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Summary

An understanding of the evolution of human bipedalism
can provide valuable insights into the biomechanical and
physiological characteristics of locomotion in modern
humans. The walking gaits of humans, other bipeds and
most quadrupedal mammals can best be described by
using an inverted-pendulum model, in which there is
minimal change in flexion of the limb joints during stance
phase. As a result, it seems logical that the evolution of
bipedalism in humans involved a simple transition from
a relatively stiff-legged quadrupedalism in a terrestrial
ancestor to relatively stiff-legged bipedalism in early
humans. However, experimental studies of locomotion in
humans and nonhuman primates have shown that the
evolution of bipedalism involved a much more complex

relatively high impact shock attenuation ratios. A
relatively compliant, ape-like bipedal walking style is
consistent with the anatomy of early hominids and may
have been an effective gait for a small biped with
relatively small and less stabilized joints, which had not
yet completely forsaken arboreal locomotion. Laboratory-
based studies of primates also suggest that human
bipedalism arose not from a terrestrial ancestor but
rather from a climbing, arboreal forerunner.
Experimental data, in conjunction with anatomical data
on early human ancestors, show clearly that a relatively
stiff modern human gait and associated physiological and
anatomical adaptations are not primitive retentions from
a primate ancestor, but are instead recently acquired

series of transitions, originating with a relatively
compliant form of quadrupedalism. These studies show
that relatively compliant walking gaits allow primates to
achieve fast walking speeds using long strides, low stride
frequencies, relatively low peak vertical forces, and

characters of our genus.

Key words: primate, locomotion, biomechanics,
evolution, force, electromyography, kinematics, human.

bipedalism,

Introduction

One of the features that separate humans from all othemidstance (Cavagna et al., 1976; Lee and Farley, 1998). This
primates is the habitual use of a bipedal gait. This singlewverted pendulum-like gait allows for an effective exchange
feature is seen as such a defining characteristic that skeletdlgravitational potential and kinetic energy (Cavagna et al.,
adaptations to bipedalism are used to identify our extinct976). The same style of walking is employed by other bipeds
hominid ancestors. Yet, because of the paucity of the fossiind probably by most quadrupeds (Cavagna et al., 1976, 1977;
record, the fragmentary nature of fossil remains, and thAlexander, 1977; Heglund et al., 1982; Gatesy and Biewener,
difficulty of inferring behavior from fossils, significant 1991; Griffin and Kram, 2000; Farley and Ko, 2000; Griffin,
guestions remain unanswered concerning the evolution @&002). Thus, it might seem reasonable to argue that the
human bipedalism. Over the past thirty years, howevelrvolution of human bipedalism was a logical progression from
experimental analyses of locomotion in humans and othex relatively stiff quadrupedal walking style to our modern gait.
primates have done much to improve our understanding dvidence from numerous experimental studies, however,
the mechanics of human locomotion and have provideduggests that the evolution of bipedalism was much more
insights into the evolutionary origins of modern humancomplicated. Understanding the nature of locomotion in our
bipedalism. prebipedal primate ancestor (prehominid) and in early

When modern humans walk, we vault over relatively stiffrominid bipeds has the potential to provide unique insights
lower limbs in such a way that our center of mass is at itsito the basic mechanics of walking in humans and other
lowest point at heel-strike and rises to its highest point animals.
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Tablel. A representativklist of experimental studies of primate locomotion

