
The problems in understanding bird flight aerodynamics

A complete, correct and/or detailed understanding of the
aerodynamic mechanisms of importance in bird flight is
complicated immensely by a number of factors. The most basic
problem is that flight speeds are sufficiently slow (typical
values for the mean forward speed, U, may range from
1–20·m·s–1) and the length scales are sufficiently small (mean
chord, c, ranging from 1–10·cm), that the effects of viscosity
are not ordinarily negligible. This fact can be written more
formally by calculating a characteristic value for the
dimensionless Reynolds number, 

Re = Uc/ν , 

where ν is the kinematic viscosity. For U=10·m·s–1 and
c=5·cm, Re≈3×104. This is an extremely inconvenient number.
It lies well below typical values of 106 for small planes where
viscous effects can safely be presumed to be restricted to thin,

attached boundary layers, and it lies well above characteristic
values of 102 where the flow over the body and in any wake
is laminar and well-organised. On the contrary, even at
moderate angles of attack, the flow over well-designed
aerofoils veers notoriously between separated and non-
separated states, with dramatic differences in mean and
instantaneous force coefficients as a result. Over and above
treatments found in standard aerodynamics texts, one must also
account for the fact that in animal flight the wings themselves
are moving relative to the body, and furthermore that they are
not rotating steadily like a propeller, but are beating up and
down, accelerating and decelerating with each cycle. To this
one adds the effects of flexible wing surfaces that not only have
complex geometric descriptions, but also significantly change
their shape during the wing beat cycle. Although it is
straightforward to compile long lists of complicating factors,
it is not clear which of them are important, and why and when.
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In view of the complexity of the wing-beat kinematics
and geometry, an important class of theoretical models
for analysis and prediction of bird flight performance
entirely, or almost entirely, ignores the action of the wing
itself and considers only the resulting motions in the air
behind the bird. These motions can also be complicated,
but some success has previously been recorded in
detecting and measuring relatively simple wake
structures that can sometimes account for required
quantities used to estimate aerodynamic power
consumption. To date, all bird wakes, measured or
presumed, seem to fall into one of two classes: the closed-
loop, discrete vortex model at low flight speeds, and
the constant-circulation, continuous vortex model at
moderate to high speeds. Here, novel and accurate
quantitative measurements of velocity fields in vertical
planes aligned with the freestream are used to investigate
the wake structure of a thrush nightingale over its entire
range of natural flight speeds. At most flight speeds, the

wake cannot be categorised as one of the two standard
types, but has an intermediate structure, with
approximations to the closed-loop and constant-
circulation models at the extremes. A careful accounting
for all vortical structures revealed with the high-
resolution technique permits resolution of the previously
unexplained wake momentum paradox. All the measured
wake structures have sufficient momentum to provide
weight support over the wingbeat. A simple model is
formulated and explained that mimics the correct,
measured balance of forces in the downstroke- and
upstroke-generated wake over the entire range of flight
speeds. Pending further work on different bird species,
this might form the basis for a generalisable flight model.
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Mechanical or numerical models that slavishly mimic each
property lack generality while elegantly simplified analysis
might simply be irrelevant.

Describing fluid motions by the vorticity field

An attractive alternative to measuring or predicting
aerodynamic forces on odd-shaped bodies with high-
amplitude, unsteady motions is to investigate instead the air
motions in the wake that are caused by the body (the term
‘body’ here is used in the general sense to mean solid body,
and it includes all wings and appendages). It is frequently
convenient to describe fluid motion by its vorticity ω,

ω = ∇× u·, (1)

where u is the velocity vector. Both ω and u are vector fields,
and ω is a measure of the direction and magnitude of the local
rotation in a fluid; it is exactly twice the local angular velocity.
Textbooks such as Batchelor (1967, p. 92) and Lighthill (1986,
p. 43) speak clearly and elegantly about the analysis and
description of fluid motions in terms of the vorticity. Here, we
note that a non-zero component of vorticity accompanies any
shearing motion in a fluid, and so a description of u in terms
of ω is not only convenient mathematically, but is also directly
connected to the mechanical strain deformations associated
with work being done on the fluid particles. 

A further mathematical convenience is to speak of vortex
lines, which are three-dimensional curves along which |ω| is
constant. In a homogeneous fluid without viscosity, there are
restrictions on how vortex lines can be arranged and, if and
when the vortex lines are collected in simple groups or clusters,
then a description of the fluid motion in terms of its vortex lines
can be quite economical. The strength of a vortex is measured
by its circulation,

Γ = ∫ω.dS·, (2)

which is the vorticity integrated over a material surface, S.
When the vortex geometry is simple, then identification of
a suitable surface is simple also, and in aerodynamics
applications, Γ can be related quite readily to integrated or
localised forces on the wing.

Applying these methods to the aerodynamic analysis of bird
flight holds out the promise of replacing a very large and
intricate computation, involving highly unsteady motion of
very complex geometries, with a much simpler description of
the distribution of wake vorticity. The unsteady forces on the
wings themselves are either inferred or ignored as mechanical
and energetic quantities are calculated directly from the wake
footprint which, by Newton’s laws, must contain the integrated
history of the forces exerted by the body on the fluid. In
particular, the kinematics of the wings themselves are
important only in so far as they produce a certain disturbance
in the wake.

The basis for theoretical models of bird wakes

Are bird wakes actually composed of simple collections of
vortex lines? The first and most well-known of the mechanical

models of bird flight is the actuator disc model, expounded by
Pennycuick (1968a, 1975) and others. Here the bird is entirely
replaced by an idealised circular disc, which acts to accelerate
air across it, and deflect it downwards. Implicitly the wake
is indeed composed of collections of vortex lines, as the
uniformly accelerated flow is separated from the unaffected
ambient by a tube of circular cross-section, composed of all of
the vortex lines in the otherwise undisturbed flow. The
simplicity is extreme, but has made it the most widely used and
robust of calculation methods in use today (e.g. Pennycuick,
1989). Some context and consequences of the actuator disc
modelling strategy are considered in Spedding (2003). Note
that since the kinematics of the beating wings have been
disposed of entirely, the model can have little to say about the
consequences of variation in wingbeat amplitude, frequency or
cyclic variations in planform geometry – all topics of potential
interest. Moreover, the infinite tube is unlikely to be a very
close approximation of the actual wake.

The first serious attempt to construct an aerodynamic model
of bird flight based on a realistic wake structure was by Rayner
(1979a–c), who proposed that each wingbeat was only
aerodynamically active on the downstroke. The starting and
stopping vortices produced at the beginning and end of this
downstroke were connected by a pair of trailing vortices shed
from the wingtips, and so the wake was composed of a series
of vortex rings, or more accurately, elliptical loops. This
sounds deceptively simple, and the process cartooned in Fig.·1
gives some indication of the assumptions required and likely
complexities.

The vortex ring model was entirely theoretical, having
no experimental support, although it clearly represented an
improved picture from the old vortex tube, and was argued
from reasonable grounds. It received independent support in
experimental work published that year by Kokshaysky (1979),
who showed that cross-sections through clouds of sawdust in
the wakes of small passerines revealed ring-like structures,
with one shed per wingbeat. The technique was not a
quantitative one, however, and so certain critical quantities
such as wake momentum and energy could not be verified. The
vortex ring model received further support in quantitative
reconstruction of three-dimensional tracks traced by clouds of
neutrally buoyant, helium-filled soap bubbles for pigeons in
slow (U=2.4·m·s–1) flight (Spedding et al., 1984), and for a
jackdaw in similar conditions (U=2.5·m·s–1; Spedding, 1986).
In both cases, however, the measured wake momentum was
insufficient to provide weight support, and it was tentatively
concluded that some as yet unidentified complexities in the
wake structure or its measurement were responsible for this
seeming paradox, which has remained unresolved.

Unexpectedly, experiments with the same apparatus on
kestrel flight at moderate (U=7·m·s–1) speeds (Spedding,
1987b) showed no wake momentum deficit and no vortex rings
either. Instead of discrete loops separated by aerodynamically
inactive upstrokes, two continuous undulating vortex tubes
were found, one trailing behind each wingtip, and without
strong concentrations of starting or stopping vortices cross-
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linking the two. The measured circulation of the shed vortices
was the same on down- and up-strokes, supporting this
interpretation, and a net thrust was achieved by the variation
in wake width due to flexion of the primary feathers during the
upstroke. A cartoon of a constant-circulation wake model is
shown in Fig.·2. This was a qualitatively new kind of wake
structure, and while vortex rings might seem like a favourable
configuration because they convey the maximum momentum
per unit kinetic energy, the constant-circulation wake would
also appear to be advantageous in minimizing the shedding of

cross-stream vorticity. (The cross-stream vorticity is not
absent, but occurs in the curvature of the downstroke trailing
vortices.) In order to generate net thrust some variation in
impulse must occur, but it is through varying the wing
geometry, and not through varying the circulation on the
remainder of the wing that continues to take part in the
aerodynamics. These results were originally described in a
thesis (Spedding, 1981), and the same experimental apparatus
was subsequently used to visualise wakes of noctule bats, but
without quantitative measurements (Rayner et al., 1986). At
slow speeds (1.5, 3·m·s–1), the bubble tracks were interpreted
to be tracing discrete rings or loops, while at higher speeds
(7.5·m·s–1) the patterns seemed closer to the constant-
circulation geometry seen in the kestrel.

Other than isolated photographs in review-type articles or
books (e.g. in Norberg, 1990; Rayner, 1991a,b; Spedding,
1992), this remains the sum total of experimental evidence on
the structure of vertebrate wakes in flapping flight. There are
some obvious gaps to fill; for example, on how it is that wake
patterns transition from one form to another. Spedding (1981,
1987b) cautioned against interpolating between only two data
points, but speculated that intermediate wake forms between
constant-circulation and closed-loop wakes might involve the
gradual increase in strength of cross-stream vortices, as shown
in Fig.·2. Rayner (1986, 1991a,b, 2001), on the other hand, has
proposed that all bird wakes must be either one of the two

Fig. 1. The generation of a single, closed-vortex loop during a
downstroke can, in principle, lead to a simple wake model geometry.
The bird body (which has no aerodynamic significance) is
represented by a stick supporting the wings. The assembly moves at
constant speed, U. As the wings accelerate at the beginning of the
downstroke (A), they shed vorticity into the near wake, which rolls
up as a concentrated starting vortex. During the downstroke (B), the
starting vortex remains connected to the two wingtip vortices, which
elongate as the downstroke progresses. At the end of the downstroke,
the wings decelerate, shedding vorticity into the wake along the
trailing edge, and then vanish (C), taking no further part in the
aerodynamics until they reappear at the beginning of the next
wingbeat. The hypothetical deformed loop left at C then relaxes into,
or can be modelled by, a planar ellipse, and the idealised model wake
(D) is composed of a sequence of these, separated by spaces left by
the inactive upstroke. Although this wake-generation mechanism is
ostensibly simple, the details are not, and numerous assumptions
about the formation, shedding and subsequent roll-up of vortex lines
or tubes with complex curvature are built in. I, wake impulse;
circular arrows indicate the local sense of rotation of the induced
flow.
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Fig. 2. Constant-circulation wake. In (A), the effect of the (invisible)
bird moving at speed U is to leave behind a pair of undulating
vortices with constant circulation (Γ1=Γ2=constant), in which case
potential cross-stream vortices denoted by broken lines have zero
strength. Here the geometry is simplified for convenience so the
wake appears as if the downstroke and upstroke portions were
approximate ellipses and rectangles, respectively, as drawn in (B).
Although the actual geometry assumed in most models (e.g. Rayner,
1986; Spedding, 1987b) is slightly more complicated, the
fundamental principle remains that the wake impulse (I) from both
down- and upstrokes points upward, contributing to lift, and hence
weight support. Because the wingspan is reduced on the upstroke,
the projection of area S1 onto a vertical plane will be larger than that
of S2, and so the net impulse of the whole wake is forward,
generating thrust. 
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forms (closed-loop or constant-circulation) and that these
constitute two separate gaits, analogous in some respects to
terrestrial gaits, of horses, for example.

Current status

To date, there have been no quantitative data on bird wakes
at more than one particular flight speed for the same individual
or species. Furthermore, all existing quantitative studies are
based on the three-dimensional bubble-cloud seeding technique,
where large parts of the overall wake volume can be
simultaneously observed, but at the expense of rather low spatial
resolution. Typically, 2500 bubble traces were recorded over a
volume of approximately 600·mm×600·mm×400·mm (numbers
from Spedding et al., 1984; Spedding, 1986), which is equivalent
to a mean inter-bubble spacing of 27·mm in each direction,
comparable to mean core radii of 35·mm and 30·mm for the
vortex rings observed in the pigeon and jackdaw experiments,
respectively. The inconsistent quantities at slow flight speeds
could have been caused by structural details whose presence
would only be discernible at higher resolution, and the
assumptions forced upon the experimental analysis by the
limited spatial resolution might closely reflect assumptions in the
model under test, thereby rendering the test non-independent.
Recalling the first part of this introduction, one might be
especially wary when Reynolds numbers are in the range where
quite disorganised and turbulent motions might be anticipated at
small scales (of the order of a core radius), and in some cases at
large scales (of the order of a mean chord, c) too.

Objectives

This paper reports on the results of an extensive series of
experiments in measuring bird wakes over a continuous range
of flight speeds in a low-turbulence wind tunnel. The
measurement technique has been customised extensively for
this particular application and offers improvement in spatial
resolution by a factor of 10 and a similar improvement in
accuracy of estimation of velocity fields and their spatial
gradients. A companion paper (M. Rosén, G. R. Spedding and
A. Hedenström, in preparation) describes the detailed wing
kinematics of the same bird flying under the same conditions,
allowing connections between the wingbeat and wake structure
to be deduced. Here the motion of the wings themselves is
ignored almost entirely, and we focus on a correct
reconstruction of the most likely three-dimensional wake
structure. Qualitative and quantitative changes in wake
structure with flight speed will be presented. At most flight
speeds, the wake is dissimilar to those previously reported and
the consequences will be discussed.

