
It has been shown that quasi-steady analysis cannot predict
the aerodynamic forces and power requirements of insects in
hovering (Ellington, 1984b,c) or forward flight (Dudley and
Ellington, 1990b; Willmott and Ellington, 1997b). Researchers
have been working to shed light on the unsteady mechanisms
of aerodynamic force generation and predict satisfactorily the
power requirements in such cases.

Dickinson and Götz (1993) measured the aerodynamic forces
on an aerofoil started impulsively at a high angle of attack in the

Reynolds number (Re) range of a fruit fly wing and showed that
lift was enhanced by the presence of a dynamic stall vortex, or
leading-edge vortex (LEV). But lift enhancement was limited to
only 2–3 chord lengths of travel because of the shedding of the
LEV. For most insects, a wing section at a distance of 0.75R
(where R is wing length) from the wing base travels
approximately 5.3 chord lengths during an up- or downstroke in
hovering flight (Ellington, 1984b); in forward flight, the section
would travel an even larger distance during a downstroke.
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Aerodynamic force generation and power requirements
in forward flight in a fruit fly with modeled wing motion
were studied using the method of computational fluid
dynamics. The Navier–Stokes equations were solved
numerically. The solution provided the flow velocity and
pressure fields, from which the vorticity wake structure
and the unsteady aerodynamic forces and torques were
obtained (the inertial torques due to the acceleration of the
wing-mass were computed analytically). From the flow-
structure and force information, insights were gained into
the unsteady aerodynamic force generation. On the basis
of the aerodynamic and inertial torques, the mechanical
power was obtained, and its properties were investigated.

The unsteady force mechanisms revealed previously for
hovering (i.e. delayed stall, rapid acceleration at the
beginning of the strokes and fast pitching-up rotation at
the end of the strokes) apply to forward flight. Even at
high advance ratios, e.g. J=0.53–0.66 (J is the advance
ratio), the leading edge vortex does not shed (at such
advance ratios, the wing travels approximately 6.5 chord
lengths during the downstroke).

At low speeds (J≈0.13), the lift (vertical force) for weight
support is produced during both the down- and upstrokes
(the downstroke producing approximately 80% and the
upstroke producing approximately 20% of the mean lift),
and the lift is contributed mainly by the wing lift; the
thrust that overcomes the body drag is produced during
the upstroke, and it is contributed mainly by the wing
drag. At medium speeds (J≈0.27), the lift is mainly

produced during the downstroke and the thrust mainly
during the upstroke; both of them are contributed almost
equally by the wing lift and wing drag. At high speeds
(J≈0.53), the lift is mainly produced during the
downstroke and is mainly contributed by the wing drag;
the thrust is produced during both the down- and
upstrokes, and in the downstroke, is contributed by the
wing lift and in the upstroke, by the wing drag.

In forward flight, especially at medium and high flight
speeds, the work done during the downstroke is
significantly greater than during the upstroke. At advance
ratios J≈0.13, 0.27 and 0.53, the work done during the
downstroke is approximately 1.6, 2.8 and 4.2 times as
much as that during the upstroke, respectively.

At J=0 (hovering), the body-mass-specific power is
approximately 29·W·kg–1; at J=0.13 and 0.27, the power is
approximately 10% less than that of hovering; at J=0.40,
the power is approximately the same as that of hovering;
when J is further increased, the power increases sharply.
The graph of power against flying speeds is approximately
J-shaped.

From the graph of power against flying speeds, it is
predicted that the insect usually flies at advance ratios
between zero and 0.4, and for fast flight, it would fly at an
advance ratio between 0.4 and 0.53.
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Ellington et al. (1996) performed flow visualization studies
on the hawkmoth Manduca sextaand a mechanical model of
the hawkmoth, and discovered that on the flapping wings of
the insect, the LEV did not shed during the translational phase
of either up- or downstroke. Analysis of the momentum
imparted to the fluid by the vortex wake showed that the LEV
could explain the high lift on the insect wings. This high lift
mechanism is called the delayed stall, or dynamic stall,
mechanism (Ellington et al., 1996; Dickinson et al., 1999).
This mechanism has been confirmed by computational fluid
dynamic analysis (Liu et al., 1998). By measuring the flow field
near the wings and the aerodynamic force on the wings of a
mechanical model of the fruit fly Drosophila melanogaster(the
Reof the fruit fly wing is 1–2 orders of magnitude smaller than
that of the hawkmoth), Birch and Dickinson (2001) found that
the LEV did not shed in the translational phase of either up-
or downstroke and that large lift was maintained in the phase,
showing that the delayed stall mechanism is valid for a wide
range of Re.

Dickinson et al. (1999) and Sane and Dickinson (2001)
conducted force measurement studies using the mechanical
model of the fruit fly and showed that in the case of advanced
rotation (wing rotation preceding the stroke reversal), in
addition to the large lift and drag during the translatory phase
of a stroke, large lift and drag peaks also occurred at the
beginning and the end of the stroke (i.e. around the stroke
reversal). Dickinson et al. (1999) suggested that the force
peaks at the beginning of the stroke could be explained by
the wake capture mechanism [an increase in the effective
fluid velocity due to vortex wake shed by the previous stroke
(Dickinson, 1994)], those at the end of the stroke by the
rotational circulation mechanism [the lift due to wing rotation
is related to the rotational circulation by the Kutta–Jukowski
equation and the rotational circulation is determined by the
Kutta condition as being proportional to the product of the
rotation rate and the distance between rotation-axis and 0.75
chord position (Fung, 1969)]. They provided evidence for the
wake capture by flow visualizations made at the start of a
stroke and by force measurements after halting the wing at
the start of a stroke. Dickinson et al. (1999) and later, Sane
and Dickinson (2002), assumed that the total force (lift and
drag) due to the wing rotation (rotational force) could be
related to the rotational circulation by the Kutta–Jukowski
equation, and using measured rotational force, they
determined the rotational circulation as a function of the
rotation rate and the rotation-axis position. The
experimentally determined rotational circulation agreed
reasonably well with that predicted by Fung’s theory (Fung,
1969), providing evidence that force peaks near the end of
the stroke were due to rotational circulation. 

Using the method of computational fluid dynamics (CFD),
Sun and Tang (2002a) simulated the unsteady flow around a
model fruit fly wing conducting flapping motions similar to
that in the experiment of Dickinson et al. (1999). Different,
but complementary, explanations for the force peaks were
provided. By varying the acceleration at the beginning of a

stroke, it was found that the force peaks there were closely
related to the acceleration. From the computed flow field, it
was observed that during the fast acceleration of the wing,
strong vorticity was continuously generated on the lower wing
surface and shed at the trailing edge, while strong vorticity of
opposite sign was continuously generated at the upper wing
surface. From vorticity dynamics theory (Wu, 1981), this
would give rise to a large time rate of change of vorticity
moment and thus large forces. If the velocity due to the
previous strokes was directed towards the wing at the start of
the stroke, wake capture mechanism would also contribute to
the force peaks. But the computed results showed that the
velocity was directed downward. Therefore, the authors
suggested that the large force peaks at the beginning of the
stroke could be explained by the rapid generation of strong
vorticity due to the fast translational acceleration of the wing.
However, it should be noted that the computed flow field in
front of the wing at the start of a stroke is different from that
visualized experimentally (Dickinson et al., 1999; the later
shows the existence of wake capture effect and the former
does not), and that although the computed forces are generally
in agreement with the measured, there are noticeable
discrepancies around the stroke reversal [see the comparisons
in Sun and Tang (2002b) and in the ‘validation’ section of the
present paper]. Thus there exists the possibility that the CFD
simulations could not capture accurately all features of the
flow. During the fast pitching-up rotation near the end of the
stroke, it was also observed that new vorticity of large strength
was produced. The authors suggested that the large force
peaks near the end of the stroke could be explained by the
rapid generation of strong vorticity due to the fast pitching-up
rotation of the wing. Note that the rotational circulation
approach (Dickinson et al., 1999; Sane and Dickinson, 2002)
is a special case of the vorticity dynamics theory; under
conditions that the flow is quasi-steady and inviscid, the
equations in the rotational circulation approach can be derived
from the vorticity dynamics theory. Therefore, the above
explanation for the wing rotation effects is complementary to
that based on the rotational circulation approach.