Source Taxa Data Movement(s)
Cartmill et al., 2002 All T TQ, AQ
Hildebrand, 1967 All T TQ
Larson, 1998; Larson et al., 1999, 2001 All K TQ, AQ
Lemelin and Schmitt, 1998 All K TQ, AQ
Reynolds, 1985 All T, FP TQ
Reynolds, 1987 All T, K TQ, B
Vilensky, 1987, 1989; Vilensky and Gehlsen, All T, K, EMG TQ
1984, Vilensky and Larson, 1989
Aerts et al., 2000 Hom T TQ, TB
Chang et al., 1997, 2000; Bertram and Hom FP AS
Chang, 2001
D’Aout et al., 2002 Hom T, K TQ, TB
Elftman, 1944; Elftman and Manter, 1935 Hom K, T B
Jenkins, 1972 Hom K B
Kimura, 1990, 1991, 1996 Hom T, En TQ
Larson and Stern, 1986, 1987 Hom EMG TQ, AQ, R
Larson et al., 1991 Hom EMG AS, TQ,R
Larson, 1988, 1989 Hom EMG AS
Okada and Kondo, 1982; Okada, 1985 Hom EMG B
Prost, 1967, 1980 Hom K, T TQ, TB, VC
Shapiro et al., 1997 Hom EMG, T TQ
Stern and Larson, 2001 Hom EMG TQ, AS
Stern and Susman, 1981 Hom EMG TQ, TB, VC
Susman, 1983 Hom K TQ, TB
Swartz et al., 1989 Hom BS AS
Tardieu et al., 1993 Hom K B
Tuttle and Basmajian, 1974a,b,c, 1977, Hom EMG TQ, TB, AS
1978a,b; Tuttle et al., 1983, 1992
Wunderlich and Jungers, 1998; Wunderlich Hom Pr TQ, AQ
and Ford, 2000
Yamazaki and Ishida, 1984 Hom K, T TB, VC
Jenkins et al., 1978 NWM K, C, AS
Prost and Sussman, 1969 NWM K, T 1Q
Schmitt 2003a NWM FP, K, T, AQ, TQ
Turnquist et al., 1999 NWM K AS
Vilensky and Patrick, 1985; NWM T, K TQ
Vilensky et al., 1994 NWM T, K 1Q
Fleagle et al., 1981 NWM, Hom EMG, BS VC, TQ, TB
Ishida et al., 1985 NWM, Hom EMG TQ, TB
Jungers and Stern, 1980, 1981, 1984 NWM, Hom EMG AS
Stern et al.1977, 1980 NWM, Hom EMG AQ, VC
Taylor and Rowntree, 1973 NWM, Hom En TQ
Hirasaki et al., 1993, 1995, 2000 NWM, OWM T, K, FP, EMG VC
Prost, 1965, 1969 NWM, OWM T TQ
Kimura et al., 1979; Kimura, 1985, 1992 NWM, OWM, Hom FP TQ
Kimura et al., 1983 NWM, OWM, Hom T TQ, TB
Schmitt and Larson, 1995 NWM, OWM, Hom K TQ, AQ
Vangor and Wells, 1983 NWM, OWM, Hom EMG TQ, TB, VC
Wunderlich and Schmitt, 2000 NWM, OWM, Hom K TQ, AQ
Demes et al., 1994 OWM BS TQ
Larson and Stern, 1989; 1992 OWM EMG TQ
Meldrum, 1991 OWM K, T AQ, TQ
Polk, 2002 OWM T, FP, K TQ
Rollinson and Martin, 1981 OWM T AQ, TQ
Schmitt et al., 1994 OWM EMG TQ
Wells and Wood, 1975 OWM K TQ, L
Schmitt, 1994, 1998, 1999, 2003b OWM K, FP TQ, AQ
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Tablel. Continued
Source Taxa Data Movement(s)

Vilensky, 1980, 1983, 1988; Vilensky and OWM K, T TQ
Gankiewicz, 1986, 1990; Vilensky et al.,
1986, 1990, 1991

Whitehead and Larson, 1994 OWM K, C, EMG TQ
Alexander and Maloiy, 1984 OWM, Hom T TQ
Shapiro and Jungers, 1988, 1994 OWM, Hom EMG, T TQ, TB, VC
Anapol and Jungers, 1987 Pro EMG, T TQ, L
Demes et al., 1990 Pro T AQ
Demes et al., 1998, 2001 Pro FP L
Gunther, 1991 Pro FP, EMG L
Ishida et al., 1990 Pro T, FP AQ
Jouffroy, 1983; Jouffroy and Gasc, 1974; Pro K, C AQ
Jouffroy et al., 1974
Jouffroy and Petter, 1990 Pro T, K, AQ
Jouffroy and Stern, 1990 Pro EMG AQ
Jungers and Anapol, 1985 Pro T, EMG TQ
Schmidt and Fischer, 2000 Pro K, C AQ
Schmitt and Lemelin, 2002 Pro FP TQ, AQ
Shapiro et al., 2001 Pro K AQ
Stevens, 2001; Stevens et al., 2001 Pro K, T AQ, IAQ

Pro, prosimian; NWM, New World monkey; OWM, Old World Monkey; Hom, hominoid; All, representative species from all of the above.

