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Summary

The behavior of crabs tracking odor in turbulent (rheotaxis) is sufficient to explain the efficient movements
chemical plumes was compared to the performance of towards the source displayed by foraging crabs. Spatial
computer simulations of search behavior operating in integration around each sensor improves performance
similar chemical signal environments. The movement of significantly, but the number of sensors does not have
blue crabs Callinectes sapidustowards a source of food a large impact on performance. The weighting of
odor was studied in controlled flow conditions in a flume. information from chemical versus flow signals can
The evolving chemical stimulus field of a similar chemical substantially change simulation performance, resulting
source in an equivalent flow environment was captured by in more or less congruence between the behavior of
recording concentration patterns of a fluorescent tracer. simulations and that of crabs, which suggests the general
Hypotheses about the sensory mechanisms employed by importance of both sources of information for successful
the crabs were tested by computer simulation using the odor-guided navigation.
recorded fluorescence as the stimulus. The results
demonstrate that a simple model combining chemo-
tropotaxis (simultaneous, spatial comparisons of chemical Key words: blue crab,Callinectes sapidus,chemo-tropotaxis,
signals) and odor-stimulated upstream movement rheotaxis, navigation, odor, turbulence.

Introduction

Chemical stimuli are the most ancient and universal sourcesich that animals cannot simply follow the average gradient
of information for organisms. They are often used to locatéecause large fluctuations in turbulent plumes force animals to
food and mates, presenting animals with three problems: sample for long time periods in order to estimate average
search problem, of making contact with appropriate chemicalsoncentrations accurately (Jones, 1983; Murlis, 1986; Murlis
that have dispersed away from the source (which usuallgnd Jones, 1981; Webster and Weissburg, 2001; Wright,
provide a much larger target than the source itself); afh958). Other hypotheses have been proposed, and among the
approach problem, of using information from the chemicamost prominent is that animals make use of flow direction
stimuli to move to the source (Dusenbery, 1992); and @formation in conjunction with information derived from odor
termination problem, of determining that the source has begmoperties. One whiff of the appropriate chemical indicates that
reached. The first problem has been addressed by a numbetledre is a source upwind or upstream.
theoretical and empirical studies (Bell, 1991; Dusenbery, Extensive research using male moths locating females has
1992), and many studies have examined how animals behapevided evidence to support this general idea, and suggested
when solving the second problem (Arbas et al., 1993; Atemanore specific models (Arbas et al., 1993; Belanger and Arbas,
1995; Vickers, 2000; Weissburg, 2000), although the exact998; Mafra-Neto and Cardé, 1998; Murlis et al.,, 1992;
mechanisms are sometimes unclear. The third problem remai¥gkers, 2000). However, these studies are difficult because it
for future study. is impractical to visualize chemical stimuli in the air and

