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Summary

Precise coupling of spatially separated intracellular reactions in the dissipation of metabolite gradients
ATP-producing and ATP-consuming processes is and communication of energetic signals to distinct
fundamental to the bioenergetics of living organisms, intracellular compartments, including the cell nucleus
ensuring a fail-safe operation of the energetic system over and membrane metabolic sensors. Enzymatic capacities,
a broad range of cellular functional activities. Here, we isoform distribution and the dynamics of net phosphoryl
provide an overview of the role of spatially arranged flux through the integrated phosphotransfer systems
enzymatic networks, catalyzed by creatine kinase, tightly correlate with cellular functions, indicating a
adenylate kinase, carbonic anhydrase and glycolytic critical role of such networks in efficient energy transfer
enzymes, in efficient high-energy phosphoryl transfer and and distribution, thereby securing the cellular economy
signal communication in the cell. Studies of transgenic and energetic homeostasis under stress.
creatine kinase and adenylate kinase deficient mice, along
with pharmacological targeting of individual enzymes, Key words: energy, metabolism, mitochondria, creatine kinase,
have revealed the importance of near-equilibrium adenylate kinase, glycolysis, carbonic anhydrase, homeostasis.

Introduction

Mechanisms responsible for communication betweernopological arrangements apparently are insufficient on their
spatially separated intracellular ATP consumption and ATRwn to fulfil all cellular energetic needs (Dzeja et al., 2000; de
production processes, and their precise coupling over a bro&foof, 2001). In this regard, a new role of spatially arranged
range of cellular functional activity has remained a long-intracellular enzymatic networks, catalyzed by creatine kinase,
standing enigma (Bessman and Carpenter, 1985; Hochachlalenylate kinase, carbonic anhydrase and glycolytic enzymes,
1994; Saks et al., 1994; Ames, 2000). Optimal operation dh supporting high-energy phosphoryl transfer and signal
the cellular bioenergetic system requires that energy-richommunication between ATP-generating and ATP-
phosphoryls are produced and delivered to energy-consumimgnsuming/ATP-sensing processes has emerged (Wallimann et
sites at the rate corresponding to the ATPase velocity, and thalt, 1992; Saks et al., 1994; Dzeja et al., 1998; Dzeja and
products of ATP hydrolysis, namely ADP; &xd H, are Terzic, 1998; Joubert et al., 2002). This ‘dynamic’ concept
removed in order to avoid kinetic and thermodynamicemphasizes that metabolic signaling through near-equilibrium
hindrances (van Deursen et al., 1993; Saks et al., 1994; Ti@mzymatic networks, along with other homeostatic
et al.,, 1997; Dzeja et al., 2000). Progress has been madentechanisms (Balaban, 2002), contributes to efficient
elucidating the cytoarchitectural, convectional and enzymatimtracellular energetic communication in maintaining the
mechanisms that facilitate coupling and coordination of energlgalance between cellular ATP consumption and production
transduction processes with the metabolic, mechanical arfdan Deursen et al., 1993; Saks et al., 1994; Dzeja et al., 2000;
electrical activity of the cell (Hochachka, 1999; Janssen et alNeumann et al., 2003).

2000; Kaasik et al., 2001; Saks et al., 2001; Abraham et al.,

2002). Cytoplasmic streaming, positioning of mitochondria

and their movement in response to changes in energy Intracellular energy transfer

