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Summary

We used a dynamically scaled model insect to measure to the three-dimensional case using blade element theory.
the rotational forces produced by a flapping insect wing. A As predicted by theory, the rotational coefficient varied
steadily translating wing was rotated at a range of linearly with the position of the rotational axis for all
constant angular velocities, and the resulting aerodynamic angular velocities measured. The coefficient also, however,
forces were measured using a sensor attached to the basevaried with angular velocity, in contrast to theoretical
of the wing. These instantaneous forces were compared predictions. Using the measured rotational coefficients, we
with quasi-steady estimates based on translational force modified a standard quasi-steady model of insect flight to
coefficients. Because translational and rotational velocities include rotational forces, translational forces and the
were constant, the wing inertia was negligible, and any added mass inertia. The revised model predicts the time
difference between measured forces and estimates basedcourse of force generation for several different patterns of
on translational force coefficients could be attributed to flapping kinematics more accurately than a model based
the aerodynamic effects of wing rotation. By factoring solely on translational force coefficients. By subtracting
out the geometry and kinematics of the wings from the improved quasi-steady estimates from the measured
the rotational forces, we determined rotational force forces, we isolated the aerodynamic forces due to wake
coefficients for a range of angular velocities and different capture.
axes of rotation. The measured coefficients were
compared with a mathematical model developed for two- Key words: quasi-steady, model, insect, flight, aerodynamics, wing
dimensional motions in inviscid fluids, which we adapted rotation, kinematics, flapping, rotational forces.

Introduction

In most insects, the kinematics of flapping flight consists o€ondition at the trailing edge. He calculated that the magnitude
two translational phases during which the wings sweep througdf rotational circulation should depend on the axis of rotation
the air with relatively slow changes in the angle of attacksuch that, when the axis of rotation crosses a critical point
followed by rapid rotations at the end of each stroke. Thesalong the chord, the circulation will reverse sign. Thus, there
wing flips, termed ‘pronation’ for the upstroke-to-downstrokeexists a critical axis on the wing about which rotation
transition and ‘supination’ for the downstroke-to-upstrokecontributes no net circulation. The relative position of the
transition, allow insects to maintain a positive angle of attackotational axis with respect to this critical axis determines
and thus to generate lift during both forward and reversehether rotational circulation enhances or attenuates the lift
strokes. An understanding of the actual aerodynamigeneratedia translation.
significance of these wing rotations has long been hindered by These ideas were further developed by Glauert (1929) and
a lack of precise instantaneous force measurements on flappihgeodorsen (1935) and later by Fung (1969), who proposed a
airfoils. However, with recent advances in our knowledge ofjuasi-steady model for flutter and predicted that the critical
the instantaneous forces on wings (Dickinson et al., 1999), #éxis resides at a distance of 0.75 chord lengths from the leading
is possible to characterize the role of wing rotation and tedge. Reid (1927), Silverstein and Joyner (1939) and Halfman
incorporate rotation in existing quasi-steady models of inse¢l951) provided experimental support for these models by
flight. demonstrating that oscillating airfoils placed in a steady air

