
Numerous animals use hairy appendages for feeding and
locomotion. Extensive research has been carried out on the
flow volume through the hairs on feeding appendages (e.g.
Koehl, 1983, 1995; Hansen and Tiselius, 1992), but there is
not much information on the fluid-dynamic forces generated
by hairy appendages (Horridge, 1956; Ellington, 1980; Cheer
and Koehl, 1987; Kuethe, 1975; Tanaka, 1995). How to
estimate the fluid-dynamic forces acting on the hairy
appendages at low and very low Reynolds number has not
therefore been clarified. 

To estimate the fluid-dynamic forces acting on the hairy
appendages and understand the fluid-dynamic mechanisms of
thrips flight, we measured the fluid-dynamic characteristics of
a dynamically scaled model of the forewing. Four different
wing motions were studied: forward motion at a constant
velocity (constant-velocity translation), forward motion at a
translational acceleration (accelerating translation), rotational
motion at a constant angular velocity (constant-velocity
rotation) and rotational motion at an angular acceleration
(accelerating rotation). For comparison, the fluid-dynamic
characteristics of a solid model wing were also measured. The
solid wing had the same outline as the bristled model, but was
made from a solid flat plate of the same thickness as the bristle
diameter. Comparing the fluid-dynamic performance of the
bristled and the solid wing might help to clarify why a small
insect, such as a thrips, uses bristled wings for flight. 

Materials and methods
Wing shape 

The fore- and hindwings of a real thrips Thripidae
frankliniella intonsa) are shown in Fig. 1A. Fig. 1B,C shows
diagrams of the bristled wing and solid model wings,
respectively. The bristled wing comprises a membrane and 51
cylinders. Table 1 lists the dimensions of a thrips’ forewing,
measured by Tanaka (1995), and of the model wings, where
xw is wing length, c is chord length, cm is membrane width, d
is cylinder diameter, ch1 is the length of cylinders on the
leading edge of the membrane, ch2 is the length of cylinders
on the trailing edge of the membrane, n is the number
of cylinders on each edges, D is the distance between
neighbouring cylinders, and S is the wing surface area. S for
the bristled wing is the sum of the cylinder frontal area nd(ch1+
ch2) and the membrane area xwcm. The solid wing has a surface
area xwc. The parameters xw/c, cm/c, d/xw, ch1/c, ch2/c, n and
D/d are similar for both the bristled wing and a real thrips’
forewing, maintaining geometric scaling. The fluid-dynamic
characteristics of the bristled wing and the solid wing were
measured for four motion patterns. 

Forward motion 

Fig. 2 shows the apparatus used to measure the fluid-
dynamic forces acting on the model wings in forward motion.
A tank (dimensions in X, Y and Z directions, LX=800 mm,
LY=400 mm and LZ =500 mm, respectively) was filled with an
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Thrips fly at a chord-based Reynolds number of
approximately 10 using bristled rather than solid wings.
We tested two dynamically scaled mechanical models of a
thrips forewing. In the bristled design, cylindrical rods
model the bristles of the forewing; the solid design was
identical to the bristled one in shape, but the spaces
between the ‘bristles’ were filled in by membrane. We
studied four different motion patterns: (i) forward motion
at a constant forward velocity, (ii) forward motion at a
translational acceleration, (iii) rotational motion at a

constant angular velocity and (iv) rotational motion at an
angular acceleration. Fluid-dynamic forces acting on the
bristled model wing were a little smaller than those on the
solid wing. Therefore, the bristled wing of a thrips
cannnot be explained in terms of increased fluid-dynamic
forces. 

Key words: thrips, Thripidae frankliniella,bristled wing, membranous
wing, fluid-dynamics, constant-velocity translation/rotation,
accelerating translation/rotation. 
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aqueous solution of glycerine. The wing was suspended from
a load cell (LMC3729-1N, Nissho Electric Works, Japan) via
an 8 mm diameter joint cylinder. The load cell can measure
forces in the x and z directions, Fx and Fz, and the moment
around the y axis, My. The maximum load for Fx and Fz was
1 N and that for My was 0.01 N m. 

The cross talk between Fx, Fz and My was small, and the
measured forces Fx and Fz were considered to be equal to the
normal and tangential forces, Fn and Ft, respectively, on the
wing (Fx=Fn, Fz=–Ft). 

