
In most insects, the kinematics of flapping flight consists of
two translational phases during which the wings sweep through
the air with relatively slow changes in the angle of attack,
followed by rapid rotations at the end of each stroke. These
wing flips, termed ‘pronation’ for the upstroke-to-downstroke
transition and ‘supination’ for the downstroke-to-upstroke
transition, allow insects to maintain a positive angle of attack
and thus to generate lift during both forward and reverse
strokes. An understanding of the actual aerodynamic
significance of these wing rotations has long been hindered by
a lack of precise instantaneous force measurements on flapping
airfoils. However, with recent advances in our knowledge of
the instantaneous forces on wings (Dickinson et al., 1999), it
is possible to characterize the role of wing rotation and to
incorporate rotation in existing quasi-steady models of insect
flight.

Aerodynamic theorists have long recognized the importance
of airfoil rotation in the context of fluttering wings. Munk
(1925) predicted that, when two-dimensional airfoils translate
while simultaneously rotating with small amplitudes,
additional circulation is required to maintain the Kutta

condition at the trailing edge. He calculated that the magnitude
of rotational circulation should depend on the axis of rotation
such that, when the axis of rotation crosses a critical point
along the chord, the circulation will reverse sign. Thus, there
exists a critical axis on the wing about which rotation
contributes no net circulation. The relative position of the
rotational axis with respect to this critical axis determines
whether rotational circulation enhances or attenuates the lift
generated via translation.

These ideas were further developed by Glauert (1929) and
Theodorsen (1935) and later by Fung (1969), who proposed a
quasi-steady model for flutter and predicted that the critical
axis resides at a distance of 0.75 chord lengths from the leading
edge. Reid (1927), Silverstein and Joyner (1939) and Halfman
(1951) provided experimental support for these models by
demonstrating that oscillating airfoils placed in a steady air
stream generate aerodynamic forces that differ from the steady-
state case in accordance with the theoretical predictions. Most
notably, Farren (1935) investigated how forces varied with
both increasing and decreasing angle of attack on an airfoil
placed in a wind tunnel and showed that, when the angle of
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We used a dynamically scaled model insect to measure
the rotational forces produced by a flapping insect wing. A
steadily translating wing was rotated at a range of
constant angular velocities, and the resulting aerodynamic
forces were measured using a sensor attached to the base
of the wing. These instantaneous forces were compared
with quasi-steady estimates based on translational force
coefficients. Because translational and rotational velocities
were constant, the wing inertia was negligible, and any
difference between measured forces and estimates based
on translational force coefficients could be attributed to
the aerodynamic effects of wing rotation. By factoring
out the geometry and kinematics of the wings from
the rotational forces, we determined rotational force
coefficients for a range of angular velocities and different
axes of rotation. The measured coefficients were
compared with a mathematical model developed for two-
dimensional motions in inviscid fluids, which we adapted

to the three-dimensional case using blade element theory.
As predicted by theory, the rotational coefficient varied
linearly with the position of the rotational axis for all
angular velocities measured. The coefficient also, however,
varied with angular velocity, in contrast to theoretical
predictions. Using the measured rotational coefficients, we
modified a standard quasi-steady model of insect flight to
include rotational forces, translational forces and the
added mass inertia. The revised model predicts the time
course of force generation for several different patterns of
flapping kinematics more accurately than a model based
solely on translational force coefficients. By subtracting
the improved quasi-steady estimates from the measured
forces, we isolated the aerodynamic forces due to wake
capture.
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attack increases, aerodynamic force coefficients are enhanced
compared with corresponding steady-state values. In contrast,
when the angle of attack decreases, the force coefficients are
lower than the steady-state values. Because these experiments
aimed to simulate inviscid conditions, they were performed at
high Reynolds numbers and may not be directly applicable to
the low-to-intermediate Reynolds numbers relevant to insect
flight. In addition, these previous experiments explored a range
of angular velocities of wing rotation that are at least one order
of magnitude lower than those used by insects when pronating
and supinating their wings.

To address the role of wing rotation during insect flight,
Bennett (1970) conducted experiments with a dynamically
scaled flapping model wing and showed that rotations alter
aerodynamic forces at Reynolds numbers in the range 102

to approximately 103. In a detailed overview of insect flight
aerodynamics, Ellington (1984c) proposed a scheme to include
wing rotation with translation in quasi-steady models.
However, in the one instance in which wing rotation was
incorporated into a quasi-steady framework and tested against
measurements, instantaneous forces were monitored on the
body of the tethered insect rather than on individual wings
(Wilkin and Williams, 1993). As a result, it was difficult to
separate aerodynamic forces from inertial forces and to
distinguish among the various sources of lift. Recently, direct
measurements of aerodynamic forces on the wings of a
dynamically scaled model fruit fly Drosophila melanogaster
showed that, during the stroke, the wings produce aerodynamic
forces in excess of those predicted by steady-state translation.
The increasing angle of incidence prior to stroke reversal
augmented instantaneous values of lift, whereas the decreasing
angle of incidence after stroke reversal attenuated lift below
quasi-steady translational predictions (Dickinson et al., 1999).
These results confirmed similar findings by Bennett (1970)
based on stroke-averaged values of the lift estimated from the
flow velocity measured using a mechanical model of the
cockshafer Melolontha vulgari.