As a result of the above works and numerous others (e.g.
Vogel, 1966; Weis-Fogh, 1973; Ellington, 1984a,b, 1995;
Ennos, 1989; Dudley and Ellington, 1990a,b; Willmott et al.,
1997; Wang, 2000), we are now better able to understand how
insects produce large lift.

With the current understanding of the unsteady force
production mechanisms, researchers have attempted to
estimate the mechanical power of insect flight based on
unsteady aerodynamic forces. Sane and Dickinson (2001),
using the measured unsteady drag of a model fruit fly wing,
showed that the mechanical power for a fruit fly was
approximately twice as much as the previous estimate based
on quasi-steady theory (Lehmann and Dickinson, 1997).
Recently, Sun and Tang (2002b), through unsteady flow
simulation by the CFD method, studied the lift and power
requirements of hovering flight in the fruit fly. Under
conditions where the mean lift balanced the insect weight, they
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computed the required mechanical power. With the computed
mechanical power and available metabolic data, a value of 0.17
for the muscle efficiency was obtained, and was approximately
twice as much as that estimated using the quasi-steady theory
(0.09; Lehmann and Dickinson, 1997).

Though the above works on unsteady mechanisms of force
production and power requirements were primarily concerned
with hovering flight, it is believed that the unsteady
mechanisms of force production are also applicable to the case
of forward flight. In fact, flow visualization experiments on the
tethered hawkmoth (Ellington et al., 1996; Willmott et al.,
1997) have already shown that the delayed stall mechanism
operates at advance ratios ranging from 0 to 0.9. However, the
flow visualization results for the tethered insect were not so
clear-cut because of the difficulty in obtaining good flow

visualization near the wings. It is of interest to investigate the
flow around the flapping wings during forward flight in more
detail. For the power requirements in forward flight, Ellington
et al. (1990), measured the oxygen consumption of bumblebees
and showed that the metabolic power changed little from
hovering to intermediate flight speeds. Assuming that muscle
efficiency was constant over different flight speeds, it was
concluded that the mechanical power would vary with the
flight speed according to a J-shaped curve (Ellington et al.,
1990; Ellington, 1991). It is of great interest to calculate the
mechanical power directly and to see how it varies with the
flight speed.

We here investigate these problems using a virtual fruit fly.
Systematic kinematic data on free-flying fruit flies are not
available at present. Assumptions on the wing motion and its

variation with flight speed are made on the
basis of existing data from tethered and
free-flying fruit flies and some data
from other insects. The method of
computational fluid dynamics is used in the
study. In the method, the pressure and
velocity fields around the flapping wing are
obtained by solving the Navier–Stokes
equations numerically; the lift and thrust
and the torques due to the aerodynamic
forces are calculated based on the flow
pressure and velocities. The inertial
torques due to the acceleration and rotation
of the wing-mass are calculated
analytically. From the aerodynamic and
inertial torques, the mechanical power
required for the flight is calculated. 

Materials and methods
The wing and the coordinate systems

The wing considered in the present
study is the same as that used in the study
of fruit fly lift and power requirements in
hovering flight (Sun and Tang, 2002b).
The planform of the wing is similar to that
of a fruit fly wing and the wing section is
an ellipse whose thickness is 12% of the
aerofoil chord length, and the radius of the
leading and trailing edges is 0.2% of the
aerofoil chord length. The radius of the
second moment of wing area, r2, is 0.58R,
where R is the wing length (the mean
flapping velocity at span location r2 is used
as reference velocity in the present study).

Three coordinate systems are used. Two
are inertial coordinate systems, OXYZ and
o′x′y′z′. For OXYZ, the origin O is at the
wing base (see Fig.·1A); X and Y form the
horizontal plane (X is in the direction of the
free stream velocity), and the Z-direction is
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Fig.·1. Sketches of the reference frames and wing motion. OXYZis an inertial frame, with
the XYplane in the horizontal plane. o′x′y′z′ is another inertial frame, with the x′y′ plane in
stroke plane. oxyzis a frame fixed on the wing, with the x axis along the wing chord, and
the y axis along the wing span. φ, positional angle of the wing; φmin and φmax, minimum
and maximum positional angle, respectively; α, angle of attack of the wing; β, stroke plane
angle; V∞, free-stream velocity; and R, wing length. CL and CT, coefficients of lift and
thrust, respectively; Cl and Cd, coefficients of wing lift and wing drag, respectively; Cd′, x′
component of Cd..
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vertical. The coordinate system o′x′y′z′ has the same origin as
the coordinate system OXYZ, its y′ axis coincides with the Y
axis, and its o′x′y′ plane coincides with the stroke plane (see
Fig.·1A,B). The third is the body-fixed coordinate system oxyz.
It has the same origin as the two inertial coordinate systems,
but it rotates with the wing. The x axis is parallel to the wing
chord and the y axis is on the pitching-rotation axis of the wing
(see Fig.·1C). The free-stream velocity, which has the same
magnitude as the flight velocity, is denoted by V∞, and the
stroke plane angle denoted by β (see Fig.·1A).

The flow computation method

The flow equations and computational method used in the
present study are the same as those in Sun and Tang (2002a,b).
Only an outline of the method is given here. The Navier–Stokes
equations are solved using the algorithm developed by Rogers
and Kwak (1990) and Rogers et al. (1991), which is based on
the method of artificial compressiblity. The algorithm uses a
third-order flux-difference splitting technique for the convective
terms and the second-order central difference for the viscous
terms. The time derivatives in the momentum equation are
differenced using a second-order, three-point, backward-
difference formula. The algorithm is implicit and has second-
order spatial and time accuracy.

Evaluation of the aerodynamic forces, aerodynamic and
inertial torques and mechanical power

Once the Navier–Stokes equations are numerically solved,
the fluid velocity components and pressure at discretized grid
points for each time step are available. The aerodynamic forces
and torques acting on the wing are calculated from the pressure
and the viscous stress on the wing surface. The inertial torques
due to the acceleration of the wing-mass are calculated
analytically.

The wing lift l is the component of the total aerodynamic
force perpendicular to the translational velocity of the wing
(defined below), i.e. perpendicular to the stroke plane, and is
positive when it is in the positive z′ direction (see Fig.·1B). The
wing drag d is the component of the total aerodynamic force
parallel to the translational velocity and is positive when
directed opposite to the direction of the translational velocity of
the downstroke (see Fig.·1C). (The wing drag is the force that
the insect must overcome for the translational motion of its
wing and is relevant to the power requirement of flight.) The x′
component of d is denoted as d′, and d′=dcosφ, where φ is the
positional angle of the wing (see Fig.·1C). Resolving the wing
lift l and the force d′ into the Z and X axes, we obtain the lift L
(vertical force) and the thrust T, respectively (see Fig.·1B,C):
L=lcosβ+d′sinβ and T=lsinβ–d′cosβ. The coefficients of the
above force components are defined as follows:

where ρ is the fluid density, U is the reference velocity (defined
below), and S is the wing area. The formulae for the
aerodynamic and inertial torques and the mechanical power
were given in Sun and Tang (2002b) and will not be repeated
here.