The wing was moved in the X direction at a constant angle
of attack α between –10 ° and 45 ° as described for constant-
velocity translation and accelerating translation in Table 2.
During constant-velocity translation, the wing moved at a
constant forward velocityV0. During accelerating translation,
the wing underwent sinusoidal acceleration for t≤T0t (t≤T0t =4
or 10 s), where t is time and T0t is the period of accelerated
motion. The forward velocity reached a terminal value V0 at

t= T0t. Because the tank was much larger than the model wings,
wall and surface effects can be ignored. 

Table 2 also shows the Reynolds number Recalculated as
follows: 

Re = V0c/ν , (1) 

where ν is the kinematic viscosity of the liquid. During
constant-velocity translation and accelerating translation,
Re=12, which is similar to the Re=10 for a flying thrips
(Tanaka, 1995). 

The fluid-dynamic forces acting on the wing were
measured as follows. First, the normal and tangential forces
Fn,c and Ft,c were measured for the wing mount only without
the wing connected to the joint cylinder. Next, we measured
the normal and tangential forces Fn and Ft generated by both
the wing and its mount. The fluid-dynamic forces acting on
the wing only were calculated from the measured forces, Fn,
Ft, Fn,c and Ft,c for the two translational motions. 
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Fig. 1. Test wings. (A) Photomicrograph of a thrip’s wings. (B,C) Diagrams of a bristled model wing (B) and a solid model wing (C). c, chord
length of a wing; cm, membrane width of a bristled wing; ch1, length of cylinders on the leading edge; ch2, length of cylinders on the trailing
edge; D, distance between neighbouring cylinders or bristles; d, diameter of cylinders or bristles; tm, thickness of a wing; xw, wing length; x,y,z,
wing-fixed coordinate system. 

Table 1.Size of model wings and thrips’ wing

Wing c (mm) xw/c d/c cm/c ch1/c ch2/c tm/c S (mm2) D/d n

Thrips* 3×10–1 2.7 5×10–3 2×10–1 1.3×10–1 6.7×10–1 − 6×10–2 10 50
Bristled model 60 3.0 5×10–3 2×10–1 1.8×10–1 6.2×10–1 10–2 2.9×103 10 51
Solid model 60 3.0 − − − − 10–2 1.1×104 − −

*Data for the thrips’ wing were obtained by Tanaka (1995).
c, chord length; xw, wing length; d, diameter of bristles or cylinders; cm, membrane width; ch1, length of bristles or cylinders on the leading

edge; ch2, length of bristles or cylinders on the trailing edge; tm, thickness of the wing; S, wing surface area; D, distance between neighbouring
bristles or cylinders; n, the number of bristles or cylinders.
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Constant-velocity translation 

The forces Fn, Ft, Fn,c and Ft,c were measured when they
reached constant values. The fluid-dynamic forces acting on
the wing only were calculated using the expressions, Fn–Fn,c

and Ft–Ft,c. The lift coefficient CL and drag coefficient CD

were obtained by non-dimensionalizing the measured fluid-
dynamic forces as follows: 

CL = [(Fn − Fn,c)cosα − (Ft − Ft,c)sinα]/0.5ρV02S, (2)

CD = [(Fn − Fn,c)sinα + (Ft − Ft,c)cosα]/0.5ρV02S . (3)

Accelerating translation

The forces Fn, Ft, Fn,c and Ft,c were measured at 0≤t≤T0t.
Fn and Ft are the sum of the fluid-dynamic and inertial forces
acting on the joint cylinder, the fluid-dynamic and inertial
forces acting on the wing and the inertial forces on the load
cell. Fn,c and Ft,c are the sum of the fluid-dynamic and inertial
forces acting on the joint cylinder and the inertial forces acting
on the load cell. The load cell measured an inertial force
proportional to the accelerated mass attached to the strain
gauge in the load cell. Therefore, Fn–Fn,c and Ft–Ft,c are the
sum of the fluid-dynamic and inertial forces acting on the
wing. The normal and tangential fluid-dynamic forces acting
only on the wing are given by Fn–Fn,c–mwẌsinα and
Ft–Ft,c–mwẌcosα, respectively, where mw is the mass of the
wing, and mwẌsinα and mwẌcosα are the normal and
tangential components, respectively, of the inertial force
acting on the wing. CL and CD were obtained by non-
dimensionalizing the measured fluid-dynamic forces as
follows: 