utilization, along with formation of enzymatic complexes, have Following the discovery of adenine nucleotides, and their
all been shown to contribute towards facilitating intracellularole in cellular energetics as a key link between spatially
energetic communication (Harold, 1991; Hollenbeck, 1996separated energy transducing processes, the energy transfer
Hochachka, 1999; Lange et al., 2002). However, suchoncept through the ‘adenylate wire’ was proposed (Lipmann,
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1941). Fritz Lipman, the author of this concept, was among thideir functional significance may vary depending on the
first to notice the analogy between the energy-carrying adenimqysiological conditions or functional load (Gerbitz et al.,
nucleotide system and the electrical circuit. Indeed, basit996; Ziegelhoffer, 2002). This view is supported by the
principles of energy transfer, in terms of the rate andbservation that the presence of creatine kinase, adenylate
efficiency, apply equally to both industrial and metabolickinase and nucleoside diphosphate kinase in the
networks (Peusner, 1974; Jeong et al., 2000). intermembrane space facilitates ATP/ADP exchange between
The localization of mitochondria in close proximity to mitochondria and cytosol (Saks et al., 1994; Laterveer et al.,
cellular energy-utilizing processes, and their movement i1997; Roberts et al., 1997; Dzeja et al., 1999b). Conversely,
response to activation of ATP-utilizing reactions (Hollenbeckdisruption of the adenylate kinase gene impedes ATP export
1996), suggest that the distance of energy transfer is criticklbbm mitochondria (Bandlow et al., 1988). Taken together, this
for adequate energy supply. However, energy transfer byould indicate that in the absence of facilitating mechanisms,
diffusional exchange of adenine nucleotides is kinetically andell architecture and diffusional hindrances would obstruct free
thermodynamically inefficient since it requires a significantmovement of molecules, impeding efficient intracellular
concentration gradient (Meyer et al., 1984; Jacobus, 1985), aedmmunication.
would result in ATPase inhibition by end products @&DP,
H*), inability to sustain the high free energy of ATP hydrolysis
(AGaTp) at sites of ATP utilization (Fidl), and ultimately Near-equilibrium enzymatic flux transfer networks
energy dissipation AH) during transmission (Kammermeier, In searching how cells overcome diffusional limitations for
1997; Dzeja et al., 2000). The difference betwk@mnatpyand  substrate movement in the highly structured intracellular
AG2(atP), Signifying energy loss (H), would increase at milieu, Nagle (1970) and Goldbeter and Nicolis (1976)
higher rates of ATP turnover, and the drog\G2atp) below  suggested that displacement of equilibrium in creatine kinase
a threshold would impair cellular functions (Kammermeier,or glycolytic reactions in one cellular locale could be rapidly
1997; Taegtmeyer, 2000). transmitted through a near-equilibrium network in the form of
Part of intracellular energy transfer proceeds in the narrowa sharp concentration wavefront over macroscopic distances.
mitochondrial inner membrane infoldings, known as cristadhis view was supported by Reich and Sel’kov (1981)
(Fig. 2). The cristae arrangement increases, by several foldsitroducing the concept of flux transfer chains along which an
the capacity of mitochondrial ATP production without incoming flux wave could be instantaneously transmitted in
occupying additional intracellular space. However, it createsither direction. The principle of vectorial ligand conduction,
difficulties in ATP export from the mitochondrial intracristal as a basic mechanism for operation of metabolic and transport
space, as diffusional flux requires a significant concentratioprocesses within the cell, was developed by Peter Mitchell
gradient. Accordingly, ATP accumulation in the mitochondrial(Mitchell, 1979). Taken together, these principles were applied
intracristal space would inhibit export of ATP from theto the chains of sequential rapid equilibrating reactions
mitochondrial matrix by locking the adenine nucleotidecatalyzed by creatine kinase and adenylate kinase (‘phosphoryl
translocator (Mannella et al., 2001). In principle, this limitationwires’) as a mechanism for facilitated high-energy phosphoryl
can be overcome by either placing in the intracristal spadeansfer between ATP-consuming and ATP-generating sites in
near-equilibrium  phosphotransfer systems, capable dhe cell (Zeleznikar et al., 1995; Dzeja et al., 1998). In these
accelerating ATP export/ADP import, and/or by establishinghains, a series of rapidly equilibrating reactions provide the
high-throughput contact sites between inner and outadriving force for high-energy phosphoryl flux (Wallimann et
membranes, thereby providing direct access to ATP in thal., 1992; Saks et al., 1994; Dzeja et al., 1998). According to
mitochondrial matrix (Fig2). Available data suggest that in this mechanism, incoming ligands at one end of the system