With recent advances in computational fluid dynamics
(CFD), efforts in mathematical modeling of insect flight have
moved away from quasi-steady approximations to full-scale
Navier–Stokes simulations of fluid dynamics (Liu et al., 1998;
Wang, 2000). However, while CFD models show promise as
an important tool, their application to insect flight is as yet
limited by the complex nature of three-dimensional flows
in intermediate-to-low Reynolds numbers and by the
computational resources required to simulate such conditions.
Although not as rigorous as computational simulations, quasi-
steady models continue to offer a tractable means of
calculating instantaneous forces from measured kinematics,
are readily applicable to the analysis of energy and power
requirements and are more easily incorporated into dynamic
control models of insect flight. As we begin to identify the
various mechanisms by which insect wings generate
aerodynamic forces, it is worthwhile revisiting quasi-steady
models to re-assess their validity after taking all known
aerodynamic phenomena into account.

In this study, we attempt to characterize the effects of wing
rotation on aerodynamic force generation under conditions that
are appropriate for analysis of insect flight. At constant
translational wing velocity, we vary both the angular velocity
and the axis of wing rotation of a dynamically scaled model
wing and measure the corresponding rotational force
coefficients. We compare these values with a theoretical model
based on a two-dimensional rotating flat plate. Although subtle
differences do exist, the theoretical predictions provide a
reasonably close fit to measured values of rotational force
coefficients. By incorporating the rotational effects into a
translational quasi-steady model of flapping flight, the
predictions of instantaneous forces on insect wings are
substantially improved. This revised quasi-steady model may
help researchers to better estimate the time course of the forces
generated by wings flapping with arbitrary kinematics. Further,
because the improved quasi-steady model accurately accounts
for both translational and rotational components, as well as the
added mass inertia, it may be used to selectively isolate
unsteady forces such as those due to wing/wake interactions.

Materials and methods
The design of the mechanical model used in this study and

the procedures for data analyses are identical to those described
previously (Dickinson et al., 1999; Sane and Dickinson, 2001).
We used an isometrically enlarged planform of a Drosophila
melanogasterwing made from a 2.3 mm thick acrylic sheet,
with a length of 25 cm and mean chord length of 6.7 cm
(calculated aspect ratio of the wing pair 7.5) (see Ellington,
1984b). The proximal edge of the wing was equipped with
multiple, equally spaced slots, allowing us to change the axis
of rotation (Fig. 1A). Through a pair of these multiple slots,
the wing was attached to a two-dimensional force transducer
that measured forces normal and parallel to the wing surface.
The wings, force sensor and gearbox were immersed in a
tank of mineral oil with a kinematic viscosity of 120 cSt
(1.2×10–4m2s–1) at room temperature (approximately 25 °C).
All experiments were conducted at a Reynolds number of
approximately 115, calculated as described in Ellington
(1984d).

In addition to aerodynamic forces, the sensor at the base of
the wing measures the forces due to gravity and the inertia of
the wing and sensor. To remove the effect of gravity, we
measured the weight of the sensor and wing mass and
subtracted it from the measured force traces. The contribution
of the inertial effects of the wing mass and sensor was
examined by replacing the Plexiglas wing with a brass knob of
the same mass. We also ensured that the centers of mass of
both the Plexiglas wing and the brass model were identical.
Because the compact brass knob generates negligible
aerodynamic forces compared with the Plexiglas wing, the
measured forces for the brass model may be ascribed entirely
to gravity and inertia. Compared with the gravitational
contribution, the inertia of the wing was very small and was
therefore ignored.
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The force data were filtered on line using an active four-pole
Bessel filter with a frequency cut-off at 10 Hz. They were
further processed off line using a low-pass digital Butterworth
filter with a zero phase delay and a cut-off at 3 Hz, which was
17.6 times the wing stroke frequency. Increasing the cut-off
frequency of the digital filter amplified the influence of jitter
resulting from the high-frequency motor steps but did not alter
the time course of the recordings.