Kinematics of the flapping wings

As noted by Dickinson et al. (1999), a down- or upstroke of
an insect is typically divided into three portions: pitching-down
rotation and translational acceleration at the beginning of the
stroke, translation at constant speed and constant angle of
attack during the middle of the stroke, and pitching-up rotation
and translational deceleration at the end of the stroke. This
simplified flapping pattern is employed here. It is assumed that
the geometric angle of attack and the duration of the upstroke
are the same as that of the downstroke, respectively [Vogel’s
observation (Vogel, 1967) shows that this is approximately
true for tethered Drosophila virilis in forward flight]. The
flapping motion is modeled as follows. The azimuthal rotation
of the wing about the z′ axis, which is normal to the stroke
plane (see Fig.·1A), is called translation, and the pitching
rotation of the wing near the end of a stroke and at the
beginning of the following stroke is called rotation or flip. The
translational velocity is denoted by ut, which takes a constant
value of Um except at the beginning and near the end of a
stroke. During the acceleration at the beginning of a stroke, ut

is given by: 

ut
+ = U+msin[π(τ–τ0)/∆τt] ; τ0 < τ < [τ0 + (∆τt/2)]·, 

(6)

where the non-dimensional translational speed of the wing
ut

+=ut
+/u (U is the reference velocity, defined below), u+m (the

maximum of ut
+)=Um/U, τ=tU/c (t is dimensional time, c is the

mean chord length the wing and τ is the non-dimensional time),
τ0 is the non-dimensional time at which the stroke starts and
τ0+(∆τt/2) the time at which the acceleration at the beginning
of the stroke finishes. ∆τt is the duration of deceleration/
acceleration around stroke reversal. Near the end of the stroke,
the wing decelerates from ut

+=Um to ut
+=0, according to:

where τ1 is the non-dimensional time at which the deceleration
starts. The azimuth-rotational speed of the wing is related to
ut. Denoting the azimuthal-rotational speed as φ

.
, we have

φ
.
(τ)=ut/r2. The geometric angle of attack of the wing is denoted

(7)

π
∆τt

u+
t = U+

msin [τ – τ1 + (∆τt/2)]   ;

τ1 ≤ τ ≤ [τ1 + (∆τt/2)] , 
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
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d
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by α. It also takes a constant value except at the beginning or
near the end of a stroke. The constant value is denoted by αm,
midstroke angle of attack. Around the stroke reversal, α
changes with time and the angular velocity, α., is given by:

α. + = 0.5α. 0+ {1 – cos[2π(τ – τr)/∆τr]} ·; 
τr < τ < (τr + ∆τr)·, (8)

where the non-dimensional form, α.+=α./U, α.0+ is a constant,
and τr is the non-dimensional time at which the rotation starts,
∆τr the non-dimensional time interval over which the rotation
lasts. In the time interval of ∆τr, the wing rotates from α=αm

to α=180°–αm. Therefore, when αm and ∆τr are specified, α.0+

can be determined (around the next stroke reversal, the wing
would rotate from α=180°–αm to α=αm, so the sign of the
right-hand side of Equation·8 should be reversed). It is
assumed that the axis of the pitching rotation is located at 0.2c
from the leading edge of the wing. ∆τr is the wing rotation
duration (or flip duration).

In the flapping motion described above, the reference
velocity U, the velocity at midstroke Um, the geometric angle
of attack at midstroke αm, the deceleration/acceleration
duration ∆τt, the wing rotation duration ∆τr, the flip timing τr,
the period of flapping cycle τc and the stroke plane angle β
must be specified.

Ennos (1989) made observations of free forward flight of
two fruit flies Drosophila melanogaster, one at advance ratio
0.16 and the other at advance ratio 0.33. Ellington (1984a)
made observations of free hovering flight of craneflies,
hoverflies and droneflies (and many other insects). Their data
show that the deceleration/acceleration duration ∆τt and the
duration of wing rotation ∆τr are approximately 0.2τc, and
that wing rotation is symmetrical. It is assumed here that
∆τt=0.18τc and ∆τr=0.24τc (these values were used in previous
work on fruit fly lift and power requirements in hovering flight;
Sun and Tang, 2002b) and that the wing rotation is symmetrical
(as a result, τr may be determined).

To determine the reference velocity U and some other
parameters, data in the previous study on free hovering in
Drosophila virilis (Sun and Tang, 2002b) are used again here.
These data were taken from Weis-Fogh (1972, 1973) and they
are as follows: insect weight is 1.96×10–5·N, wing lengthR is
0.3·cm, area of both wings St is 0.058·cm2, stroke amplitude Φ
is 150°, and stroke frequency n is 240·s–1. The reference
velocity is determined as U(=2Φnr2)=218.7·cm·s–1 (for all
cases considered in the present study, the reference velocity,
reference length and reference time are fixed as
U=218.7·cm·s–1, c=0.108·cm and c/U=0.495×10–3·s).

To determine U+m and τc (U/nc), data on how the stroke
amplitude and stroke frequency vary with flight speed are
needed. They are not available for fruit flies in free flight.
Studies on the free flight of bumblebees (Dudley and Ellington,
1990a) and the hawkmoth (Willmott and Ellington, 1997a)
showed that for both insects, the stroke frequency was
constant. For bumblebees, the stroke amplitude did not vary
significantly, but for the hawkmoth, the stroke amplitude
varied with flight speed. Studies on tethered Drosophila virilis

(Vogel, 1967) showed that the stroke frequency was constant
and the stroke amplitude varied with flight speed. But in
tethered D. melanogaster, Lehmann and Dickinson (1997)
showed that both frequency and stroke amplitude changed with
flight force. In the present study, we examine three different
cases. (1) It is assumed that the stroke amplitude and stroke
frequency do not vary with flight speed (Φ=150° and
n=240·s–1). (2) The stroke amplitude is allowed to vary with
flight speed and is determined by force balance condition
(frequency kept constant, n=240·s–1). (3) The frequency is
allowed to vary with flight speed and is determined by force
balance condition (stroke amplitude kept constant, Φ=150°).

αm and β remain to be determined. They are determined by
the force balance condition, i.e. mean lift is equal to insect
weight and mean thrust is equal to the insect body drag. The
weight of the insect is given above. The body drag in
Drosophila virilis, as a function of body angle, was measured
by Vogel (1966) for five flight speeds, ranging from 0.5 to
2.5·m·s–1. In the present study, we examine forward flight at
these flight speeds and used Vogel’s body-drag data [fig.·5 in
Vogel, 1966). It is assumed the angle between the stroke plane
and the longitudinal body axis is constant [data in Drosophila
virilis in tethered flight (Vogel, 1967) and in other flies
(Ellington, 1984a) show that this is approximately true]. On
the basis of Vogel’s data in Drosophila virilis in tethered flight,
the body angle χ is related to stroke plane angle β as follows
(Vogel, 1966):

χ = 68° – β .· (9)

The Reynolds number Re and the mean lift coefficient
required for supporting the insect weight C̄L,w are
calculated as follows: Re=cU/ν=147 (ν=147·cm2·s–1);
C̄L,w=1.96×10–5·N/0.5ρU2St=1.15 (ρ=1.23×10–3·g·cm–3). The
advance ratio J is defined as J=V∞/(UR/r2), and in the present
study, it ranged from 0.13 to 0.66 (when presenting the results
in later sections, some results for hovering flight, J=0, are also
included).

Results and Discussion
Validation

The code used here is the same as that in the study of fruit
fly lift generation and power requirements in hovering flight
(Sun and Tang, 2002a,b). It is based on the flow computation
method outlined above, and was developed by Lan and Sun
(2001a). It was verified by the analytical solutions of simple
flows [boundary layer flow on a flat plate (Lan and Sun,
2001a); flow at the beginning of a suddenly started aerofoil
(Lan and Sun, 2001b)] and tested by measured steady-state
pressure distributions on a wing (Lan and Sun, 2001a).

In earlier studies (Sun and Tang, 2002b), the code was tested
by measured unsteady aerodynamic forces on a model fruit fly
wing in flapping motion (Dickinson et al., 1999; the wing
geometry was obtained from Prof. M. H. Dickinson). Three
cases of wing rotation timing were considered (the stroke
amplitude was 160° and the midstroke geometric angle of
attack was 40°), but only the lift forces were compared. In a
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recent paper by Sane and Dickinson (2001), both lift and drag
on the same model wing are given for a wide range of wing
kinematic parameters. Here, we make further comparisons
between calculations and experiments, using the data of Sane
and Dickinson (2001). The computed and measured lift and
drag coefficients are shown in Fig.·2 [for results in Fig.·2A,B,
the stroke amplitude is 60° and the midstroke geometric angle
of attack is 50°; for results in Fig.·2C,D, these parameters have
values of 180° and 50°, respectively; experimental data are
taken from fig.·3C,D of Sane and Dickinson (2001)].