mitochondrial physiology both possibilities are employed, andpush’ adjacent ligands, triggering a propagation of a ‘flux
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wave' through a network of enzymes catalyzing rapid Creatine kinase phosphotransfer system: a conduit for
equilibrium among substrates. Thereby, ligands do not move high-energy phosphoryls
the entire length of the pathway, as molecules arriving at the Creatine kinase is a major phosphotransfer system in cells
distal sites of this sequence represent the equivalent rather thaith high-energy demand, and it acts in concert with other
the specific molecule generated at the origination site. Thisnzymatic systems to facilitate intracellular energetic
phenomenon, which was recently refined using modernommunication (Bessman and Carpenter, 1985; Jacobus, 1985;
computer simulations (Tuckerman et al., 2002), is referred t8aks et al., 1994; Joubert et al., 2002; Neumann et al., 2003;
as ‘walking without moving'. It is known that flux wave Dzeja et al., 2003). The metabolic significance of the creatine
propagation along rapid equilibrating chemical and biologicakinase-catalyzed reaction depends on total enzyme catalytic
reactions can proceed much faster than diffusion of reactantgpacity, intracellular localization of creatine kinase isoforms,
(Goldbeter and Nicolis, 1976; Mair and Muller, 1996). The rateand the ability of creatine kinase to propagate displacement of
of wave front movement in these systems is equal to the squate local ATP/ADP equilibrium to other cellular sites to
root of the reaction velocity constant and diffusion coefficientmaintain energetic homeostasis (Ingwall, 1991; Wallimann et
(Mair and Muller, 1996). These calculations provide anal., 1992; Saks et al., 1994; Zeleznikar et al., 1995; Dzeja et
important indication as to why the total cellular activity ofal., 2003).3!P-NMR saturation transfer (Kingsley-Hickman
enzymes catalyzing near-equilibrium reactions surpassegt al., 1987; Ingwall, 1991; Neeman et al., 1987) &%+
apparent physiological needs. Moreover, the enzymatic liganghosphoryl labeling data (Zeleznikar et al., 1995; Dzeja et al.,
conduction system is capable of operating with minimal or nd998) indicate that rapidly equilibrating enzymatic systems can
concentration gradients, underscoring its thermodynamioperate by the ligand conduction mechanism, providing a
efficiency (Dzeja et al., 1998). This could explain why changesonduit for high-energy phosphoryls (Saks et al., 1994; Dzeja
in cellular adenine nucleotide concentrations are most often net al., 1998). This would increase the rate and efficiency of
observed even with marked increases in metabolic fluphosphotransfer in the highly structured intracellular
(Zeleznikar et al., 1995; Balaban, 2002). environment (Carrasco et al., 2001; Abraham et al., 2002;
Produced by the ATPase reactions, ADP apparently cannbzeja et al., 2002).
diffuse freely and serve as a feedback signal to ATP- Understanding of creatine kinase function was limited when
regenerating processes, as abundant and catalytically actitree cell was considered as a homogenous system where
creatine kinase, adenylate kinase and glycolytic enzymemnzymes are in equilibrium, and metabolites have uniform
residing throughout a cell would process a large portion of thdistributions and concentrations (Meyer et al., 1984;
ADP produced by ATPase reactions (Saks et al., 1994; Dzefaushmerick, 1995). Recently, a new experimental approach
et al., 2000). The high rate of unidirectional phosphorythat allows quantification of unidirectional fluxes of creatine
exchange in these phosphotransfer systems would promdimase localized in different subcellular compartments provided
metabolic flux wave propagation and ligand conduction astrong evidence for the involvement of creatine kinase in
cellular distances. intracellular energy transfer (Joubert et al., 2002). Moreover,
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transgenic animal studies demonstrate that creatine kinasemmunication, and that loss of adenylate kinase function
deficiency compromises energy delivery for muscle contractionan be complemented by activation of creatine kinase
and intracellular calcium handling, as well as signalphosphotransfer (Carrasco et al., 2001; Dzeja et al., 2002).
communication to membrane metabolic sensors such as tMoreover, interaction between adenylate kinase and
Katp channel (van Deursen et al., 1993; Steeghs et al., 199@eatine kinase phosphorelays determines metabolic signal
Saupe et al., 1998; Kaasik et al., 2001; Abraham et al., 2002Zyansmission to the prototypic membrane metabolic sensor, the
In creatine kinase-deficient muscles, phosphotransfetsate channel (Dzeja and Terzic, 1998; Carrasco et al., 2001;
catalyzed by adenylate kinase as well as by glycolytic enzymesbraham et al., 2002), and mediates energetic remodeling in
provide the major route for intracellular high energypreconditioned (Pucar et al., 2001) and failing hearts (Dzeja et
phosphoryl transfer (Dzeja et al., 1998, 2003; de Groof et alal., 1999b, 2000). AK1 knockout muscles display lower