In this paper, we address mechanisms employed by animalsrrelate behavioral with stimulus patterns. By contrast,
when challenged by the second problem. Understanding thigsualization of chemical tracers in water can now be carried
process is complicated by the fact that, at scales above a fewt with high resolution using fluorescent dyes, lasers and
centimeters, chemicals are dispersed by turbulent flows eideo cameras. Furthermore, flying insects face very different
wind or water and the resulting distribution patterns argroblems from walking animals, and aquatic environments
complex and unpredictable on the relevant temporal and spati@ay impose different constraints than air.
scales. It is now widely appreciated that turbulent mixing is These considerations led us to study the behavioral
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mechanisms by which blue crabs move to the source of fodatass fairing attached to minimize the flow perturbation. The
odors. In particular, we suspected that these relatively large aeéfluent velocity matched the channel flow velocity, thus
slow-moving crustaceans might employ spatial comparisonsreating an iso-kinetic source. For the data presented here, the
between receptors on different appendages to gain informatiomzzle was located 25 mm above the floor of the flume.
that is not available to a flying insect. Such information,
possibly in conjunction with odor-triggered movement Chemical concentration records
upstream, is thought to underlie strategies that blue crabs andLong time-histories of instantaneous concentration fields
other crustaceans use to navigate in turbulent odor plumesuere obtained by planar laser-induced fluorescence (PLIF).
find a source (Atema, 1996; Grasso et al., 2000; Weissburg afitie source effluent contained 51§11 of Rhodamine 6G that
Zimmer-Faust, 1993). was made to fluoresce using a horizontal laser sheet. The laser
Our specific objectives were to observe the behavior of cralsheet was located 25+1 mm above the bed of the flume, which
in a well-defined hydrodynamic environment, observe thepproximates the position of the antennules of the crabs and
pattern of chemical distribution under the same conditions, andtersects their legs. Video records of 182d24 pixels were
test computer models simulating hypotheses about how tteequired at a frame rate of 10Hz and processed to obtain
chemosensory behavior of aquatic crustaceans is controlledaccurate representations of concentration in the range
0-104ug "1 at each position of a 1088018 array.
In order to obtain sufficient spatial resolution (1 mm), the
camera was focused on a 1 m square field of view, and three
Flow environment different camera positions were combined to obtain a record of
We characterized blue crab search behavior in &000 images with 1024860 pixels covering a field of view
recirculating flume (10m long 0.75 m wide) with controlled of 1.0x1.9m. This procedure produces artifacts at the two
fluid flow and boundary layer conditions. The details of thishoundaries between the three camera fields of view (because
facility have been previously described (Weissburg et althe three records were made at different times), but this does
2002), but briefly, this facility is capable of generatingnot appear to affect the performance of these simulations.
equilibrium boundary layers in the test section (located-urther details of the acquisition and processing of
7.5-9.5m downstream from the head of the flume) at floweoncentration measurements may be found in Webster and
velocities as low as 1cm’s Water velocity was controlled Weissburg (2001) and Webster et al. (2002).
using a variable speed pump and discharge was monitored
using an inline meter. Average flow velocity was maintained Animals
at 4.9+40.08cmd (mean *sp.) with a water depth of Male and female blue cralBallinectes sapidus. were
23.0+£0.348cm (mean &p.) controlled by a vertical tailgate. collected using baited traps from habitats adjacent to Dickson
At this velocity, the boundary layer shear velocity, Bay, Panacea, FL, USA (latitude 30780longitude 84°22N,;
calculated using the Law-of-the-Wall equation (Weissburg an&Gulf Specimen Supplies). Crabs were captured from February
Zimmer-Faust, 1993) was 3.1mmsand boundary layer 2000 through September 2001, shipped to Atlanta, kept in
structure conformed well to expectations for turbulence in opecommunal tanks (artificial seawater 28-32 p.p.t., 24-27°C),
channel flows (Nezu and Rodi, 1986). These hydrodynamiand tested within 20 days of collection. In the laboratory,
conditions during behavior trials are well within the rangeanimals were maintained on a 12h:12h light:dark cycle, and
reported for blue crab habitats in the field (Finelli et al., 1999ed freshly thawed shrimp and squd libitum We withheld
Weissburg and Zimmer-Faust, 1993). Flume water salinity wa®od from blue crabs approximately 12h prior to testing to
kept between 28-32 p.p.t. and the temperature at 2€-27 ensure that the animals were not satiated and to standardize
which matches the conditions in the animal holding tanks. hunger level.
Fluid dynamics measurements took place in a fully
developed, uniform open channel flow of freshwater Behavioral testing
established in a 1.07m wide, 24.4m long tilting flume with a Blue crabs were moved carefully to the flume and placed in a
rectangular cross-section and smooth bed. This flume providé&lexiglas box (27.2 c#19.5cmx16.5 cm, lengthwidthxheight)
more precise control over the flow conditions, but was nowith a plastic grate (1 cfrgrid) forming the front door and rear
designed for use with seawater, preventing its use in behaviongédnel. This design enabled the flow to penetrate the box freely
trials. Average velocity in the flume was 50mrhand the while keeping the crab in a known starting position. Animals
flow depth,H, was 200mm. Flow was uniform in depth to were placed in the box for a 15min acclimation period prior to
within 0.3mm for a distance of at least 12 m upstream of thtéhe introduction of the stimulus. The stimulus consisted of a
measurement location. The turbulent boundary layer over theolution made by soaking 7glof intact shrimp in flume water
bed had a friction velocity, U*, equal to 3.55 mmh $ndicating  for 30 min and was introduced as previously described. Trials
that the conditions were very similar to those under which thiasted for a maximum 15min but were terminated if the crab
crab behavior was observed. failed to exit the start box within 5min after the door was raised,
The plume source for both fluid physical and behavioraif the crab found and grabbed at the source, or if the crab walked
studies consisted of a brass 4.7 mm diameter nozzle with upstream of the odor source (Weissburg et al., 2002).

Materials and methods
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The behavior of crabs in the odor plume was recorded owalking legs and antennules) and a sensor indicating flow
videotape using a low-light-sensitive CCD camera mountedirection. Each chemical sensor reported the value of 1 pixel
approximately 2m above the working section of the flume(small integration radius) or the average value of all pixels
which corresponded to a resolution of approximately 5 mm pewithin a radius of 15.5mm (large integration radius). We also
pixel. Trials were performed in near-darkness (light intensityused a variety of simpler sensor configurations to explore the
<1lux) because field observations indicate peaks in foragingffects of sensor number, size and position on navigational
activity occur in the early morning and evening periods (Clark@erformance. Integration over time was not extended beyond
et al.,, 1999). Animals were unresponsive to visual stimulthe step time of 0.02s.
during the trials. Each animal was tracked using two red-light- To emulate the behavioral experiments, all searchers started
emitting diodes in a self-contained unit affixed to thel.5m downstream of the source. The searcher did not move
dorsal carapace. The diode backpack was approximatelynless chemical stimulation reached a threshold level, which
6 cnmx2cnmxlcm (lengtixwidthxheight) and weighed 259, corresponded to a 0.003 dilution of the source solution. The
which is less than 10% of the weight of crabs typically usedearcher’s speed of locomotion was limited to 150 miptise
in our study (300-350g). The backpack had no detectabl@aximum speed attained by crabs in behavioral trials of odor
effect on crab movements (M. Weissburg and T. Kellerfracking. Reaching the source was defined as ‘contacting’ it by
unpublished observations) and kinematic parameters @oming within a 55mm center-to-center distance.
tracking crabs reported here are similar to that of previous Individual searchers were simulated for up to 20,000 steps
studies using animals without backpacks (Weissburg an@00s of simulated time) for generating tracks to compare with
Zimmer-Faust, 1994). The centroid of each light wasndividual crabs. The statistical success of large numbers of
calculated using Motion Analysis™ software in each framesearchers was calculated using simulations that were usually
generating a 60Hz time series xfy pixel values for each run for 1500 steps (30s), which is three times longer than
light. Thesex andy pixel locations were smoothed using a necessary for success.
moving average algorithm (window size=3) and ever{’ 12 We simulated crab search in this study by adding flow
frame was extracted to produce a 5Hz time series. Tim@irection sensory capabilities to a previous tropotaxis model
series—pixel data were then converted to real world distanc€Busenbery, 2001). The searcher moved in a given time step