The calculated drag coefficient agrees well with the
measured (see Fig.·2A,C). For the lift coefficient (see

Fig.·2B,D), in the translational phase of the downstroke, the
computed value agrees well with the measured; around the
stroke reversal, the computed peak values are smaller than the
measured; in the translational phase of the upstroke, the
computed value is a little less than the measured, but they are
in qualitative agreement (note that the value of the measured
lift coefficient in the upstroke is higher than that in the
downstroke). The above is also true in the lift coefficient
comparisons in Sun and Tang (2002b) [see fig.·4 of Sun and
Tang (2002b); there the downstroke was plotted as the second
half of the flapping cycle]. 

The above comparisons show that although the CFD
simulations might not capture accurately all the flow features
around the stroke reversal, the agreement of the aerodynamic
force coefficients between the computational and experimental
simulations is reasonably good. We think that the present CFD
method can calculate the unsteady aerodynamic forces and
torques of the model insect wing with reasonable accuracy.

In the above calculations, the computational grid has
dimensions 93×109×71 in the normal direction, around the
wing section and in the spanwise direction, respectively. The
normal grid spacing at the wall was 0.002. The outer boundary
was set at 10 chord lengths from the wing. The time step was
0.02. Detailed studies of the numerical variables such as grid
size, domain size, time step, etc., were conducted in our
previous work on the unsteady lift mechanism of a flapping
fruit fly wing (Sun and Tang, 2002a,b), where it was shown
that the above values for the numerical variables were
appropriate for the flow calculation. Therefore, in the following
calculation, the same set of numerical variables is used.

Force balance in forward flight

Since we wished to study the aerodynamic force and power
requirements for balanced flight, we first investigated the force
balance. In the study of hovering flight by Sun and Tang
(2002b), there was no body drag. The stroke plane was
assumed to be horizontal (β=0) and the mean thrust was zero,
therefore the horizontal force was balanced. The midstroke
angle of attack αm was adjusted such that the weight of the
insect was balanced by the mean lift. 

In forward flight, the body drag is not zero and the stroke
plane is tilted forward to produce thrust. At a given flight speed
or advance ratio, for different values of αm and β, the mean lift
and mean thrust are different (the stroke amplitude Φ and
stroke frequency n were assumed to be constant). αm and β at
a given flight speed are determined using the force balance
condition (mean lift equals the weight and mean thrust equals
the body drag).

The calculation procedure is as follows. A flight speed is
specified. A set of values for αm and β is guessed; the flow
equations are solved and the corresponding mean lift and thrust
coefficients C̄L and C̄T are calculated. The body drag for the
given flight speed and body angle (body angle is related to β
by Equation·9) is obtained from Vogel (1966). The C̄L was
compared with C̄L,W and the mean thrust (=0.5ρU2StC̄T) is
compared with the body drag. If C̄L is not equal to C̄L,W or the
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Fig.·2. Comparison of the calculated and measured lift (CL) and drag
(Cd) coefficients. The experimental data are reproduced from
fig.·3C,D of Sane and Dickinson (2001). (A,B) The midstroke angle
of attack αm is 50° and stroke amplitude Φh is 60°. (C,D) The
midstroke angle of attack αm is 50° and stroke amplitude Φh is 180°.
τ, non-dimensional time; τc, non-dimensional period of one flapping
cycle.
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mean thrust is not equal to the body drag, then αm and β are
adjusted [the gradients of C̄L (and C̄T) with respect to αm and
β are used as markers for adjusting αm and β]; and the
calculations are repeated until the magnitudes of difference
between C̄L and C̄L,W and between C̄T and body drag (divided
by 0.5ρU2St) are less than 0.01.

The calculated results for four forward flight speeds are
shown in Table·1 (the results for hovering flight are also
included). It is seen that C̄L is close to 1.15, as it should be.
C̄T increases almost linearly with flight speed, as does the body
drag. (For a fixed body angle, the drag would increase more
rapidly than linearly with flight speed; but here the body angle
decreased with flight speed.) αm is close to that that of hovering
flight at small and medium speeds (J=0.13, 0.27; V∞=0.5,
1.0·m·s–1) but increases to large values at higher speeds. β
increases almost linearly with flight speed. From the ratio
between C̄T and C̄L, the orientation of the total force vector
can be calculated. At hovering, β=0, and the total force vector
is vertical; at medium speed (J=0.27; V∞=1.0·m·s–1), β=29°,
and the total force vector tilts forward by 4.4°; at high speed
(J=0.53; V∞=2.0·m·s–1), β=60°, and the total force vector tilts
forward by 10°.

It should be noted that calculated results are not given for
J=0.66 or V∞=2.5·m·s–1 (at which flight speed body drag is
available). At this flight speed, no matter how αm and β are
adjusted, enough lift cannot be obtained. (As will be seen
below, at this flight speed, if the stroke amplitude is increased,
enough lift can be obtained, but the power required would be
very large.)

The generation of the lift and thrust

Here, we investigate how the lift and the thrust on the insect
are generated.

The lift (vertical force) and thrust

Fig.·3B,C gives the lift (CL) and thrust (CT) coefficients
versus non-dimensional time in a flapping cycle for five
advance ratios, J=0, 0.13, 0.27, 0.40 and 0.53 (V∞=0, 0.5, 1.0,
1.5 and 2.0·m·s–1). (The mean values of the force coefficients
have been given in Table·1.)

As seen in Fig.·3B,C, at low flight speed (J=0.13), CL in the
upstroke is smaller than that in the downstroke; both down-

and upstroke contribute to the mean lift, but approximately
75% of it is from the downstroke. Negative thrust is produced
in the downstroke and positive thrust in the upstroke, but the
amount of the positive thrust in the upstroke is larger than that
of negative thrust in the downstroke, resulting in a positive
mean thrust. Therefore, the mean thrust is contributed by the
upstroke (the downstroke has negative contribution).

At medium flight speed (J=0.27), CL is large in the
downstroke but very small in the upstroke, so the mean lift is
mainly contributed by the downstroke. Similar to the case of
low speed, the mean thrust is contributed by the upstroke (the
downstroke has negative contribution).

At high flight speed (J=0.53), CL in the downstroke is even
larger, and CL in the upstroke is negative but is of small
magnitude. Therefore, the mean lift is contributed by the
downstroke (the upstroke has negative contribution). Positive
thrust is produced in the downstroke (because in this case, the
stroke plane angle is large, β=60°), and relatively large positive
thrust is produced in the upstroke; approximately 74% of the
mean thrust is from the upstroke.

The lift and thrust coefficients (CL and CT, respectively)
shown above are the results of the wing lift and wing drag
coefficients (Cl and Cd, respectively). In fact, only the x′
component of Cd (Cd′; see Fig.·1B,C) contributes to CL and
CT (Cd is relevant to the aerodynamic power of the wing).
The corresponding Cl, Cd and Cd′ values are shown in
Fig.·3D–F.

At low speed (J=0.13), as shown above, 75% and 25% of
the mean lift are contributed by the downstroke and the
upstroke, respectively. In most of the downstroke, the
magnitudes of Cl and Cd are approximately the same. Since β
is not very large (β=16.5°), the major part of CL is from Cl,
and approximately 20% of CL is from Cd′. In the upstroke, Cd′
has negative contribution to CL. Also as shown above, the
mean thrust is contributed by the upstroke; in the upstroke, it
is Cd′ that gives the major portion of the thrust, and Cl

contributes approximately 20% of CT. Therefore, it can be
stated that the mean lift is contributed by the wing lift of both
the down- and upstrokes (the contribution of downstroke is
approximately three times as large as that of upstroke), and that
the mean thrust is contributed mainly by the x′ component of
the wing drag of the upstroke.