Aerodynamic theorists have long recognized the importancgtream generate aerodynamic forces that differ from the steady-
of airfoil rotation in the context of fluttering wings. Munk state case in accordance with the theoretical predictions. Most
(1925) predicted that, when two-dimensional airfoils translat@otably, Farren (1935) investigated how forces varied with
while simultaneously rotating with small amplitudes, both increasing and decreasing angle of attack on an airfoil
additional circulation is required to maintain the Kuttaplaced in a wind tunnel and showed that, when the angle of
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attack increases, aerodynamic force coefficients are enhancedn this study, we attempt to characterize the effects of wing
compared with corresponding steady-state values. In contrasbtation on aerodynamic force generation under conditions that
when the angle of attack decreases, the force coefficients aage appropriate for analysis of insect flight. At constant
lower than the steady-state values. Because these experimanénslational wing velocity, we vary both the angular velocity
aimed to simulate inviscid conditions, they were performed and the axis of wing rotation of a dynamically scaled model
high Reynolds numbers and may not be directly applicable twing and measure the corresponding rotational force
the low-to-intermediate Reynolds numbers relevant to inseaoefficients. We compare these values with a theoretical model
flight. In addition, these previous experiments explored a randeased on a two-dimensional rotating flat plate. Although subtle
of angular velocities of wing rotation that are at least one ordetifferences do exist, the theoretical predictions provide a
of magnitude lower than those used by insects when pronatimgasonably close fit to measured values of rotational force
and supinating their wings. coefficients. By incorporating the rotational effects into a
To address the role of wing rotation during insect flighttranslational quasi-steady model of flapping flight, the
Bennett (1970) conducted experiments with a dynamicallpredictions of instantaneous forces on insect wings are
scaled flapping model wing and showed that rotations altesubstantially improved. This revised quasi-steady model may
aerodynamic forces at Reynolds numbers in the range 1@elp researchers to better estimate the time course of the forces
to approximately 19 In a detailed overview of insect flight generated by wings flapping with arbitrary kinematics. Further,
aerodynamics, Ellington (1984c) proposed a scheme to includecause the improved quasi-steady model accurately accounts
wing rotation with translation in quasi-steady models.for both translational and rotational components, as well as the
However, in the one instance in which wing rotation wasadded mass inertia, it may be used to selectively isolate
incorporated into a quasi-steady framework and tested againststeady forces such as those due to wing/wake interactions.
measurements, instantaneous forces were monitored on the
body of the tethered insect rather than on individual wings
(Wilkin and Williams, 1993). As a result, it was difficult to Materials and methods
separate aerodynamic forces from inertial forces and to The design of the mechanical model used in this study and
distinguish among the various sources of lift. Recently, diredhe procedures for data analyses are identical to those described
measurements of aerodynamic forces on the wings of previously (Dickinson et al., 1999; Sane and Dickinson, 2001).
dynamically scaled model fruit fliprosophila melanogaster We used an isometrically enlarged planform drasophila
showed that, during the stroke, the wings produce aerodynammaelanogastewing made from a 2.3 mm thick acrylic sheet,
forces in excess of those predicted by steady-state translationith a length of 25cm and mean chord length of 6.7cm
The increasing angle of incidence prior to stroke reversdkcalculated aspect ratio of the wing pair 7.5) (see Ellington,
augmented instantaneous values of lift, whereas the decreasit@g84b). The proximal edge of the wing was equipped with
angle of incidence after stroke reversal attenuated lift belowultiple, equally spaced slots, allowing us to change the axis
quasi-steady translational predictions (Dickinson et al., 1999hf rotation (Fig. 1A). Through a pair of these multiple slots,
These results confirmed similar findings by Bennett (1970)he wing was attached to a two-dimensional force transducer
based on stroke-averaged values of the lift estimated from tlileat measured forces normal and parallel to the wing surface.
flow velocity measured using a mechanical model of th&@he wings, force sensor and gearbox were immersed in a
cockshafeMelolontha vulgari. tank of mineral oil with a kinematic viscosity of 120cSt
With recent advances in computational fluid dynamicg1.2x104m2s1) at room temperature (approximately 25 °C).
(CFD), efforts in mathematical modeling of insect flight haveAll experiments were conducted at a Reynolds number of
moved away from quasi-steady approximations to full-scal@pproximately 115, calculated as described in Ellington
Navier—Stokes simulations of fluid dynamics (Liu et al., 1998(1984d).
Wang, 2000). However, while CFD models show promise as In addition to aerodynamic forces, the sensor at the base of
an important tool, their application to insect flight is as yethe wing measures the forces due to gravity and the inertia of
limited by the complex nature of three-dimensional flowsthe wing and sensor. To remove the effect of gravity, we
in intermediate-to-low Reynolds numbers and by themeasured the weight of the sensor and wing mass and
computational resources required to simulate such conditionsubtracted it from the measured force traces. The contribution
Although not as rigorous as computational simulations, quaséf the inertial effects of the wing mass and sensor was
steady models continue to offer a tractable means afxamined by replacing the Plexiglas wing with a brass knob of
calculating instantaneous forces from measured kinematic)e same mass. We also ensured that the centers of mass of
are readily applicable to the analysis of energy and poweyoth the Plexiglas wing and the brass model were identical.
requirements and are more easily incorporated into dynamBecause the compact brass knob generates negligible
control models of insect flight. As we begin to identify theaerodynamic forces compared with the Plexiglas wing, the
various mechanisms by which insect wings generateneasured forces for the brass model may be ascribed entirely
aerodynamic forces, it is worthwhile revisiting quasi-steadyto gravity and inertia. Compared with the gravitational
models to re-assess their validity after taking all knowrcontribution, the inertia of the wing was very small and was
aerodynamic phenomena into account. therefore ignored.
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Fig. 1. Wing design and the experimental method. (A) The wing planform used for all experiments. The wing was scaledodireztly fr
Drosophila melanogastewing and equipped with multiple slots at the base to allow the axis of rotation to be changed. The leading edge
corresponds to a non-dimensional rotational aks\alue of 0, whereas the trailing edge corresponds to a value of 1. (B,C) Two-dimensional
cartoons showing the kinematics of rotation and translation. The wing translates from left to right at altedocityotates about a fixed axis of
rotation with varying angular velocitg. The leading edge of the wing is indicated by a filled circle. (D,E) Kinematic variables as a function of
time. Translational velocity is shown in blue, rotational velocity in red. Data are shown for two representative rotatities wél1.5 rads (D)