CL = [(Fn − Fn,c)cosα − (Ft − Ft,c)sinα]/0.5ρẊ2S, (4)

CD = [(Fn − Fn,c)sinα + (Ft − Ft,c)cosα − mwẌ]/0.5ρẊ2S. 
(5)

Rotational motion 

Fig. 3 shows the apparatus used to measure the fluid-
dynamic forces acting on the model wings in rotational
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Fig. 2. Experimental apparatus used to measure the fluid-dynamic
forces of a wing in forward motion (constant-velocity translation and
accelerating translation). X, Y, Z, earth-fixed coorinate system; x, y, z,
wing-fixed coordinate system; LX, LY, LZ, dimensions of the tank; α,
angle of attack. 

Table 2. Wing motions

Motion pattern Wing motions Non-dimensional values 

Constant-velocity translation Displacement X=V0t, V0=2.4×10–2m s–1 Reynolds number Re=
V0c

=12ν

Accelerating translation Displacement X=
V0 t−T0t sin

t π , 0<t<T0t Reynolds number Re=
V0c

=12
2 π T0t ν

V0=2.4×10–2m s–1, T0t=4, 10s Non-dimensional total displacement
V0T0t =0.8 (T0t=4s),

2c
V0T0t =2 (T0t=10s)

2c
3

Constant-velocity rotation Rotational angle φ=ωt, ω=0.2rads–1 Reynolds number Re=
4
xW ωc

=10ν
3 π Φ

Accelerating rotation Rotational angle φ=
Φ

1−cos
t π

, Reynolds number Re=
4
xW 2√2T0r 2 

c
=9.6

2 T0r 2 ν

0<t<T0r, Φ=2.3rad, T0r=6.5s Amplitude of accelerating rotation
Φ

=1.15rad
2

V0, terminal forward velocity; t, time; T0t, period of accelerated phase in translational motion; ω, angular velocity for constant-velocity
rotation; Φ/2, amplitude of accelerating rotation; T0r, period of accelerated phase in rotational motion; c, chord length; ν, kinematic viscosity;
xw, wing length.

1 2

1 2

1 2

1 21 21 2
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motion. The model wing was suspended in a tank (LX,
LY=500 mm and LZ=1000 mm) filled with an aqueous solution
of glycerine. The wing was mounted onto a load cell
(LMC2909, Nissho Electric Works, Japan) and a motor via a
6 mm diameter joint cylinder. The wing rotated around the
joint cylinder in the X–Yplane. The load cell measured force
in the Z direction, Fz, and the moment around the Z axis, Mz.
The maximum load was 5 N for Fz and 0.25 N m for Mz. When
forces in the X, Y andZ directions and moments around the
X, Y and Z axes act on the load cell, the output signal from
the load cell, Fz and Mz are affected by all the forces and
moments acting on the load cell. However, because the cross
talk between Fz and Mz was small, measured values of Fz and
Mz were considered to be equal to the force in the Z direction
and the moment around the Z axis actually acting on the load
cell, respectively. 

The tank was filled to the depth LZ1 of 980 mm with an
aqueous solution of glycerine. The rotational axis of the wing
was at the centre of the tank in the X–Y plane. The distance
between the rotational plane and the bottom of the tank was
0.7LZ1. All tank dimensions are large enough for surface and
wall effects to be negligible. 

The geometrical angle of attackα was defined as the angle
between the Z axis and a vector normal to the wing. The angle
of attack α was set between –10 ° and 45 °. 

Table 2 lists the rotational angle φ during constant-velocity

rotation and accelerating rotation and lists Re defined for
constant-velocity rotation as 

and for accelerating rotation, 

where ω is the rotational angular velocity for constant-velocity
rotation, T0r and Φ/2 are the period and amplitude,
respectively, of accelerating rotation, and (π/2√2T0r)(Φ/2) is
the averaged angular velocity. For constant-velocity rotation
and accelerating rotation, Re was approximately 10, which is
close to the Refor a flying thrips (Tanaka, 1995). 