Table  1. Mean lift (C
–

L) and thrust (C
–

T) coefficients, midstroke angle of attack αm, stroke plane angle β, body angle χ and
coefficient of work per cycleCw as functions of advance ratioJ 

J C
–

L C
–

T αm (deg.) β (deg.) χ (deg.) Cw C+
W,t C–

W,t C+
W,r C–

W,r

0 1.16 0.03 36 0 68 12.91 12.51 –0.75 0.40 –1.82
0.13 1.16 0.04 32 16.5 51.5 11.50 10.90 –0.46 0.60 –1.40
0.27 1.16 0.09 34 29 39 11.47 10.93 –0.43 0.53 –1.32
0.40 1.15 0.15 43.5 45.5 22.5 13.58 13.37 –0.70 0.21 –1.69
0.53 1.15 0.20 56 60 8 18.21 18.16 –0.93 0.05 –1.80

αm, β vary with flight speed; stroke amplitude Φ=150°; stroke frequency n=240 s–1 and non-dimensional period τc=8.42.
C+

W,t and C–
W,t, coefficients of positive and negative work for translation, respectively; C+

W,r and C–
W,r, coefficients of positive and negative

work for rotation, respectively.
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At medium flight speed (J=0.27), as shown above, the mean
lift is contributed mainly by the downstroke and the mean
thrust is contributed by the upstroke. In the downstroke, Cl and
Cd′ have same sign and are approximately of the same
magnitude (around 1.8), and in the upstroke, Cl is mostly
positive and Cd′ is negative, and they are also approximately
of the same magnitude. Noting that β is about 30°, it can be
stated that the mean lift is contributed almost equally by the
wing lift and the x′ component of the wing drag of the
downstroke, and that the mean thrust is contributed almost
equally by the wing lift and the x′ component of the wing drag
of the upstroke.

At high flight speed (J=0.53; αm=56°, β=60°), based on
similar analysis, it can be stated that the mean lift is
contributed mainly by the the x′ component of the wing drag
of the downstroke (note the similarity between Cd′ in Fig.·3F
and CL in Fig.·3B during the downstroke), and that a relatively
large part of the mean thrust is contributed by the x′
component of the wing drag of the upstroke and a relatively

small part of the mean thrust is contributed by the wing lift of
the downstroke.

The mechanism of the generation of the wing lift and drag

The mechanisms of unsteady force production by the model
fruit fly wing in the case of hovering flight were studied by
Dickinson et al. (1999) and Sun and Tang (2002a). It was
shown that (for symmetrical rotation) the peak in Cd and the
dip in Cl at the beginning of a down- or upstroke (see Cl and
Cd for J=0 in Fig.·3D,E) were due to the combined effects of
acceleration and rotation of the wing; the large Cl and Cd

(around 1.2) during the translational phase of the down- or
upstroke were due to the delayed stall mechanism, and the
peaks in Cl and Cd near the end of the down- or upstroke were
due to the pitching-up rotation of the wing.

In the case of forward flight, as shown in Fig.·3D,E, the Cl

and Cd peaks near the end of the strokes and the Cd peak and
Cl dip at the beginning of the strokes still exist and are similar
to those in the case of hovering flight. This is because at the

M. Sun and J. H. Wu

Fig.·3. Non-dimensional angular velocity of pitching rotation α.+ and azimuthal rotation φ
.

+ (A), lift coefficient CL (B), thrust coefficient CT (C),
wing lift coefficient Cl (D), wing drag coefficient Cd (E) and x′ component of wing drag coefficient Cd′ (F) versustime during one cycle for five
advance ratios J. τc, non-dimensional period of one flapping cycle; τ, non-dimensional time (midstroke angle of attack αm and stroke plane
angle β vary with flight speed; stroke amplitude Φh=150°).
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beginning or the end of a stroke, the
positional angle of the wing is either
near φmin or φmax (see Fig.·1C) where
the component of the free-stream
velocity that is normal to the wing
span is small, and as a result the free-
stream velocity has very limited effect
on the force production of the wing
there. The difference in size of the
peaks for various advance ratios were
mainly caused by the difference in
rotation rate of the wing. Therefore,
the force production mechanisms at
the beginning and near end of the
strokes in forward flight are the same
as that in hovering flight.

We now consider Cl and Cd in the
translatory phase of the down- or
upstroke (the middle 64% of the
down- or upstroke). In order to assist
the analysis of the force coefficients,
the contours of the non-dimensional
spanwise component of vorticity at
mid-span location are given in
Figs·4–6 for J=0, 0.27 and 0.53,
respectively, and the corresponding
sectional streamline plots (seen in the
body-fixed frame oxyz) are given in
Figs·7–9.

For the case of medium flight speed
(J=0.27; β=29°; αm=34°), during the
translatory phase of the downstroke
(τ=0.09~0.41τc), similar to the case of
hovering, both Cl and Cd maintain
large and almost constant values (see
Fig.·3D,E). From Fig.·5B–D (and
Fig.·8A–C), it is seen that during this
period, the LEV does not shed.
Therefore, maintaining the large Cl

and Cd during this period is due to
the delayed stall mechanism. Cl

is approximately 2.1 and Cd

approximately 1.8. Both are larger
than in hovering flight (approximately
1.4 and 1.2, respectively). This is
because during the downstroke of
forward flight, due to the free-stream
velocity, the wing sees a relative
velocity that has a larger magnitude
and a slightly smaller effective angle
of attack (the z′ component of V∞
acting to decrease the effective
angle of attack). During the
translatory phase of the upstroke
(τ=0.59~0.91τc), both Cl and Cd are
much smaller than that of hovering
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Fig.·4. (A–H) Vorticity plots at half-wing length at various times during one cycle (advance
ratio J=0). τ, non-dimensional time; τc, non-dimensional period of one cycle; α, angle of attack
of wing. Solid and broken lines indicate positive and negative vorticity, respectively. The
magnitude of the non-dimensional vorticity at the outer contour is 1 and the contour interval is
1. (A–D), downstroke; (E–H), upstroke.
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flight. This is because during the upstroke, the wing sees a
relative velocity that has a smaller magnitude and a smaller
effective angle of attack (in the upstroke, since the magnitude
of the relative velocity is small, the same z′ component of V∞
causes a greater decrease in effective angle of attack than in

the downstroke). Comparing the streamline plots for J=0.27 in
Fig.·8D–F and that for J=0 in Fig.·7D–F, it is seen that the
streamlines in front of the wing for J=0.27 have a much smaller
angle of attack than that for J=0. From Fig.·5D–F, it is
interesting to see that during the upstroke of forward flight, due

to the smaller effective angle of attack, the
vorticity on the upper surface of the wing is only
a little different from that on the lower surface.

For the case of high flight speed (J=0.53;
β=60°; αm=56°), during the translatory phase of
the downstroke (τ=0.09~0.41τc), even larger Cl

and Cd are maintained. As seen in Fig.·6B–D
(and Fig.·9A–C), the LEV does not shed, and
again, maintaining the large Cl and Cd is due to
the delayed stall mechanism. Because αm is
large in this case (56°), Cd is larger than Cl.
During the translatory phase of the upstroke,
both Cl and Cd are small, for the same reason as
given above for the case of J=0.27. (In
Fig.·9D–F, it is seen that during this period, the
streamlines in front of the wing are almost
aligned with the wing chord, i.e. the effective
angle of attack is very small.)

It should be noted that the effective angle of
attack varies during a downstroke or upstroke.
For example, in Fig.·7 (J=0), during the
downstroke (Fig.·7A–C), the effective angle of
attack is small at the early part of the stroke
(Fig.·7A), and becomes larger in the later part
of the stroke (Fig.·7B,C); the same is true during
the upstroke (Fig.·7D–F). (Similar variation of
effective angle of attack during a down- or
upstroke can be seen in Figs·8, 9). This is
because, as explained in Birch and Dickinson
(2001) and Sun and Tang (2002a), during the
stroke reversal the wing rotation induced a
downwash, which decreased the effective angle
of attack of the wing in the early part of the
following stroke.

The above discussion helps to explain the
negative Cl at the early part of the upstroke in
the cases of higher advance ratios (Fig.·3D,
J=0.27–0.53). At higher advance ratios, β is
relatively large, and so is the ‘downwash’
velocity due to V∞. This ‘downwash’ velocity
together with the induced downwash velocity by
wing rotation makes the effective angle of attack
to be around zero (see Figs·8D, 9D,E), resulting
in the negative Cl.