Materials and methods
The experiment

The experiment and its data analysis methods are quite new,
and their design, implementation, validation and performance
analysis are given in some detail in Spedding et al. (2003). A
brief summary only will be given here.

Apparatus and bird training

Experiments were carried out using a closed-loop, low-
turbulence wind tunnel designed for bird flight experiments
(Pennycuick et al., 1997), and the general setup is shown in
Fig.·3. Four juvenile thrush nightingales Luscinia lusciniaL.
were caught in southern Sweden on migration in August 2001,
and brought to the wind tunnel aviary in Lund. After a period
of acclimatization, daily flight training began, and soon
revealed that two, and eventually one, bird would fly for
prolonged periods in the test section. The bird was trained to
sit on a perch that could be lowered for take-off and flight, and
raised before landing. The bird was trained to fly at a position
near the centre of the test section in low light conditions with
an upstream luminescent marker as the sole reference point.
The training was prolonged and rigorous, beginning more than
2 months prior to experiments, and progressing in conditions
that gradually resembled the experiment, beginning with low
ambient light conditions, and eventually to the introduction and
maintenance of fog particles and occasional bursts of high
intensity laser light.
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Fig. 3. The bird (tn) is trained to fly at constant speed, U, the
independently controlled speed of the wind tunnel. Two Stanford DG
535 delay generators (dg1,2), configured to run off a single crystal
base timing clock, generate synchronised timing pulses to control the
dual-head Nd:YAG (pl) laser output flash timing (ta) and the
asynchronous reset (tb) for the two CCD array cameras (tm1,2). The
timing of the reset pulses is determined by the mean speed, U, and by
the downstream displacement of tm2 from tm1, and is designed to
remove the mean flow from the measured displacement field. Digital
images are acquired at independent interface cards (ic1,2) and
transferred directly to PC RAM. The laser timing pulses are gated
(gb) with the summed output from an array of LED-photodiode pairs
so that if any one or more beams are interrupted by the bird, laser
output stops. (Modified from Spedding et al., 2003.)
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The laser was a Quanta Ray PIV II, dual head Nd:YAG from
Spectra Physics, with a maximum flash intensity of
200·mJ·pulse–1, although it was used mostly at about 120·mJ.
The timing between pulses in a pulse-pair can be as little as
1·ns. Settings of 100–500·µs were used in all experiments
reported here. The double-pulsed laser beam was spread into
a planar sheet by a sequence of converging and then two
cylindrical lenses, before reflecting off a 45° inclined front
surface mirror into the test section through a clear Plexiglass
panel (Fig.·3).

A vertical grid of infrared LED-photodiode pairs was
arranged so that if any beam was interrupted by the bird, the
laser pulses would be automatically suspended. The flight
speed, U, varied between 4 and 11·m·s–1, air density was
1.17–1.25·kg·m–3 and the temperature 16–20°C. From
previous wind tunnel calibration data, turbulence intensities
were calculated to be <0.06% of U in the speed range used
(Pennycuick et al., 1997). These levels are too low to be
measured directly by digital particle image velocimetry
(DPIV) methods themselves (see Spedding et al., 2003).

Tables 1 and 2 give some basic morphological data together
with some common aerodynamic performance measures for
this experiment.

Wind tunnel corrections

The bird is small compared with the wind tunnel test section,
and interactions with the side walls can be ignored. This can
be demonstrated with a simple lumped vortex model of a thin
airfoil (Katz and Plotkin, 2001, p. 119), from which one can
write an expression for the modified lift, L′, due to presence of
solid boundaries in a confined duct of heighth:

The magnitude of the correction is negligible (<10–2) for all
values of c/h ≤0.2, which is true even when the span, 2b, is
taken as a length scale. This criterion perhaps should be taken
as a lower limit, because possible proximity of the wake to
the tunnel walls at the measuring station is of equal
importance. In fact, it will be seen that the wake growth rates
in both the y (spanwise) and z (vertical) directions were
interestingly low, and corrections based on subsequently
measured wake widths at the measuring station did not exceed
2×10–2 (2%).

Analysis

Properties of Correlation Imaging Velocimetry (CIV)

The two laser pulses were imaged onto two Pulnix
TM9701N full-frame transfer CCD array cameras, in
upstream-downstream sequence. The digital image pairs
(768×484×8·bits) were analysed using a custom variant of
standard DPIV methods, known as Correlation Imaging
Velocimetry (CIV). The collection of CIV techniques is
described in detail in Fincham and Spedding (1997). CIV was
developed to maximise the accuracy of estimation of very
small particle displacements, regardless of computational cost.
Arbitrary sized and shaped cross-correlation boxes can be
defined and are completely decoupled from the similarly
arbitrarily defined search domain. No FFTs (Fast Fourier
Transforms) are used in the computation, and sub-pixel
displacements can be estimated to 1/50th pixel in the best case.
In practice, one can expect 1/20th pixel uncertainty. When
mean pixel displacements are 5·pixels, the uncertainty is
approximately 1%, and the velocity bandwidth is 1:100. In
order to profit from the advanced numerical techniques it is
essential to properly control/select the value of the timing
interval, δt, between exposures of the two images in a pair. In
this two-camera variant, δt is partly determined by the mean
flow and camera separation so that the mean displacement field
is zero. δt is then tuned, on top of this value, to ensure that
disturbance quantities (i.e. displacements due to the bird wake)
fill out the range of displacements up to 5·pixels. Constraints
on this calculation are the three-dimensional, cross-plane
motion in the wake, and the light sheet (or slab) thickness,
which is set to between 3–4·mm.

Customisations for bird flight measurements

Because the two successive images come from two separate
cameras, there are extra distortions introduced by having two
different lenses and two slightly different (unavoidably, within
the manufacturing tolerances of the cameras) camera
geometries, effective focal lengths and optical axis
orientations. An extensive series of tests (described in
Spedding et al., 2003) with test backgrounds of pseudo-
particles and pseudo-displacement fields, allowed the CIV
calculations themselves to be used to compute a mean
distortion field at the same, or higher, resolution as the
experimental data. The test or residual fields can be stepwise
ramped up in complexity, from stationary object to fixed
displacement, to moving object, to wind tunnel background

(3)
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Table·1. Morphological data for Luscinia luscinia

Mean 
Units value Uncertainty

Semispan b cm 13.1 0.5
Wing area S cm2 126 5
Mean chord c cm 4.8 0.2
Aspect ratio AR 5.4 0.3
Body mass m g 30.5 0.5
Wing loading Q N·m–2 24 0.6

Table·2. Dimensionless numbers at low and high flight speeds

Flight speed
U (m·s–1)

4 11

Reynolds number Re=Uc/ν (×104) 1.3 3.5
Reduced frequency k=πfc/U 0.53 0.19

c, mean chord; ν, kinematic viscosity; f, wingbeat frequency.



2318

flow. Finally, in the last stage, the flying bird is added to the
set-up, and only differences between this case and the
background flow are computed. Thus, the effects of optical
misalignments and distortion are automatically compensated
for, and the CIV calculation bandwidth is focused entirely on
the wake displacement field due to the presence of the bird and
its beating wings.

The disturbance displacement fields are calculated with
20–24·pixel correlation boxes, overlapping by 50% to yield
pixel displacements on a nominally rectangular 58×54 grid,
with aspect ratio one, and resolution of approximately
δ=3.5·mm. Note that δ is comparable to the light sheet
thickness, which governs the averaging distance normal to the
plane. The sampling volume is thus roughly cubical. This field
is corrected for the finite displacement of the source correlation
box and the flow is reinterpolated onto a grid with the same
dimensions, using a two-dimensional, thin-shell smoothing
spline. Adjustment of the smoothing parameter allows certain
nonphysical displacement errors (if present) to be removed.
The smoothing parameter is equivalent in the spline
formulation of specifying a non-zero viscosity for the fluid (for
details, see Spedding and Rignot, 1993), and does not involve
any neighbourhood-averaging, which would be guaranteed to
underestimate peak gradient quantities. Spatial gradients are
calculated directly from the spline coefficients without
recourse to further smoothing or averaging.

The analysis is performed in a frame of reference moving
with the mean speed, U, and u, v and w are velocity
components in the streamwise (x), spanwise (y) and vertical (z)
directions in this reference frame. (This choice of coordinate
system reflects the most common one for aerofoil or aircraft
analysis, where y is almost always a spanwise location.) Data
were taken in vertical planes aligned with the freestream. The
bird would sometimes take up slightly different positions in y,
or would drift slowly. With the position of the light slice fixed,
its location relative to the bird could be checked from standard
video images taken by a camera downstream of the test section.
Silhouettes of the bird were visible against the bright vertical
stripes of the over-exposed laser sheet image. The slice
positions were categorised as centre/body, left/right midwing,
left/right wingtip and left/right outer field, as illustrated in
Fig.·4. All data described in this paper come from vertical
slices at centre/body, left midwing and left wingtip. (Data from

left and right wings did not differ, and there were many fewer
right wing data runs as they represent unusually large
departures from the standard position for the bird.)

Safety considerations required the leftmost point of the data
(governed by the left margin of the right camera image, which
was determined by the light sheet fan-out and x-location) to be
approximately 84·cm downstream of the bird. The wake left
behind during the course of a wingbeat extends downstream
by a distance xc=Utc, where tc is the evolution time of this wake
segment. So, if that time is a wingbeat period, T, then a wake
wavelength, λ is

λ = UT·. (4)

The wingbeat frequency changes rather little as U ranges from
4–11·m·s–1 (M. Rosén, G. R. Spedding and A. Hedenström, in
preparation), so λ increases steadily with increasing U. The
downstream measuring location is 2–3λ at U=4·m·s–1, and only
1λ at U=11·m·s–1.

Quantitative analysis and wake-specific measurements

In each vertical slice, we have velocity components u and w
as functions of x and z. These can be argued to be the most
interesting components: since w is parallel to the gravitational
vector, g, it describes the momentum changes and forces that
counteract g. Similarly, variations in u are directly related to
the fore–aft forces on the bird, which are the drag and thrust,
opposed to, and aligned with the direction of motion. From the
data the only measurable component of vorticity (Equation·1)
is the spanwise vorticity ωy, normal to the plane of the light
slice,

The y subscript will occasionally be dropped for clarity. Since
it is primarily maps of ωy(x,z) that will be used to describe
the wakes, it is very important to estimate this quantity as
accurately as possible and to know the likely uncertainty. A
usual rule of thumb for reasonable (and credible) estimates of
uncertainty in gradient quantities in fluid flows of moderate
complexity is ±10%. For rather more rigorous and quantitative
statements of the likely uncertainties in application of the CIV
method, see Fincham and Spedding (1997). Here, the extra
care taken in isolating the disturbance field (which contains
all the vorticity), and in saturating the measurement
bandwidth through appropriate choice of δt, gives a likely
uncertainty in ωy of ≤5%. This is discussed in detail, with
evidence from extensive control experiments, in Spedding et
al. (2003).

The predicted maps of ωy(x,z) for ideal vortex loop and
constant-circulation models (Figs·1 and 2) are shown in Fig.·5.
Vertical cuts through a vortex loop should show two vortex
cross-sections of equal strength for all vertical cuts except
those at the wingtip, where disturbances on top of the
streamwise vortices might be visible. By contrast, centreplane
cuts through the constant-circulation wake should show almost
nothing at all. Moving away from the centreline, cuts through

(5)
∂w

∂x

∂u

∂z
ωy = − .
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Fig. 4. Classification of all spanwise locations by character code
(bottom) and the three named categories appearing in this paper,
centre/body (lr) , midwing (lx) and wingtip (ly).
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the upper and lower curved branch of the trailing downstroke
vortex should be seen. The wingtip pattern will look much the
same as for the closed-loop.

When and if the data do not conform to simple predicted
geometries, the main challenge is in performing the inverse of
Fig.·6, deducing the most likely three-dimensional structure
based on stacks of two-dimensional slices. It is not impossible
to do this, partly because of a classical result in mathematics
due to Helmholtz, showing that in a homogenous field/fluid,
objects such as vortex lines must either terminate at a boundary
or form closed loops on themselves. When combined with the
symmetry of the wing and body geometry and of the normal
wingbeat kinematics, this quite strongly constrains (i) the
number of possible vortex wake topologies that could plausibly
be produced, and (ii) the number of self-consistent

interpretations of limited data, such as vertical centreplane
slices, or stacks of slices from centreline to wingtip. If, for
example, in Fig.·5A the peak value, or integrated magnitude,
of the cross-section contours of spanwise vorticity changes
from slice to slice, then some component of streamwise
vorticity must exist to account for the difference. If, on the
other hand, the diagnostic values do not change within
measurement uncertainty, then the most parsimonious
explanation is that the cross-sections are passing through a
single structure that intersects both measurement planes. It is
the application of this reasoning that allows iterative testing
and re-evaluation of postulated three-dimensional structures in
the wake, so not only can existing theories be tested, as
illustrated in Fig.·5, but new wake geometries can also, in
principle, be proposed.