2001). Such alternative high-energy phosphoryl routes magnergetic efficiency and increased vulnerability to metabolic
rescue cellular bioenergetics in cells with compromisedtress, associated with a compromised ability to maintain
creatine kinase (CK)-catalyzed phosphotransfer (Boehm et ahucleotide pools and intracellular metabolic signal
2000; Dzeja et al., 2000). In this regard, observations followingommunication (Janssen et al., 2000; Pucar et al., 2002). Also,
deletion of brain B-CK indicate that this isoform is muscle exercise performance correlates with adenylate kinase
fundamental to processes that involve habituation, spatialctivity, suggesting that this enzyme is an integral part of
learning and seizure susceptibility (Jost et al., 2002)cellular energetic homeostasis (Linossier et al., 1996).
Mitochondrial isoforms ScCKmit and UbMi-CK are critically
necessary to maintain normal high-energy phosphate
metabolite levels in heart and brain during stress (Kekelidze et~ Glycolytic phosphotransfer system: delivering
al., 2001; Spindler et al., 2002). In addition, reduction inmitochondrial high-energy phosphoryls in exchange for P
cellular B-CK activity by dominant negative gene expression NADH and ADP
abrogates thrombin-mediated, energy-dependent signal That glycolytic enzymes contribute to intracellular high-
transduction during cytoskeletal reorganization (Mahajan et alenergy phosphoryl transfer and spatial distribution is being
2000). These findings emphasize the importance of creatirecreasingly recognized (Dzeja et al., 1998, 2003; de Groof et
kinase in providing energetic efficiency in support of variousal., 2001). Energy-rich phosphoryls from ATP, used to
cellular functions. phosphorylate glucose and fructose-6-phosphate at the
mitochondrial site, traverse the glycolytic pathway and can
phosphorylate  ADP through the pyruvate kinase-catalyzed
Adenylate kinase phosphotransfer system: managing- reaction at remote ATP utilization sites (F3y. Additional
and y-ATP phosphoryls and cellular energetics economy  phosphoryls can be transferred through the near-equilibrium
Adenylate kinase-catalyzed reversible phosphotransfeeaction system catalyzed by glyceraldehyde 3-phosphate
between ADP, ATP and AMP molecules has been implicatedehydrogenase and phosphoglycerate kinase (GAPDH/PGK)
in processing metabolic signals associated with cellular enerdipzeja et al., 2003). The significance of this pathway of energy
utilization (Noda, 1973; Bessman and Carpenter, 1985; Dzejsansfer is underscored by the finding that the unidirectional
et al., 1998). To date, five isoforms of adenylate kinase hayghosphoryl exchange rate through the GAPDH/PGK glycolytic
been identified (Van Rompay et al., 1999). Adenylate kinasenzyme couple approaches that of mitochondrial oxidative
isoforms have been found in mitochondria and cytosol, anghosphorylation and creatine kinase (Kingsley-Hickman et al.,
also membrane-bound (Tanabe et al., 1993; Carrasco et dl987; Portman, 1994), and that tight regulation of hexokinase
2001). Recently, the existence of anoth&l gene product, binding to the mitochondrial outer membrane depends on cellular
p53-inducible membrane-bound ARlhas been reported and energetic needs (Parra et al., 1997; Penso and Beitner, 2003). As
implicated in p53-dependent cell-cycle arrest (Collavin et althe GAPDH/PGK couple catalyzes a rapidly equilibrating
1999). Inside myofibrils, adenylate kinase molecules aresaction between jPand y-ATP, it has been implicated in
clustered into linear arrays (Wegmann et al., 1992) and caransferring R NADH and ADP from myofibrils to mitochondria
form polymeric rods in other cell types (Wild et al., 1997).(Dzeja et al., 1999a). In this regard, disequilibrium created at one
Coordinated action of mitochondrial and cytosolic isoforms ofpecific intracellular locale of the near-equilibrium glycolytic
adenylate kinase (AKand AKi, respectively) are thought network would be translated to other cellular compartments
to provide a mechanism for transfer of two high-energy(Goldbeter and Nicolis, 1976; Mair and Muller, 1996). Indeed,
phosphoryls (i.ef andy) in one molecule of ATP from its ‘metabolic waves’ have been observed to propagate rapidly
generation to utilization sites (Zeleznikar et al., 1995; Dzeja dhroughout the entire cell, and oscillations in energy metabolism
al., 1998). This exclusive property of adenylate kinase catalyseppear to govern cellular electrical activity, biological
doubles the energetic potential of the ATP molecule and cutsformation processing and functional response (O’Rourke et al.,
by half the cytosolic diffusional resistance (Dzeja et al.1994; Welch, 1996). High energy phosphoryls generated by
1999bh). glycolysis can be preferentially delivered and used to support
Recent evidence indicates that the adenylate kinasepecific cellular functions, such as maintenance of membrane
catalyzed relay indeed facilitates intracellular energetiéonic gradients, cell motility, muscle contraction and nuclear