Stroke kinematics

We performed 171 separate experiments. In all these

experiments, the wing began moving from rest at zero angle of
attack and accelerated to a constant translational velocity
within 0.05 s. Each stroke was completed in 2.94 s. After
attaining a constant translational velocity, the wing rotated
with constant angular velocity (Fig. 1B–E). To avoid the
influence of wake vorticity from previous strokes on force
production (Birch and Dickinson, 2001), only forces measured
during the initial forward stroke were used to calculate
rotational coefficients (Fig. 1F,G). The absolute angular
velocity was systematically varied in separate trials from 0
to 1.5 rad s–1 in increments of 0.085 rad s–1. The absolute
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Fig. 1. Wing design and the experimental method. (A) The wing planform used for all experiments. The wing was scaled directly from a
Drosophila melanogasterwing and equipped with multiple slots at the base to allow the axis of rotation to be changed. The leading edge
corresponds to a non-dimensional rotational axis (x̂0) value of 0, whereas the trailing edge corresponds to a value of 1. (B,C) Two-dimensional
cartoons showing the kinematics of rotation and translation. The wing translates from left to right at a velocity Ut and rotates about a fixed axis of
rotation with varying angular velocity, ω. The leading edge of the wing is indicated by a filled circle. (D,E) Kinematic variables as a function of
time. Translational velocity is shown in blue, rotational velocity in red. Data are shown for two representative rotational velocities of 1.5 rads–1 (D)
and 0.667rads–1 (E). In both cases, the translational velocity is 0.272ms–1. (F,G) Net aerodynamic forces as a function of time. The continuous red
line indicates the measured forces and the dotted red line indicates the quasi-steady translational estimates. The difference between these traces
(double-headed arrow) is used to calculate rotational force coefficients over the shaded region. The early peaks in both force traces are due to
inertial transients caused by rapid acceleration of the wing at the start of each trial. Similar inertial effects also occur as a result of rapid rotational
acceleration, as is evident in the force traces. Although detectable, these effects are small in comparison with the circulatory forces.
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translational velocity of the wing in these experiments was
0.272 m s–1. To compare our results with those in the literature
(Walker, 1931; Kramer, 1932; Fung, 1969), we also express
angular velocity in non-dimensional terms (ω̂) (after Ellington,
1984c):

ω̂= ωc̄ /Ut , (1)

where ω is the absolute angular velocity, c̄  is the mean chord
length and Ut is the wing tip velocity. The range of ω̂ values
explored in these experiments was 0–0.374.

By attaching the wing to the sensor in different positions,
we conducted a series of angular velocity trials over a range of
non-dimensional axes of rotation (x̂0) from 0 to 0.66 in
increments of 0.083, where 0 indicates the leading edge and 1
indicates the trailing edge. We could not examine values of x̂0

greater than 0.66 because, at these locations, the large moments
around the rotational axis threatened to damage the wing
sensor at high values of angular velocity.

Components of the quasi-steady model

In the absence of skin friction, the instantaneous forces
generated by a thin, flapping wing may be represented as the
sum of four force components, each acting normal to the wing
surface:

Finst = Fa + Ftrans+ Frot + Fwc, (2)

where Finst is the instantaneous aerodynamic force on the wing,
Fa is the force due to the inertia of the added mass of the fluid,
Ftrans is the instantaneous translational force, Frot is the
rotational force and Fwc is the force due to wake capture. Note
that each term of this quasi-steady model is implicitly, but not
explicitly, dependent on time. Thus, any time-dependence of
these force components arises only from the time-dependence
of the kinematics.

For two-dimensional motion in an inviscid fluid, the first
term, Fa, is calculated for each blade element and integrated
along the span of the wing to estimate the force on a three-
dimensional airfoil (Sane and Dickinson, 2001) (see Sedov,
1965):

where ρ is the fluid density, R is the wing length, r̂  is the non-
dimensional radial position along the wing, ĉ(r̂ ) is the non-
dimensional chord length (Ellington, 1984b), φ is the angular
position of the wing and α is the morphological angle of attack.
Note that, for a wing of infinitesimal thickness, the force due
to added mass inertia acts normal to the wing surface.

The quasi-steady translational estimate for the net force was
obtained through vector addition of the mutually orthogonal
lift and drag estimates:

where S is the projected surface area of the wing and r̂22(S) is
the non-dimensional second moment of wing area (Ellington,
1984b). Note that, in these equations, α and Ut are the only
terms that vary throughout the stroke. Values for the lift and
drag coefficients, CLt(α) and CDt(α), have been previously
measured for the model wing used in this study and are
accurately fitted by the following equations (Dickinson et al.,
1999):

CLt(α) = 0.225 + 1.58sin(2.13α – 7.2) (5)
and

CDt(α) = 1.92 – 1.55cos(2.04α – 9.82) , (6)

where α is in degrees. These equations allow us to determine
the forces that arise from the translational mechanism of
dynamic stall.

To measure the contribution of rotational forces, we
programmed the stroke kinematic patterns as described above.
In the absence of added mass inertia or wake capture effects,
we can rewrite equation 2 as:

Frot = Finst − Ftrans. (7)

Thus, we isolate rotational force by subtracting a quasi-steady,
translational estimate from the forces measured at a time when
inertia and wake capture are insubstantial (Fig. 1F,G). This
force difference may be used to derive the experimental
values for rotational coefficients. In subsequent sections,
experimentally determined values for rotational forces will be
denoted by Frot,exp, whereas theoretically determined values for
rotational forces will be denoted byFrot,theo.