It is comparatively simple to measure the strength of the
vortex cross-sections by making a discrete approximation of
Equation·2 as

where the strength (circulation) of vortex A is calculated from
the sum of all contiguous cells where ωy exceeds some
threshold value, such as 20% of its maximum. The calculation
is robust and simple, but difficulties can arise when the area
occupied is very diffuse, and the result must additionally be
constrained to be inside some local spatial area. Moreover,
using a fixed-fraction threshold ensures that some low-
amplitude contributions will be omitted, and so controlling the
unruly spread of vortex A by imposing a high threshold
increases the severity of this underestimate. Here, we assume
that the true distribution of below-threshold vorticity is
something like a similarly thresholded Gaussian function, G.
For this, or any other known or presumed functional form, one
can calculate the fraction omitted for any arbitrary fixed
threshold, and add that to the sum of Equation·6. For example,
for the normalised Gaussian function with amplitude, A, and
half-width, σ,

where r is the radial distance from the centre, then the fraction
of G above threshold TG (where TG varies from 0 to 1) is

G+
TG

= G(1 − TG)·. (8)

When TG=0.2, the above-threshold fraction of G is 0.8 of its
total. This is the procedure followed for all estimates of
circulation Γ reported herein. Threshold values of 20% of the
local maximum ensure that directly summed values remain
above any likely noise level and the correction represents a
reasonable compromise in presuming and/or estimating the
contribution of the low-amplitude tails of the distribution.

For economy of presentation, normalised measures of
|ωy|maxc/U for positive and negative-signed vortices will be
named Ω+ and Ω–, and their corresponding normalised
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Fig. 5. Idealised predicted spanwise vorticity ωy(x,z) in vertical
cross-sections through (A) the vortex loop and (B) the constant-
circulation wake models of Figs 1D and 2, respectively. Although
sections further towards the wingtip cut more obliquely through the
presumed vortex lines, the effect on peak |ωy| measurements would
be small, and in A the sections through the closed loop are shown
with unchanged amplitude. (The circulation will be unchanged.) If
the wake has continuous trailing vortices (as in the constant-
circulation model), then at the centreplane |ωy|=0 (B). Midwing cuts
may have more complicated cross-sectional geometries if, as
anticipated, they cut through transition regions between down and
upstroke-generated vortices.
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circulations, Γ/Uc, will be denoted Γ+ and Γ–. Means for a
particular flight speed and span location will be denoted by
overbars in the text if the context is otherwise ambiguous. All
error bars in the figures show standard deviations (S.D.).

Results
Reconstruction of the vortex wakes

The vortex wake structure will be reconstructed from series
of vertical slices for three flight speeds, U=4, 7 and 10·m·s–1.
As will later become clear, there is no special significance to
these speeds, and they are used as examples of low, medium
and high speed flight over the range 4–11·m·s–1 achievable by
the thrush nightingale. Measurements are summarised as
combined velocity and vorticity fields, with velocity vectors
shown amplified (the arrow length corresponds to some factor
greater than one times the real spatial displacement over the
exposure time δt) and halved in spatial resolution. These are
superimposed upon ωy(x,z) mapped onto a discrete colourbar‡

whose effect is to show colour contours, where the contour
interval is commensurate with the claimed measurement
uncertainty in ωy. Thus, if a feature can be seen in the data, it
probably does exist.

More than 4000 velocity fields have been analysed over the
range of flight speeds, and there is no way to show all of the
supporting evidence and measurements for all of the
reconstructions. The slow-speed case will be presented in some
detail, and then subsequent cases will be summaries only, even
though they have been based on similar amounts of both
qualitative and quantitative evidence.

Deducing the wake structure from multiple vertical slices at
different spanwise stations is an iterative process. Plausible,
but temporary conceptual models of the wake structure are
formulated and tested through repeated inspection and
measurement of large numbers of velocity/vorticity maps.
Qualitative models guide quantitative tests, which in turn
support or contradict the models. The presentation of the
qualitative wakes data precedes the quantitative measurements
in this paper, because appreciation of the former is required to
understand the significance of the latter. For this reason, the

qualitative reconstructions will be summarised and completed
in this section, requiring a certain amount of interpretation to
be mixed in with the raw data. The benefit is that the conceptual
and physical models can act as an organising structure within
which the significance of the extensive quantitative
measurements can be understood and evaluated.

Slow speed (U=4·m·s–1)

Fig.·6 shows four consecutive frames of the vertical
centreplane velocity and vorticity fields. Since the wingbeat
frequency is approximately 14·Hz (at all flight speeds) while
the sampling rate, determined by the maximum laser repetition
rate, is 10·Hz, each frame shows a portion of the wake from a
different wingbeat, slightly phase-shifted, so the wake self-
samples as it is advected by the mean flow past the fixed
cameras. The starting vortex at the left of Fig.·6A is succeeded
in Fig.·6B by another which is shifted to the right (increasing
x). In the next frame (Fig.·6C), no starting vortex is visible, the
whole frame being occupied by upstroke-generated motions.
Subsequently (Fig.·6D) a third starting vortex appears.
Approximately 4.2 wake periods have passed by the cameras
in four frames. The wingbeat frequency f calculated from this
phase-shifted time series is 14·Hz. f calculated from high-speed
video kinematic analysis is 14.2·Hz.

A second interesting consequence of these phase-shifted
data is that, to some extent, the degree of steadiness of the
wingbeat can be inferred from the repeatability of the wake
pattern. Thus we note that while the starting vortex is always
the most visible object in the wake, its location in z does not
change very much. The wake structure is quite level, and the
flight must have been also. This can now be turned into an
important criterion for further selection of data, since the only
other control on the bird position is months of training. If, and
only if, a wake pattern is repeated along the 10·Hz sampling
sequence, then the data are accepted as having come from
steady level flight.

Regarding the vorticity field itself, it is immediately obvious
that positive-signed, starting vortices (or those so-presumed)
are significantly higher in amplitude and more coherent than
their negative-signed counterparts. This is always the case,
without exception, and the sequence shown here is completely
typical in this regard. The two frames showing upstroke-
generated vorticity (Fig.·6A,C) show very broadly distributed,
low amplitude (but measurable) traces with little clear
structure.

The asymmetry in peak vorticity is readily quantifiable, as
in Fig.·7, where a simple time series is plotted of the strongest
absolute value vorticity in each frame. Values shown as filled
circles come from the remnants of starting vortices and those
as open circles from the stopping vortices appearing at the end
of the downstroke. Not only are the peak values different, by
a factor of 3–4, but the total integrated circulations (also plotted
as squares in Fig.·7) are different too, albeit by a smaller
amount. It is not simply that the same amount of vorticity has
been spread over a larger area; the total amounts are apparently
different. We will later revisit this topic in some detail.
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‡The strong colour contrasts that are independent of signal intensity on the
discrete colourbar make it difficult to interpret at first. However, it has been
deliberately chosen to accomplish four specific objectives: (1) To render the
plots quantitative. Any point on any of the plots can be selected and the value
of the vorticity can be looked up on the colour table. If specific shades of
colour are difficult to discern, the neighbouring colours can be used to
unambiguously identify values. This transforms the plots from qualitative
descriptions to quantitative ones, particularly in view of the next point.
(2) The colour-step resolution matches the numerical resolution of the
vorticity calculation itself. Thus, the uncertainty in assigning a colour, and
hence numerical value, to a point is equal to the uncertainty in calculating that
quantity. (3) The colour table works primarily by means of contrast in hue,
but it is accompanied by luminance contrast, and so works also in black and
white (grey-scale). (4) Since the discrete steps impose a linear scale on the
perceived field (as opposed to rainbow-type continuous bars which rely on the
nonlinear mapping of the human visual system), then low intensity features
can be distinguished as well as high intensity ones. Later, it will become clear
that the distribution of low amplitude vorticity is of critical importance in this
study. Further points in colour mapping of fluid mechanical quantities are
considered by Farge (1987, 1990).
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A more compact and easily interpretable summary of the
data of Fig.·6 is given in Fig.·8, where segments of the time
series have been patched together to show the spatial structure
of the wake from one complete wingbeat. Since each frame
is a phase-shifted view of a repeated wake structure,
neighbouring frames are overlaid with the first in time located
rightmost, and passing right to left through the original time
series. Although the detailed structure varies somewhat from
wingbeat to wingbeat, this basic wake pattern is seen in all
centreplane slices. None of the vortices are perfectly circular
in cross-section, the starting vortex is significantly more
compact and pronounced than the stopping vortex, and
although there are trails of negative vorticity continuing on into
the upstroke (again, this is always the case), qualitatively, it
appears quite weak. By implication, the upstroke is mostly
aerodynamically inactive. Other than the weak stopping
vortex, a closed-loop wake model with most or all
aerodynamically useful forces occurring on the downstroke
would be a reasonable approximation of this structure.

Close inspection of the overlay of velocity vectors and the
vorticity map shows that the two are misaligned. Fig.·9 shows
an enlargement of the rightmost starting vortex cross-section,
now with the true number of vectors reinstated. The centre of
rotation does not coincide with the peak in vorticity. Fig.·10
shows the profiles of u(z) and w(x) drawn through the peak in
ωy. Although ωy is defined by these gradients of ∂u/∂z and
∂w/∂x, the zero crossings do not occur at the vortex centre. The
effect is particularly evident in ∂w/∂x, where the asymmetry of

A B

C D

–250 750

Vorticity (s–1)

0

Fig. 6. (A–D) Four consecutive fields of ωy(x,z) with
velocity vectors superimposed at half their true spatial
resolution. The reference frame is moving with the mean
flow, and so it is as if the bird had passed from right to
left, leaving behind these traces in still air. The colour
bar intervals correspond roughly to the measurement
uncertainty. The colour bar is scaled asymmetrically
about ωy=0, and the numbers at the ends show values in
units of s–1. The circle-ended line shows the scale of the
wingspan, 2b. The window size ∆x,∆z is approximately
20 cm×18 cm. The circles drawn around locally
maximum positive values of ωy(x,z) show the regions
within which normalised circulation Γ+ is calculated.
Γtot is calculated by including all above-threshold values
in the same frame, regardless of whether they are within
the local neighbourhood, or connected. Similarly, the
negative peak is identified by the broken circle. The
trailing vorticity attributable to the upstroke contains
both negative and positive local peaks (large white
arrows). In A these low-amplitude, positive peaks will
be included in the sum for Γtot (because they have the
same sign as the peak value), but in C, they will not.
The development of an accounting procedure that
correctly accounts for the real (as opposed to idealised)
measured vorticity distributions is given in Figs 27 and
28 and their associated text. 
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Fig. 7. The peak absolute value of the spanwise vorticity |ω|max

(circles), rescaled by the wing chord c and mean speed U as a
function of time t in wingbeat periods T. The normalised circulation
Γ (squares) is also plotted on the second ordinate. Filled symbols,
positive vortices; open symbols, negative ones. The first four time
steps correspond to the data in Fig. 6. The time series represents
successive sections of the wake passing through the observation
window. The field is strongly asymmetric in both the peak vorticity
and its integrated total strength. 
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the profile about its centre is also clear. Towards the left,
downward velocities are higher and the peak gradient is shifted
in that direction. A misalignment will occur whenever the
observation reference frame does not move with the mean self-
convection speed of the vortex structure itself (imagine adding
a uniform mean flow to any structure – the vorticity is
unchanged but the location of flow reversal in the vector

field changes). The misalignment will also occur when a
measurement slice is taken obliquely through a straight-line
vortex with circular core cross-section, or through one with a
curved arc, because in the interior (x–x0<0), the induced flow
is influenced by a closer source than on the exterior. If the
geometry were known in advance, then the relative shift in the
peak ωy and the centre of rotation could be used to calculate
the curvature or incidence angle, respectively. Here, the mean
convection speed is small (compared with the peak induced
flow speed) and uniform across the span, and the mismatch
between peak vorticity and flow reversal and its spanwise
variation supports the conceptual model of a curved vortex
loop.

Figs·9 and 10 demonstrate that the spatial resolution is
sufficient to estimate these subtle effects and to measure the
shear gradients with low uncertainty (as previously claimed in
Materials and methods). A shift by one grid point left–right
(±x) or up–down (±z), as shown by the dotted lines very close
to the solid line profiles in Fig.·10, makes very little difference
to the profile gradients. There are approximately seven points
across the core in each profile, and the core diameter defined
by the distance between velocity peaks is approximately 2·cm
in both x and z.

An equivalent reconstruction to Fig.·8, but for the midwing
and wingtip sections, is given in Fig.·11. At the midwing
(Fig.·11A), the two vortex cross-sections are now separated by
a smaller distance, consistent with intersections further out
through a curved structure. The stopping vortex has a higher
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Centreplane

λ=UT

λu λd

2b

Fig. 8. A reconstruction from three consecutive frames of Fig. 6 to show the vortex wake over slightly more than one wingbeat cycle. The wake
is shown as if left in still air by the bird passing from right to left. The silhouette is drawn approximately to scale and in the correct vertical (z)
position but its horizontal (x) location should in fact be displaced by about 3λ to the left (upstream) because the measuring station is that far
downstream of the bird in the test section. During the time required for the wake to advect past the cameras (approx. 3T, or 0.21 s), the wake
has moved downwards under its self-induced convection speed. The three component frames are matched approximately but the data are not
edited or reinterpolated to improve the fit, and the borders are left outlined so their location is clear. The wingspan bar (2b) is placed to begin at
the start of the downstroke. The wake wavelength is determined by the flight speed and wingbeat period and is shown as a double-arrowed bar.
The relative time spent on downstroke and upstroke is given by the downstroke ratio, and can be verified from the wake picture. The colour bar
and its scaling are as given in Fig. 6, and are fixed for all low-speed wake images (Figs 6, 8, 9, 11). 

Fig. 9. Magnified view of the rightmost starting vortex in Fig. 8. The
apparent centre of rotation deduced from the arrows does not lie on
the peak of the spanwise vorticity.
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peak value, both relative to the starting vortex, and absolutely,
as shown by the black saturation of the lower end of colour
bar. As in Fig.·8, there is little coherence in the upstroke
regions, and no systematic shrinking of their streamwise extent
in cross-section as we proceed from wing root to wingtip. The
starting vortex cross-section at midwing, however, is more
complex than closer to the centreline, appearing double-, or
even triple-peaked. Again, this is quite characteristic of the
many (250) midwing wake sections analysed at this flight
speed. The outer region of the vortex loop is altogether less
coherent (in this cross-section) than at the centreline.