and 0.667 rad3 (E). In both cases, the translational velocity is 0.272n{B,G) Net aerodynamic forces as a function of time. The continuous red
line indicates the measured forces and the dotted red line indicates the quasi-steady translational estimates. Theetliftmpribede traces
(double-headed arrow) is used to calculate rotational force coefficients over the shaded region. The early peaks inttaathsfareedue to
inertial transients caused by rapid acceleration of the wing at the start of each trial. Similar inertial effects als@ oesult @& rapid rotational
acceleration, as is evident in the force traces. Although detectable, these effects are small in comparison with tlyefeioadator

The force data were filtered on line using an active four-polexperiments, the wing began moving from rest at zero angle of
Bessel filter with a frequency cut-off at 10Hz. They wereattack and accelerated to a constant translational velocity
further processed off line using a low-pass digital Butterworttwithin 0.05s. Each stroke was completed in 2.94s. After
filter with a zero phase delay and a cut-off at 3Hz, which waattaining a constant translational velocity, the wing rotated
17.6 times the wing stroke frequency. Increasing the cut-offvith constant angular velocity (Fig. 1B—E). To avoid the
frequency of the digital filter amplified the influence of jitter influence of wake vorticity from previous strokes on force
resulting from the high-frequency motor steps but did not alteproduction (Birch and Dickinson, 2001), only forces measured

the time course of the recordings. during the initial forward stroke were used to calculate
_ _ rotational coefficients (Fig. 1F,G). The absolute angular
Stroke kinematics velocity was systematically varied in separate trials from 0

We performed 171 separate experiments. In all thes® 1.5rads! in increments of 0.085rads The absolute
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translational velocity of the wing in these experiments wasvhereSis the projected surface area of the wing &) is
0.272msk To compare our results with those in the literaturehe non-dimensional second moment of wing area (Ellington,
(Walker, 1931; Kramer, 1932; Fung, 1969), we also express984b). Note that, in these equatioasand U are the only
angular velocity in non-dimensional terng§ (after Ellington,  terms that vary throughout the stroke. Values for the lift and

1984c): drag coefficientsCit(a) and Cpt(a), have been previously
Q= wc U, (1) measured for the model wing used in this study and are

wherew is the absolute angular velocity,is the mean chord i\g;l;r)gtely fitted by the following equations (Dickinson et al.,

length andU is the wing tip velocity. The range @i values CLi(@) = 0.225 + 1.58sin(2.16— 7.2) (5)

explored in these experiments was 0-0.374.

By attaching the wing to the sensor in different posmonsa nd

Cot(a) =1.92 — 1.55c0s(2.04- 9.82) , (6)

we conducted a series of angular velocity trials over a range of
non-dimensional axes of rotatioXg from 0 to 0.66 in wherea is in degrees. These equations allow us to determine
increments of 0.083, where 0 indicates the leading edge andHe forces that arise from the translational mechanism of
indicates the trailing edge. We could not examine valugs of dynamic stall.
greater than 0.66 because, at these locations, the large moment§o measure the contribution of rotational forces, we
around the rotational axis threatened to damage the wirogrammed the stroke kinematic patterns as described above.
sensor at high values of angular velocity. In the absence of added mass inertia or wake capture effects,

we can rewrite equation 2 as:
Components of the quasi-steady model

In the absence of skin friction, the instantaneous forces Frot = Finst ~ Furans. (7
generated by a thin, flapping wing may be represented as tfius, we isolate rotational force by subtracting a quasi-steady,
sum of four force components, each acting normal to the wingjanslational estimate from the forces measured at a time when
surface: inertia and wake capture are insubstantial (Fig. 1F,G). This