using a calibration function. only if stimulated and then at maximum speed. Thus the
_ _ direction of locomotion was the primary behavior controlled
Computer simulations by stimulation. The commanded direction (the direction of

The general simulation software has been describedector D) was based on two components: chemical gradient
(Dusenbery, 2001). A major element of this software isand flow direction. A vecto€, pointing in the direction of
reasonable representation of noise in both sensory inputs ahigjher chemical stimulation, was determined by one of two
motor outputs. Care was also taken that information about itternative models. In the best-receptor model, the vector
position was not used by the searcher. The only directionalirection was that of the most highly stimulated sensor, and
reference was to flow direction. had a magnitude proportional to the strength of stimulation of

Simulating turbulent flows at the appropriate scales ishis receptor. In the center-of-gravity model, the vector was
impractical, so the video records of odor plumes entrained iidentical to a vector from the geometric center to the center of
turbulent flow (described above) were used for the stimulumass, where mass is proportional to the stimulation of each of
field. With the frame rate of 10Hz and flow of 50nmhs the sensors. If only one sensor is stimulated, both models
parcels of fluid travel 5pixels, on average, between framegroduce the same result; otherwise they usually generate
This would produce an unrealistic jumping of stimulus parcelsomewhat different vectors. A vecterof identical magnitude
between frames. Fortunately, the flow is nearly uniform at thipointing in the upstream direction (except for noise in flow
scale and a linear interpolation between frames smoothed td@ection; see below) is also generated. The desired direction
flow without distorting the odor properties. This is consistenbf movement at each time step is therefore determined by a
with Taylor's hypothesis, which states that over small spatialveighted sum of these two vectobBsswF+(1-w)C, where the
and temporal scales, bulk flow simply advects scalaweightw varies from 0 to 1 in different simulations but is fixed
distributions without changing their structure (Tennekes anébr a particular individual.

Lumley, 1972). The simulation was run with a time step Noise was incorporated in a manner parallel to what was
representing 0.02s (5 steps per frame), so that on average tlane in previous simulations of tropotaxis (Dusenbery, 2001).
flow only moved one pixel between steps. Each run (wittAdding an individual bias and a temporal component modified
1-1000 searchers) was started at a randomly chosen frame. Haeh determination of flow and chemical gradient directions.
record of 6,000 frames was treated as an endless loop, whithe bias (constant for each individual but different for different
produced a rare temporal discontinuity when going from framedividuals) and the temporal component (selected anew at
6000 to frame 1. each time step) were both random samples from a Gaussian

The basic model (which was thought to most closelydistribution of mean zero and standard deviat®n.) equal
represent a crab) had ten chemical sensors distributed evemty0.01 of a revolution (3.6°). With the geometry assumed and
around a circle of 50 mm radius (representing sensors on tlieis degree of bias, a searcher always commanded to move
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upstream had a 0.40 chance of contacting the source. Noi Source
levels for all parameters were set to 0.01 €84, which was '
found to give good fit to experimental data for cells moving ir

smooth chemical gradients (Dusenbery, 2001).

Results
Behavior of crabs
The search behavior of blue crabs to chemical cues in th
study was similar to that described in a variety of othe
investigations (Finelli et al., 1999; Weissburg and Zimmer- w ¥
Faust, 1993). Animals moved upstream immediately ol

Mean flow
e,

leaving the starting position and traveled consistently toward Y gi
the nozzle. Animals occasionally paused during their search fi b o 2
1-2s, during which time they often waved their claws ol = 5

bobbed up and down. Animals rarely moved directly upstrean
but instead often tacked across the flume. During thes

maneuvers they generally stayed within half a body diamete ' g.
of the mid-line, although extensive cross-stream movemel I <L
was not uncommon. Crabs found the source of the shrim| G
conditioned water approximately 75% of the time, averaging ’?{ >
30.0+1.6s to complete the task. 5
r 5 -
Performance of simulation models .‘,_" ,;? 8.