The three-dimensional picture is completed by the wingtip
reconstruction of Fig.·11B. From the starting vortex (left),
which has a quite distinct second peak, the more complex
cross-sectional structure noted in the previous figure is
maintained. The stopping vortex is again more distinct than in
the more central sections, but also has two strong peaks. There

are some trace negative patches in a cloud around the main
stopping vortex, but nothing at all in the upstroke part.

The evidence accumulated from the vertical sections at three
spanwise locations points to a relatively simple vortex
topology, where the majority of the vorticity (and circulation)
is contained within a curved loop traceable to the downstroke.
If this is the primary structure then the circulation of the
vortices should be the same in each section. Fig.·12 shows the
peak vorticity and the circulation of the strongest vortex in the
data comprising the reconstructions of Figs·8 and 11. The peak
vorticity Ω+ and circulation Γ+ of the positive (starting)
vortices does not change significantly from wing root to
wingtip. Neither does Ω–. However, the magnitude of Γ–

increases towards the wingtip. This confirms: (i) that the
starting vortex loop is continuous and unbranched, and (ii) that
during the downstroke the shed vorticity becomes more
diffuse, not all of it collected in a single concentrated lump.
This numerically confirms what was already qualitatively
readily apparent in Fig.·8, but with consistent support from the
off-centre slices.

Fig.·13 summarises the most likely three-dimensional
topology of vortex lines making up the slow-speed wake. It is
a simplification, but has the following essential properties: (i)
the initial starting vortex is concentrated, (ii) during the
downstroke, vortex elements become separated, (iii) the
stopping vortex is quite diffuse, with elements trailing into the
upstroke, and (iv) the upstroke nevertheless does not appear to
generate significant coherent motion.

Medium speed (U=7·m·s–1)

Characteristic patterns of ωy(x,z) for the centreplane,
midwing and wingtip sections are shown in Fig.·14A–C.
Fig.·14A is a composite of several frames. It shows a
surprising, but quite characteristic, new wake structure that
can be seen at a number of flight speeds. The upstroke is
aerodynamically active, as judged by the downwash inclined
normal to a complex upstroke-generated vortex structure that
is distinct from the downstroke vorticity. The cross-section
through the upstroke wake is complex, but has mostly
positive vorticity at the beginning and mostly negative
vorticity at the end. This suggests that a different circulation
(it must drop towards the end of the downstroke and then
increase again at the beginning of the upstroke) is established
on the wings during the upstroke, so that the whole wake
is a sequence of alternating structures from up- and
downstrokes.

At midwing (Fig.·14B), the only trace of the upstroke
structure is from the small upward induced flow. Vortex cross-
sections can have complicated geometry, and there is an
interesting mix of positive and negative patches at the junction
between down- and upstroke. A similar composite, more
towards the wingtip (Fig.·14C), shows another complex mosaic
of positive and negative patches at this junction. Upward-
induced flows can be detected at the beginning and end of the
upstroke region where the section is closer to the main wake
structure. The most likely collection of vortex lines to account
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Fig. 10. Profiles of the velocity components u(z) (A) and w(x) (B),
where (x0,z0) is the location of the peak in ωy. The vertical dotted
lines projected from z=z0 and x=x0 intersect the curves of u(z) and
w(x) slightly offset from the u=0 and w=0 lines. Original data points
are shown as diamonds (A) and triangles (B), joined by straight lines.
Just noticeable are dotted line curves that join profiles either side of
x0 and z0, respectively. 
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for these figures (and many others like
them) is shown in Fig.·15. Each
repeating wake segment (one per
wingbeat) contains two conjoined
closed-loop structures. The way in
which the slow-speed wake evolves into
this one is by the increase in relative
strength of the cross-stream vortices
associated with the upstroke. It does so
gradually as the speed increases. Note
that while the relative magnitude
increases, the absolute value does not,
as the colour bar scaling for the negative
vorticity component has decreased from
–250·s–1 to –160·s–1 (cf. Figs·6 and 14).

High speed (U=10·m·s–1)

At high speeds (Fig.·16), the
mapping of ωy(x,z) at the centreplane
(Fig. 16A,B) onto the locally rescaled colour bar shows
measurable cross-stream vorticity at almost every instant
during both upstroke and downstroke. No single structure or
pair dominates, and there is a quite seamless transition between
the down- and upstroke-generated downwash. The wake
wavelength, λ=UT, continues to increase (inevitably).
Fig.·16B also shows a second section through the
downstroke–upstroke transition that is closer to the true
centreline than the main composite, and the absence of any
large/strong stopping vortex is notable. Progressing further out
towards the midwing (Fig.·16C,D), the strongest downwash
(flow moving mostly vertically downwards) is confined to the
downstroke. Already the upstroke trailing vortex is inboard of
this section and very little disturbance can be seen during this
wingbeat phase. The vorticity distribution can be quite
complex as shown in Fig.·16D. The large black region in the
section through the negative vortex shows that the fixed
colourbar scaling established by the centreline section has been
saturated. It is much easier to identify both starting and
stopping vortices than was the case at the centre/body section.
The oblique cut through the stopping vortex in both
(Fig.·16C,D) then runs through the upwards-induced flow
induced by the vortex that has projected through the page
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Fig. 11. (A) Vertical cross-section through
a midwing plane in the 4 m s–1 wake.
Plotting conventions are as described in
Figs 6 and 8, so relative bird motion is
from right to left. The colour bar scaling is
fixed to that established in the centre plane
(Fig. 6), so saturation of the negative part
indicates a relatively stronger stopping
vortex contribution. (B) Vertical cross-
section through the wingtip plane in the
4 m s–1 wake. A and B, together with Fig. 8,
can be compared with the three idealised
patterns of Fig. 5.
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Fig. 12. Variation in peak vorticity magnitude |ω|max (circles) and
circulation Γ (squares) rescaled by the wing chord c and mean speed
U for positive (filled symbols) and negative (open symbols) vortices
in the slow-speed wake as a function of spanwise distance divided by
the semispan y/b.
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towards the viewer. Further out towards the wingtip
(Fig.·16E,F), there is only a downward and then upward
induced flow at the downstroke-generated portion.

The sections of Fig.·16 are consistent with steadily moving
outwards through a curved vortex structure that does not all
meet at the centreline, but mostly extends on into the upstroke.
The pattern in Fig.·16E also shows a shear layer developing
above the obliquely cut wingtip vortex, with two locations
where vectors point from right to left. This component is
probably a viscous drag wake that is entrained along the vortex
core. In high-speed wakes it is very common to see this close
to the wingtip, and the free shear layer instabilities riding on
top of the core structure are also common. It is doubtful
whether the instabilities themselves have any impact on the
bird, but the viscous drag wake is an important component of
the force balance at high speeds.

Fig.·17 shows the most likely wake structure based on
Fig.·16, completing the three samples of the family of wake
structures. The tentative three-dimensional wake models of
Figs·13, 15 and 17 are based on these and other data, and also
on certain of the quantitative results in the following section,
where quantitative data are organised primarily towards making
estimates of wake impulse and momentum balance at different
flight speeds. Some of these results, however, particularly
involving circulation estimates at different spanwise locations,
provide strong support for the reconstructions in this section (as
also noted in Fig.·5 and its discussion), which were only
completed following this analysis.

The wake reconstructions are based on assemblages of
independent vertical slice data from multiple wingbeats, and
this procedure only works if the flights themselves are steady
and repeatable. Mostly, the predominant structures self-select
because they can be seen repeatedly on hundreds of
occasions, but there are exceptions whose appearance can be
traced to some unusual (in this context) flight behaviour.
Before proceeding with the quantitative analysis of the
proposed wake structures in steady flight, two non-standard
examples will be briefly given, first because they shed some
light on the normal wake structures and their interpretation,

and second because they point to further studies of important
flight modes.

Other wakes

Fig.·18 shows the vertical centreplane wake for a brief
period of gliding flight at 11·m·s–1. The patches of largest |ωy|
mark a wake that extends straight back behind the bird. Here
and elsewhere, the velocity field is dominated by the induced
downwash, which in general points downward and backward.
Fig.·19A shows a vertical profile of the streamwise-averaged
horizontal velocity,

where the sum at each vertical z location is taken over all the
discrete streamwise data points, xi, in the field of view. The
leftwards pointing peak represents the departure from the mean
profile due to the body drag.

Fig.·19B shows the streamwise distribution of vertically
averaged, vertical velocities,

where the sums are accumulated as for Equation·9. The mean
flow is downwards (W

–
z=–70±20 cm·s–1), becoming less strong

with increasing downstream distance, x. The smaller scale
oscillations superimposed on the mean decay come from the
vertical profiles passing through different structures in the
wake that deflect the velocity vectors (leftwards on average,
Fig.·19A) from their mean downward orientation. The mean
downwash magnitude can, in principal, be used to check on the
mean vertical impulse of the gliding wake.

Fig.·20 is a single wake image from a vertical plane, just off
the centre flight line, for flight at 9·m·s–1, when the bird was
briefly gliding and adjusting its position in the test section. As
in Fig.·18, the largest |ωy| values lie on a nearly horizontal line
with mean flow from right to left, representing a net drag. The
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Fig. 13. A possible representation of the slow-speed wake
by a small number of vortex lines, based on data such as
Figs 8, 10–12. The primary wake structure is a collection
of loops, drawn as solid ellipses. They intersect the
centre/body plane of observation along the major axis
marked ad, which makes an angle ψd with the horizontal
(downstroke; au, ψu, respectively, for upstroke). Γa is the
measured strength of the starting vortex. Γb is the total
measured strength of the more diffuse collection of vortex
lines left at the end of the downstroke. Γc is small
compared with both Γa and Γb, and the collection of
rectangular upstroke wake vortices (broken lines) is an
idealised cartoon version of the observed trace patterns that
are quite disorganised and weak. Their primary effect is to
disrupt the structure of the measured stopping vortex, which they do because vortex lines of opposite sense lie close together. When their
strengths go to zero, a standard closed-loop wake model results. The projection of the downstroke wake length in x, λd, onto the centreline is
denoted by the double-headed arrow. U is the mean flight speed; bold arrow indicates direction of flight.
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Fig. 14. Composites of the wake at moderate speed U=7 m s–1. The plotting conventions are as previously given in Fig. 8. The colour bar
scaling is fixed for all centreplane (A), midwing (B) and wingtip (C) sections.
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downwash is much stronger in the upper half-plane,
quite different from the steady wakes data and from the
gliding example of Fig.·18. The wake defect (Fig.·21)
is also much larger than the straight gliding case
(Fig.·19A). The high-drag wake of Fig.·20 comes
either from the body and tail, or from trailing-edge
shedding, close to the wing root, of a partially stalled
wing during manoeuvre. The two cases cannot be
distinguished unambiguously here, but the roughly
equal amplitudes and number of structures with
positive and negative sign argue for the former.

Figs·18 and 20 isolate the contributions of body and
tail to the wake structure since the wings are beating
with small amplitude and acceleration, if at all. These
wakes are qualitatively different from the flapping
wing wakes in the standard reconstructions. The body
wake disturbance itself (Fig.·18) is of very low
amplitude (Fig.·19) and cannot usually be detected
amongst the much stronger disturbances generated by
the wings. It need not be considered further in the
following momentum balance calculations.

Wake impulse and momentum balance

Calculation of wake circulation, impulse and reference
quantities

Having established a qualitative picture of the wake
structure, the peak spanwise vorticity |ωy|max and the
circulation, Γ, of a structure in cross-section were measured for
all fields appearing to be part of a steady level flight segment.
There were 1261 of these.

In the following plots, the measured circulations are
normalised in two ways. Most obviously, one might divide by a
reference Γ0, which is the circulation that would be required for
a wing of equal span in steady flight to support the weight. This
can be readily calculated since the Kutta–Joukowski theorem
gives a simple relation between the lift per unit span L′ and the
circulation,

L′ = ρUΓ·, (11)

where ρ is air density. As a rough approximation, ignoring the
effects of induced drag and of variable circulation on the wing,
then the weight W must be balanced by the total lift as,

W = L = ρUΓ02b·. (12)

This is equivalent to the assumption that a rectangular flat wake
provides the vertical impulse, without the reduction in effective
span by tip vortices, and without the inclination angle required
to overcome induced drag. The correction factor for an
elliptically loaded wing is π/4. It is preferable to avoid adding
untestable assumptions about the circulation distribution, and
so the uncorrected reference circulation is

Γ0 = W / ρU2b·. (13)

Conceptually, it is the idealised value required for weight
support in steady, gliding flight, provided by the rectangular
wake shed directly from the wingtips.

Alternatively, one might consider the case where all of the
weight support derives from the impulse of elliptical vortex
loops, one shed per downstroke (Fig.·1D). The vertical
impulse, Iz, is given by the product of the projection onto the
horizontal plane of the planar area of the vortex loop with its
circulation,

Iz = ρSeΓ1·, (14)

and the projected loop area is

Se = πb(λd/2)·. (15)

λd is the horizontal wavelength of the downstroke,

λd = UTτ·, (16)

for a stroke period T and downstroke ratio, τ. In steady flight,
the weight is balanced by the average impulse per unit time,
and so the reference value, Γ1 can be written

Γ1 = WT / ρSe·. (17)

Both Γ0 and Γ1 are simple to calculate and give references
against steady gliding flight (without regard to generation of
thrust) and against downstroke-only derived closed loops.
These quantities are useful conceptually, even though neither
model is particularly well-supported by the data presented in
the previous section.