Finally, we consider the wing drag Cd (see
Fig.·3E). At low and medium flight speeds
(J=0.13, 0.27), in the downstroke, the
magnitude of Cd is larger than that of hovering
(J=0), yet in the upstroke it is slightly smaller
than that of hovering, indicating that the average
of the magnitude of Cd over a flapping cycle is
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Fig.·5. (A–H) Vorticity plots at half-wing length at various times during one cycle
(advance ratio J=0.27). τ is 60°, non-dimensional time; τc is 60°, non-dimensional
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a little smaller than that of hovering. But at high
flight speed (J=0.53), in the downstroke, the
magnitude of Cd is much larger than that of
hovering, and in the upstroke, it is only a little
smaller than that of hovering, indicating that the
average of the magnitude of Cd over a cycle is
much larger than that of hovering. Since the
aerodynamic power is mainly determined by Cd

(the inertial power for Drosophila is relatively
small; Sun and Tang, 2002b), it is foreseen that
the mechanical power at low and medium flight
speeds is a little smaller that of hovering and
increases rapidly at higher flight speeds.

Power required

As shown above, at a given flight speed,
when αm and β were properly chosen, the insect
produced enough lift and thrust to support its
weight and to overcome the body drag,
respectively. We calculated the power required
for production of the above lift and thrust, and
investigated its properties and how it varied
with the flight speed.

As expressed in equation·20 of Sun and Tang
(2002b), the aerodynamic power consists of two
parts, one due to the aerodynamic torque for
translation and the other to the aerodynamic
torque for rotation. The coefficients of these
two torques, CQ,a,t and CQ,a,r, are shown in
Fig.·10A,B (for clarity, only the results for J=0,
0.27 and 0.53 are shown). CQ,a,t is much larger
than CQ,a,r. The CQ,a,t curve is similar in shape
to the Cd curve shown in Fig.·3E, for obvious
reasons.

The inertial power also consists of two parts
(see equation·35 of Sun and Tang, 2002b). The
coefficients of the inertial torques for translation
(CQ,i,t) and for rotation (CQ,i,r) are shown in
Fig.·10C,D. CQ,i,t does not vary with flight
speed since the translational motion of the wing
is the same for all flight speeds. CQ,i,r at J=0.53
is smaller than that at J=0 and 0.13, because at
J=0.53, αm is larger and the angle rotated at
stroke reversal is smaller, thus α.+ is smaller.

With the above results for the aerodynamic
and inertial torque coefficients, the power
coefficients can be computed using
equations·41–43 of Sun and Tang (2002b). The
coefficients of power for translation (CP,t) and
for rotation (CP,r) are plotted against the non-
dimensional time in Fig.·11. Throughout a
flapping cycle, the magnitude of CP,t is much
larger than that of CP,r. CP,t varies with flight
speed in the same way as the wing drag
coefficient Cd does. That is, at low to medium
flight speeds (J=0.13–0.27), the average of CP,t
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Fig.·6. (A–H) Vorticity plots at half-wing length at various times during one cycle
(advance ratio J=0.53). τ is 60°, non-dimensional time; τc is 60°, non-dimensional
period of one cycle; α, angle of attack of wing. Solid and broken lines indicate
positive and negative vorticity, respectively. The magnitude of the non-dimensional
vorticity at the outer contour is 1 and the contour interval is 1. (A–D), downstroke;
(E–H), upstroke.
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over a flapping cycle is a little smaller than that of hovering,
but at high flight speed (J=0.53), the average of CP,t is much
larger than that of hovering. This indicates that the power

requirement at low to medium speeds is a little smaller than
that of hovering, and becomes much larger at higher speeds.

From Fig.·11 it is also seen that at hovering (J=0), CP,t is the
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Fig.·8. Sectional streamline plots at half-wing length at various times during one cycle (advance ratio J=0.27). τ, non-dimensional time; τc, non-
dimensional period of one cycle; α, angle of attack of wing (the spatial interval of the incoming streamlines can be seen from the left or right of
a plot). (A–C), downstroke; (D–F), upstroke.
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Fig.·7. Sectional streamline plots at half-wing length at various times during one cycle (advance ratio J=0). τ, non-dimensional time; τc, non-
dimensional period of one cycle; α, angle of attack of wing (the spatial interval of the incoming streamlines can be seen from the left or right of
a plot). (A–C), downstroke; (D–F), upstroke.
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same during the down- and upstrokes, but at forward flight,
especially at medium and high speeds (J=0.27–0.53), CP,t

during the downstroke is much larger than CP,t during the
upstroke. At J=0.13, 0.27 and 0.53, average values of CP,t over
the downstroke are approximately 1.6, 2.6 and 3.5 times as
much as that over the upstroke, respectively. This indicates that
in forward flight, the flight muscle of the insect must do
significantly more work during the downstroke than during the
upstroke.

Integrating CP,t over the part of a wingbeat cycle where it is
positive gives the coefficient of positive work for translation,
which is represented by C+

W,t. Integrating CP,t over the part of
the cycle where it is negative gives the coefficient of ‘negative’
work for ‘braking’ the wing in this part of the cycle, which is
represented by C–

W,t. Similar integration of CP,r gives the
coefficients of positive and negative work for rotation; and
they are denoted by C+

W,r and C–
W,r, respectively. The results of

the integration are shown in Table·1.
The mass specific power, repressed by P*, is defined as the

mean mechanical power over a flapping cycle divided by the
mass of the insectm, and it can be written as follows:

P* = 0.5ρU3St × (Cw/τc) / m = 9.81U × (Cw/τc) / C̄L,w·,
(10)

where Cw is the coefficient of work per cycle. 
When calculating Cw, one needs to consider how the

negative work fits into the power budget (Ellington, 1984c).
There are three possibilities (Ellington, 1984c; Weis-Fogh,
1972, 1973). One is that the negative power is simply

dissipated as heat and sound by some form of an end stop, then
it can be ignored in the power budget. The second is that in the
period of negative work, the excess energy can be stored by an
elastic element, and this energy can then be released when the
wing does positive work. The third is that the flight muscles
do negative work (i.e. they are stretched while developing
tension, instead of contracting as in ‘positive’ work) but the
negative work uses much less metabolic energy than an
equivalent amount of positive work. In the previous work on
hovering flight (Sun and Tang, 2002b), out of these three
possibilities, Cw was calculated based on the assumption that
the muscles act as an end stop, i.e.:

Cw = C+
W,t + C+

W,r·. (11)

Sun and Tang (2002b) pointed out that for the insect
considered, the negative work is much smaller than the positive
work and Cw calculated by considering the other possibilities
would not be very different from that by Equation·11. This is
also true here, as seen from the values of CW,t– + C–

W,r in
Table·1. Therefore, in the present study, Equation·11 is
employed for calculation of Cw.

The calculated results of Cw are also given in Table·1. With
Cw known, the specific power P* was computed using
Equation·10, and is plotted against flight speed in Fig.·12 (see
the circles in the figure). At J=0.13 and 0.27, P* is only
approximately 10% smaller than that of hovering; at J=0.40,
P* is about the same as that of hovering; but at J=0.53, P* is
approximately 41% larger than that of hovering. As foreseen
above (on the basis of the variation of Cd with flight speed),

Fig.·9. Sectional streamline plots at half-wing length at various times during one cycle (advance ratio J=0.53). τ, non-dimensional time; τc, non-
dimensional period of one cycle; α, angle of attack of wing (the spatial interval of the incoming streamlines can be seen from the left or right of
a plot). (A–C), downstroke; (D–F), upstroke.
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τ=0.75τc, α=124°E
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the power requirement at low to intermediate speeds is
a little smaller than that of hovering, and it increases
rapidly at higher flight speeds.