Finst = Fa+ Ftrans+ Frot + Fuec, (2) force difference may be used to derive the experimental
values for rotational coefficients. In subsequent sections,

whereFinstis the instantaneous aerodynamic force on the win . . ; .
Bxperimentally determined values for rotational forces will be

Fais the force due to the inertia of the added mass of the fluid, . .
" is the instantaneous translational forda is the denoted byFrotexp Whereas theoretically determined values for
rans o rotational forces will be denoted Byot theo

rotational force anéhwc is the force due to wake capture. Note
that each term of this quasi-steady model is implicitly, but not Theoretical estimation of rotational forces
explicitly, dependent on time. Thus, any time-dependence of

. . A quasi-steady treatment of the aerodynamic force due to
these force components arises only from the time-dependence d db | heod
of the kinematics. Wihg rotation was derived by Fung (1969) (see also Theodorsen,

For two-dimensional motion in an inviscid fluid, the first 1935; Sedov, 1965; Ellington, 1984c) for small-amplitude flutter

term, F4, is calculated for each blade element and mtegrate%n thin, rigid wings. For a two-dimensional wing of chord length

flapping in an inviscid fluid and rotating with an angular
along the span of the wing to estimate the force on a threvelocn w (Wherew=a) around an axis &b, the quasi-stead
dimensional airfoil (Sane and Dickinson, 2001) (see Sedov Y q y

1965): dssumptlon requires two boundary conditions to be satisfied at

' every instant. First, the direction of fluid velocity near the surface
must be equal to the slope of the airfoil surface, which is
equivalent to requiring that no fluid travels across the surface of
the wing. Second, the vorticity generated by the trailing edge
o @R&Cz(r‘)dr‘, 3) chord element must be.zero (Kutta.condition). The .re_sultant
theoretical value of rotational circulationgttheq that satisfies
these boundary conditions is given by:

1
T . .
Fa=p 2 R2C%(@sina + (pdcoscx)J&r‘éz(r‘)dr“
0

wherep is the fluid densityR is the wing lengthf is the non-
dimensional radial position along the wing{f) is the non- I" rot,theo= Crot,thedC?, (8)
dlmg_nsmnal chqrd Iengt.h (Eliington, 1984tp)|5 the angular where the theoretical value of rotational coeffici€hét thea IS
position of the wing and is the morphological angle of attack. iven by:

Note that, for a wing of infinitesimal thickness, the force dueg ' o = 11(0.75~ Ro) ©)
to added mass inertia acts normal to the wing surface. rot.theo= RS- o

The quasi-steady translational estimate for the net force wass Xo varies from 0 to 1Crot theoChanges sign &=0.75. Thus,

obtained through vector addition of the mutually orthogona#Xo value of 0.75 represents the critical axis around which the

lift and drag estimates: wing generates no force as it rotates.
SWF2S In standard Kutta—Jukowski theory, the approximation of
polT2 a small angle of attack applies, and there is no net drag.
Errane= 2(q) + Cri2(0)11/2 4 , L o
frans 2 [Cu@) + Coc(e)]™=, - (4) Consequently, the lift per unit span on the airfoil equals the



Quasi-steady model of flapping flighD91

total aerodynamic force per unit span. Assuming that tha finite wing span and other aspects of three-dimensional flow
theory holds true for large angles of attack, we can use ttae contained in measured values of instantan€asxy TO
Kutta—Jukowski equation to relate instantaneous rotationalttain a single value oCmtexp in each trial, we averaged
circulation to the rotational component of the totalmeasurements over atemporal window, as shown in Fig. 1D-G.
aerodynamic force: The sign of the rotational circulation, as well as the
F'rotthedt) = pUaT rotthed®) (10) rotational forces, is either the same as, or opposite to, that of

the circulation due to translation, depending on whether the
where F'rot thedt) is the theoretically estimated net force perangle of attack increases or decreases over time. In the

unit span due to rotation, 6t is tinpeis the density of the fluid experimental situation described above, positive rotation is
medium, U« is the free-stream velocity ardotthedt) is the  simply the mirror image about the horizontal axis of the
theoretical value for rotational circulation around the wing.negative rotation case. As a result, separate experiments were
Because the net force acts perpendicular to the airfoil surfac®t required for measuring coefficients during positive and
rather than normal to the wing motion, lift and drag emerge asegative rotation.

orthogonal components of the net force.