Communication through metabolic network843

GAPDH shuttle
[«—>1,3bis-P-GI GI-1-P 1,3bis-P-G|  GI-3-P «—>]
|<—>NADH \

N NAD* NADH NAD* <—>|

CA shuttle

/} Pi —»
Fig.3. Integrated communicati =5 Hi0 ™

between cellular sites of AT H20 H* <>
utilization and ATP-generatio \ CA j \ CA j \ CA j
e

Cells utilize enzymatic shuttles
«—>CO; HCO3 CO, HCO3 <«—>|

promote ATP delivery ar
CK shuttle

removal of ATPase byproduc
<> Cr CrP + H* Cr CrP + H'<5]

ADP, B and H, to sustail
<> ATP ADP ATP ADP<—>|
AK shuttle
[«—>ATP ADP <«
ADP

efficient  energy utilizatior
Shuttles comprise ne:
\ \ ATP ADP
DP, i — T
SOOCURR
A T T

equilibrium enzymes capable
facilitating ligand transfer betwe:

[«<—>AMP ADP AMP ADP<—>|
PGK shuttle

cellular compartments by rapic
relaying the displacement

equilibrium. ATP delivery i
facilitated through creatine kine
(CK), adenylate kinase (AK), a
the glycolytic system, whic
includes  hexokinase  (He:
pyruvate kinase (PK) and

phosphoglycerate kinase (PG
ADP is removed by CK, AK ar
PGK shuttles. P transfer i
catalyzed by the near-equilibrit
glyceraldehyde 3-phosph:
dehydrogenase (GAPDH) shut
H* removal is facilitated by C

= G-6-P «—— Glucose]
ATPases l ATP <«

and carbonic anhydrase (C F-6-P @,

shuttles. As these shuttle syst < 2ATP 2Pyr ADP-»>

operate in parallel, a diminish @ ATP <
> 2ADP 2PEP < < <«

activity of a single enzyme ADP->
rather well tolerated. However, _. -
decrease in the activity of several enzymes could lead to a cumulative impairment in the communication between ATP-gehé&@fig a
consuming sites (Dzeja et al., 2000). Gl, glucose; PEP, phospho-enol pyruvate; Pyr, pyruvate; Cr, creatine.

ATP consumption
ATP generation

g5 ¥y ¥
/ \% v N\
il
b
A\
)
'U/'-U
::\)E
!
>
<

-

| <> 1,3bis-P-GI 3-P-Gl 1,3bis-P-GI  3-P-Gl<«—>|
Glycolytic linear phosphotransfer system
Mitochondria