Theoretical estimation of rotational forces

A quasi-steady treatment of the aerodynamic force due to
wing rotation was derived by Fung (1969) (see also Theodorsen,
1935; Sedov, 1965; Ellington, 1984c) for small-amplitude flutter
on thin, rigid wings. For a two-dimensional wing of chord length
c, flapping in an inviscid fluid and rotating with an angular
velocity ω (where ω=α̇) around an axis at x̂0, the quasi-steady
assumption requires two boundary conditions to be satisfied at
every instant. First, the direction of fluid velocity near the surface
must be equal to the slope of the airfoil surface, which is
equivalent to requiring that no fluid travels across the surface of
the wing. Second, the vorticity generated by the trailing edge
chord element must be zero (Kutta condition). The resultant
theoretical value of rotational circulation, Γrot,theo, that satisfies
these boundary conditions is given by:

Γrot,theo=Crot,theoωc2, (8)

where the theoretical value of rotational coefficient, Crot,theo, is
given by:

Crot,theo= π(0.75 − x̂0) . (9)

As x̂0 varies from 0 to 1, Crot,theochanges sign atx̂0=0.75. Thus,
a x̂0 value of 0.75 represents the critical axis around which the
wing generates no force as it rotates.

In standard Kutta–Jukowski theory, the approximation of
a small angle of attack applies, and there is no net drag.
Consequently, the lift per unit span on the airfoil equals the

ρSUt2r̂ 22(S)

2
Ftrans= (4)[CLt2(α) + CDt2(α)]1/2 ,

⌠

⌡

1

0
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(3)

R2c̄2(φ̈sinα + φ̇α̇cosα)
π
4

− α̈ρ c̄3R
π
16

⌠
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1

0
ĉ2(r̂ )dr̂ ,
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total aerodynamic force per unit span. Assuming that the
theory holds true for large angles of attack, we can use the
Kutta–Jukowski equation to relate instantaneous rotational
circulation to the rotational component of the total
aerodynamic force:

F′rot,theo(t) = ρU∞Γrot,theo(t) , (10)

where F′rot,theo(t) is the theoretically estimated net force per
unit span due to rotation, 6t is time, ρ is the density of the fluid
medium, U∞ is the free-stream velocity and Γrot,theo(t) is the
theoretical value for rotational circulation around the wing.
Because the net force acts perpendicular to the airfoil surface
rather than normal to the wing motion, lift and drag emerge as
orthogonal components of the net force.

By combining equations 8 and 10, and replacing U∞ with Ut

as required for a non-dimensional form of blade element
analysis, the net estimated rotational force on a flapping,
rotating wing of finite span is:

Experimental determination of rotational force coefficients

To measure the rotational force coefficient, we may
substitute for Frot,theo and Crot,theo in equation 11 with the
corresponding symbols Frot,exp and Crot,exp for experimental
values:

This equation allows us to evaluate coefficients directly from
measured rotational forces and compare them with the
theoretical estimates given by equation 9. Note that, although
the theoretical estimates in equation 9 depend on all the standard
assumptions of Kutta–Jukowski theory, equation 12 is
independent of any such assumptions. As a result, the effects of

a finite wing span and other aspects of three-dimensional flow
are contained in measured values of instantaneous Crot,exp. To
attain a single value of Crot,exp in each trial, we averaged
measurements over a temporal window, as shown in Fig. 1D–G.

The sign of the rotational circulation, as well as the
rotational forces, is either the same as, or opposite to, that of
the circulation due to translation, depending on whether the
angle of attack increases or decreases over time. In the
experimental situation described above, positive rotation is
simply the mirror image about the horizontal axis of the
negative rotation case. As a result, separate experiments were
not required for measuring coefficients during positive and
negative rotation.

Results
Rotational coefficients versusangular velocity

Fig. 2A illustrates the dependence of the measured
rotational force coefficient (Crot,exp) on the non-dimensional
angular velocity of wing rotation (ω̂) for a series of non-
dimensional axes of rotation (x̂0). For values of ω̂ less than
0.123 (or ω<0.5 rad s–1), values of Crot,exptend towards infinity
(see equation 12) and should be ignored. For values of ω̂above
0.123, Crot,exp rises linearly with ω̂. This trend contradicts the
theoretical prediction (equation 9) that Crot,exp should remain
constant with respect to ω̂. However, for axes of rotation nearer
the trailing edge, the dependence of Crot,expon ω̂ is less steep
and the data more closely resemble theoretical expectations.
Among insects, values of x̂0 are thought to lie between 0.25
and 0.5 (Ellington, 1984d), although very few studies have
attempted to measure this parameter precisely. Within this
range of rotational axes, the dependence of Crot,exp on ω̂ is
substantial. Nevertheless, as a first approximation, it seems
reasonable to model the rotational coefficients as a constant.
The validity of this assumption will be tested by the accuracy
with which a quasi-steady rotational model based on a constant
force coefficient can predict measured forces.