An example of a simulated searcher in the chemical plum
is shown in Fig. 1. This illustrates the variation of plume signa

structure and the relative spatial sampling ability of the  t
simulated 10-sensor crab-like searcher. :
The performance of simulations varied with different ey
weightings of rheotaxis (using flow direction information) and :
tropotaxis (using chemical gradient information) (Fig. 2). % Searcher

Performance was excellent with intermediate weightings, an 4
all searchers reached the source in close to the minimu "y
possible time. However, there was a very sharp decline i
performance with weightings below 0.5, and no searche
reached the source. Observation of the simulations in progre
revealed that, with low weightings, searchers follow blobs o
chemical stimuli downstream (see Fig. 3A). Weightings abow
0.8 produced large variations in success, with some searcht
reaching the source in minimal time while others never reacheFig. 1. lllustration of a simulated searcher in the chemical plume.
it. Observation of the simulations in progress revealed thaThe searcher’s ten sensors are located at the ends of the ‘spokes’.
with these high weightings, searchers move upstream but sorThe dark patches are areas where the chemical stimulus is above
contact the source and some are off to the side (see Fig. 3ithreshold. The image is to scale, with the plume extending
This result is not surprising given that searchers with a higapproxmately 150 cm downstream of the source and the diameter of
bias in flow direction sensing will veer laterally as they move"® Searcher equal to 10cm.
upstream and miss the source.

Comparison of the two plots in Fig. 2 shows very little
difference between the performance of models using the be$ivo opposite legs). A three-sensor model was chosen as the
receptor and center-of-gravity methods of determining gradiersimplest that can resolve all directional ambiguities. All
direction. models were tested with two integration areas corresponding

We compared the results of the basic searcher mod# a single pixel (approximately 1 mm diameter) and the largest
discussed above with simulations employing other senseadius that avoided overlap of integration regions in the 10-
configurations to examine hypotheses about the importance sénsor array (31 mm diameter). As before, the previous models
sensor number, location and area of integration. A two-sensail used the same radius for the array (100 mm diameter) and
model was tested as the simplest that can provide any spatialis had the same spacing between sensors. In addition, a two-
comparison. (This might correspond to a comparison betweesensor model was tested with the array reduced to 31 mm

A
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Fig. 2. Performance of center-of-gravity (A) and best-receptor (B ]
models with different weightings of rheotaxis and tropotaxis. Foi
each weighting, 1000 searchers were simulated for up to 1500 tin |
steps (305s), as described in Materials and methods. The vertical lin 500
span the range of time steps taken to reach the source, while t ]
horizontal lines indicate the median time taken. The closed circle

indicate the number of searchers that reached the source. F . T
searchers reached the source with a weighting of less than 0 ]
whereas weightings greater than 0.8, resulted in some searchi L B e
reaching the source while others never did. All searchers reached t 0 500 1000 1500 2000
source in close to the minimum time with intermediate weightings Time .02 s)

For comparison, the average crab found the source in approximate||:v 3. Dist ¢ th functi ftime is sh f
1500 time steps (305). ig. 3. Distance from the source as a function of time is shown for an

arbitrary sample of three simulations at four different rheotaxis
weightings. (A) Searchers with a weighting of 0.4 eventually move
downstream, away from the source, following blobs of chemical
diameter, the minimum that avoided overlap of the integratioStimulus. All searchers with a weighting of 0.5 move upstream to the

areas of the two sensors when the larger integration area wSOUrce, displaying varying periods of little movement, as stimulus
used. (This might correspond to a comparison between tv\blobs move downstream of the searcher. Searchers move upstream to

adjacent appendages, such as the pair of antennules.) the source at close to maximum speed, when rheotaxis weightings
. . ’ . . . ) are 0.7 (the 3 tracks overlap) (B). With a weighting of 1.0, searchers
Surprls_lngly, different Sens_or configurations did not alte_'blessed with a low bias in determining flow direction move directly
the basic results concerning the effects of rheotaxiypsiream to the source, while others veer cross-stream of the source
weightings (Fig. 4). Performance fell off rapidly outside theang move upstream of it, or move out of the plume and rarely
0.5-0.8 range of rheotaxis weights for all searcher modelprogress.

With any weighting within this range, at least 70% of

searchers reached the source within 10,000 time ste|

(Fig. 4A,B). However, the median time taken to reach the Comparison of real and simulated crabs

source varied 20-fold (Fig. 4C,D). All models with the large We analyzed the path kinematics of 14 tracks each from real
integration areas outperformed all those with the smaltrabs that successfully located the odor source, and from
integration areas. In addition, models with more sensors wesmulated crabs using the center-of-gravity model (10 sensors,
better than those with fewer, especially for those with théarge integration radius) with rheotaxis weights of 0.7 and 0.5.
small integration areas. For the two-sensor models, there wake success rate of the artificial searchers was 100 %,
little difference between the two array sizes. We again see thedmewhat higher than that of real crabs (see above). In
the center-of-gravity models were not superior to the bessimulations with high rheotaxis weightings, searchers found
sensor models (Fig. 4). the source in 10.1+0.1s (means£.Mm.), which is about the