Γ0 and Γ1 both decrease with flight speed, U, as the problem
of providing sufficient impulse can be spread over an area that
increases with U. In fact, there is a simple relationship between
Γ0 and Γ1 determined by the geometry of the flat wake and the
projected ellipse. To see this, one may rewrite Equation·13
slightly:

Γ0 = WT / ρUT2b·, (18)

so the denominator is the product of the air density ρ × the
rectangular wake area generated every stroke period, UT2b.
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Fig. 15. Most likely wake topology deduced from all data at U=7 m s–1. The
basic form is quite similar to the low-speed wake in Fig. 13 (the symbols and
notation are the same), but the upstroke-generated portion (broken lines) is
stronger, and more distinct from the downstroke-generated loops (solid
ellipses).
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Combining with Equation·17,
the ratio of the two circulations
is:

Γ0 /Γ1 = Se·/ UT2b·, (19)

which is just the ratio of the
projected wake areas.
Simplifying, this ratio depends
on τ alone,

Γ0 /Γ1 = (Π/4)τ·, (20)

and for τ=0.6, Γ0/Γ1≅ G. Γ0

needs to be only about one half
of Γ1 because the projected
area of the wake is larger
by approximately a factor of
two.

Individual measurements of
vortex patches in low-, medium-
and high-speed wakes

Fig.·22 shows the
distribution of measured
circulation versus peak
spanwise vorticity for all
measurable vortex cross-
sections in steady flight at
U=4·m·s–1. A measurable
cross-section is defined as
a contiguous above-threshold
region surrounding a local
peak value in ωy(x,z).
Characteristically there will be
one of these in any single
frame, either of positive or
negative sign, from structures
created at the beginning and
end of the downstroke,
respectively. Each sum in
Equation·6 is made around the
peak value in the whole frame,
and the thresholding and
correction procedure described
in Equations·7 and 8 is then
applied. Example areas and
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Fig. 16. (A) Composite for high-
speed (U=10·m·s–1) flight, close to
the vertical centreplane, but
slightly offset, showing the
structure over an entire
wavelength. (B) Closer to the true
centerline. (C,D) Similar sections
through proximal and distal
midwing locations; (E,F) the same
for the wingtip section. 
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peak values are shown superimposed on the raw data in
Fig.·6.

In Fig.·22, the closed symbols show positive-signed
elements (from the starting vortex) and the open symbols
are for the negative-signed ones (stopping vortex). At the
centre/body sections (Fig.·22A), the range of Ω+ (peak

vorticity of positive sign) is larger than the equivalent range of
Γ+ (the circulation associated with the peak maximum positive
vorticity), whose values lie close to Γ0, but (or, given
Equation·20, consequently) not close to Γ1, the reference most
pertinent to this wake geometry. The open symbols for the
stopping vortex are significantly lower in magnitude, in both

Ω– and Γ–. They are quite closely clustered around the
mean in Ω–, as compared with the Ω+ values. Throughout
Fig.·22, the Ω– distributions are more compact than their
Ω+ counterparts, which is opposite to the degree of
compactness, or coherence, of the spatial distributions of
ωy(x,z). Proceeding through midwing (Fig.·22B) to
wingtip (Fig.·22C), the distribution of starting and
stopping vortices begins to overlap slightly, as the
centroids of each cloud (horizontal and vertical solid
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Fig. 17. Most likely collection of vortex lines for the high-speed
wake, based on data such as shown in Fig. 16. Now the primary
wake structures are primarily oriented in the streamwise direction
and there is no preferred location for the comparatively weak cross-
stream vortices Γy. The correctness of this structure can be
determined by testing whether Γd=Γu. For an explanation of other
symbols, see Fig. 13.
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Fig. 18. Single-frame view of the wake during brief gliding interval
at 11 m s–1 flight speed. The velocity field is dominated by the
induced downwash. The cross-stream vorticity, ωy(x,z), is mapped
onto the discrete colour bar symmetrically from –120 s–1 to 120 s–1.

Fig. 19. (A) The mean streamwise velocity as a function of vertical
distance from the wake centre. The dotted line is a polynomial
interpolation for estimating the integrated drag of the defect profile.
The peak defect value, Ux/U≈0.01, is about one order of magnitude
smaller than typical centreline downwash velocities in flapping flight
at this speed. (B) Mean vertical velocity distribution with streamwise
direction. The downstream coordinate, x, has its origin at the
estimated bird position, approximately 17 chords upstream of the
data plane. See text for further details.
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lines) approach each other, mostly due to a small decrease in
the Ω+. By contrast, recall that in the individual sequences of
Fig.·12, the procession from wing root to wingtip was
accompanied by an increasein Γ–. Each individual result is
rather sensitive to details of the cross-sectional geometry of the
vortices and the resulting fraction that contributes to Γ–. In
Fig.·12, based on Figs·8 and 11, all of the stopping vortex was
included in the calculation of Γ–. The problem of correctly
accounting for Γ that does not occupy a compact domain will
be revisited shortly.

The three main results from Fig.·22 are that: (i) a closed
vortex loop wake with even the highest measured circulation
in the vertical centreplane would be unable to support the

weight of the bird. The average fraction of weight support
provided in this model is 45%. (ii) Significantly higher
circulations (Γ+, Γ–) are not measured at more distal vertical
planes, providing no evidence for any other simple candidate
vortex topology. (iii) Ω– and Γ– are significantly beneath Ω+

and Γ+ and so a significant asymmetry is not accounted for by
a simple closed-loop model.

A similar survey for the medium-speed (U=7·m·s–1) case is
given in Fig.·23 (note the rescaled abscissa). While there are
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Fig. 20. Drag wake due to control manoeuvre in unsteady flight. The
colour bar is symmetric, with extremes at ωy(x,z)=±200 s–1.

Fig. 21. Mean wake defect from Fig. 20. The dotted line is a
polynomial interpolated baseline for drag estimates. See text for
further details.
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Fig. 22. Normalised circulations and peak spanwise vorticity for
positive (filled circles) and negative (open circles) patches of
vorticity in the slow-speed (U=4·m·s–1) wake at the centre/body (A),
midwing (B) and wingtip (C). (The absolute value of the negative
quantities is actually plotted here, and in most subsequent figures.)
The solid horizontal and vertical lines are drawn at the average
values, and their intersection approximately marks the centroid of the
cluster of points. See text for further details.
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differences in Ω+,– and Γ+,– at the centre/body plane, they are
much smaller than at the slow flight speed, and Γ+, in particular
is clustered much more closely around the mean value. At
the midwing (Fig.·23B), the mean values of Γ–+ and Γ–– are
experimentally indistinguishable, a situation that continues on
into the wingtip section (Fig.·23C). In all cases, however,
Γ/Γ0≈1 and so Γ/Γ1≈0.5.

The insufficiency of plausible vortex loops with the
measured Γ is less worrisome than in the low-speed case
because the qualitative wake reconstructions (Fig.·15) have
already shown the presence of a significant upstroke
component. Nevertheless, while Γ/Γ1 might be expected to be

less than one, values of 0.5 or less might significantly
complicate later attempts at calculating force balances.

Fig.·24 shows a different picture again at high-speed
(U=10·m·s–1). In the qualitative reconstructions, the difficulty
in finding identifiable concentrations of spanwise vorticity
in the centreplane has already been noted (Fig.·16).
Consequently, Fig.·24A has only two data points of either sign
at the centreplane. It is quite likely that these represent slices
toward the outer boundary of the region considered to be
centre/body, but there is no manual editing of the data and so
they must stand as given. Ω+,– and Γ+,– at the centreplane have
equal magnitude, and both rise at midwing (Fig.·24B). A
straight-line wake composed of such vortices would more than

Fig. 23. As Fig. 22, but for medium-speed flight at 7 m s–1. Note that
the normalised |ω|max scale goes only to 5 (one third of the previous
figure).
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Fig. 24. As Fig. 23, but with a further 3 m s–1 increment in U for
high-speed flight at 10 m s–1.
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balance the weight. The values of Ω and Γ both fall slightly
towards the wingtip (Fig.·24C), but here the measurement is
mainly dominated by flow instabilities of the trailing vortices
themselves (Fig.·16E,F) whose magnitude is difficult to relate
to the strength of the main vortex structure, where the primary
component is now streamwise (ωx), and most readily measured
at the midwing section (Fig.·16C,D).

Continuous variations in peak and integrated vorticity
magnitudes over the range of flight speeds

The choice of the three flight speeds covered in Figs·22–24
does not indicate anything particular about those speeds, and
the same measurements have been made at all flight speeds in
1·m·s–1 increments between 4 and 11·m·s–1. The mean and
standard deviations of Ω and Γ for all measured flight speeds
are shown in Fig.·25. At the lowest flight speeds, Ω–+,– is
strongly asymmetric, as is Γ–+,–, though less noticeably
(mirroring the result in Fig.·22). As U increases, the absolute
value and asymmetry in both measures decrease. They do so
gradually, without any discontinuities or abrupt changes. Γ and
Ω fall with increasing U for the same reason they do in fixed-
wing airplanes, as reflected in Equation·12, because the wake
area per unit time available for weight support increases.

The asymmetry in strengths and shapes of vortex patches
complicates estimates of the rate of wake momentum
generation, but the main points can be illustrated with quite
conservative assumptions. We again make use of the
convenient reference values Γ0 and Γ1, the approximate
circulations required for weight support if the wake were
composed of straight line trailing vortices (Γ0) or isolated
ellipses (Γ1).

Fig.·26 summarises the variation in the strength of the
starting and stopping vortices at the three different span
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Fig. 25. The variation in peak vorticity magnitude |ω|max (A) and
total measured circulation Γ (B), rescaled by the wing chord c and
mean speed U, for starting (filled circles) and stopping vortices (open
circles) as a function of forward flight speed U.
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Fig. 26. Normalised circulations Γ of starting and stopping vortices
over all U values and at three different spanwise locations: (A)
centre/body, (B) midwing, (C) wingtip. The circulations are
normalised by reference values that would be required for weight
support at each U for wakes comprising constant-circulation straight-
lines (Γ0), and discrete, closed loops (Γ1). The ratio between Γ0 and
Γ1 depends on the downstroke ratio τ (as explained in the text),
which is assumed to be held constant for this plot. Values are means
± S.D.
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locations. Beginning at the centreline data (Fig.·26A), one can
immediately observe that, at slow speeds, despite the fact that
the starting vortex is significantly stronger than the stopping
vortex, if the wake were composed of elliptical vortex loops of
this (highest) measured value, it would still only provide about
half the impulse required for weight support over one
wingbeat. While Γ/Γ1 is only approximately 0.5, Γ/Γ0 is
therefore (Equation·20) approximately 1.0, but the best
approximation of the wake structure at slow speed was isolated
loops and certainly not continuous trailing vortices.

As U increases, the loop model becomes less and less
appropriate, and one may then refer to values of Γ/Γ0. At the
centreline, these always fall short of 1.0, but this is to be
expected as the vertical centreplane is the worst place, in
principle, to measure a wake composed primarily of
streamwise (not spanwise) vorticity. Thus, at higher speeds,
one looks to more distal planes, such as the midwing (Fig.·26B)
where reasonable cross-sections through curved trailing
vortices are found. Indeed, Γ/Γ0 values here are generally equal
to, or above 1.0. The stopping vortex strengths are, if anything,
higher than those of the starting vortices. They are both
stronger here than at the centreplane, requiring/implying the
existence of a significant streamwise component. This is
completely consistent with the qualitative reconstructions of
the previous section, which also argued for the existence of
streamwise vortices continuing on into an aerodynamically
active upstroke.

Of course, the constant circulation wake provides a smaller
vertical projected area than the idealised rectangular wake, and
so the circulation requirement will be higher than Γ0, but not
by huge amounts. The measured circulations for the gliding and
flapping wake of the kestrel in Spedding (1987a,b) were 0.5 and
0.55·m2·s–1 respectively. The rather small (10%) difference is
partly due to the slightly larger lateral spreading of the wake on
the downstroke of the flapping flight wake. Here too, it is likely
that the wake width (which cannot be directly measured here
with any useful accuracy) is (i) slightly increased and (ii) has
increased in the time elapsed between generation and
measurement. This time is always greater than T, the stroke
period (recall Equation·4 and the related discussion).

The situation is quite similar at the wingtip (Fig.·26C). At
higher speeds, Γ/Γ0 is close to, or slightly above 1.0, and
accounting for sufficient vertical momentum generation in the
wake seems unlikely to be problematic. (A slightly more
refined calculation will follow.)

For U≤7·m·s–1, the absolute value and relative magnitudes
of starting and stopping vortices are similar at all spanwise
locations. Unlike the case at higher speeds, there is no
implication of other strong concentrations of vorticity, for
example, in different orientations. The diffuse and relatively
weak stopping vortex is just as diffuse and relatively weak at
the wingtip as it is at the centreline.