By combining equations 8 and 10, and replatiagvith Uy

: . . Results
as required for a non-dimensional form of blade element , . )
analysis, the net estimated rotational force on a flapping, Rotational coefficientsersusangular velocity
rotating wing of finite span is: Fig. 2A illustrates the dependence of the measured
L rotational force coefficientGot,exp On the non-dimensional
&M A angular velocity of wing rotationd)) for a series of non-
Frot theo= Crot tne UttdC?R Jorcz(r)dr : A1) gimensional axes of rotatiorkoj. For values ofd less than

0.123 (orw<0.5rrad s, values ofCrot exptend towards infinity
Experimental determination of rotational force coefficients (see equation _12) a_nd shoulq b? |gn9red. For values_ibbve
T th tational f ficient 0.123,Crot exprises linearly with®. This trend contradicts the
0 measure he rolational lorce Ccoetlicient,  We Mayy,qqretical prediction (equation 9) th@t,exp should remain
substitute forFrottheo and Crottheo In equation 11 with the oo nt with respect tb. However, for axes of rotation nearer
corresponding symbolBrotexp and Crotexp for experimental trailing edge, the dependenceCafiexpon @ is less steep
values: and the data more closely resemble theoretical expectations.
Among insects, values &b are thought to lie between 0.25
and 0.5 (Ellington, 1984d), although very few studies have

attempted to measure this parameter precisely. Within this
This equation allows us to evaluate coefficients directly frontange of rotational axes, the dependenc€gfexp on @ is

measured rotational forces and compare them with thsubstantial. Nevertheless, as a first approximation, it seems
theoretical estimates given by equation 9. Note that, althougleasonable to model the rotational coefficients as a constant.
the theoretical estimates in equation 9 depend on all the standarde validity of this assumption will be tested by the accuracy
assumptions of Kutta—Jukowski theory, equation 12 isvith which a quasi-steady rotational model based on a constant
independent of any such assumptions. As a result, the effectsfofce coefficient can predict measured forces.

1
Crot,exp= Frot,ex;prt(Joc_zRJE FE2(F)dr . (12)
0

Table 1.Parameters fronCrot,expVersus ¥ regressions for various values of

Angular velocity, @) Non-dimensional

(rads? angular velocity, ®) Slope Xo-intercept Crot expintercept r2
0.677 0.166 —1.21%+* 0.57*+* 0.69 0.80
0.762 0.187 —1.35** 0.56** 0.75 0.71
0.847 0.208 —1.38** 0.65** 0.90 0.67
0.931 0.229 —1.84** 0.62** 1.14 0.87
1.016 0.249 —2.24** 0.62** 1.39 0.94
1.101 0.270 —2.49* 0.64* 1.59 0.93
1.185 0.291 —2.75 0.64* 1.75 0.95
1.270 0.312 —-2.85 0.68 1.93 0.95
1.354 0.333 -3.13 0.68 2.13 0.97
1.439 0.353 -3.26 0.70 2.27 0.97
1.523 0.374 -3.51 0.69 2.43 0.97

Values for the slope angtintercept that are significantly different from the theoretical predictions based on equation 9—(s|cje=
intercept=0.75) are marked with asteriskB<®.05, **P<0.01, ***P<0.001).

