs and slower velocities, this
relationship potentially places a severe lower limit on the
effective size of water striders. If the animals are too small,
they cannot move their legs fast enough to create either
vortices or surface waves, and they therefore are unlikely to be
able to move. Exactly where this limit occurs depends on the
scaling of leg length and angular velocity in surface insects, as
well as on a more precise determination of the critical
Reynolds number that must be exceeded if vortices are to be
shed.

We have seen that surface tension sets a maximal size at
which animals can support themselves on water; if they get too
big, they sink. Vortex shedding is likely to set the minimal size,
a limit that appears to fall just below the size of the smallest
juvenile water striders. There are other limitations as well. For
example, Suter and Wildman (1999) have shown that D. triton,
the water-walking spider, changes its gait from a rowing motion

(of the same sort used by water striders) to a galloping motion
as its speed increases. They propose that the change in gait
occurs when the rowing legs exceed the speed at which surface
tension can maintain the integrity of the surface dimple. Above
this critical speed, the legs are stabbed vertically into the water,
incurring no appreciable dimple, and the legs subsequently act
as simple oars, relying on the drag of the leg alone.

To fully understand this gait transition, we again need to be
able to account for the complex dynamics of the leg’s surface
dimple, and precise answers are therefore unavailable. We can,
however, make a rough guess as to the critical speed. Batchelor
(1967) suggests that bubbles rising in a liquid begin to deform
from their spherical shape if the dynamic pressure of the flow
(gρu2) is a substantial fraction of the pressure increase that
surface tension imposes across the air–water interface. In turn,
the magnitude of the pressure increase is inversely related to the
local curvature of the interface, which, unfortunately, we do not
know for the dynamic dimple of a moving water strider. For the
sake of argument, let us assume that the radius of curvature of
the dimple is approximately equal to r, the radius of the tarsus.
The resulting surface-tension-induced pressure is γ/r (Denny,
1993). For a tarsus 1·mm in radius (such as that of the spiders
used by Suter and Wildman, 1999), this implies that the dynamic
pressure is equal to the surface-tension-induced pressure at a
velocity of 38·cm·s–1. We might therefore expect that the dimple
will become unstable at velocities somewhat slower than this.
Indeed, Suter and Wildman (1999) showed that the maximum
leg-tip velocity in a rowing spider was about 30·cm·s–1. Water
striders have tarsi with smaller radii (approximately 40·µm),
implying that their legs must move at 191·cm·s–1 before the
dynamic pressure is equal to the surface-tension pressure. Hu et
al. (2003) recorded leg velocities of 100·cm·s–1with no evidence
that the dimple had become unstable.

So, one more locomotory paradox bites the dust, but
interesting questions remain before the question of ‘how do
they do that?’ is fully resolved. For the time being, my curiosity
will continue to itch.

Thanks to Charlie Ellington, Robert Dudley and Michael
Dickinson for their help in tracking down the origin of the
bumblebee paradox.
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