processes (Ottaway and Mowbray, 1977; Masters et al., 1983.single near-equilibrium enzyme to provide HC@r H* for
Glycolytic enzymes have also been recognized as an importdnibsynthetic reactions and'tHATPases, respectively (Dodgson
component in the regulation of ATP/ADP-sensitive cellularet al., 1980; Geers and Gros, 1991). Immunocytochemical data
components such as thet¢ channel (Weiss and Lamp, 1987; show that carbonic anhydrase molecules are arranged in
Dzeja and Terzic, 1998), providing energetic signaling betweecdlusters along membranes, protruding myofibrils along I-bands
mitochondria and plasmalemma. Recently, an adaptor proteand localized in the narrow extracellular space (Swenson,
involved in anchoring metabolic enzymes, such as creatinl997; Sender et al., 1998). Such spatial heterogeneity and
kinase, adenylate kinase and phosphofructokinase, to sites difectionality of enzyme-catalyzed process (Harold, 1991) may
high-energy consumption in the cardiac sarcomere has beeantribute to the ability of carbonic anhydrase to facilitate
discovered (Lange et al., 2002). Such scaffolding proteins cahe intracellular diffusion of C®and H (Geers and Gros,
support spatial organization of phosphotransfer networks, thi®991). Furthermore, by increasing proton movement carbonic
increasing the efficiency and specificity of high-energyanhydrase-catalysis dissipates intracellular pH gradients,
phosphory! distribution. maintaining the spatiotemporal uniformity of cellular pH
(Stewart et al., 1999).
As most ATPases, especially actomyosin ATPase, are
Carbonic anhydrase ligand conduction system: speeding inhibited by the buildup of protons in their vicinity, the
up protons and disposing of CQ necessity for K removal system is warranted (Dzeja et al.,
The commonly held view is that carbonic anhydrase acts @9©99a). In this regard, inhibition of carbonic anhydrase reduces
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muscle contractility and calcium handling (Geers and Grogegulate intracellular pH (in't Zandt et al., 1999). Thus,

1991), and could contribute to the development of heart failurearbonic anhydrase is emerging as a dynamic player in

(Dzeja et al.,, 1999a). It was proposed that sequentiallintracellular and paracellular*tand CQ trafficking, and as

arranged carbonic anhydrase molecules catalyzing rap#h integral part of the cell energetic infrastructure.

equilibrium among reactants could provide ligand conduction

pathways for transferring protons from ATPases to ATP-

generating sites inside the cell, as well as for facilitated transfefNucleoside diphosphate kinase system: energy currency

of CO to the cell membrane and consequently out of the cell exchange, delivery and feedback signaling

to the capillaries (Dzeja et al., 1999a). In fact, ‘proton waves’ Nucleoside diphosphate kinase (NDPK) catalyzes transfer

have been observed to spread throughout the entire cell aofly-phosphate from nucleosidétsiphosphates to nucleoside

also from one cell to another (Grandin and Charbonneau, 1992:diphosphates, ATP+NDRADP+NTP, and links ATP-

Mair and Muller, 1996). based energetics with the cellular nucleoside triphosphate pool
The creatine kinase phosphotransfer system can alghacombe et al., 2000). NDPK, which is localized in

participate in proton transfer from ATPases (Bjg.and its mitochondria, cytosol and nucleus, facilitates channeling of

function may be interrelated with that of carbonic anhydrasaucleoside triphosphates into protein synthesis and DNA

(Wallimann et al., 1998; Dzeja et al., 2000). In this regardreplication complexes (Ray and Mathews, 1992; Gerbitz et al.,