Weighting=1.0
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Fig. 4. Comparative performance of searchers with different numbers of sensors and different integration areas (big ensonafya$s are
illustrated by ‘spokes’ from the array center to the center of each sensor and by a filled area of integration (top). Millsafperformance
falls off rapidly outside the 0.5-0.9 range of weighting rheotaxis. With any weighting within this range, at least 70 %herfssesched the
source within the 10,000 time steps simulated (A,B). However, the median time taken to reach the source varied 20-fdld{@jBls Aith
the large integration area outperformed all those with the small integration area. In addition, models with more sensttsrtese those
with fewer. With the two-sensor models, the larger array was marginally superior. The more complicated center-of-gravi(i Dpdets
not superior to the simple best-sensor models (A,C).

minimum possible time (given the assumed speed limitjiwere common in both along-stream and cross-stream
Simulations with weights of 0.5 had search times averagingomponents, particularly for crabs and simulations with
35.6+£7.6s, suggesting their performance levels wertow rheotaxis weightings (Fig. 6). The latter showed more
comparable to that of real crabs (see above). saltational movement than either crabs or simulations with high
In addition to the similarity in overall behavior, the fine- rheotaxis weightings. Bouts of motionlessness or sluggish
scale details of locomotory kinematics in simulated crabsnovement in simulations with low rheotaxis weightings were
strongly resembled the movements of real animals. Typicassociated with relatively large directional changes (Fig. 5,
trajectories of both real and simulated crabs were characterizedrrelation coefficient 0.4). Real crabs occasionally moved
by relatively straight paths from the starting point to the sourcdownstream in pursuit of the odor plume. In simulations with
(Fig. 5). In general, none of groups produced tracks with anweightings greater than 0.5, the computer algorithm resulted
dramatic excursions from the plume centerline, althouglexclusively in upstream movement, although with lower
simulations with lower rheotaxis weightings exhibited moreweightings, downstream movement was common (Fig. 3).
abrupt directional changes. Searchers maintained fairly steadyWe used a variety of statistical measurements to quantify
progress towards the source and large velocity fluctuatiorfsrther the differences in movement between real and virtual
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Fig. 5. Typical search paths of real and simulated searchers. (A) Reaj;? 10
crab, (B) simulated crab with a rheotaxis weighting of 0.5,
(C) simulated crab with a rheotaxis weighting of 0.7. Values < 5
represent the coordinates of the animal rendered at 5Hz. *g
3 0]
>
searchers. Simulated searchers relying more on rheotax g |
moved significantly faster and took a more direct path to th
odor source than did either simulations with low rheotaxis -10

weightings or real creatures tracking shrimp metabolites 0 2 4 6 8 10 12
(Fig. 7). Simulated searchers with high rheotaxis weightings Distance (cm)

never paused during locomotion, which distinguished thervlfig. 6. Typical velocity records in real and simulated searchers.

from the other two groups. However, high variance in) real crab, (B) simulated crab with a rheotaxis weighting of 0.5,
motionless periods displayed by crabs obscured any clearc) simulated crab with a rheotaxis weighting of 0.7.
defined trend and the resulting difference among groups

marginally significant.

It may seem surprising that some virtual crabs show feweightings of 0.5 apparently followed individual odor features
stopping bouts when one rule of the algorithm is for them toff of the plume centerline, where they ceased movement for
stop in the absence of odor stimulation. Since these animadbort periods of time in which odor was absent (Fig. 3).
maintained close proximity to the plume centerline, they Interestingly, realversussimulated crabs modulated their
experienced odor loss only very rarely, so that there were felaehavior differently as they traversed up the plume (Table 1).
intervals where movement velocity was zero. By contrastWhen we divided the tracking area into three equal regions,
virtual crabs with high rheotaxis weightings and high bias irbased on distance downstream from the source, the analysis
flow direction sometimes deviated far from the centerlineindicated that the walking velocity of live crabs decreased as
where they experienced longer periods in the absence of odtingy progressed towards the source, but there was no consistent
causing them to cease locomotion. Simulations with rheotaxishange of speed in the simulations. Both real and simulated
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Table 1.Path kinematics in real and simulated crabs in three different downstream plume regions

Velocity (cms?Y) in plume region Centerline displacement (cm) in plume region
100-66 cm 66-33 cm 33-0cm 100-66 cm 66-33 cm 33-0cm
Simulations (0.7) 14.3£0.05 14.4+0.05 14.5+0.06 2.55+0.32 2.31+0.21 0.64+0.08
Simulations (0.5) 6.79+0.30 6.73+0.34 6.08+0.23 2.94+0.25 1.83+0.19 0.72+0.54
Real crabs 7.21+0.82 7.26+0.91 5.52+0.73 6.29+1.33 4.85+0.79 3.3440.32

Weightings in the simulations are given in parentheses.

Mean movement velocity and distance from centerline are shown in three plume regions characterized by their downstrefmondigtance
source.

Values are meansst.M. (N=14 paths for each treatment).

Repeated-measures design analysis indicates that movement rate is significantly different in the three regions for fealsimulatiél
searchersHz,26=4.70,P<0.05;F2,26<2.07,P>0.05, for real and both simulation groups, respectively).

Movement velocity in real crabs declined linearly as a function of distance catBgagyq.07,P<0.05).

Centerline displacement (absolute distance) was significantly different in all gfeugs5.17,P<0.05 for all groups) and was a limea
function of distance categori{13=5.74,P<0.05 for all groups).