Xo, axis of rotationCrot,exp €Xxperimental rotational force coefficient.
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Rotational coefficientsersusaxis of rotation

As shown in Fig. 2A, the rotational for
coefficientCrot,expdepends on the position of f
axis of rotation. Values o0fCiotexp decreas
uniformly as the axis of rotation moves from
leading towards the trailing edge, approachi
value of zero for X0=0.75, as predicte
theoretically. Fig. 2B showEiot,exp plotted as
function of Xo at two representative angu
velocities (0=0.166 andv=0.374). For all value
of w, there is a strong linear dependenct
Crot,expOn Xo, With axis of rotation explaining
least 67 % of the variance @otexpfor all case
(Table 1). It is also evident from Fig. 2C (¢
Table 1) that, as® increases, the slof
dCrotexddfXo, more closely approaches
theoretical value of ® (equation 9). The qua:
steady model also predicts a value of 0.75 fo
x-intercept, or critical axis, at which the rotatio
coefficient changes sign (equation 9). While
could not rotate the wing around this posi
because of mechanical limitations, the axis
produces zero rotational circulation could
estimated by extrapolation of measured va
As @ increases, the extrapolated estimate fo
critical axis closely approaches the theore
value (Table 1).

Revised quasi-steady model of flapping flig

We used a single value of the rotational fc
coefficient Crot,ex=1.55) in the quasi-stea
model. This value was based on experim
using the highest measured angular velc
(0=0.374) and a rotational axis of 0
appropriate for our mod@&rosophilawing. The
rotational force estimate was combined i
more comprehensive model that inclu
inertial and translational forces but exclu
wake capture. We tested the model agi
measured forces for 191 diverse kinem
patterns that varied in stroke amplitude, ang
attack, rotational timing and duration (see £
and Dickinson, 2001). From this assortment
show three patterns in Fig. 3 that summarize
range of phase relationships between \
translation and rotation and, thus, provid
comprehensive test of the improved qu
steady model.

For each of the three kinematic patterns,
measured lift and drag force traces are comy
with the individual inertial, translational a
rotational components (Fig. 3). In all cases,
rather small inertial forces account for the sl

0
o 0.083
g 0167 |
& / 0.25
? 0.333 %o
0417
io.s l
: B 0.583
: :\ 0.666
L 1 1 1 )1
w 0 0.5 1 15
& o 0123 0.246 0.368

Angular velocity

Crotexp

Crotexp

Fig. 2. Variation in rotational coefficienCfot,exp with angular velocity and axis of
rotation. (A) Rotational coefficientgersusangular velocity @; rads?) for each

axis of rotation. The axes of rotation used for each series of measurements are given
in blue. Non-dimensional values of angular velociby ére presented in red under

the corresponding dimensional value. The vertical dashed lines signify the section
through this plot at values @b of 0.166 and 0.374, for which the representative
regressions are provided in B, non-dimensional axis of rotation. (B) Rotational
coefficient versusaxis of rotation. Two representative plots of rotational force
coefficients at two values @b, 0.166 (filled circles) and 0.374 (open circles), are
plotted, with the corresponding regression lines for each. The red line indicates the
prediction given by equation 9. (C) A series of regression lines for representative
values of angular velocity (numbers in blue) plotted together with the quasi-steady
prediction (red line) from equation 9.

undershoots of negative drag conspicuous at the start €firly well, it grossly underestimates the forces during wing
stroke reversal. Although the translational quasi-steadyotation. The modified quasi-steady model that includes both
model matches the forces during the middle of the strokehe rotational and the inertial components shows much better
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Fig. 3. Validation of the revised quasi-steady model for representative kinematic patterns. (A) Advanced rotation. (B) @ymutzeivic.
(C) Delayed rotation. (Ai,Bi,Ci) Two-dimensional cartoons of the three-dimensional kinematics and the translational (brpkaerd line
rotational (solid line) velocities as a function of non-dimensional time within the stroke cycle. The red arrows signiffotice neasured on
the surface of the flapping wing. (Aii,Bii,Cii) Drag; (Aiii,Biii,Ciii) Lift. The red lines indicate the measured forces, & lgres indicate the
quasi-steady translational component based on empirical measurements, the purple lines indicate the quasi-steady rptatientaodrthe
blue lines indicate calculated estimates of added mass. In Aiv,v, Biv,v and Civ,v, the summed quasi-steady predictioifAifoB &)

and lift (Av,Bv,Cv) are shown in black and compared with the measured values (red lines) for the corresponding kinematics.