Constant-velocity rotation 

We measured the force in the –Z direction, i.e. thrust T, and
the moment around the Z axis, i.e. torque Q, after the wing had
completed 30 rotations. The measured T and Q were
considered to be equal to the fluid-dynamic thrust and torque
of the wing because the forces acting on the joint cylinder were
much smaller than those acting on the wing. CL and CD were
determined by non-dimensionalizing the measured fluid-
dynamic thrust and torque as follows (Ellington, 1984): 

where x is span-wise axis, shown in Fig. 1.

Accelerating rotation 

Thrust T and torque Q were measured for 0≤t≤T0r in an
aqueous solution of glycerine. As in the case of constant-
velocity rotation, we neglected the forces acting on the joint
cylinder and assumed that the measured thrust T is equal to the
fluid-dynamic thrust. The measured torque is the sum of the
fluid-dynamic torque acting on both the wing and the joint
cylinder, as well as the inertial torque acting on the wing, on
the joint cylinder and on the load cell. Because the fluid-
dynamic torque acting on the joint cylinder is much smaller
than that acting on the wing, the former torque can be
neglected. We measured the torque in air to estimate the
inertial torque acting on the wing, on the joint cylinder and
on the load cell. The measured torque in air, Qc, was
approximately equal to the inertial torque acting on the wing,
on the joint cylinder and on the load cell because their density
is much larger than the density of air and, hence, the fluid-
dynamic torque in air was much smaller than the inertial torque
acting on these three components (wing, joint cylinder and load
cell). Therefore, the fluid-dynamic torque acting on the wing
was obtained from Q–Qc. 

(9)CD = Q/0.5ρ
⌠

⌡

xw

0
(xω)2xc(x)dx .

(8)CL = T/0.5ρ
⌠

⌡

xw

0
(xω)2c(x)dx ,

(7)Re= ,
(3/4xw)(π/2

ν
√2T0r)(Φ/2)c

(6)Re= ,
(3/4xw)ωc

ν
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Fig. 3. Experimental apparatus used to measure the fluid-dynamic
forces of a wing in rotational motion (constant-velocity rotation and
accelerating rotation). The measuring system (MS) comprises a load
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CL and CD were determined by non-dimensionalizing the
measured fluid-dynamic thrust and torque as follows
(Ellington, 1984): 

and 

where φ̇ is the instantaneous angular velocity. 

Results 
Fig. 4 compares the fluid-dynamic forces for the steady

motions, constant-velocity translation and constant-velocity
rotation, and shows the ratio of lift L acting on the bristled
wing to that acting on the solid wing and the ratio of drag D
acting on the bristled wing to that acting on the solid wing
for constant-velocity translation. Also shown is the ratio of
thrust T acting on the bristled wing to that acting on the solid
wing and the ratio of torque Q acting on the bristled wing to
that acting on the solid wing, for constant-velocity rotation.
The ratios of lift, drag, thrust and torque acting on the bristled
wing to those on the solid wing were a little less than 1,
except for constant-velocity rotation (T; at α=10 ° and 20 °).
During steady motion (constant-velocity translation and
constant-velocity rotation), the fluid-dynamic forces acting
on the bristled wing were smaller than those acting on the
solid wing, except for constant-velocity rotation (T; at α=10 °
and 20 °). 

Fig. 5 shows CL and CD plotted versusα for constant-
velocity translation and constant-velocity rotation. For both
motions, CL and CD of the bristled wing were larger than those
of the solid wing. The differences in CL and CD between

constant-velocity rotation and constant-velocity translation for
the bristled wing are larger than those for the solid wing.
Hence, the flow around the bristled wing should exhibit large
differences between constant-velocity rotation and constant-
velocity translation than the solid wing. Fig. 6 shows how lift
and drag change with distance travelled for the solid wing