FP, force plate; K, kinematics; T, temporal characters; EMG, electromyography; BS, bone strain; En, energetics; Pr, pressure; (
cineradiography.

TQ, terrestrial quadrupedalism; AQ, arboreal quadrupedalism; 1Q, inclined quadrupedalism (flat substrate); IAQ, inclineedalisirup
(pole); L, leaping; AS, arm-swinging; TB, terrestrial bipedalism; R, reaching.

IThis is not an exhaustive list of all studies on primate locomotion. | have included those studies that focus specificaditedogamotor
mechanics primarily in a laboratory setting. | apologize to anyone who was excluded.

Reviews of many experimental studies can be found in Fleagle (1979), Jouffroy (1989), and Churchill and Schmitt (2003).

This table does not include studies by anthropologists that focus solely on human bipedalism, such as Li et al. (1996}, ehc(irBl6,
1999) or Crompton et al. (1998).

Primate locomotor characteristics

Primates show a remarkable diversity of locom A LY (B) el (@ L LH (3) >< (9 LF
behaviors. The apes (gibbons, orangutans, chimpanze RH (1) m——eee (2) RF RH (1) (4) RF
gorillas) show a particularly wide range of locomotor ha
including acrobatic arm-swinging, quadrumanous climk
quadrupedal knuckle- or fist-walking, and regular ¢
bouts of bipedal locomotion. Nonetheless, quadruped

is the most common mode of locomotion among prim B
and the ways in which primate quadrupedalism is simil
or differs from that of other mammals has bearing or
pathways for the evolution of more specialized form
locomotion, including bipedalism.

Data from laboratory-based studies of prin
locomotion, much of which is summarized below, ca
of great utility to those working on locomotor mecha ] . .
in other vertebrates. To make the reader aware of whe Fig. 1. Summary of the commonly accepted differences that are believed
are available, | have included a representative list of t to dls_tlngwsh the walking ga_|ts of most primates from those of most

. . . nonprimate mammals. Nonprimates generally use (A) lateral sequence
studies of primate locomotor mechanics (TaleBelow. Jying gaits (LH, RH, left and right hindlimb; LF, RF, left and right
however, | concentrate only on those studies that

) i - . forelimb), (B) have a humerus that at ground contact is retracted relative
directly on the unique aspects of primate locomotion 5 4 horizontal axis passing through the shoulder, and (C) have greater

the evolutio_n of hgman bi_pedalism. _ peak vertical forceB on their forelimbs than they do on their hindlimbs.
The walking gaits of primates are known to differ fi Primates show the opposite pattern. From Schmitt and Lemelin (2002),
those of most other mammals in several ways (B  with permission.

4 t

) F
C Fhind Frore Fhind fore
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First, most primates habitually use a diagonal sequence footf:
pattern, in which the footfall of a hindfoot is followed by that
of a contralateral forefoot (Muybridge, 1887; Hildebrand,
1967; Vilensky and Larson, 1989; Cartmill et al., 2002).
Secondly, primates have a humerus that is relatively protracte
at forelimb touchdown (Larson, 1998; Larson et al., 1999
2001). Thirdly, most primates also have relatively greater pee
vertical forces on the hindlimb compared to those on th
forelimb (Kimura et al., 1979; Reynolds, 1985; Demes et al.
1994, Polk, 2001, 2002; Schmitt and Lemelin, 2002). Finally
quadrupedal primates appear to use a walking gait involvin
substantial increases in elbow flexion during stance phas
smaller vertical excursions of the center of gravity, longe
contact times, and longer stride lengths compared to oth
mammals traveling at dynamically similar speeds (Froud:
numbers) (Alexander and Maloiy, 1984; Demes et al., 199(
Schmitt, 1998, 1999). This more compliant quadrupeda
walking style has been documented in a wide range ¢
primates, including the large-bodied quadrupedal apes (Dem
et al.,, 1990, 1994; Schmitt, 1998, 1999; Wunderlich anc
Jungers, 1998; Larney and Larson, 2003).