agreement with the measured forces for all three Discussion

representative kinematic patterns. The revised model does Quasi-steady modeling of insect flight

not, however, account for the prominent force peaks that Because of the unavailability of instantaneous force data,
follow stroke reversal. These transients, due to wake capturgast researchers have generally focused on the ability of quasi-
are fundamentally unsteady and not easily amenable to quasteady assumptions to explain the mean forces required
steady modeling. for hovering. To determine the validity of the quasi-steady
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assumption, Ellington (1984a) constructed the following Importance of wing rotation in insect flight
logical argument. If the mean lift coefficie6i required for Wing rotation is a necessary feature of flapping kinematics
hovering exceeds the maximum, measured steady-State for animals that hover or fly at low advance ratios. Insects
then the quasi-steady assumption is contradicted and canngitively rotate their wings to manipulate not only the
be used to model insect flight. Alternatively, if the m&n  magnitude of aerodynamic forces but also the orientation of
does not exceed the maximum, meas@edthen the quasi- the forces with respect to their body. Rapid wing rotations have
steady model cannot be discounted. In a comprehensiyeen observed in most flying insects for which detailed
survey of the aerodynamic data available at the time, Ellingtoginematics are available (for a review, see Dudley, 2000).
(1984a) observed that, in most cases, the mean valu@s of However, precise kinematic measurements are sparse, largely
required to hover were greater than the maximum measur@gcause of the high angular velocities of wing rotation relative
steady-state values @. Thus, the quasi-steady model wasto the sampling rates of the methods available to capture
deemed insufficient to explain insect flight, fostering a searcRinematics. InDrosophila in which this behavior has been
for unsteady aerodynamic phenomena (see also Maxworth¥xtensively studied, the timing and duration of wing rotation
1981). are actively controlled during visually induced steering
Recent measurements of steady-state forces on model ins@gdneuvers. In tethered flight simulators, flies advance the
wings (Dickinson and Go6tz, 1993; Dickinson et al., 1999;otation of the wing on the outside of a visually elicited turn
Sane and Dickinson, 2001) have yielded values for both mead delay the rotation of the inside wing (Dickinson et al.,
CL and mearCp that were substantially higher than values1993). Such advanced and delayed rotations are thought to
used in previous studies to construct the ‘proof-byproduce a bilateral force imbalance that should generate a
contradiction’ argument outlined above. In the light of thesenoment to turn the fly in the intended direction.
new data, it is necessary to revisit the quasi-steady approachThe range ofé values used in these experiments is
Further, although the logic of the ‘proof-by-contradiction’ approximately an order of magnitude higher than in all
approach is rigorous in the realm of time-averaged forces, grevious measurements of which we are aware (see Fung,
is limited in its ability to address the precise time course 01969) and covers a range of values from approximately O to
the aerodynamic forces (Ellington, 1984a). The data present@4. Estimates fod in freely flying Drosophila melanogaster
here provide evidence that, with the exclusion of forces dugre in the range 0-0.6 (S. Fry, personal communication), and
to wake capture, a quasi-steady model based on bofalues in other insects may be even higher (see table 2 in
translation and rotation accurately captures the time history fllington, 1984b). Thus, the experiments conducted here are
force generation. better suited for modeling insect flight than previous studies

) ) o ) based on lower angular velocities of wing rotation.
The importance of viscosity in quasi-steady models