⌠

⌡

1

0
r̂ ĉ2(r̂ )dr̂ .Crot,exp= Frot,exp/ρUtωc̄2R (12)

⌠

⌡

1

0
r̂ ĉ2(r̂ )dr̂ .Frot,theo= Crot,theoρUtωc̄2R (11)

Table 1.Parameters from Crot,expversus xˆ0 regressions for various values of ω
Angular velocity, (ω) Non-dimensional
(rad s–1) angular velocity, (ω̂) Slope x̂0-intercept Crot,exp-intercept r2

0.677 0.166 –1.21*** 0.57*** 0.69 0.80
0.762 0.187 –1.35** 0.56** 0.75 0.71
0.847 0.208 –1.38** 0.65** 0.90 0.67
0.931 0.229 –1.84** 0.62** 1.14 0.87
1.016 0.249 –2.24** 0.62** 1.39 0.94
1.101 0.270 –2.49* 0.64* 1.59 0.93
1.185 0.291 –2.75 0.64* 1.75 0.95
1.270 0.312 –2.85 0.68 1.93 0.95
1.354 0.333 –3.13 0.68 2.13 0.97
1.439 0.353 –3.26 0.70 2.27 0.97
1.523 0.374 –3.51 0.69 2.43 0.97

Values for the slope and x-intercept that are significantly different from the theoretical predictions based on equation 9 (slope=−π, x̂0-
intercept=0.75) are marked with asterisks (*P<0.05, **P<0.01, ***P<0.001).

x̂0, axis of rotation; Crot,exp, experimental rotational force coefficient.
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Rotational coefficients versusaxis of rotation

As shown in Fig. 2A, the rotational force
coefficient Crot,expdepends on the position of the
axis of rotation. Values of Crot,exp decrease
uniformly as the axis of rotation moves from the
leading towards the trailing edge, approaching a
value of zero for x̂0=0.75, as predicted
theoretically. Fig. 2B shows Crot,exp plotted as a
function of x̂0 at two representative angular
velocities (ω̂=0.166 and ω̂=0.374). For all values
of ω, there is a strong linear dependence of
Crot,exp on x̂0, with axis of rotation explaining at
least 67 % of the variance in Crot,exp for all cases
(Table 1). It is also evident from Fig. 2C (and
Table 1) that, as ω̂ increases, the slope,
dCrot,exp/dx̂0, more closely approaches the
theoretical value of –π (equation 9). The quasi-
steady model also predicts a value of 0.75 for the
x-intercept, or critical axis, at which the rotational
coefficient changes sign (equation 9). While we
could not rotate the wing around this position
because of mechanical limitations, the axis that
produces zero rotational circulation could be
estimated by extrapolation of measured values.
As ω̂ increases, the extrapolated estimate for the
critical axis closely approaches the theoretical
value (Table 1).

Revised quasi-steady model of flapping flight

We used a single value of the rotational force
coefficient (Crot,exp=1.55) in the quasi-steady
model. This value was based on experiments
using the highest measured angular velocity
(ω̂=0.374) and a rotational axis of 0.25
appropriate for our model Drosophilawing. The
rotational force estimate was combined in a
more comprehensive model that included
inertial and translational forces but excluded
wake capture. We tested the model against
measured forces for 191 diverse kinematic
patterns that varied in stroke amplitude, angle of
attack, rotational timing and duration (see Sane
and Dickinson, 2001). From this assortment, we
show three patterns in Fig. 3 that summarize the
range of phase relationships between wing
translation and rotation and, thus, provide a
comprehensive test of the improved quasi-
steady model.

For each of the three kinematic patterns, the
measured lift and drag force traces are compared
with the individual inertial, translational and
rotational components (Fig. 3). In all cases, the
rather small inertial forces account for the sharp
undershoots of negative drag conspicuous at the start of
stroke reversal. Although the translational quasi-steady
model matches the forces during the middle of the stroke

fairly well, it grossly underestimates the forces during wing
rotation. The modified quasi-steady model that includes both
the rotational and the inertial components shows much better
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agreement with the measured forces for all three
representative kinematic patterns. The revised model does
not, however, account for the prominent force peaks that
follow stroke reversal. These transients, due to wake capture,
are fundamentally unsteady and not easily amenable to quasi-
steady modeling.