Primate locomotor evolution
The gait characteristics thought to distinguish most primate
from most other mammals have all been associated directly
indirectly with the mechanical requirements of locomotion or

¥
Cranially-oriented j Rdatively small

vertebral centra

Small and po urly-""'j’.

stahilized sacrum =
Small femoral

head & long
femoral neck
Relatively short '
lower limhs b
Relatively mohile

thin flexible branches (Schmitt and Lemelin, 2002; Cartmill el knee joint

al., 2002; Schmitt, 2003a), an environment thought to b
critical in the origin of primates fifty-five million years or
more ago (Cartmill, 1974; Fleagle, 1999). This combinatior
of gait characteristics, shown by primates in general an
arboreal primates especially, results in a strong functioniFig. 2. The skeleton of one individual slstralopithecus afarensis.
differentiation between forelimbs and hindlimbs. This mayMembers of this early hominid species were relatively small and
have facilitated the use of forelimbs in tension during climbingshort, with females weighing approximately & and standing
and arm-swinging in New World monkeys and apes. This suitabout 1.05n tall (McHenry 1991b, 1992). These early hominids
of gait characteristics that typify primates may ultimately havevere gracile with small and loosely stabilized limb and vertebral
played a role in the evolution of bipedalism (Stern, 1971, 197d°ints and distinctly curved phalanges (Stem and Susman, 1983),
Reynolds, 1985; Schmitt, 1998; Larson et al., 2001; Schmi.features that are also found in many .extant apes. Like living apes,
and Lemelin, 2002). they also had.r.elatlvely .Iong upper Ilmps compared to the Iqwer
The first hominids (primates that use a habitual uprighIlmbs, a condition that is also found in later australopithecines

. | gai i h | i Africa f . (McHenry and Berger, 1998). Many of the ape-like features of the
bipedal gait) are believed to have evolved in Africa five to SI)postcranial skeleton are also found in earlier australopithecines

million years ago (Fleagle, 1999; Ward et al., 1999; Senut (ward et al., 1999). Exactly how these features should be interpreted
al., 2001). Immediately prior to the appearance of hominidsis the subject of considerable debate (Susman et al., 1984; Latimer,
the primate fauna of Africa and Asia was dominated by1991; Stern, 2000; Lovejoy et al., 2002; Ward, 2002), although the
generalized arboreal quadrupedal primates with a mixture goint morphology suggests a different loading pattern from that found
ape-like and monkey-like traits (Begun et al., 1997). Then modern humans (Stern and Susman, 1983; Schmitt et al., 1996,
earliest known hominids (members of the genusl999). Theimage is modified from Fleagle (1999).
Australopithecup were relatively small-bodied compared to

modern humans and their skeletons contain a mosaic

features (Fig2) (Stern and Susman, 1983; Susman and Stershort lower limbs. They also had derived, more human-like
1984; Lovejoy, 1988; McHenry, 1991a; Leakey et al., 1995features associated with bipedalism, including valgus knees
McHenry and Berger, 1998; Ward et al., 1999; Stern, 200Gnd short, somewhat laterally facing iliac blades. Finally, early
Ward, 2002). Early hominids had primitive, more ape-likehominids also had unique features not found in either apes or
features such as relatively small lower limb and vertebrahumans, such as an exceptionally wide, platypelloid pelvis.
joints, curved fingers and toes, relatively long upper limbs andhere is considerable debate about how these features should
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be interpreted (for comprehensive reviews of this debate, see
Stern, 2000; Ward, 2002). Some researchers argue that the

A B
locomotor mode of these hominids was kinematically distinct
from our own (e.g. Zuckerman et al., 1973; Oxnard, 1975;
Tuttle, 1981; Stern and Susman, 1983; Berge, 1984, 1991,

1994; Susman et al., 1984; Berge and Kazmeirczak, 1986;
\ McHenry, 1986, 1991a; Duncan et al., 1994; Ruff, 1988;
Sanders, 1998; Stern, 2000). Others have argued equally
strongly that early hominids walked with a gait equivalent to
that of modern humans (e.g. Robinson, 1972; Lovejoy, 1980,
1988; Latimer, 1983, 1991, Latimer et al., 1987; Latimer and
Lovejoy, 1989; Crompton et al., 1998). The features of the