creatine kinase deficient muscles have a reduced capability 1896). Simultaneously, sequential NDPK reactions could
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communicate nucleoside diphosphate feedback signals smch as the creatine kinase system, underscoring the plasticity
mitochondria (Gerbitz et al., 1996). NDPK-deficient cellsof the cellular energetic network (Wallimann et al., 1992;
have highly biased nucleoside triphosphate pools, includinzeja et al., 2003; Neumann et al., 2003).
marked elevations of CTP and dCTP, and a strong mutator These data implicate phosphotransfer enzymes in the
phenotype (Bernard et al., 2000). Other reports indicate thanhergy-linked regulation of matter and information exchange
imbalance in cellular nucleotide ratios results in increasetietween the cytosol and nucleus (Hiy. In this way,
genetic error frequency (Bebenek et al., 1992), and that NDPg&equential phosphotransfers are responsible for transmission of
is a product of the tumor supressor g&lme23(Lacombe et ATP and GTP from mitochondria and maintenance of
al., 2000). In addition to regulating nucleic acid synthesisATP/ADP and GTP/GDP ratios at ATP/GTP-utilization sites.
NDPK controls GTP/GDP exchange on G-proteins and/ariations of phosphotransfer enzyme activity in the cytosol
receptor-mediated signal transduction (Hippe et al., 2003and nucleus correlate with the intensity of nuclear processes in
Also, NDPK could facilitate GTP/GDP exchange on Rannormal and diseased conditions, underscoring the significance
GTPase, an essential factor in nuclear transport (Kraeft et abf maintained phosphotransfer in directing cellular energy flow
1996; Dzeja et al., 2002). Moreover, NDPK catalysis is linkedManos and Bryan, 1993; Dzeja et al., 2000; Perez-Terzic et
to Krebs cycle activity and high-energy phosphoryl exporal., 2001). In this regard, glycolytic enzymes have also been
from mitochondria (Roberts et al., 1997; Janssen et al., 20003lentified in nuclei of several cell types, including regenerating
In AK1-deficient muscles, phosphoryl flux through enzymesepatocytes where they furnish a considerable portion of
catalyzing GTP production, including NDPK, is increased andncreased nuclear energy requirements (Ottaway and
could contribute to energetic compensation (Janssen et allowbray, 1977). Thus, integration of the nuclear compartment
2000). The essential role of NDPK in cell growth is indicatedvith mitochondrial energetics is accomplished through
by coupling between reduced NDPK levels and suppressiagpecialized enzymatic networks, securing the metabolic
of proliferative activity (Kimura et al., 2000). In addition, demands of nuclear processes.
NDPK levels are enhanced with cell development and
differentiation (Kimura et al., 2000). Thus, NDPK isoforms
provide an important link between ATP generation and energy Concluding remarks
distribution to synthetic processes through other nucleoside In summary, coordination between ATP consumption and
triphosphates, as well as through regulation of signalhTP production processes can be achieved through a coupled
transduction and gene expression. near-equilibrium enzymatic network, which has the ability to
provide precise control similar to a ‘digital’ type of
regulation, such that each ATP conversion to ADRE H
Phosphotransfer systems and nuclear processes: trading  will be signaled to an equivalent stoichiometry of ADP, P
metabolic energy for information and H transformation to ATP (Saks et al., 1994; Dzeja et al.,
Intense nuclear functions, including DNA replication, 2000; Neumann et al., 2003). Facilitated communication
chromatin remodeling, gene transcription and transport dfetween cellular energy transforming and consuming
macromolecules across the nuclear envelope require efficieptocesses minimizes metabolite gradients, reducing energy
energy supply, yet principles governing nuclear energetics ardissipation and providing a capability to direct high-energy
energy support for nucleocytoplasmic communication are stiphosphoryls into  specific pathways according to
poorly understood (Mattaj and Englmeier, 1998; Dzeja et alphysiological needs. Distribution of cellular energy could be
2002). Recently, it was demonstrated that mitochondrial ATRccomplished by altering phosphotransfer enzyme isoform
production is required to support energy-consuming processesmposition and their intracellular localization (Wallimann
at the nuclear envelope, while glycolysis alone was insufficiergt al., 1992; Lange et al., 2002; Dzeja et al., 2003). In this
to perform such a function (Dzeja et al., 2002). Althoughregard, derangement in cellular energy flow and distribution
mitochondrial clustering around the nucleus reduced thbas been implicated in cardiovascular (Dzeja et al., 2000;
distance of energy transfer, oxidative phosphorylation an®erez-Terzic et al.,, 2001) and neurodegenerative (Ames,
simple nucleotide diffusion were inefficient to meet2000) diseases, as well as in determining uncontrolled growth
energy requirements for nucleocytoplasmic communicatiorand metastatic potential of tumor cells (Kimura et al., 2000;
Adenylate kinase phosphotransfer was identified to dired®enso and Beitner, 2003).
transmission of high-energy phosphoryls from mitochondria to
the nucleus, maintaining the optimal nucleotide ratios required We would like to acknowledge the insightful contribution
for active nuclear transport. Moreover, adenylate kinasef the late Dr N. D. Goldberg in the concept of dynamic
coupled with NDPK secured phosphoryl transfer between ATkhetabolic conversion and intracellular signaling. This work
and GTP, as both nucleoside triphosphates are necessary faas supported by NIH (HL64822), American Heart
active nuclear transport (Mattaj and Englmeier, 1998; PereZAssociation, Miami Heart Research Institute, Bruce and Ruth
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