Discussion
Quasi-steady modeling of insect flight

Because of the unavailability of instantaneous force data,
past researchers have generally focused on the ability of quasi-
steady assumptions to explain the mean forces required
for hovering. To determine the validity of the quasi-steady
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the surface of the flapping wing. (Aii,Bii,Cii) Drag; (Aiii,Biii,Ciii) Lift. The red lines indicate the measured forces, the green lines indicate the
quasi-steady translational component based on empirical measurements, the purple lines indicate the quasi-steady rotational component and the
blue lines indicate calculated estimates of added mass. In Aiv,v, Biv,v and Civ,v, the summed quasi-steady predictions for drag (Aiv,Biv,Civ)
and lift (Av,Bv,Cv) are shown in black and compared with the measured values (red lines) for the corresponding kinematics.
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assumption, Ellington (1984a) constructed the following
logical argument. If the mean lift coefficient CL required for
hovering exceeds the maximum, measured steady-state CL,
then the quasi-steady assumption is contradicted and cannot
be used to model insect flight. Alternatively, if the mean CL

does not exceed the maximum, measured CL, then the quasi-
steady model cannot be discounted. In a comprehensive
survey of the aerodynamic data available at the time, Ellington
(1984a) observed that, in most cases, the mean values of CL

required to hover were greater than the maximum measured
steady-state values of CL. Thus, the quasi-steady model was
deemed insufficient to explain insect flight, fostering a search
for unsteady aerodynamic phenomena (see also Maxworthy,
1981).

Recent measurements of steady-state forces on model insect
wings (Dickinson and Götz, 1993; Dickinson et al., 1999;
Sane and Dickinson, 2001) have yielded values for both mean
CL and mean CD that were substantially higher than values
used in previous studies to construct the ‘proof-by-
contradiction’ argument outlined above. In the light of these
new data, it is necessary to revisit the quasi-steady approach.
Further, although the logic of the ‘proof-by-contradiction’
approach is rigorous in the realm of time-averaged forces, it
is limited in its ability to address the precise time course of
the aerodynamic forces (Ellington, 1984a). The data presented
here provide evidence that, with the exclusion of forces due
to wake capture, a quasi-steady model based on both
translation and rotation accurately captures the time history of
force generation.

The importance of viscosity in quasi-steady models

All the force components of equation 2 are based on the
assumption of an inviscid fluid. How important is viscosity
in models of insect flight at these Reynolds numbers? Recent
CFD simulations of Drosophilaflight kinematics based on an
inviscid model showed strong agreement with simulations
based on the full Navier–Stokes equation (R. Ramamurti and
W. C. Sandberg, personal communication). Both viscid and
inviscid models show reasonable agreement with forces
measured on our apparatus using identical kinematics.
Further, when we operate the model fly at Reynolds numbers
in the range 102 and 103, the measured forces are similar (data
not shown), corroborating the numerical results. Collectively,
these results indicate that forces may not be crucially
dependent on viscosity within the range of Reynolds number
typical for most insects. Other sources of time-dependence,
such as the Wagner effect, appear to exert only a minor
influence on force generation at these Reynolds numbers
(Dickinson and Götz, 1993). Thus, if we take into account the
time-variation of flapping kinematics, the resultant
translational and rotational force coefficients appear to be
time-independent, and it seems reasonable to model them
using a quasi-steady approach. It will, however, be necessary
to take into account the effects of past strokes on the ambient
fluid environment when modeling wing/wake interactions
such as wake capture.

Importance of wing rotation in insect flight

Wing rotation is a necessary feature of flapping kinematics
for animals that hover or fly at low advance ratios. Insects
actively rotate their wings to manipulate not only the
magnitude of aerodynamic forces but also the orientation of
the forces with respect to their body. Rapid wing rotations have
been observed in most flying insects for which detailed
kinematics are available (for a review, see Dudley, 2000).
However, precise kinematic measurements are sparse, largely
because of the high angular velocities of wing rotation relative
to the sampling rates of the methods available to capture
kinematics. In Drosophila, in which this behavior has been
extensively studied, the timing and duration of wing rotation
are actively controlled during visually induced steering
maneuvers. In tethered flight simulators, flies advance the
rotation of the wing on the outside of a visually elicited turn
and delay the rotation of the inside wing (Dickinson et al.,
1993). Such advanced and delayed rotations are thought to
produce a bilateral force imbalance that should generate a
moment to turn the fly in the intended direction.

The range of ω̂ values used in these experiments is
approximately an order of magnitude higher than in all
previous measurements of which we are aware (see Fung,
1969) and covers a range of values from approximately 0 to
0.4. Estimates for ω̂ in freely flying Drosophila melanogaster
are in the range 0–0.6 (S. Fry, personal communication), and
values in other insects may be even higher (see table 2 in
Ellington, 1984b). Thus, the experiments conducted here are
better suited for modeling insect flight than previous studies
based on lower angular velocities of wing rotation.