Fig. 3. lllustration of the walking postures (at heel-strike, m'dStanci}Jcomotor skeleton that appear to some to indicate a gait

and toe-off) and vertical ground reaction forces (expressed as
body weight) in a human (A) and a chimpanzee (B). The chimpanze(ﬁfferent from that of modern humans and some degree of

uses a more flexed hip and knee posture throughout stance phase,rﬁzg\,Ular climbing behavior appear as early as 4 million years
lower oscillations of the center of mass, and generates a flatter, low@80, and are also present in the earliest members of the genus
vertical peak force curve. Human and chimpanzee redrawn frotlomo (Homo habili$ (Susman and Stern, 1982; Susman,
Elftman (1944); force traces re-drawn from Kimura et al. (1979).  1983; Susman et al., 1984; McHenry and Berger, 1998; Ward
et al.,, 1999). There is much less controversy about the
locomotor behavior of later hominids such E®mo

100

% body weight

A Hip angle erectus(appearing about 1.8 million years ago), which
200 exhibit a more modern body form with long hindlimbs and
_ e robust joints (Jungers, 1988; McHenry, 1991b). It is widely
8 180 . - accepted thatlomo erectusvalked and ran much as we
® 160 +——+—-— A do today (Carrier, 1984; Stanley, 1992; Bramble, 2000;
= 10 L L . B Gruss and Schmitt, 2000, in press).
) N — R
£ 120 - {_‘ p— Gait compliance and the evolution of bipedalism
100 e Since the pioneering studies of the British anatomist
Starce phase Herbert Elftman, it has been recognized that apes and other
nonhuman primates differ from humans in the use of a
—+— Homonormal —s— Homocompliant —— Hylobates—s— Pan relatively more compliant form of bipedalism (F8&).
(Elftman and Manter, 1935; Elftman, 1944; Prost, 1967,
B Knee angle 1980; Jenkins, 1972; Okada, 1985; Yamazaki and Ishida,
1985; Reynolds, 1987; Kimura, 1990, 1991, 1996; Aerts
) 138 s e e VA et al., 2000; D'Aout et al., 2002). Normal human walking
= 150 18— D — differs from apes, which exhibit habitually flexed hips,
3 130 1« :1 . R S — knees and ankles during stance phase @igdowever,

2 110 A ‘g when we asked people to walk with minimal oscillations
g 9 S + of the center of mass, they adopted deeply flexed lower
70 ; ; ; ; ; ; ; limb postures like those of most apes (BigSchmitt et

1 2 3 4 5 6 7 8 9 10 11 P al., 1996, 1999).
Starce phase Limb compliance leads to smaller oscillations of the
center of mass and alters the magnitude of the peak vertical
—<— Homonormal —s— Homocompliant —— Hylobates—— Pan substrate reaction force and the shape of the force—time
plot (Alexander and Jayes, 1978; McMahon et al., 1987;
C Ankle angle
120 — Fig.4. Angular values for the lower limb joints of humans
g XXXXA‘ walking normally and compliantly compared with bipedal
g 100 — . D ——; P " walking gaits of the gibbonHylobates lay and the pygmy
S 9 —3 — . o~ ] — Pt chimpanzee Ran paniscus The data for the humans were
% ., A A » collected at SUNY Stony Brook using the same sample as was
<:E 60 — - used for the maximum walking speed and stride length data
e ¢ presented in Tabl2. The data for the gibbon are a composite of
40 data from Prost (1967) and Yamazaki and Ishida (1984). The

Stance phase data for the chimpanzee are from D’Aout et al. (2002).
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Alexander, 1992; Schmitt, 1998, 1999; Yaguramaki et al., Table2. The effect of compliant bipedalism on temporal and
1995; Li et al., 1996). During normal walking humans generate kinetic variables in humans

a vertical ground reaction force curve with two distinct peaks
that are both greater than body weight, although at very slow
speeds the force-time curve is relatively flat-topped (Alexandeiverage maximum walking speed grf) ~ 2.25 3.2

and Jayes, 1978). This force pattern is characteristic of a stiff.vé'2g€ maximum stride length (m) 21 2.97

legged gait in which the center of mass is highest at midstancAe\zl(eo/ro"’lgc‘)3 d?/evtgi\éflglcal force magnitude 130 112

an_d lowest at d.ouble.support (F&R). In cor!trast, nonhuman Average impact shock attenuation 38 101

primates walking bipedally generate single-peaked force (shankg/headg)

curves in which the peak is much closer to body weight

(Fig.3B) (Kimura et al., 1979; Kimura, 1996). Humans The data in this table are previously unpublished values collected

walking with more compliant limb postures produce similarat the State University of New York at Stony Brook and at Duke

force patterns, although the overall mechanics of humatniversity.