The case of stroke amplitude and stroke plane angle
varying with flight speed

In the above calculations, the midstroke angle of
attack of the wing αm and the stroke plane angle β were
allowed to vary with flight speed but the stroke
amplitude Φ and stroke frequency n were assumed
constant. In this section, we considered the case in
which the stroke amplitude Φ and stroke plane angle β
were allowed to vary with flight speed but αm and n
were assumed constant. Vogel (1967) observed that the
geometrical angle of attack of Drosophila virilis in
tethered flight did not vary with flight speed, and that it
was between 40° and 50° (see fig.·4 of Vogel, 1967);
here we took αm as 46.5°. (Other parameters were the
same as in the above case.)

For a given flight speed, Φ and β were chosen such
that the lift and thrust balanced the insect weight and the
body drag, respectively. The calculation procedure was
similar to that in the case of αm and β varying with flight
speed (see above).

The calculated C̄L, C̄T, Φ and β as functions of flight
speed or advance ratio are shown in Table·2. It is seen,
as when αm and β vary with flight speed, β increases
almost linearly with flight speed, and in both cases β is
almost the same (compare the β values in Table·2 and
Table·1). Φ is close to that of hovering flight at low
flight speeds (J=0.13, 0.27) but increases to large values
at higher speeds; Φ varies with flight speed in the same
way as αm did in the case of αm and β varying with flight
speed. (As seen Table·2, we again only have results up
to J=0.53. At a higher flight speed, J=0.66, no matter
how Φ and β were adjusted, enough lift could not be
obtained.)

The lift (vertical force) and thrust coefficients (CL and
CT) versusnon-dimensional time for various advance
ratios are shown in Fig.·13B,C. They are similar to their
counterparts in the case of αm and β varying with flight
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Table 2. Mean lift (C
–

L) and thrust (C
–

T) coefficients, stroke amplitude Φ, stroke plane angle β, body angle χ and coefficient of
work per cycleCw as functions of advance ratioJ

J C
–

L C
–

T Φ (deg.) β (deg.) χ (deg.) Cw C+
W,t C–

W,t C+
W,r C–

W,r

0 1.15 0.03 135 0 68 14.09 13.99 –0.99 0.10 –1.98
0.13 1.15 0.04 129 18.5 49.5 12.67 12.56 –0.74 0.11 –1.66
0.27 1.15 0.08 131 34.5 33.5 12.01 11.89 –0.68 0.12 –1.55
0.40 1.15 0.14 145 47 21 13.63 13.49 –0.75 0.14 –1.69
0.53 1.16 0.20 165 53 15 17.57 17.41 –0.97 0.16 –2.05

Φ, β vary with flight speed; αm=46.5°; n=240 s–1 and non-dimensional period τc=8.42.
C+

W,t and C–
W,t, coefficients of positive and negative work for translation, respectively; C+

W,r and C–
W,r, coefficients of positive and negative

work for rotation, respectively.
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speed (see Fig.·3B,C). At low flight speed (J=0.13), both the
down- and upstrokes contribute to the mean lift but
approximately 80% of the mean lift is from the downstroke;
the mean thrust is contributed by the upstroke (the downstroke
has negative contribution). At medium flight speed (J=0.27),

the mean lift is contributed by the downstroke, and the
mean thrust is contributed by the upstroke (the
downstroke has negative contribution). At high flight
speed (J=0.53), the mean lift is contributed by the
downstroke (the upstroke has a small negative
contribution), and the mean thrust is contributed almost
equally by the down- and upstrokes (in the case of αm

and β varying with flight speed, at high flight speed, the
upstroke has relatively large contribution to the mean
thrust).

The wing lift and drag coefficients (Cl, Cw and Cd′)
versusnon-dimensional time for various advance ratios
are shown in Fig.·13D–F, and are also similar to their
counterparts in the case of αm and β varying with flight
speed (see Fig.·3D–F). Using the flow field information
(vorticity contours and streamline patterns around the
wing), it was shown that the mechanisms operating in
the generation of Cl and Cd in the present case were the
same as that in the case of αm and β varying with flight
speed.

The coefficients of power for translation and for
rotation versusnon-dimensional time are shown Fig.·14;
again they are very similar to their counterparts in the
case of αm and β varying with flight speed (see Fig.·11).
At low speed (J=0.13), medium speed (J=0.27) and high
speed (J=0.53), the average values of CP,t over the
downstroke are approximately 1.6, 2.8 and 4.2 times as

large as that over the upstroke, respectively.
The coefficients of work per cycle (Cw), calculated in the

same way as in last section, are shown in Table·2. With Cw,
the specific power P* was computed and the results shown
Fig.·12 (triangles). It is seen that P* in the present case is
approximately the same as that in the case of αm and β varying
with flight speed.

The case of stroke frequency and stroke plane angle varying
with flight speed

In this section, we consider the case in which the stroke
frequency n and stroke plane angle β were allowed to vary with
flight speed (αm and Φ were assumed constant; αm=46.5°,
Φ=150°; other parameters were the same as in the above two
cases).

For a given flight speed, n and β were chosen such that lift
and thrust balance the insect weight and body drag,
respectively. The calculation procedure was similar to that in
the case of Φ and β varying with flight speed).

The calculated C̄L, C̄T, n, β and Cw as functions of advance
ratio are shown in Table·3. (Similar to the above two cases, we
have results up to J=0.53. At J=0.66, no matter how n and β
were adjusted, enough lift could not be obtained.) Comparing
the results in Table·3 (n varying with flight speed) and in
Table·2 (Φ varying with flight speed) shows that n varies with
flight speed in the same way as Φ does in their respective cases.
Note that at each of the advance ratios (or flight speeds)
considered, nΦ is approximately the same for the two cases.
This shows that (in the range of Φ and n considered in the
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present study), the insect can change its Φ or n by
approximately the same percentage to produce a similar change
of aerodynamic force. The reason for this is obvious: the

aerodynamic force is approximately proportional to the square
of the translational velocity of the wing, which is proportional
to nΦ.
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Table 3. Mean lift (C
–

L) and thrust (C
–

T) coefficients, stroke frequencyn (and non-dimensional period τc), stroke plane angle β,
body angle χ and coefficient of work per cycle Cw as functions of advance ratioJ

J C
–

L C
–

T n (s–1) τc β (deg.) χ (deg.) Cw C+
W,t C–

W,t C+
W,r C–

W,r

0 1.14 0.02 216 9.32 0 68 15.54 15.49 –0.52 0.05 –1.17
0.13 1.14 0.06 208 9.72 18 50 14.87 14.81 –0.39 0.06 –0.99
0.27 1.15 0.08 210 9.58 31 37 14.03 13.98 –0.28 0.05 –0.79
0.40 1.16 0.15 232 8.68 46 22 14.29 14.21 –0.29 0.08 –0.85
0.53 1.14 0.19 264 7.62 58 10 15.44 15.26 –0.36 0.18 –1.00

n, β vary with flight speed; αm=46.5°; Φ=150°.
C+

W,t and C–
W,t, coefficients of positive and negative work for translation, respectively; C+

W,r and C–
W,r, coefficients of positive and negative

work for rotation, respectively.
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The specific power P* is given in Fig.·12 (see the squares
in the figure). P* is almost the same as that in the other two
cases.

An additional case

In the above analyses, we considered three cases where αm,
β, Φ and n varied with flight speed. In the first case, αm and β
varied with flight speed and Φ and n were constant (Φ=150°,
n=240·s–1); in the second case, Φ and β varied with flight speed
and αm and n were constant (αm=46.5°, n=240·s–1); in the third
case, n and β varied with flight speed and αm and Φ were
constant (αm=46.5°,Φ=150°). In all the three cases, when the
advance ratio was increased to J=0.66 (V∞=2.5·m·s–1), enough
lift to balance the weight could not be obtained. For reference,
we conducted an additional calculation at J=0.66, in which Φ,
αm and β could be adjusted (n fixed as 240·s–1).

It was shown that when Φ=160°, αm=71° and β=70°, the lift
and thrust balanced the weight and the body drag, respectively.
The thrust coefficient CT was 0.27; the body angle χ was –2°.
The specific power P* was included in Fig.·12 (see the dot in
the figure); it is about three times as large as that of hovering,
and it is believed that the insect does not fly at such a speed
for flights of long duration.