Comparison between measured and quasi-steady forces

The quasi-steady model of rotational forces outlined in
equations 8 and 9 is based on the assumption of a two-
dimensional airfoil rotating around an arbitrary axis while
translating in an inviscid fluid and is valid only for small
magnitudes of angular rotation. Under these simplified
conditions, the model predicts that rotational coefficients are
independent of the magnitude of the angular velocity. In
contrast to these predictions, the measured values of the
rotational force coefficients show a clear dependence on
angular velocity (Fig. 2). Unlike the quasi-steady model, the
measured forces are influenced by the three-dimensional nature
of flows, the finite length of the airfoil and the large magnitudes
of wing rotation. In the case of two-dimensional flow around
a flat plate, sectional aerodynamic force results solely from
chordwise circulation, such as that created by an infinitely long
vortex filament oriented perpendicular to the wing chord. In
the case of a flapping finite wing, vortex filaments must turn
along the wing, forming a tip vortex. The presence of a tip
vortex may influence the sectional circulation and downwash
along the span (Birch and Dickinson, 2001). This distortion of
the flow relative to the two-dimensional case may be further
complicated by the presence of a base-to-tip axial flow
entrained by the leading edge vortex (Ellington et al., 1996).
Any or all of these processes may be sensitive to the varying
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angular velocity, which could account for the discrepancy
between the measured and predicted values. In future
experiments, it will be of interest to use flow visualization to
observe how either the structure of the tip vortex or the
magnitude of the axial flow varies with the magnitude of
angular velocity. In spite of this unexpected dependence on
angular velocity, a quasi-steady rotational model based on a
single, ω-independent value of Crot,expappears to be sufficient
over a broad range of kinematics, as borne out by the close
agreement between the modified quasi-steady model and actual
force measurements (Fig. 3).

There is better agreement between theory and experiment
with respect to the dependence of rotational coefficients on the
axis of rotation. As predicted, rotational coefficients show a
strong linear dependence on the axis of rotation, even for small
angular velocities. At higher angular velocities, for which the
experimental data best match the quasi-steady theory, the sign
of the rotational coefficient reverses at 0.75 chord lengths, in
accordance with theoretical predictions.

Isolation of wake capture

By rearranging the terms in equation 2, it is possible to use
a combination of measured and calculated values to estimate
the time course of wake capture forces. An estimate
constructed in this manner shows characteristic transients at the
beginning of each stroke when the interactions between the
wing and the wake are expected to be greatest (Fig. 4). Because
the wake capture peak is generated indirectly by subtracting
values for the quasi-steady model from actual measurements,
this reconstruction is subject to errors arising from inaccuracies
within the various quasi-steady components. For example, it is
unlikely that the small oscillation in the reconstructed wake
capture trace prior to stroke reversal represents an actual

interaction between the wing and the wake. More likely, it is
an error in the estimate of rotational and inertial forces. These
artifacts might diminish if we used values for rotational
coefficients that depended on angular velocity or a more
accurate model for added mass. Nevertheless, since these
errors are typically less than 10 % of the peak force due to wake
capture, modeling the rotational coefficients as constants
affords us considerable mathematical simplicity at a relatively
small cost in accuracy. With a reasonable time course for wake
capture, it may be possible to construct a quasi-steady estimate
for these more complicated forces as well.

Concluding remarks

The data presented here characterize the effect of wing
rotation on the production of aerodynamic forces by a flapping
airfoil. The measured rotational force coefficients show good
agreement with the theoretically estimated values and allow us
to revise traditional, translation-based models of insect flight
by incorporating wing rotation. Compared with traditional
models, the revised model shows better agreement with the
time course of aerodynamic force generation over a large
variety of kinematic patterns. In addition, we can isolate wake
capture using the methods outlined here, allowing us to
characterize and model the wake capture phenomenon better
in future studies.

List of symbols
c chord length
c̄ mean chord length
ĉ(r̂ ) non-dimensional chord length
CD drag coefficient
CDt translational drag coefficient
CL lift coefficient
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Fig. 4. Isolation of wake capture. (A) Advanced rotation. (B) Symmetrical rotation. (C) Delayed rotation. In all panels, the red line represents
the measured forces and the black line represents the sum of the added mass inertia, translational force and rotational force. The force due to
wake capture is represented by a blue line and is calculated as the difference between the measured drag (top panels) and lift (bottom panels)
and the corresponding quasi-steady estimates.
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CLt translational lift coefficient
Crot,theo theoretical rotational force coefficient
Crot,exp experimental rotational force coefficient
Fa added mass inertia normal to the wing surface
Finst instantaneous force normal to the wing surface
Frot rotational force normal to the wing surface
Frot,exp experimental rotational force normal to the wing 

surface
Frot,theo theoretical rotational force normal to the wing 

surface
F′rot,theo theoretical rotational force per unit span normal to 

the wing surface
Ftrans instantaneous translational force normal to the 

wing surface
Fwc wake capture force normal to the wing surface
R wing length
r̂ non-dimensional radial position along the wing 

length
r̂22(S) non-dimensional second moment of area
S surface area of wing
t time
U∞ free-stream velocity
Ut wing tip velocity
x0 axis of rotation
x̂0 non-dimensional axis of rotation
α angle of attack
Γrot,theo theoretical rotational circulation
φ angular position of wing
ω angular velocity of flapping wing (=α̇)
ω̂ non-dimensional angular velocity of flapping wing
ρ density of fluid

This work was supported by grants from the NSF (IBN-
9723424), Defense Advanced Research Projects Agency and
the Office of Naval Research (FDN00014-99-1-0892).