compliant walking are still not well understood (Yaguramaki Different samples were used for different studies.

et al., 1995; Li et al., 1996; Schmitt et al., 1996). The study of maximum walking speed and stride length involved 7
Since nonhuman primates typically utilize compliant gaitg"en and 7 women between the ages 19 and 55 (mean = 30) whose

when they walk either quadrupedally or bipedally, it seemge'Tghht r?”ged:romt_l'ﬁi' o 1|ﬁ4m (averagtt'-:al:m).l 47 §

plausible then, that early bipedal hominids would have retained € study of vertical peax force magnhitude involved 7 women an

liant walki tle tvpical of oth h imat men between the ages of 18 and 55 (mean = 23) whose height
a compliant walking style typical of other nonhuman prima esranged from 1.5n to 1.84m (average = 1.6@).

Postcranial ana_tomy of early.homm'ds SqueStsf that some OfThe speed range of the subjects in this study was relatively narrow
them walked with a deeply yielding knee and hip (Stern angnq subjects walked relatively fast (average speed for straight-legged
Susman, 1983) But beyond being Slmply a primitive retentiOl’Waming = 2.03ms?! and for bent-hip, bent-knee walking =
compliant walking in prehominids may have had severap.13ms?).
advantages. Among quadrupedal nonhuman primates, lowFinally, the study of impact shock attenuation involved 6 men and
peak forces and reduced stride frequencies make thdirwomen between ages of 19 and 35 (average = 22) whose height
locomotion relatively smooth, which helps them avoid shakinganged from 1.én to 1.84m (average = 1.6). In this latter study,
flexible branches, thus enhancing their stability and helpingverage speed for normal walking = 1dgt and for compliant
them escape the notice of predators (Demes et al., 199Haking=1.92ms™.
Schmitt, 1998, 1999). These features may have also allowed
primates to maintain mobile, loosely stabilized forelimb jointsis little evidence that such a compliant bipedal gait in early
Our recent kinematic, force plate and accelerometer studies dominids would have been more energetically costly than that
human compliant bipedalism (summarized in T&)lshow of a quadrupedal prehominid. Experimental studies have
that humans who adopted a complaint gait achieved longeepeatedly shown that there is little difference in energetic
stride lengths, faster maximum walking speeds, lower peagosts between quadrupeds and bipeds (Taylor and Rowntree,
vertical forces, and improved impact shock attenuatiori973; Fedak et al., 1977; Fedak and Seherman, 1979; Rodman
between shank and sacrum compared to normal walkingnd McHenry, 1980; Roberts et al., 1998a,b; Griffin, 2002),
(Schmitt et al., 1996, 1999). These data are consistent witithough a recent study found a 20% increase in cost in
findings of several other studies (Yaguramaki et al., 1995; Linacaques (Nakatsukasa et al., 2002). In addition, Steudel
et al., 1996). As a result, my colleagues and | have argued, &teudel, 1994, 1996; Steudel-Numbers, 2001), using data on
did Stern and Susman (1983), that compliant bipedalism mdiynb length and oxygen consumption for humans and other
have been an effective gait for a small biped, with relativelynammals, concluded that ‘increased energetic efficiency
small and weakly stabilized joints that had not yet completelyould not have accrued to early bipeds’ (Steudel, 1996, p.
forsaken arboreal locomotion (Schmitt et al., 1996, 1999). 345). She goes on, however, to point out that ‘selection for
Humans who attempt to walk with a compliant gait oftenimproved efficiency in the bipedal stance would have occurred
find it awkward, however, and some researchers argue that thece the transition [to modern human bipedalism] was made’
retention of compliant walking style in early hominids is (Steudel, 1996, p. 345). In summary, it certainly cannot be
unlikely because it would be too energetically expensive andonvincingly argued that bipedalism in the earliest hominids
raises core-body temperatures (Crompton et al., 1998). It jwovided significant savings in energy. By the same token, it
likely that a modern bipedal walking gait would be moreis unlikely that a shift to bipedalism induced significant
efficient than hominoid-style quadrupedalism or bipedalisnenergetic costs relative to the locomotion of a prehominid
(Leonard and Robertson, 1995, 1997a,b, 2001). Some hapemate.
argued that the costs of locomotion would be especially high
for a short-legged hominid (Jungers, 1982; Rodman and Locomotion of the prehominid primate
McHenry, 1980; but for a contrary view, see Kramer, 1999). Althougha discussion of the selective advantages of
However, a review of the literature by Stern (1999) suggestsipedalism is beyond the scope of this paper, one other way to
that the differences would have been minor. Moreover, thenrenderstand the pathway through which bipedalism evolved is