(11)CD = (Q − Qc)/0.5ρ
⌠

⌡

xw

0
(xφ̇)2xc(x)dx ,

(10)CL = T/0.5ρ
⌠

⌡

xw

0
(xφ̇)2c(x)dx ,

Fig. 4. Ratio of forces (lift L, drag D in constant-velocity translation
and thrust T in constant-velocity rotation) or torque (Q in constant-
velocity rotation) acting on the bristled wing to those on the solid
wing. Open squares, L, filled squares, D, in constant-velocity
translation; open circles, T, filled circles, Q, in constant-velocity
rotation. 
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Fig. 6. Ratios of lift (open circles) and drag (filled circles) acting on
the bristled wing in accelerating translation (T0t=4 s and α=45 °) to
those on the solid wing. t, time (s); T0t, period of acceleration phase
in translational motion; α, angle of attack. 
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during accelerating translation (α=45 ° and T0t=4 s). The lift-
to-drag ratio was between 0.8 and 1. During this unsteady
translation, the fluid-dynamic forces acting on the bristled wing
were smaller than those acting on the solid wing. Fig. 7A
shows how CL and CD vary with distance travelled for
accelerating translation when α=45 ° and T0t=4 s. When t=T0t,
the non-dimensional displacement X/c was approximately 0.8.
The figure shows that neither CL nor CD reached a constant
value when t=T0t and that the forward velocity Ẋ reached its
terminal value V0. Furthermore, CL and CD were larger for
t≤T0t than at t=T0t. Fluid-dynamic forces due to added mass
(Ellington, 1984), which act on the wings when t<T0t, are
negligible. The larger values of CL and CD for t≤T0t might be
explained in two ways. First, Re defined by instantaneous
forward velocity Ẋ was smaller for t<T0t than at t=T0t. For
Re<103, CL and CD, which are non-dimensionalized by Ẋ2,
increase as Redecreases. For Re<1, CL and CD are proportional
to 1/Re and ReCL and ReCD are independent of Re (e.g.
Hoerner, 1965). Second, wing motion accelerated whilet≤T0t,
and this acceleration caused an increase in CL and CD. This
increase is expected to be caused by ‘delayed stall’ (Dickinson
et al., 1999). 

To test the first hypothesis, we looked at how ReCL and
ReCD changed over time for accelerating translation when

α=45 ° and T0t=4 s (Fig. 7B). These changes over time were
smaller than those of CL and CD shown in Fig. 7A. However,
ReCL and ReCD were larger for t<T0t than at t=T0t. Therefore,
the second hypothesis is also needed to explain the differences
in CL and CD for t<T0t than at t=T0t. This might apply not just
for T0t=4 s but also for T0t=10 s. 

Fig. 8 shows the changes over time of the ratios of thrust T
and torque Q acting on the bristled wing to those acting on the
solid wing for accelerating rotation for α=20 ° and 45 °. These
ratios were less than 1, except for the ratio at α=20 °, when the
fluid-dynamic forces acting on the bristled wing were larger
than those acting on the solid wing. 

Fig. 9A shows changes over time of CL and CD for
accelerating rotation when α=45 °. The coefficients CL and CD

of the solid wing were smaller than those of the bristled wing.
The CL and CD for t<T0r were larger than those at t=T0r. The
fluid-dynamic forces due to added mass (Ellington, 1984) are
negligible while t<T0r. The changes over time of ReCL and
ReCD in Fig. 9B show the differences in CL and CD for t<T0r

and t=T0r. Just as during accelerating translation, ReCL and
ReCD are larger for t<T0r, and again this difference is due to
delayed stall. 

Discussion 
Fluid-dynamic forces acting on the geometrically scaled

bristled model wing were smaller than those acting on the solid
wing. With a few exceptions, this result was valid for all the
four wing motions: (i) forward motion at a constant forward
velocity, (ii) forward motion at a translational acceleration, (iii)
rotational motion at a constant angular velocity and (iv)
rotational motion at an angular acceleration. The bristled wings
of a thrips cannot therefore be explained by an augumentation
of fluid-dynamic performance. 

Fig. 10A shows the relationship between mass m and wing-
beat frequencyf for a thrips (Tanaka, 1995) and a variety of
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other insects (Azuma, 1992). The wing-beat frequency f of the
thrips is 200 Hz, which is relatively low for its body mass
(m≈6×10–8kg) compared with larger insects, but similar to that
of other small insects, such as Bemisia tabaci, Aleurothrixus
floccosus, Aphis gossypiiand Acyrthosiphon kondoi(numbered
1–4 in Fig. 10A, respectively). Fig. 10B shows the values of
mg/Stot(xwf)2 for the insects listed in Fig. 10A, where g is the
acceleration due to gravity, Stot is the total wing surface area
of four wings of an insect, and xw is the length of the forewing.
The fluid-dynamic force generated by a wing is proportional
to Stot(xwf)2, where xwf is proportional to the mean velocity of
the flow around the wing. Therefore, the parameter
mg/Stot(xwf)2 reflects the coefficient of vertical fluid-dynamic
force generated by an insect. For the thrips mg/Stot(xwf)2≈25;
this is larger than that for Bemisia tabaci, Aleurothrixus
floccosus, Aphis gossypiiand Acyrthosiphon kondoi, which
have membranous wings. The larger value of mg/Stot(xwf)2≈25
for thrips can be explained by the larger values of CL and CD

for a bristled model wing compared with the coefficients for
the solid model wing. 