All the force components of equation 2 are based on the Comparison between measured and quasi-steady forces
assumption of an inviscid fluid. How important is viscosity The quasi-steady model of rotational forces outlined in
in models of insect flight at these Reynolds numbers? Receatjuations 8 and 9 is based on the assumption of a two-
CFD simulations oDrosophilaflight kinematics based on an dimensional airfoil rotating around an arbitrary axis while
inviscid model showed strong agreement with simulationsranslating in an inviscid fluid and is valid only for small
based on the full Navier—Stokes equation (R. Ramamurti andagnitudes of angular rotation. Under these simplified
W. C. Sandberg, personal communication). Both viscid andonditions, the model predicts that rotational coefficients are
inviscid models show reasonable agreement with forcemdependent of the magnitude of the angular velocity. In
measured on our apparatus using identical kinematicgontrast to these predictions, the measured values of the
Further, when we operate the model fly at Reynolds numberstational force coefficients show a clear dependence on
in the range 19and 16, the measured forces are similar (dataangular velocity (Fig. 2). Unlike the quasi-steady model, the
not shown), corroborating the numerical results. Collectivelymeasured forces are influenced by the three-dimensional nature
these results indicate that forces may not be cruciallpfflows, the finite length of the airfoil and the large magnitudes
dependent on viscosity within the range of Reynolds numbesf wing rotation. In the case of two-dimensional flow around
typical for most insects. Other sources of time-dependencae, flat plate, sectional aerodynamic force results solely from
such as the Wagner effect, appear to exert only a minahordwise circulation, such as that created by an infinitely long
influence on force generation at these Reynolds numbewrtex filament oriented perpendicular to the wing chord. In
(Dickinson and Go6tz, 1993). Thus, if we take into account théhe case of a flapping finite wing, vortex filaments must turn
time-variation of flapping kinematics, the resultantalong the wing, forming a tip vortex. The presence of a tip
translational and rotational force coefficients appear to beortex may influence the sectional circulation and downwash
time-independent, and it seems reasonable to model theaong the span (Birch and Dickinson, 2001). This distortion of
using a quasi-steady approach. It will, however, be necessattye flow relative to the two-dimensional case may be further
to take into account the effects of past strokes on the ambiecwmplicated by the presence of a base-to-tip axial flow
fluid environment when modeling wing/wake interactionsentrained by the leading edge vortex (Ellington et al., 1996).
such as wake capture. Any or all of these processes may be sensitive to the varying
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Fig. 4. Isolation of wake capture. (A) Advanced rotation. (B) Symmetrical rotation. (C) Delayed rotation. In all panelslirieerepdesents
the measured forces and the black line represents the sum of the added mass inertia, translational force and rotafibedbfoecdue to
wake capture is represented by a blue line and is calculated as the difference between the measured drag (top pa(Espangdifiels)
and the corresponding quasi-steady estimates.

angular velocity, which could account for the discrepancynteraction between the wing and the wake. More likely, it is
between the measured and predicted values. In futuin error in the estimate of rotational and inertial forces. These
experiments, it will be of interest to use flow visualization toartifacts might diminish if we used values for rotational
observe how either the structure of the tip vortex or theoefficients that depended on angular velocity or a more
magnitude of the axial flow varies with the magnitude ofaccurate model for added mass. Nevertheless, since these
angular velocity. In spite of this unexpected dependence aarrors are typically less than 10 % of the peak force due to wake
angular velocity, a quasi-steady rotational model based oncapture, modeling the rotational coefficients as constants
single,w-independent value @otexpappears to be sufficient affords us considerable mathematical simplicity at a relatively
over a broad range of kinematics, as borne out by the closenall cost in accuracy. With a reasonable time course for wake
agreement between the modified quasi-steady model and actaapture, it may be possible to construct a quasi-steady estimate

force measurements (Fig. 3). for these more complicated forces as well.
There is better agreement between theory and experiment _
with respect to the dependence of rotational coefficients on the Concluding remarks

axis of rotation. As predicted, rotational coefficients show a The data presented here characterize the effect of wing
strong linear dependence on the axis of rotation, even for smaditation on the production of aerodynamic forces by a flapping
angular velocities. At higher angular velocities, for which theairfoil. The measured rotational force coefficients show good
experimental data best match the quasi-steady theory, the siggreement with the theoretically estimated values and allow us
of the rotational coefficient reverses at 0.75 chordlengths, ito revise traditional, translation-based models of insect flight

accordance with theoretical predictions. by incorporating wing rotation. Compared with traditional
_ models, the revised model shows better agreement with the
Isolation of wake capture time course of aerodynamic force generation over a large

By rearranging the terms in equation 2, it is possible to useariety of kinematic patterns. In addition, we can isolate wake
a combination of measured and calculated values to estimatapture using the methods outlined here, allowing us to
the time course of wake capture forces. An estimateharacterize and model the wake capture phenomenon better
constructed in this manner shows characteristic transients at timefuture studies.
beginning of each stroke when the interactions between the

wing and the wake are expected to be greatest (Fig. 4). Because List of symbols
the wake capture peak is generated indirectly by subtractirg chord length

values for the quasi-steady model from actual measurements, mean chord length

this reconstruction is subject to errors arising from inaccuracier) non-dimensional chord length
within the various quasi-steady components. For example, it ISp drag coefficient

unlikely that the small oscillation in the reconstructed wakeCot translational drag coefficient

capture trace prior to stroke reversal represents an actual lift coefficient
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