Normal Compliant
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to consider the mode of locomotion in the prebipedalvork on locomotion in apes was carried out independently by
prehominid ancestor. The mode of locomotion in the primat®ussell Tuttle of the University of Chicago and Jack Stern of
that immediately preceded the adoption of upright bipedalisrthe State University of New York at Stony Brook. Tuttle’s
has been a subject of debate since the turn of the last centstudies of muscle recruitment patterns in forearm and gluteal
(for thorough reviews, see Tuttle, 1974; Richmond et al.musculature in chimps and gorillas led him and his colleague
2002). Theories concerning the nature of locomotion in thdohn Basmajian to conclude that terrestrial quadrupedalism did
prehominid primate can be divided into three basic groupsiot play a critical role in the evolution of bipedalism. Rather
The troglodytian model posits a terrestrial, knuckle-walkingthey surmised that ‘hominid bipedalism may indeed be rooted
chimpanzee as the prototype for a prehominid (e.g. Washburim, bipedal reaching and branch-running behaviors of relatively
1951; Gebo, 1992, 1996; Richmond et al., 2002). Proponenssnall bipedal apes’ (Tuttle and Basmajian, 1974a, p. 312).
of this model argue for a significant component of terrestrial Stern and his colleagues documented recruitment patterns of
locomotion in the hominid ancestor (Gebo, 1992) but do ndirelimb and hindlimb muscles in a variety of ape and monkey
preclude arboreal activity as a significant component of thepecies (Stern et al., 1977; Vangor, 1977; Fleagle et al., 1981;
evolution of bipedalism (Richmond et al., 2002). In addition,Stern and Susman, 1981; Vangor and Wells, 1983). Perhaps
some researchers have argued that feeding, not locomottie most critical result of their studies was the finding that
adaptations in chimpanzees are critical for the evolution afpider monkeys, chimpanzees and orangutans recruit their
hominid bipedalism (Hunt, 1994; Stanford, 2002). Supportertesser gluteal muscles to the greatest degree during stance
of a brachiationist model alternatively suggest that bipedalismphase of vertical climbing and bipedalism to produce medial
evolved from a small-bodied suspensory ancestor similar tetation of the femur or to stabilize the pelvis when walking
gibbons (e.g. Keith, 1923; Tuttle, 1981). Finally, otherwith a flexed hip (Fig5). They concluded that a transition from
researchers invoke no specific primate as a distinct model foertical climbing to bipedalism would have involved minimal
the prehominid, but argue instead that the mechanicahange in the functional role of thigh musculature. These data,
requirements of climbing vertical supports are similar to thosalong with additional EMG and bone strain data, led them to
required by early bipeds (Stern, 1971; Prost, 1980; Fleagle ebnclude that a prehominid primarily adapted for vertical
al., 1981). Of course, these models are not mutually exclusivelimbing would develop ‘hindlimb morphology pre-adaptive
and some have argued for an ancestor with a varied affidr human bipedalism’ (Fleagle et al., 1981, p. 360). Ishida
generalized locomotor repertoire (Rose, 1991). These mode#$ al. (1985) reached the same conclusion in their
can be evaluated using phylogenetic, morphometric, fossil arelectromyographic study of bipedal walking in a variety of
experimental evidence, but these approaches do not yieflimate species. The argument that vertical climbing is a ‘good
consistent results. intermediate between arboreal behavior and terrestrial
The knuckle-walking model has received strong supporbipedalism’ (Prost, 1985, p. 301) is further supported by
from molecular data that suggest that chimpanzees and humddagematic and electromyographic data on gibbons,
are sister taxa (Richmond et al., 2002). The clear phylogenetahimpanzees and spider monkeys walking bipedally and
relationship between humans and chimps, the latter of whiatlimbing vertical supports (Prost, 1967, 1980; Hirasaki et al.,
regularly knuckle walk in both terrestrial and arboreal settingd993, 1995, 2000).
(Tuttle, 1974; Doran, 1992) and engage in frequent bouts of Additional support for an arboreal/climbing ancestry for
terrestrial and arboreal bipedalism (Hunt, 1994; Stanfordhominids comes from force-plate studies showing that the
2002), makes it tempting to look only to chimpanzees fodifference in forelimb and hindlimb peak vertical forces is
understanding the evolution of human bipedalism. This longgreatest in highly arboreal primates (Kimura et al., 1979;
standing habit may have hindered our understanding of humadimura, 1985, 1992; Reynolds, 1985; Demes et al., 1994;
evolution because of the difficulty of explaining why a Schmitt and Lemelin, 2002). More recent studies show that
terrestrial quadruped would have evolved into an obligatéunctional differentiation between fore- and hindlimbs is
biped. Furthermore, recent anatomical evidence supportinggreatest when animals walk on arboreal supports or climb
terrestrial knuckle-walking ancestor for hominids (Gebo, 1992yertical poles (Hirasaki et al., 1993, 2000; Schmitt, 1998;
1966; Richmond and Strait, 2000, 2001; Richmond et alWunderlich and Ford, 2000). Data on peak plantar pressures
2002) is not universally accepted (Meldrum, 1993; Schmitt anth chimpanzees and humans led Wunderlich and Ford (2000)
Larson, 1995; Wunderlich and Jungers, 1998; Dainton antb state that chimpanzee quadrupedal walking on arboreal
Macho, 1999; Corruccini and McHenry, 2001; Dainton, 2001supports resembles human bipedalism more closely than either
Lovejoy et al., 2001). chimpanzee terrestrial quadrupedalism or bipedalism. Thus, if
While phylogenetic evidence points toward chimpanzeesgeducing the weight-bearing role of the forelimbs is critical to
and fossil evidence remains ambiguous, experimental studiéise evolution of bipedalism, it seems likely that the hominid
of humans and other primates point squarely toward aancestor was an active arborealist. Recent experimental studies
arboreal, climbing ancestor of hominids, because thassociating heel-strike at the end of swing phase with arboreal
mechanics of arboreal climbing and bipedalism are morquadrupedalism (Schmitt and Larson, 1995) and vertical
similar to each other than either is to the mechanics aflimbing (Wunderlich and Schmitt, 2000) further strengthen
terrestrial quadrupedalism. Some of the earliest experimenttiis argument.
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Fig.5. Electromyographic activity of gluteus medius in spider monkéyslgssp.) and chimpanzee®dn troglodytes during terrestrial
quadrupedalism, terrestrial bipedalism, and climbing a large vertical support. The data for the spider monkey are frandrl¢2g&1), and