The resultant force of the lift and drag generated by the
thrips was approximately 5×107 N at any flapping angle with

the following assumptions: (i) the thrips has four wings
whose size is shown in Table 1; (ii) the flapping motion is
the same as defined for the accelerating rotation at f=200 Hz;
and (iii) the geometrical angle of attack is 45 °, and changes
over time in the lift and drag coefficients are given by those
of the bristled wing in Fig. 9A. The estimated value of the
vector sum of lift and drag is close to the gravitational force
acting on the thrips (6×107 N). However, to understand more
fully the flight of the thrips, we need a more precise estimate
of the fluid-dynamic forces generated by their wings, based
on more accurate data on wing morphology and kinematics,
on the variation in angle of attack (feathering angle), and lift
and drag coefficients measured over several consecutive wing
beats. 
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Fig. 10. Comparison of flight data for a thrip and for other insects.
(A) mass (kg) m versuswing-beat frequency (Hz) f, (B) mass (kg) m
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Data for the thrips (filled circle) are from Tanaka (1995). Data for the
following insects (open circles) are from Azuma (1992): 1Bemisia
tabaci, 2Aleurothrixus floccosus, 3Aphis gossypii, 4Acyrthosiphon
kondoi, 5Aedes nearcticus, 6Musca domestica, 7Panorpa communis
L., 8Pyrosoma minimumHarr., 9Amonophila sabulosaV.del,
10Sarcophaga carnariaL., 11Volucella pellucensMeig., 12Apis
mellifica L., 13Telepharus fuscus, 14Calopteryx splendesHarr.,
15Pieris brassicaL., 16Vanessa atolantaL., 17Plusia gammaL.,
18Talanus affioris, 19Vespa germanica, 20Orthetrum caerulescens
Fabr., 21Tabanus botinus, 22Papilio podalirius, 23Macroglossa
stellatorumL., 24Bombus terrestrisFabr., 25Aeschna mixtraLatr.,
26Cetonia aurata, 27Brachytron pratenseMull., 28Vespa crabroL.,
29Xylocope violacea, 30Anax parthenope, 31Melolontha vulgaris
Fabr., 32Schistocerca gregaria, 33Lucanus corcus.
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List of symbols
c Chord length of a wing 
cm Membrane width of a bristled wing 
ch1 Length of cylinders or bristles attached at the 

leading edge of the bristled wing
ch2 Length of cylinders or bristles attached at the 

trailing edge of the bristled wing
CL, CD Lift and drag coefficients, respectively 
d Diameter of cylinders or bristles 
D Distance between neighbouring cylinders or 

bristles 
f Wing-beat frequency 
Fn, Ft Normal and tangential forces, respectively 
Fn,c, Ft,c Normal and tangential forces, respectively, 

measured on the wing mount without a wing 
connected to it 

FZ, MZ Force in Z axis and moment around Z axis, 
respectively 

Fx, Fz, My Forces in x,z axes and moment around y axis, 
respectively 

g Acceleration of gravity 
LX, LY, LZ Dimensions of the tank 
LZ1 Depth of liquid 
m Mass of an insect 
mw Mass of a wing 
n The number of cylinders or bristles of a bristled 

wing 
Q Torque 
Qc Torque measured in air 
Re Reynolds number 
S Wing surface area 
Stot Total wing surface area of an insect 
t Time 
tm Thickness of a wing 
T Thrust 
T0r Period of accelerated phase in rotational motion 
T0t Period of accelerated phase in translational 

motion 
V0 Terminal forward velocity 
x, y, z Wing-fixed coordinate system 
xw Wing length 

X, Y, Z Earth-fixed coordinate system 
α Αngle of attack 
ν Kinematic viscosity 
ρ Density of fluid 
Φ/2 Amplitude of accelerating rotational motion 
Φ Rotational angle 
ω Angular velocity for constant-velocity rotation 
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