14 [7] 2 Smulation 8.8 ™ 35! distribution of the simulations with low rheotaxis weighting
1] =3 Crab 68- ' was strongly bimodal, with peaks at both intermediate and high
o _ 3.0 velocities. Intermediate velocities are the result of averaging

f; 10+ :5’ 06 @ 25 motionlessness periods and intervals of movement at maximal
£ g S 2 20l speed. The !ow frequency of remaining stationary revegls that
\]5 6 E 04 g_ re.al an'd simulated crabs rarely went for long without
g IS &5 stimulation.

4 1.0 Distributions of turning angles reveal that, compared to real

5 0.2 05 crabs, simulated animals with high rheotaxis weightings

o ' generally did not change course drastically, which is a function

of their reliance on flow direction cues that are essentially
Fig. 7. Path kinematic parameters of real and simulated searchefgvariant. In contrast, animals with a low rheotaxis weighting
Values are means per pati=(L4 paths for each treatment). Analysis made more large-angle course corrections compared to the
of variance (ANOVA) indicates that speed and path efficiency ar@ther two groups. The consequences of these different patterns
significantly different across these group® 49>39.07,P<<0.001  are easily seen when examining the paths themselves (Fig. 5).
for both comparisons), whereas the ANOVA analysis of stop timezs noted, the paths of the low-weighting simulations show
indicates a marginally significant effecfz(zo=3.02, P=0.06).  dramatic directional changes and sudden bursts of locomotion
Horizontal lines join pairs that are statistically |nd|st|ngwshableinterspersed with periods of near-stillness, whereas real crabs

.baSEd on SC.hEﬁe S test, for speeq and path efﬂcnency_. Path eﬁ'C'enﬁ)ﬁow more consistent movement and more gradual turning.
is the total distance traveled relative to the shortest distance from the

origin to the destination, and is unity when the searcher takes the
shortest, most direct route to the source. Data are from real (hatched

bars) and simulated crabs (open and filled bars; rheotaxis weighting ) D'SCL_'SS'OH ) - '
in parentheses). A particular strength of this study is the ability to examine

the kinematics of locomotion by searching animals in both real
and virtual environments with similar stimulus properties. It
searchers showed a decrease in their average distance fromdfien has been difficult to study the chemosensory abilities of
plume centerline as they approached the source. Real cradnsimals in turbulent flows because it is not possible to
were generally farther away from the centerline at any givereproduce the stimulus environment accurately or to know the
distance downstream than were simulations with higlpattern of stimulation. Our approach relied on empirical data
rheotaxis weightings. on odorant distribution collected at biologically relevant time
The most dramatic differences between the performance ahd space scales to provide the stimulus environment in the
real and simulated crabs are seen in the distributions of spesidnulations, and on our ability to generate similar flow, and
and directional changes (Fig. 8). The velocity distribution forhence odor, conditions to challenge real creatures. Several
real animals is relatively uniform, with a modest peak at aimvestigators have proposed that up-stream locomotion in
intermediate value. The velocity distribution of simulationsresponse to odor, combined with spatial sampling, is an
with high rheotaxis weightings shows a single mode at nearlgfficient way of moving in the direction of a source while
the maximal velocity, which is consistent with their extremelymaintaining contact with the plume to ultimately result in
rapid, sustained movement towards the source. The velocigpurce localization (Finelli et al., 1999; Weissburg, 2000;
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1 e the task of following a chemical stimulus dispersed in a
0.9 _ _ turbulent flow (Belanger and Arbas, 1998; Grasso et al., 2000;
=& Smuation(0.7) Ishida et al., 1996a,b; Kuwana and Shimoyama, 1998; Russell
0.8 —e— Simulation (0.5) et al., 1995). These studies employed either mechanical robots
0.7 _A_ Crab to implement the algorithm, or computer simulations, and
0.6 present valuable demonstrations that algorithms produce
054 successful tracking that can be implemented in hardware.
04 Explicit comparisons with the behavior of real organisms are
rare, but generally the performance of these artificial agents
" 0.3 ] " lags behind that of the creatures used as their inspiration, which
5 024 - —a— are primarily aquatic and terrestrial arthropods. Unfortunately,
E 0_1_=é_¢ A few previous investigations contained realistic, naturally
g O — relevant, quantified odor plumes, which complicates efforts
g 0 25 5 75 10 125 15 to test the adequacy of proposed mechanisms for solving
S Speeal (cm s1) problems that animals actually face. Using an elegant
IS simulation approach explicitly based on known behavioral and
5 1l physiological properties, Belanger and Arbas (1998) examined
g 0.9 —m— Simulation(0.7) a variety qf moc.jels for pheromon'al traclfing'i.n moths.
0.8- o Although simulations took place in a simplified odor
071 _a —e— Similation(0.5) environment, their approach could, in principle, be used on
—A— Crab plume data sets similar to ours. Belanger and Willis (1996)
0.6+ address the use of video-images of smoke plumes as a dynamic
0.5 4 stimulus for simulating moth orientation. In addition to the
0.4 technical challenges discussed by these authors, visualizing
0.3- smoke plumes with conventional optics and illumination
02 results in an estimate of concentration that is integrated over
' the plume volume at any givengy location. This is a less
0.1 accurate representation of the stimulus pattern than is obtained
(. N : : using PLIF.
0 30 60 90 120 150 180 Grasso et al. (2000) examined the performance of a robotic
Angle (degreeg lobster mimic with simple odor sensing mechanisms in a semi-