for the chimpanzee from Stern and Susman (1983). The graphs follow the approach of Stern et al. (128QisTepresents stance and

swing phase. Thg-axis represents activity (expressed as a percentage of maximum muscle recruitment) that occurred 75% of the time during
the respective activity. Muscular recruitment increases in both magnitude and duration from quadrupedalism to bipedadisruitmieatr

patterns during bipedalism and vertical climbing are similar to each other. The same pattern is found for the dPangatarydmaeydor

all three behaviors and for the gibbdtyl(obates la) during bipedalism and vertical climbing (Stern and Susman, 1983).

Conclusions legged gait. This perspective on the evolution of bipedalism

Experimental data collected on humans and nonhumadnom a relatively compliant to a relatively stiff-legged style
primates suggest that early hominid bipedalism evolved in achanges our understanding of locomotor adaptations in the
arboreal, climbing primate. The earliest mode of bipedalisngenusHoma The data described above strongly suggest that a
included many aspects of locomotion seen in modern human®latively stiff-legged bipedal gait and associated physiological
but probably did not involve inverted pendulum-like and musculoskeletal adaptations are not inherited from
mechanics. This difference in locomotor styles between earlgrebipedal ancestors or even from the earliest upright bipeds.
hominids and modern humans appears to be associated withese features are instead, specialized characters that evolved
small, gracile and poorly stabilized hindlimbs in our earliestelatively recently.
ancestors (Stern and Susman, 1983). It seems likely that the
shift to a more robust modern skeleton seen in early membersl am grateful to Matt Cartmill, Tim Griffin, Laura Gruss,
of the genusHomoreflected the adoption of a relatively stiff- Mark Hamrick, Jandy Hanna, Susan Larson, Pierre Lemelin,
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