References
Bennett, L. (1970). Insect flight: lift and the rate of change of incidence.

Science167, 177–179.
Birch, J. and Dickinson, M. H. (2001). Spanwise flow and the attachment of

the leading-edge vortex. Nature412, 729–733.
Dickinson, M. H. and Götz, K. G. (1993). Unsteady aerodynamic

performance of model wings at low Reynolds numbers. J. Exp. Biol. 174,
45–64.

Dickinson, M. H., Lehmann, F.-O. and Götz, K. G.(1993). The active
control of wing rotation by Drosophila. J. Exp. Biol. 182, 173–189.

Dickinson, M. H., Lehmann, F.-O. and Sane, S. P.(1999). Wing rotation
and the aerodynamic basis of insect flight. Science284, 1954–1960.

Dudley, R. (2000). The Biomechanics of Insect Flight. Princeton, NJ:
Princeton University Press.

Ellington, C. P. (1984a). The aerodynamics of hovering insect flight. I. The
quasi-steady analysis. Phil. Trans. R. Soc. Lond. B305, 1–15.

Ellington, C. P. (1984b). The aerodynamics of hovering insect flight. II.
Morphological parameters. Phil. Trans. R. Soc. Lond. B305, 17–40.

Ellington, C. P. (1984c). The aerodynamics of hovering insect flight. III.
Kinematics. Phil. Trans. R. Soc. Lond. B305, 41–78.

Ellington, C. P. (1984d). The aerodynamics of hovering insect flight. IV.
Aerodynamic mechanisms. Phil. Trans. R. Soc. Lond. B305, 79–113.

Ellington, C. P., Vandenberg, C., Willmott, A. and Thomas, A.(1996).
Leading-edge vortices in insect flight. Nature384, 626–630.

Farren, W. S. (1935). The reaction on a wing whose angle of incidence is
changing rapidly. Rep. Mem. Aeronaut. Res. Comm. (Great Britain) no.
1648.

Fung, Y. C. (1969). An Introduction to the Theory of Aeroelasticity. New
York: Dover.

Glauert, H. (1929). The force and moment on an oscillating airfoil. Rep. Mem.
Aeronaut. Res. Comm. (Great Britain) no. 1561.

Halfman, R. (1951). Experimental aerodynamic derivatives of a sinusoidally
oscillating airfoil in two-dimensional flow. NACA TN 2465.

Kramer, M. (1932). Die Zunahme des Maximalauftriebes von Tragflugeln bei
plotzlicher Anstellwinkelvergrosserung (Boeneffekt). Z. Flugtech.
Motorluftschiff. 23, 185–189.

Liu, H., Ellington, C. P., Kawachi, K., VandenBerg, C. and Willmott, A.
P. (1998). A computational fluid dynamic study of hawkmoth hovering. J.
Exp. Biol. 201, 461–477.

Maxworthy, T. (1981). The fluid dynamics of insect flight. J. Fluid Mech. 93,
47–63.

Munk, M. (1925). Note on the air forces on a wing caused by pitching. NACA
TN 217.

Reid, E. (1927). Airfoil lift with changing angle of attack. NACA TN 266.
Sane, S. P. and Dickinson, M. H.(2001). The control of flight force by a

flapping wing: lift and drag production. J. Exp. Biol. 204, 2607–2626.
Sedov, L. I. (1965). Two-Dimensional Problems in Hydrodynamics and

Aerodynamics, pp. 20–30. New York: Interscience Publishers.
Silverstein, A. and Joyner, U.(1939). Experimental verification of the theory

of oscillating airfoils. NACA Report 673.
Theodorsen, T. (1935). General theory of aerodynamic instability and the

mechanism of flutter. NACA Report 496.
Walker, P. B. (1931). A new instrument for the measurement of fluid

motion; with an application to the development of the flow around the
wing started impulsively from rest. Rep. Mem. Aeronaut. Res. (Great
Britain) no. 1402.

Wang, J. (2000). Vortex shedding and frequency selection in flapping flight.
J. Fluid Mech. 410, 323–341.

Wilkin, P. J. and Williams, M. H. (1993). Comparison of the instantaneous
aerodynamic forces on a sphingid moth with those predicted by quasi-steady
aerodynamic theory. Physiol. Zool. 66, 1015–1044.

S. P. Sane and M. H. Dickinson