Fig. 8. Distributions of movement speed and turning angles of rerﬂ"’uu_raI odor enwronmen.t. The rqbot mimic performed poorly
and simulated searchers. Data from all paths in a particular groJﬁlat'Ve to lobsters, particularly in the farther reaches of the
were pooled. Turn angle is the absolute difference between tH¥Ume, where a lack of upstream movement caused the robot
heading measured over successive frames (crabs) or simulation stefsmove outside of the plume or simply hold station.
Values are from real (open triangles) or simulated crabs (filled Weissburg et al. (2002) simulated the performance of
squares and circles; rheotaxis weighting in parentheses). Sam@@imals in turbulent odor plumes with the same PLIF data as
sizes, representing the number of video frames in all 14 paths in eagbed here. The virtual searcher had three sensors and both the
group, were 758, 2100 and 2504 for simulated searchers with @ansor area and array size were varied systematically.
rheotaxis weighting of 0.7, simulated searchers with a rheotaxiEXp”Cit comparisons of kinematic parameters were not
weighting of 0.5 and real crabs, respectively. performed, but simulation search time and success rate were
similar to those of crabs in the same environment. The major
finding was that optimal performance depends on matching
Weissburg and Zimmer-Faust, 1993). Similar to real animalghe array size and integration area to the scale of the plume.
simulated crabs with this combination of sensory mechanisnSmall array sizes and integration areas result in reduced
traveled consistently upstream while narrowing their distanceontact with the plume and an inefficient search, whereas
from the cross-stream location of the plume to find the sourdarge integration areas erode the spatial contrast and also
easily. The correspondence of movement patterns seen in reafluce search success.
and virtual crabs indicates that the hypothesized mechanisms

are indeed adequate for tracking in turbulent flows, and Simulation assumptions
suggests that aquatic crustaceans may use some variant of thesehe simulations demonstrate that a particular behavioral
relatively simple strategiga vivo. hypothesis can perform as well as the animals. This, of course,

The present study appears to be the first report afoes not prove that the animals employ the same mechanism.
performance comparable to that of real animals when usingla the present case, we have tested what we believe is the
good representation of realistic stimulus patterns in a turbulesimplest hypothesis consistent with known features of the
flow. A few studies have tested specific algorithms for solvingnatomy and behavior of blue crabs.
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The assumed sensory capabilities are at least plausible.Perhaps the most valuable result of the simulations is the
Several crustaceans are known to have chemosensory hairsdemonstration of the importance of appropriate balance
their appendages (Derby and Atema, 1982; Reeder and Achmtween moving upstream and moving toward higher
1980; Schmidt and Gnatzy, 1989; Weissburg, 2000) and theodncentrations. This is consistent with other simulation studies,
is evidence that chemosensors on the walking legs help blwéhich suggest that the absence of either chemical gradient
crabs (T. Keller and M. Weissburg, manuscript in preparationpr flow information severely compromises performance
and perhaps other crustaceans (Devine and Atema, 198Belanger and Arbas, 1998; Grasso et al., 2000). Although our
Moore and Atema, 1991), move to a source of food. Thenodels performed well with a fairly broad range of weightings
source of flow-direction information is less clear, although(0.5-0.8), there were sharp declines in performance outside
crustaceans possess an abundant supply of mechanosensois range. The successful model can be understood as using
(Ebina and Wiese, 1984; Laverack, 1962; Schmitz, 1992themical information to stay directly downstream of the source
Information regarding flow probably originates from mechano{correcting for fluctuations and errors in flow direction) while
sensory hairs on various body surfaces that are stimulated bging flow direction information to move towards the source.
water movement, but might come from joint sensors thathis strategy keeps animals close to the centerline of the plume
respond to deflection caused by the flow acting on the bodyand allows them to track the narrowing width of plume as they

The simulation algorithm assumes that all sensors on theavel towards the source. The sharp decline in performance at
animal are equivalent. This is the simplest model and is Bw weightings can be understood as the result of the net effect
logical starting point, but may not be biologically realistic. of two opposite tendencies (to move downstream following
Individual chemosensory neurons in crustaceans vary in th@obs of chemical stimuli and to move upstream as commanded
suite of compounds that will elicit a response (Derby andby rheotaxis). This sharp cutoff has been seen in numerous
Atema, 1988). Whether variation in neuronal sensitivityother simulations (not shown), indicating that this result is
produces differences in sensitivity or other response propertiassirprisingly independent of where in the video loop the
across appendages remains unknown for most animals. Stud@sulation started.
in the lobsterH. americanussuggest that different sensory  One of the more interesting findings is that, although success
appendages may have populations of neurons tuned to differéstrobust over a range of weightings of chemical gradient
chemicals but similar levels of sensitivity (Voigt and Atema,versusrheotactic information, there is considerable difference
1992). Future studies may be required as more data beconieghe fine-scale kinematics of virtual animals that vary in their
available on physiological properties of particular sensoreliance on flow information. In particular, simulated crabs
populations or the relative contribution of different sensorywith lower rheotaxis weightings display behavior that more

appendages to distance orientation. strongly resembles the real organism. This similarity suggests
o that, like the simulations in virtual plumes, animals in turbulent
Chemotaxis is valuable aquatic plumes extract important information from the