A complete accounting of the measured circulation
distributions

In trying to account for the shortfall in momentum of the

slow speed wakes, the existence of some other topology than
the ones emerging from the current reconstructions is unlikely.
However, when the patches of vorticity are as incoherent and
diffuse as they are in the stopping vortices, it is very possible
that only some fraction of the total circulation is being
correctly accounted for (recall Equations 6–8). Fig.·27 shows
the results of a much less selective approach where all values
of ωy(x,z) of either sign above the usual threshold of 20% of
the local maximum value are added toward the total circulation
of that sign Γtot. (This amounts to adding up all the vorticity
of the same sign as the peak vortex in each of the panels A–D
of Fig.·6.) Integrating small values of the vorticity over large
areas must be done with caution, as it would be quite easy to
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Fig. 27. Total integrated circulation Γtot from all positive (filled
circles) and negative (open circles) vorticity in the observation
window, plotted as a function of flight speed U. Although no single
window contains the entire wake structure, each selected window,
centered on peak values of either sign, contains all of the vorticity
shed either at the beginning of the downstroke, or at the end of the
downstroke and beginning of the upstroke. (A) The fraction of the
total circulation that is not contained in the strongest vortex cross-
section is very much higher in the stopping (negative) vortices than
in the starting (positive) vortices. (B) The total negative vorticity
would be sufficient for weight support, but not the positive
component. The sum of the two, which ought to be zero (recall the
convention of plotting the absolute value of the negative
components), is not. 
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accumulate an area-dependent sum that is mostly measurement
error. The conservative 20% threshold criterion avoids this
problem since there are no errors of such magnitude.
Moreover, in each case a quiescent patch of background is
chosen and summed using the same criteria over a small area.
This is then rescaled and subtracted from the grand total so that
if any background noise did contribute to the total, then its
average value would be subtracted out again. The magnitude
of this correction was usually exactly zero, and always less
than 1% of the total, when it could be traced back to difficulties
in finding a truly quiescent patch in the vorticity field.

In Fig.·27A, Γ/Γtot for the starting vortices starts at values
very close to one at slow flight speeds (4 and 5·m·s–1), and then
drops continuously to just above 0.2 at the higher speeds. At
lower U, there are no significant concentrations of positive
vorticity other than the single, highest amplitude structure.
That is not the case for the stopping vortices in the same figure.
Here, they never account for much more than one third of
the total circulation of that sign. Significant amounts of the
total circulation of negative sign are unaccounted for by
concentrating only on one structure. That being the case, then
we might conduct a hypothetical case where at slow speeds the
vortex loops are imagined to have started with a uniform
circulation equal to the strength of the total circulation in the
wake. The ratio of Γtot/Γ1 will therefore be equal to 1.0 if such
an accounting procedure would support the weight. It is shown
as a function of flight speed in Fig.·27B. The total negative-
signed circulation would have been sufficient for weight
support, if at one time it were a good measure of the uniform
circulation in an elliptical loop with the expected geometry,
one produced every downstroke.

Now the problem is that the relation, 

Γ+
tot + Γ–

tot = 0 , 

which ought to be the case in a suitably defined control volume
about a moving body or its wake, is not satisfied. The
difference is large – about the same as the magnitude of the
original wake momentum deficit. At first, this result seemed as
if it might be an artefact of the different absolute thresholds of
the vorticity magnitude, which in turn is a consequence of a
fixed percentage threshold in each calculation. The entire
calculation for Γ+

tot was repeated using thresholds based on the
magnitude of |ω–|max (rather than |ω+|max). There was almost
no difference in the Γ+

tot results of Fig.·27B. This means that
there is a real difference, independent of any particular
thresholding procedure, between total positive and negative
measured circulations. The positive-signed component occurs
in very compact vortex cross-sections, whose total integrated
magnitude is almost independent of very different threshold
assumptions. The negative-signed contribution, on the other
hand, is much more broadly distributed, yet has a higher total
value, and no single vortex cross-section accounts for more
than about 1/3rd of the total. The discrepancy is a low-speed
phenomenon.

Where has the circulation gone? The answer is contained in
the reconstructions of ωy(x,z) shown in Figs·6 and 8. Careful

inspection of that part of the vorticity field attributed to the
upstroke shows that this domain contains regions of Γ+ as well
as Γ–. (Look carefully at Fig.·6A,C where white arrows show
low amplitude, positive vorticity peaks, and also the middle of
Fig.·8.) Now recall the accounting procedure for counting the
sums of each signed patch of vorticity towards the total
circulation (Equation·6). If the data includes a complete
starting or stopping vortex structure, then the peak value is
found and all circulation of that sign is eventually accounted
for, but in that partial view of the wake only. The assumption
is that the sections containing either starting or stopping
vortices will have exclusively and solely vorticity of that sign.
Any positive-signed patches that appear in predominantly
upstroke-generated motions will be omitted. Similarly, any
negative patches around starting vortices will be left out. In
practice there are few of the latter, but the same is not true of
the former, and while rather careful attention has been paid to
correctly including all of the diffuse patterns of negative
vorticity, the similarly scattered positive patches occurring in
the wake regions categorised as upstroke have effectively been
ignored. The pertinent parts of Figs·6 and 8 show that this
contribution should not be assumed to be negligible, and the
calculation procedure must be adjusted accordingly, one more
time.

Fig.·28 shows a revised calculation of Γtot/Γ1. Γ– is
calculated as before, but the estimate of Γ+ now includes the
contributions from sections centred at both starting vortices
and stopping vortices. Γtot/Γ1 is never experimentally less than
1.0, for calculations based on total circulations of either sign,
which, in turn, do not differ from each other. Sufficient
circulation has been detected in the wake, so that if it is
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Fig. 28. As Fig. 27B, but Γ+ (filled squares) now includes all traces
of above-threshold positive vorticity found in the neighbourhoods of
the predominantly negative signed vorticity. Neither component is
significantly different from the other (the sums balance), and both are
within experimental uncertainty of sufficiency for weight support
(Γtot=Γ1). 
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assumed to have come from some initially coherent closed-
loop structure with approximately uniform circulation of that
magnitude, then this would be sufficient for steady level flight.
This balance is only achieved if we include positive vorticity
apparently shed towards the end of the downstroke and/or the
beginning of the upstroke. The interaction of this opposite-
signed vorticity with the mostly negative-signed patches shed
at the end of the downstroke might account for the diffuse and
incoherent distribution of the stopping vortices at low speeds.

Spanwise variation

One of the implications of this result is that the measured
changes in circulation in the wake towards the end of the
downstroke and beginning of the upstroke entail changes in
circulation on the wing, which in turn imply translational or
rotational acceleration. These changes may be uniform along
the span, or local. The variation in measured |ωy|max and Γ+,–

with spanwise location might provide evidence for local
shedding, but no strong variation of the average values was
shown in Fig.·12 for the 4·m·s–1 case, other than the noted
increase in Γ–– towards the wingtip. The data for spanwise
variation in Ω+,– and Γ+,– for all flight speeds are summarised
in Fig.·29.

Although the effect does not fall outside the error bars, at
low flight speeds the peak positive vorticity decreases
systematically from the centreline outward to the wingtip
(Fig.·29A), while the trend is reversed for the negative vorticity
peak. Both trends gradually disappear at higher flight speeds
(e.g. U≥7·m·s–1). At the same time, the circulations do not
differ measurably or systematically from centreplane to
wingtip (Fig.·29B) over any range of U. The simple
interpretation of the flight model of Fig.·15 is fully consistent
with both observations, as the same total circulation is spread
out amongst an increasingly diffuse collection of vortex lines
as the wingbeat progresses from beginning to end of
downstroke.

There is some tendency discernable in Fig.·29 for a
reduction in relative magnitude of the centreline circulation
values at higher flight speeds, which is better shown in Fig.·30,
where Γ is normalised according to the reference value for
weight support in the rectangular (gliding) wake. At higher
flight speeds, the centreline value is less than 1.0, and less than
the values at more distal sections. Again, this is exactly what
one would expect for a simplified wake model (such as Fig.·17)
of primarily streamwise vorticity, which curves to intersect the
data plane much more reliably and prominently towards the
wingtips, where the streamwise vortices are presumed to
originate.

The low-, medium- and high-speed wake topologies that are
consistent with the qualitative and quantitative arguments thus
far are summarised in Fig.·31. While these simple models
based on the thrush nightingale data are incomplete in some
details, the successful approximate accounting for the wake

Fig. 29. (A) The variation in peak vorticity magnitude |ω|max,
rescaled by the wing chord c and mean speed U, with flight speed U
for positive (starting) vortices (closed symbols) and negative
(stopping) vortices (open symbols) for three different spanwise
locations: centreplane (circles), midwing (squares) and wingtip
(triangles). (B) Same plotting conventions for the circulation of the
patch of vorticity associated with |ω|max. Values are means, and ±
S.D. are shown for the centreplane values only.
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momentum flux at all flight speeds supports the idea that the
basic patterns are correct, and might be used as a basis for
constructing, admittedly simplified, analytical and predictive
models.

Discussion
A family of vortex wakes

Closed vortex loops to continuous trailing vortices

The qualitative and quantitative descriptions of the closed-
vortex-loop wakes at low flight speeds are very similar to those
of previous investigations. Not only that, but the aspects of the
wake that differ measurably from simple closed-loop models
are too. The diffuse and weak stopping vortex has been noted
in both pigeon and jackdaw flight studies (Spedding et al.,
1984; Spedding, 1986), and is seen here also. At low flight
speeds, the cross-sections through starting vortices show quite
a concentrated core structure (Figs·9, 10). In Fig.·10, the core

radius can be estimated to be approximately r0=1·cm for a
nominal ring radius of approximately 9·cm (Fig.·8). The ratio,
r0/r≅ 0.1 is slightly smaller than previously measured values for
slow flying birds (pigeon: 0.17±0.04, jackdaw: 0.14±0.03;
Spedding et al., 1984, Spedding, 1986), but similar to that
found in the medium-speed kestrel wake (downstroke: 0.1,
upstroke: 0.4; Spedding, 1987b). The relatively small core size
makes it reasonable to imagine adequate wake models that
have a small number of concentrated vortex lines and also, if
it is correct to speak of a ring, then the ring would qualify as
small-cored (see Saffman, 1992, chapter 10; also chapter 13
for effects of viscosity).

As U increases, the distribution of vorticity in vertical
streamwise planes becomes more complicated (Fig.·14). The
strength of cross-stream starting vortices gradually decreases,
and the relative contribution of the upstroke gradually
increases. Finally, at the higher speeds, the centreline vorticity
distributions, rescaled locally on the usual colour bar, show a
broad spectrum of variations throughout the wingbeat
(Fig.·16). The amplitudes are significantly diminished,
however (Fig.·25). It is not clear whether previous experiments
were unable to distinguish these relatively low-amplitude
spatial variations in the velocity field, or whether the thrush
nightingale is less proficient at constant-circulation wake
generation than the kestrel, which is the only other point of
quantitative comparison.

Perhaps the nearest points of theoretical comparison for these
gradually varying wakes with complex cross-stream vorticity
distribution are the wake circulation distributions predicted by
the optimisation models of Hall and Hall (1996) and Hall et al.
(1998), who numerically solved a variational problem to find
the optimum (in the sense of minimum induced drag) spanwise,
time-varying circulation distribution for rigid wings in both
low- and high-amplitude flapping flight. A series of vertical cuts
through their {x,y}-wake distributions of iso-circulation
contours (fig.·13 in Hall and Hall, 1996) might be difficult in
practice to distinguish from the result of the same operation on
the empirical models of Fig.·31. There are two factors that
complicate direct comparisons. First, the wake in Hall and
Hall’s formulation is assumed to be left at the trace of the
wingtip trailing edge, without roll-up. While corrections to the
computed optimal circulation distribution due to wake roll-up
might be small, the experimentally measured wakes have rolled
up and, particularly at low flight speeds, have had plenty of time
to do so. As Hall and Hall point out, there is then no obvious
way to infer the original circulation distribution on the wing
from the rolled up late wake. For the same reason, the late wake
would not be expected to have the same distribution of vorticity
as the theoretical one, and the significance of observed
differences is not clear. The second point is that rigid wings do
not have the characteristic upstroke flexion that leads to the
wake asymmetry required for positive thrust. Instead, the
variations in spanwise circulation distribution move inboard.
The net result is equivalent, with a net positive thrust, but one
is achieved by varying the span of a wing with relatively
constant circulation on the remaining reduced span (or so the
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Fig. 31. A summary of three wake patterns deduced from vertical
slice data at slow (A), medium (B) and high (C) speeds, respectively.
The wakes are shown deliberately idealised and simplified to suggest
the most important elements of a wake-based model. The three
samples do not represent discrete wake topologies, and the transition
from one to another is gradual, largely through changes in the
vorticity shed during the upstroke. The tubes represent surfaces of
constant vorticity magnitude, and are coloured blue or red according
to whether they originated with down- or upstroke. The wakes have
been rescaled to occupy approximately the same (streamwise, x)
length on the page. In practice, the high-speed pattern at 11 m s–1 has
a streamwise extent of almost 3 times that of the low-speed wake at
4 m s–1. (Many thanks to Michael Poole for this figure.)
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constant circulation model holds), while the other involves a
spanwise variation of the circulation itself. Future quantitative
tests against appropriately modified formulations of these
analytical/numerical models would be very interesting.

In summary, while the low and high-speed wakes are
not inconsistent with previous closed-loop and constant-
circulation models respectively, most wakes (at most speeds)
are not exclusively of either kind, but have some intermediate
structure, with amplitudes of cross-stream vorticity at the
centreline that decay gradually as U increases. The three
examples of U=4, 7 and 10·m·s–1 in Figs·8, 14 and 16 (and in
idealised summaries in Fig.·31) are simply examples on a
continuum whose gradually varying quantitative properties
are summarised in Fig.·25. Since most bird flight models
assume either closed-loop or constant-circulation wakes,
then most models are inapplicable to most flight speeds
encountered here.

No evidence for gaits

Until now, the only two previous structures discovered in
bird wakes indeed appeared to be either some kind of closed
loop or a pair of continuous trailing vortices. This has led to
speculation about the possible existence of two (and only two)
distinct gaits in bird flight (e.g. Rayner et al., 1986; Rayner and
Gordon, 1998; Rayner, 2001), analogous, presumably, to the
gaits encountered in terrestrial locomotion, and this notion has
even spread to the more general literature (e.g. Alexander,
2002).