Comparisons between the present results and previous data

LEV and delayed stall mechanism in forward flight

Flow visualization on tethered hawkmoth (Ellington et al.,
1996; Willmott et al., 1997) showed that even at high speeds,

when the wing traveled a large distance during
downstroke (more than 6 chord lengths), the LEV did not
shed in the translatory phase of the stroke. In the present
work, we show that this also true for the model fruit fly
wing. At high speeds (J=0.53, 0.66), a wing section at
half-wing length travels approximately 6.5 chord lengths
during downstroke and the LEV did not shed. Here, chord
lengths travelled during downstroke, Λd, is approximately
estimated by the following formula:

Λd = 0.5ΦR/c+ V∞cosβ/2nc = 0.5ΦR/c+ JcosβΦR/c·.
(12)

For example, using data of the model fruit wing (Φ=150°,
R/c=3), when J=0.53 and β=53°, Λd is 6.6.

The present results complement the flow visualization
on the hawkmoth in two ways. One is that the wings of
the hawkmoth and that of the fruit fly operated at Reynolds
numbers of about 4000 and 100, respectively, and the
Reynolds number of most insects are between these two
values; this indicates that the delayed stall mechanism
applies to most insects in both hovering and forward flight.
The other is that the flow visualization pictures for the
tethered hawkmoth were not so clearcut because of the
difficulty in obtaining good flow visualization near the
wings of the insect, but the present CFD-visualized LEV
was clear. [Liu et al. (1998) presented CFD-visualized
LEV on a model wing of the hawkmoth, but only for the
case of hovering flight.]

The aerodynamic and energetic roles of the down- and
upstrokes

Dudley and Ellington (1990a,b) systematically studied the
kinematics, lift and power requirements of forward flight in
bumblebees. On the basis of wing kinematics and quasi-
steady aerodynamic theory, they demonstrated that the
downstoke progressively became more important in
production of the lift (vertical force) as flight speed increased.
They considered that quantitative treatment of the relative
contributions to the thrust generation of the downstroke and
upstroke was not possible at the time, because the condition
of horizontal force balance could not be satisfied in the
analysis. In a subsequent paper by Ellington (1995), on the
basis of a further analysis of the data from Dudley and
Ellington (1990a), it was demonstrated that, as the advance
ratios increased, the downstroke would increasingly dominate
weight support, and that the upstroke contributed thrust at all
speeds but its contribution decreased with increasing forward
speed, a trend that was offset by an increasing thrust
component from the downstroke force.

The present results on the aerodynamic roles of the down-
and upstrokes of the Drosophila virilis in forward flight are in
agreement with those of bumblebees by Dudley and Ellington
(1990a,b) and Ellington (1995), although the results for
bumblebees were based on steady-state aerodynamic analysis.

In previous studies on power requirements of forward flight
of insects, to the author’s knowledge, the relative contributions
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to the mechanical power of the downstroke and the upstroke
were not mentioned (only the mean power over a flapping
cycle was presented). The present study (see Figs·11, 14)
showed that although in hovering with a horizontal stroke
plane the work done in the downstroke was the same as that in
the upstroke, in forward flight, even at low flight speed, the
work done in the downstroke was considerably more than that
done in the upstroke. In the case of β and Φ varying with flight
speed, at advance ratios J=0.13, 0.27 and 0.53, the work done
in the downstroke was approximately 1.6, 2.8 and 4.2 times as
much as that in the upstroke.

Graph of mechanical power against flight speed
approximately J-shaped

The measured oxygen consumption of bumblebees and a
hummingbird in forward flight showed little dependence of
metabolic power on speed from hovering to intermediate
speeds, and for the hummingbird, a sharp increase at higher
speeds (measurement for bumblebees at higher speeds are not
available; for a review, see Ellington, 1991). If the muscle
efficiency of the animals is assumed constant over various
speeds, the mechanical power would vary with speed
according to a J-shaped curve (Ellington et al., 1990;
Ellington, 1991).

From results of the present study, this is approximately true
for fruit fly Drosophila virilis. As illustrated in Fig.·12, at
hovering, the body mass-specific power P* is approximately
29·W·kg–1; at J=0.13 and 0.27, P* is only approximately 10%
less than that of hovering; at J=0.4, P* is almost the same as
that of hovering; but when J is furthered increased, P* has a
sharp increase (at J=0.53, P* is approximately 40% larger
than that of hovering, and at J=0.66, P* is approximately
150% larger than that of hovering). That is, the graph of the
specific power against flight speed is approximately J-
shaped.

Speed for fast flight

From Fig.·13, it is seen that at J=0.4, the power is a little
larger than that at lower speeds and is almost the same as that
of hovering, and afterwards the power increases sharply. This
indicates that the insect would usually fly at advance ratios
between 0 and 0.4, and that for fast flight, it would fly at an
advance ratio around 0.4. (Flying at higher advance ratios
would be very energy-demanding.) No data are available for
Drosophila virilis in free forward flight; there exist some
data for Drosophila melanogaster, however. Ennos (1989)
observed D. melanogasterflying at J=0.33. Marden et
al. (1997) showed that the upper limit of D. melanogaster
flight speed was around 0.85·m·s–1. The corresponding
advance ratio is around 0.32, estimated using the measured
(Ennos, 1989) stroke angle (150°) and stroke frequency
(254·s–1) of free flying D. melanogaster(wing length
R=2·mm). David (1978) recorded a maximum advance ratio
of about 0.4 for D. melanogaster in experimental setting.
The present computed results are consistent with these
observations.

List of symbols
c mean chord length
Cd wing drag coefficient
Cd,′ x′-component of the wing drag coefficient
Cl wing lift coefficient
CL lift coefficient
C̄L mean lift coefficient
C̄L,W mean lift coefficient for supporting the insect 

weight
CP,r coefficient of power for rotation 
CP,t coefficient of power for translation
CQ,a,r coefficient of aerodynamic torque for rotation
CQ,a,t coefficient of aerodynamic torque for 

translation
CQ,i,r coefficient of inertial torque for rotation
CQ,i,t coefficient of inertial torque for translation
C̄T mean thrust coefficient
Cw coefficient of work per cycle
C+

W,r coefficient of positive work for rotation
C–

W,r coefficient of negative work for rotation
C+

W,t coefficient of positive work for translation
C–

W,t coefficient of negative work for translation
d wing drag
d′ x′-component of the wing drag
J advance ratio
l wing lift
L lift
m mass of the insect
n flapping frequency
O, o′, o origins of the two inertial frames of reference 

and the non-inertial frame of reference
p non-dimensional fluid pressure
P* body mass-specific power
r2 radius of the second moment of wing area
R wing length
Re Reynolds number
S area of one wing
St area of a wing pair
t time
T thrust
ut translational velocity of the wing
ut

+ non-dimensional translational velocity of the 
wing

U reference velocity
Um midstroke translational velocity of wing (or 

maximum ofµ)
U+m maximum of ut

+

V∞ free-stream velocity
X, Y, Z coordinates in inertial frame of reference (Z in 

vertical direction)
x′, y′, z′ coordinates in inertial frame of reference (z′

perpendicular to stroke plane)
x, y, z coordinates in non-inertial frame of reference
α geometric angle of attack
αm midstroke geometric angle of attack
α. angular velocity of pitching rotation
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α.+ non-dimensional angular velocity of pitching 
rotation

α.0+ a constant
β stroke plane angle
∆τt duration of deceleration/acceleration around stroke 

reversal (non- dimensional)
∆τr duration of wing rotation or flip duration (non-

dimensional)
Λd chord lengths traveled by a wing section at half-

wing length during downstroke
ν kinematic viscosity
ρ density of fluid
τ non-dimensional time
τ0 time when a stroke starts (non-dimensional)
τ1 time when translational deceleration starts (non-

dimensional)
τr time when pitching rotation starts (non-

dimensional)
τc period of one flapping cycle (non-dimensional)
Φ stroke amplitude
φ azimuthal or positional angle 
φ
.

angular velocity of azimuthal rotation
φ
. + non-dimensional angular velocity of azimuthal 

rotation
χ body angle
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