The results demonstrate that a simple model combininghemical signal, as opposed to simply using odor to evoke
rheotaxis (using flow direction information) and tropotaxismovement that is guided by the perception of flow direction.
(using chemical gradient direction information) is sufficient toThe importance of directional cues from odor signals has been
explain the observed crab behavior. Although extensive studig@stulated previously on the basis of the different behaviors of
of chemically mediated guidance in the American lobstenquatic versus terrestrial arthropods. Flying moths, the
Homarus americanubave focused on extracting information archetypal example of odor-tracking proficiency, are thought
from the kinetics of the chemical signal (Atema, 1995), it haso be too small and fast to employ spatial comparisons and
recently been argued that the nature of chemical plumeagenerally display stereotyped directional changes as a result of
requires more time than these animals take to acquire usefuh endogenous motor program triggered by odor detection, but
samples of directional information (Grasso et al., 2000steered using perception of flow (Vickers, 2000). This contrasts
Webster and Weisshurg, 2001). The efficacy of the simplgreatly with the behavior of animals such as blue crabs, which
mechanisms employed by our simulations suggests there is display highly variable course trajectories that are assumed to
need to invoke sophisticated temporal processing of signals result from unpredictability in the structure of turbulent
order to explain the navigational ability of crabs, and perhapshemical plumes (Moore and Atema, 1991; Weissburg and
of other aquatic animals. Zimmer-Faust, 1993, 1994).

The more sophisticated calculation of mean gradient Although the behavioral concordance of simulated searchers
direction across the array of sensors did not yield a superiavith intermediate rheotaxis weightingsv<0.7) and real
performance to that obtained by simply choosing the directioanimals is encouraging, the differences may indicate important
of the most highly stimulated sensor (Figs 2, 4). This iglisparities between the hypothesized and actual mechanisms.
particularly surprising for arrays with only two or threelIn particular, virtual crabs exhibit bimodal movement
receptors. The lack of sensitivity to this difference probablyelocities and more frequent course corrections than real
results from the high levels of noise (intermittancy) in thecreatures. Our simulations included neither physical
signals, and is consistent with the notion that chemotaxisonstraints on their movement, nor latency in responding to
serves mainly to keep the animal near the plume centerline.odor features. Either factor may alter some of the properties
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displayed by virtual searchers or robots (Belanger and Arbadjstance information must come from some odor signal

1998; Grasso et al., 2000). characteristic, and a variety of odor signal parameters may
o o contain the necessary cues (Atema, 1996; Moore and Atema,
Spatial integration is valuable 1991; Webster and Weissburg, 2001). Blue crabs may slow

The simulations indicate that the area over which eactown as they approach their goal in order to acquire better
sensor integrates the signal is quite important. Sensomsformation on proximity to the source. Other animals (Moore
integrating over a large area are more likely to detect a signahd Atema, 1991), but not simulations, display similar
and provide a more accurate indication of the direction of thpatterns. It appears from our observations that moving to the
plume axis. In principle, integration could be performed bylocation of a prey or mate may be easier than knowing the goal
summing the outputs of many sensors or by moving one senduais been reached, and that dividing, at least conceptually, the
around rapidly. Since the crabs do not move their appendageavigation process into these distinct phases may be
rapidly and they are covered with many sensory hairs, theperationally convenient. Incorporating mechanisms into our
summation method is most likely. Although it is not clear whasimulations that can account for the ability of animals to stop
value of integration radius would best emulate the crabs, wence they have reached their goal is required to evaluate
expect that it would fall between the two values we used in thgotential constraints between processes that mediate
simulations. Unfortunately, basic anatomical information thamovements towardsiersusstopping at, the source.
could be used to assess the degree of integration of crustacean
chemical sensors is lacking. Most studies examining We thank Troy Keller for thoughtful contributions and
projections of olfactory neurons focus on how neural substrateieveloping the behavioral methods used here. We also
convey information about odor quality, not mechanismsxpress our appreciation to Lee Smee, Alicia Holmes and
relating to preservation or encoding of spatial information. Charlene Davenport for help with the behavioral experiments.

The results displayed in Fig. 4 demonstrate that mor&he support of DARPA-ONR is greatly appreciated. In
sensors are better, as expected. However the effect is megidition to providing material assistance, their encouragement
pronounced for sensors with small integration areas, where tefi the Plume Tracking Initiative provided a stimulating
sensors reached the source in one-third less time than thregvironment, and discussions with members of this group
sensors. With large integration areas, the effect was muahkere most beneficial. We especially thank Don Webster, S.
smaller. This suggests that the main benefit of having momRahman and L. P. Dasi for collecting the PLIF plume data.
sensors is simply to increase the probability that one of the
sensors detects a signal, rather than to increase the precision of
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