In terrestrial locomotion the changing balance of
gravitational and inertial forces and spring forces in the
muscles and tendons leads to distinct gaits such as the well-
known walk–trot–gallop transitions in many quadrupeds (e.g.
Hildebrand, 1965; Alexander, 1982), when the gaits can be
distinguished in the differing phase relations and duty factors
amongst the limbs involved. The notion of distinct gaits in
terrestrial locomotion then involves quite abrupt transitions
between them and also frequently involves the existence of
forbidden speeds close to their margins.

In various studies of wingbeat kinematics (Tobalske and
Dial, 1996; Tobalske, 2000; Hedrick et al., 2002), the absence
of any detectable sharp transition in any measurable kinematic
parameter has nevertheless been interpreted as marking a
‘gradual’ transition between ‘gaits’. In Hedrick et al. (2002),
local changes in angle of incidence, α, and relative wind
velocity, urel, were inferred from wing traces, and then
converted through a presumed two-dimensional analytic
relation of CL(α) to lift L, and thence by Equation·11 to
estimates of Γ. Aside from the question as to whether local
two-dimensional, steady, inviscid CL(α) relations can apply to
the high-amplitude, three-dimensional unsteady flapping
motions of the wings (particularly at low U), it is most likely
that gradual changes in urel and α would lead to
correspondingly gradual changes in Γ on the wing and in the
wake. That is actually inconsistent with any gait selection
mechanism, but fully consistent with the gradual variation in
strengths of cross-stream vortex structures observed here.

No other study of bird or bat wakes, quantitative or
qualitative, has involved more than two flight speeds. There is
no indication, in any of the results in Figs·22–30, where
numerous quantities are plotted as continuous functions of
flight speed, that any sharp or discontinuous transition in wake
topology occurs, at any U. Moreover, most of the wake
topologies, at most flight speeds, are not closed loops or
continuous vortices, but are some kind of intermediate form,
where the strength of the cross-stream vorticity gradually
decreases with increasing flight speed. In the case of the thrush
nightingale, the notion of distinct gaits is not only non-useful,
but it is qualitatively and quantitatively incorrect.

Since there are no other wake data covering a range of flight
speeds, then the reasonable working hypothesis is that gradual
transitions occur from low-speed to high-speed wakes of flying
birds through gradual increases in cross-stream vorticity, much
as originally hypothesised and discussed in Spedding
(1981,1987b), Pennycuick (1988) and Spedding and DeLaurier
(1996). We should point out, however, that the common
intermediate wake structure is not quite as predicted by these
authors. Instead of single connecting strands of vorticity
representing decrements and increments of the circulation on
the wing, the upstroke here sheds its own starting and stopping
vortices, to form a double-ringed wake. The upstroke wake is
more distinct at medium to low speeds. It forms the bridge
between wakes with discrete elements at low speeds and
continuous variations at high speed. The purportedly distinct
closed-loop and constant-circulation wakes are otherwise
simply single points on the continuous curve.

The wake momentum paradox

The problem

The wake momentum paradox arose because quantitative
measurements of the wake in slow-flying pigeons (Spedding et
al., 1984) and jackdaws (Spedding, 1986) produced at most
50% of the momentum required for weight support. The
magnitude of the deficit greatly exceeded any reasonable
uncertainty estimate of the wake measurements used in its
calculation (primarily the diameter and circulation of the
closed-loop structures). Using the same measurement and
analysis techniques, there was no corresponding deficit for the
medium-speed flight of either gliding or flapping kestrels
(Spedding, 1987a,b). In the absence of further data in the
intervening years, the conundrum has remained unsolved.

Although it has been suggested (Rayner, 1991b, 2001) that
birds in very slow flight do not or cannot fly straight and level
but are in fact decelerating at about 1/3 g, there is solid
evidence to the contrary. This includes experimental evidence
from analysis of high-speed cine film (Spedding, 1981) of both
pigeon and jackdaw flight under very similar circumstances to
the original experiments, and from tracings of trajectories of
the feet or eyeballs in the same multiple-flash photographs used
for the original wake analysis (Spedding, 1986). The evidence
also includes the practical difficulties that, for the particular
experimental geometry, a ballistic trajectory of constant 1/3·g
deceleration would require initial vertical speeds greater than
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the horizontal flight speed, and that the birds did in fact arrive
in front of the cameras with a very small net increase in height.
The original statement of the problem should thus be taken at
face value, and the low speed results continue to provide a
puzzling context for this work.

The solution

The initial results in this study (Fig.·22) replicated and
confirmed the original wake momentum paradox, with
circulation values between 30–60% (Γ/Γ1 in Fig.·22) of that
required for weight support from planar vortex loops with the
measured size. It became clear (Fig.·27) that a significant
fraction of the total circulation could reside in low amplitude,
diffuse patches of vorticity, and it was only when positive
vorticity from the end of the downstroke part of the wake was
included in the total (Fig.·28) that the sums finally added up,
equally, to 1.0. The previous wake momentum deficit was
caused by substantial amounts of circulation being effectively
omitted from the calculations because it was (i) beneath the
measurement resolution, and (ii) not in the expected place.

The bubble cloud method calculated the wake circulation by
integrating in a straight line down the centreline of the ring-
like wake structure (Spedding et al., 1984). Application of
Stokes’s theorem to fluid flows that can be represented by
concentrated vortex lines or tubes embedded in an otherwise
irrotational flow shows that any line integral around a closed
path containing the vortex lines will converge to the same
value of the circulation. However, the total circulation cannot
be measured if the closed curve does not include all the
vorticity. The straight line approximation presumes that all the
vorticity of opposite signs lies either side of the dividing
streamline. We now see that this is not the case, and so the
previous technique was bound to underestimate the total wake
circulation. Furthermore, the comparatively limited resolution
of the bubble cloud method did not allow the other important
but diffuse traces of vorticity to be distinguished. In this
study, the initial measurements of the circulation in Fig.·26
effectively share the same assumptions, confining all the
measurements to particular contiguous blobs, and that is why
they show the same apparent momentum deficit. The deficit
disappears when all the above-threshold vorticity, in its
complex distribution, is properly taken into account.

The difficulty in using measured circulation values to
deduce wake momentum generation rates in a real experiment
should not come as a surprise, for three reasons. First, although
making force estimates from wake surveys is a classical wind
tunnel technique, in practice it requires careful measurement
in tightly controlled conditions, and recent studies (Spedding
et al., 2003; Spedding, 2003) have shown the non-negligible
uncertainty in estimating drag (for example) from DPIV wake
measurements behind even a simple fixed wing model
geometry at Reynolds numbers and aspect ratios comparable
to the bird flight experiments reported here. The measurement
difficulties are compounded when the downstream
measurement location, x/c, is far away, and when one is trying
to exploit a simplified conceptual model of a complex

generation mechanism. Both concerns apply here, particularly
at low flight speeds.

The second point is that efficient locomotion of well-trained
animals in a properly controlled experiment will probably not
generate large excesses in momentum above that required for
propulsion and weight support (if applicable). The more
rigorous the experiment, the smaller will be the excess. The
wake impulse to correctly balance the known (or presumed)
body forces is therefore a maximum measurable quantity, and
most measurement techniques will approach this value from
below, erring on the low side. The story told by Figs·22–24,
27, 28, reveals how to do this for the family of wakes
discovered for the thrush nightingale.

The third and final point concerning the likely difficulty in
making momentum-balancing calculations in turbulent flows
at moderate Reynolds number is that phenomena such as
cancellation of vorticity and reconnection of vortex lines can
significantly modify the qualitative and quantitative properties
of fluid flows. Cantwell and Coles (1983) measured
circulation deficits of up to 50% in moderate Reflows behind
circular cylinders. The abrupt change in topology of
neighbouring vortex structures through mutual interactions
has been extensively investigated (e.g. Boratav et al., 1992;
Zabusky et al., 1995) for initially parallel tubes and for
orthogonal orientations. The fact that the sums eventually did
balance in the bird wake could be used to argue that these
dissipative interactions did not in fact occur (or rather that
they were not significant in the overall energy budget), but the
situation may not be so simple, and the crude accounting
method where all circulation of either sign was lumped into
simplified down- and upstroke structures may camouflage a
more complex and intrinsically difficult problem. Luckily, this
problem currently lies beneath the accuracy of our simple
vortex-wake model reconstructions, and an approximate
balancing of the forces can be considered to have been
achieved. However, one may note that significantly improved
measurement resolution in future studies might in fact uncover
significantly harder wake measurement and force balance
problems.

To the degree of accuracy that one might reasonably claim
from these wind tunnel experiments, the momentum balance
puzzle can be considered to be solved. Ultimately, the
resolution of the long-standing wake momentum paradox was
only possible because the new, customised data acquisition and
analysis methods allowed estimates of the velocity field and its
gradients with superior resolution in space and amplitude. It is
not likely that any method that relies on tracking of individual
bubbles, even if it is in three dimensions, will have such
resolution. Finally, it is worth inspecting once again
superimposed images of the velocity and vorticity fields such
as Fig.·8. If the accurate calculation of ωy(x,z) were not
available, qualitative inspection of the velocity field alone
would give no hint of the true complexity of its gradient field.
Similarly, any conclusions that rely solely upon qualitative
interpretation of even well-resolved velocity fields or bubble
tracks have no chance of providing unambiguous information
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about likely vortex wake structure, which can only be deduced
with assistance from quantitative measurements.

High-lift mechanisms at low flight speeds?

The major contribution to previous shortfalls in wake
momentum measurements seems to be related to shedding of
positive vorticity in the latter part of the downstroke or early
part of the upstroke. The source and significance of this are not
known. If it indicates a commensurate temporary increase in
circulation on the wing, this may be either some kind of high-
lift mechanism using control of separated flows, or it may only
mark a control adjustment whose effect is not noticeable until
the beginning of the upstroke.

The continued immersion of the wings and body of slowly
flying birds in the downstroke-generated wake has been
noted before (Spedding, 1981, 1986) and is an inevitable
consequence of the high reduced frequency at low flight speeds
(Table·2), where the smallest fraction of a wingspan of forward
travel is achieved with each wingbeat cycle (λ/2b=UT/2b≅ 1.1
for U=4·m·s–1). One can expect not only body–wake
interactions but also wake–wake interactions as the spacing
between successive structures is small, or comparable to their
size. Again there are two issues that may or may not be related.
First, the various interference effects of body–wake and
wake–wake interactions are very likely to disrupt any pre-
existing orderly wake structure, making it more difficult to
account for the both the energy and momentum when the wake
is eventually measured, at least one wingbeat later. Second,
there is the possibility that these interactions might be
advantageous, either directly in increasing lift or reducing drag,
or indirectly, in assisting flow control either through the
appropriate positioning of wake structures or the maintenance
of favourable pressure gradients.

An interaction between the wake vorticity and wing surface
has been demonstrated by Dickinson et al. (1999) (see also
fig.·4 in Yan et al., 2002) for mechanical model simulations of
the hovering flight of the fruit fly. Intermittent, high-lift forces
at the beginning of up- and down-strokes were measured and
correlated with the wing section intersecting favourable
induced flows from previous parts of the wingstroke. This
phenomenon was termed ‘wake capture’, though it can also be
viewed more generally as a strategic placement of the wing in
a pre-existing, non-uniform flow field. In hovering flight, the
reduced frequency, k=2πfc/2U, is infinite, and the hovering
fruit fly and its model both sit directly on top of the pre-existing
wake, increasing the likelihood of significant interactions. The
Reynolds number is also significantly lower (Re≈102) and the
flow around and behind the wings is dominated by large
vortices generated by boundary layer separation at the leading
and/or trailing edge. It is possible that an analogue of wake
capture occurs in bird flight at very low speeds, and that it both
provides useful mechanical force and complicates the wake
measurement. The existence and importance of strongly
separated flows on bird wings at low flight speeds is currently
a matter of conjecture, direct measurement being very difficult.
The most promising approach will likely be adaptation of

mechanical models to non-zero forward speeds and to
geometries and Reynolds numbers approaching that of bird
flight.

The footprints of gliding and control: quick estimates of
horizontal and vertical momentum generation

The gliding and control wakes shown in Figs·18 and 20 help
to interpret the usual steady flapping flight case by contrast.
One aspect is to clarify the role and relative importance of the
wake shed by the body alone. When a wake is measured
continuously throughout the wingbeat, as in Figs·14 and 16 for
moderate and high speeds, respectively, one might suspect that
the effect of the body itself (rather than the wings) is being
measured, especially in vertical centreplane cuts. To some
extent this is necessarily true, as the body is treated as part of
the wings whenever the wings are aerodynamically active. One
cannot therefore distinguish between induced downwash due
to wing loading or due to body loading since, to a first
approximation, they are the same thing. The dominance of the
wing-induced downwash can be clearly seen in the gliding
wake of Fig.·18, superimposed on which is a relatively low-
amplitude drag wake attributable to the body.

The interpretation would be considerably different if there
were significantly different patterns of vortex shedding at the
wing root than at the midwing, or if the peak vorticity (and
circulation) magnitudes were different in the two locations.
Fig.·14A,B shows this is not the case. Furthermore, the primary
structures observed in Fig.·14A trace the up-and-down path of
the wing and not the body, whose vertical excursions are very
much smaller, and not in phase [data in Pennycuick et al.
(2000) show the vertical body position leads the vertical wing
position by 90°].

The mean wake profiles such as Fig.·19A can in principle
be integrated to find the rate of change of momentum in x. The
details can be found both in current textbooks (e.g. White,
2003) and the classics (a detailed account appears in Prandtl
and Tietjens, 1934). Far downstream of the original
disturbance, the pressure fluctuations can be neglected and the
drag force can be estimated from

where A is the cross-sectional area (in {y,z}) over which a
measurable wake defect velocity of u′ can be measured. For a
sufficiently large control volume (effective A), then the wake
defect measured by Equation·21 would give the sum of the
viscous and pressure drags around the wings and body. The
profiles of UX(z) are available in occasional single vertical
planes only in this experiment, and direct estimates of the drag
from Equation·21 are too sensitive to assumptions about being
on the exact centreplane through profile cross-sections of
uncertain shape to be useful for absolute values.

Nevertheless, comparative estimates can be made between
the gliding and control cases. The mean velocity defect profiles
of Figs·19A and 21 are both taken from the vertical

FD = ρ u′2 dA·, (21)
⌠

⌡A
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centreplane, behind the body, but with an uncertainty in y
position of about 50% of a body diameter. If Equation·21 is
applied to these profiles, using UX(z) as a measure of u′(y,z)
by assuming that the profile is circular in cross-section, then
FD,Control≅ 2FD,Glide. The detectable difference shows that
control manoeuvres can be detected and measured in the wake.
Here a drag force of twice the usual body drag is used,
presumably to adjust the x-position in the wind tunnel, moving
further downstream from the perch and reference point. The
adjustment to move in the other direction (upstream, back
towards the reference marker) will notbe observable in a
directly comparable wake (same structure but mean positive
defect), but as a flapping wake with stronger measured
circulation. The calculations are approximate only, but they
show the potential of the method for measurements of wake
features from control or unsteady manoeuvres, and also for
drag measurements in general.

There is strong interest in making correct estimates of total
drag derived directly from the fluid motions, because the
experimental estimation of frictional and profile drag
coefficients of wings and bodies of animals, dead or alive,
tethered or in free flight, is very difficult, even more so at
Reynolds numbers typical of bird flight (Table·2), despite
various ingenious experimental attempts to do it (e.g.
Pennycuick, 1968b; Tucker, 1990a,b; Pennycuick et al., 1992,
1996). At the Reynolds numbers and aspect ratios in question,
estimating drag even from the wake of a fixed wing by
integrating wake profiles and calculating forms of Equation·21
is not as straightforward a procedure as it might first appear
(Spedding et al., 2003; Spedding, 2003), because unsteady and
three-dimensional effects are always present. Nevertheless it is
possible, and further experiments are recommended in
repeatable conditions designed to assure steady gliding (tilting
the wind tunnel, for example) so that systematic profile surveys
can be taken across the wake to include all contributions to the
drag.

Equation·21 does not include contributions from the induced
drag, which introduces terms with velocity components in the
spanwise and vertical directions. However, there are yet
simpler expressions for the vertical induced velocity of a finite
lifting wing (see Prandtl and Tietjens, 1934). In the far wake,
the induced vertical velocity, w1, is twice the value on the
wings themselves, and the lift force is the product of w1 times
the mass flux affected by the presence of the wings,

L = w1ρUS′ .· (22)

The equivalent cross-sectional area, S′, depends on the velocity
distribution on the wing and, in the case of the elliptically
loaded wing, S′=πb2, a circular wing disc area with diameter
equal to the wingspan (it is indeed the same actuator disc
described in the introduction). Because w1 varies rather slowly
with span, its estimation is quite robust (cf. estimates of u′),
and the mean profile of WZ(x) in Fig.·19B gives an idea of the
variation in averaged quantities. For a first estimate, let us
approximate w1 with the mean vertical velocity, W

–
z, measured

from Fig.·19B. Equation·22 then evaluates to L=0.5±0.2·N, and

compares with a body weight of approximately 0.3·N. The
uncertainty is large but the values overlap, and the vertical
momentum generation rate is sufficient for weight support and
consistent with classical wing theory.

Having shown that simple fixed-wing aerodynamic models
can be applied without great problems to the appropriately
selected data sets, we now consider a general model for the
more complex flapping flight case, based on the measured bird
wake data.

A simple flight model: the E–R wake

Here, we attempt to construct an empirical flight model. It
is based specifically on the thrush nightingale data, but
contains features that may be quite general. In this spirit, and
given the difficulties in describing the precise wake geometry,
the model need not be complicated and some quite broad
assumptions can be allowed. A good starting point for a general
model that can approximate the geometry and transitions in
Fig.·31 might be the Ellipse–Rectangle (E–R) geometry, whose
basic principles were originally introduced in Fig.·2B. Fig.·32
shows how the E–R model is constructed. The downstroke
always sheds a wake covering an area described by an ellipse.
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Fig. 32. (A) The Ellipse–Rectangle (E–R) wake is the simplest single
model geometry that describes the wakes found over all flight
speeds. Two planar wake areas are shed by the downstroke and
upstroke, and they are elliptical and rectangular in shape,
respectively (B). In order to calculate and test vertical forces, only
the projections onto the horizontal plane need be considered. (C) A
weighting function Cu(U) varies between 0 and 1 from Umin to Umax

to gradually change the relative contribution from the upstroke
(rectangular) component. λ, wavelength; ψ, wake element inclination
angle; τ, downstroke ratio; h, height. The d- and u-subscripts refer to
down- and upstrokes.
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The aspect ratio of this ellipse depends primarily on the
forward speed, U, and the wingspan, 2b. The upstroke always
sheds a rectangular wake, with circulation that gradually
increases from zero at the lowest flight speed, to equal to the
downstroke circulation at the highest flight speed. The
extremes (in U) of this model thus replicate simple analogues
of the closed-loop and constant circulation wakes. Just as in
the experiment, most wakes are of some intermediate form.

The vertical impulse of the two wake segments can be
written:

where λd and λu are the horizontal wavelengths of the
downstroke and upstroke wakes:

λd = UTτ

and λu = UT(1 − τ) , (24)

T is the wingbeat period and τ is the downstroke ratio, as
previously defined.

Γd and Γu are the unknown circulations, whose values will
be taken initially from experiment. The relative wake width in
y is determined by the span ratio, R, which is a number less
than 1.0 representing the projected relative span of the flexed
wing in its upstroke position. The rather sparse data that exist
(Spedding, 1987b) suggest that this can be approximated as
constant. The current data at single vertical slices here do not
help in improving the certainty of this estimate.

Now, the total vertical impulse is

Iz = Iz,d + Iz,u·. (25)

It remains to measure or estimate Γd and Γu, a rather familiar
problem by now. At low flight speeds, Γu is small, and the
wake has been shown to be well represented by ellipses with
constant circulation equal to the values described in Fig.·28.
As U increases, so does the relative contribution of Γu, until
Γu=Γd. The experimental data again suggest that the relation
between Γu and Γd can be approximated by a simple monotonic
function over all U. To simplify, Γu is set by

Γu = CuΓd·, (26)

where Cu(U) is a continuous function between 0 and 1. To
further simplify, it is set here to be linear. If estimates of Γd(U)
are available, then the average vertical force Fz over one wake
period (which ought to equal the weight, W) can be calculated
directly from

Similarly, the net horizontal force Fx can be calculated, in
principle, from the difference in vertical projections of the two
wake areas,

Ix = Ix,d – Ix,u, (28)

and these are once again completely determined by the
assumed or measured kinematics and wake geometry, with
only Γd and Γu as unknowns:

where h is the vertical wake height, as shown in Fig.·32, and
R is span ratio. In steady flight, the horizontal impulse per unit
time balances the drag D, which is the thrust Fx:

In practice, D is much smaller than L, and would be poorly
resolved by the crude model geometry. Moreover, practical
resolution of the drag forces is much more complicated
because it is the fluid itself that exerts the drag force in the first
place. Thus in steady, unaccelerated forward motion the
viscous drag wake is balanced by the increase in momentum
of the opposite sense in the thrust wake, and in a suitably
defined control volume (i.e. one that contains an integer
number of wingbeat cycles) the net horizontal momentum will
be exactly zero. This is true for all self-propelled wakes, be
they from birds or aeroplanes, fish or submarines. One would
only expect to be able to calculate either thrust or drag if the
drag part of the wake were easily separable from the thrust part.
The more complex the wake structure, the harder this will be.

It is not the purpose of the current exercise to devise a
sophisticated or accurate model, but rather to test and
demonstrate the self-consistency of the concept, using the
simple criterion of sufficiency of weight support. It is quite
instructive to follow the calculation of Iz, step-by-step, as
illustrated in Fig.·33.

Fig.·33A shows the increase in projected horizontal
wavelength with increase in flight speed, U. Since the wingbeat
frequency changes little, the stride-length or advance ratio
increases with U. It corresponds to a decrease in reduced
frequency. Commensurately, if the wake height is assumed to
be constant (this is not quite true, as indicated in Fig.·31, but at
this level of detail the correction is unimportant), the angle to
the horizontal of both upstroke and downstroke wake segments
decreases with increasing U (Fig.·33B) and the horizontal
projected area of each segment also increases. The projected
area (Fig.·33C) is normalised by a wing disc area calculated
from the wing semispan. At 6·m·s–1, the ratio of projected to
disk area is approximately 1.0, and the bird progresses forward
by about one wingspan per wingstroke (see also Fig.·33A).

Fig.·33D shows the measured circulations of the strongest
single wake vortex (open circles) and total mean circulation of
either sign (closed circles). At slow flight speeds, the best
estimate of Γ for the wake is Γtot. With increasing U it becomes
less appropriate because there is no good reason to suppose
that the almost continuous shedding of small concentrations of
vorticity can be simply lumped together as if there were one
big wake structure. Instead a better estimate might now be Γv,

(30)
Ix

T
= –D = Fx .

(29)

h

2
Ix,d = ρπb

and Ix,u = ρ2bRhΓu .

Γd
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2
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the circulation of the strongest vortex. For this measure, the
value taken at midwing is used, which can include oblique
sections through continuous trailing vortices having smaller
circulations at the centreplane because they do not usually
extend over the midline. As represented by the dash-dot line,
a weighted average of the two different Γ measures is used to
model the most likely value.

The final result is shown in Fig.·33E, where the fraction of
weight support provided by the E–R model wake vertical

impulse is shown. The model results based on experimental Γ
lie close to 1. The worst case is at the highest flight speed, and
here the shortfall is likely to be the difficulty in correctly
estimating the strength of vortices from streamwise cuts when
the main structure is primarily streamwise also, and not
spanwise. All data points lie within reasonable limits of
Iz/WT=1. It is concluded that the wake model geometry and
circulation estimates are self-consistent, and that this
framework could be used to model bird wakes.

The only difficult input here was in knowing how to choose
Γ, which was determined from experimental data in Fig.·33D.
It would be useful to have a more general function, and so two
empirical forms are given. The first approximates Γ with an
arbitrary second order polynomial as:

Γ/Uc = C0 + C1U + C2U2·. (31)

The vector of best-fit polynomial coefficients is C=[6.1,
–1.08, 0.05] for the thrush nightingale wake. Alternatively,
since one expects L and Γ to be related through Equation·11
(L′=ρUΓ), then one might also predict that

Γ/Uc ≈ C1U–2·. (32)

A reasonable fit to the data can be found by fixing the exponent
to –2, when C1≅ 40.

The results of the E–R model have been expressed mostly
in dimensionless form with a view to scaling them out to other
cases than the single species examined here. At the same time,
we also will refrain from further complicating a model whose
basis still rests on the one (albeit extensive) dataset.
Nevertheless, it is hoped that the current data, E–R model and
limited generalisations from them will form the basis for a
general model approach that can be successfully applied
towards understanding and analysis of other aerodynamical
problems in bird flight.
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Fig. 33. Predicted/measured wake parameters for the thrush
nightingale, and their contribution towards the total wake impulse.
(A–C) show the horizontal wake length (λ, A), inclination angle (ψ,
B) and projected area (S, C) for the downstroke (solid diamonds) and
upstroke (open diamonds) segments. In (D), alternative estimates of
the wake circulation are available from either the strongest
measurable single vortex (Γv, open circles), or from the mean total
circulation of either positive or negative patches of vorticity (Γtot,
closed circles). Based on the wake reconstructions in this paper, and
on the assumptions of the E–R model geometry, the best estimate
comes from a weighted sum of the two, shown by the dash-dot line.
In (E) the fraction of weight support provided by the wake model is
plotted for all flight speeds. The magnitude of the error bars will be
similar to those shown in Fig. 28. Thus all points lie within ±20% of
one. Iz, vertical impulse; W, weight; T, wingbeat period; U, flight
speed; c, wing chord.
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AR aspect ratio
b wing semispan
c mean chord
Cu empirical coefficient for relative importance of 

upstroke wake
d, u appearing as subscripts, denote downstroke and 

upstroke quantities
D drag
f wingbeat frequency
FD drag from wake momentum defect
Fx,z net horizontal and vertical force (thrust and lift)
g gravity
G Gaussian function
h vertical wake height
Ix,z horizontal, vertical wake impulse
k reduced frequency 
L lift
L′ modified lift due to boundaries, lift per unit span
m mass
Q wing loading
r radial coordinate
r0 vortex core radius
R span ratio
Re Reynolds number
S material surface
S wing area
Se projected area of wake ellipse
S′ equivalent cross-sectional area
t time
tc characteristic evolution time (of wake segment)
T wingbeat period
TG threshold of G
u velocity vector
u, v, w components of u in x,y,z
u′ wake defect velocity
urel relative velocity magnitude
U flight speed
w1 vertical induced velocity in late wake
Wz mean vertical velocity
W body weight
x,y,z streamwise, spanwise and vertical directions
α angle of incidence
δ small increment, spatial resolution
Γ circulation
Γtot total circulation in and out of vortex cores
Γ+,– normalised circulation
Γ0 reference circulation for weight support in steady, 

non-flapping flight
Γ1 reference circulation for weight support by 

downstroke-shed ellipse
λ wake wavelength
ν kinematic viscosity
ρ air density
ψ wake segment inclination angle, measured from 

horizontal
σ half-width of Gaussian function, G

τ downstroke ratio
ω vorticity vector
ωy component of vorticity in y (spanwise)
|ωy|max peak spanwise vorticity magnitude
Ω+,– normalised vorticity
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