
Over the past two decades, there has been an intense effort
to integrate information about muscle function at all levels of
organization (Rome and Lindstedt, 1997, 1998). An ultimate
goal of this integrative approach is to understand enough about
the molecular and macroscopic components of muscular
systems so that a comprehensive model can be developed that
would enable us to predict how alterations in one parameter
(e.g. crossbridge detachment rate) will affect motor
performance.

With the recent development of new biophysical and
whole-animal techniques, we are for the first time in the
position where molecular properties can be related to whole-
animal function in a quantitative manner. To proceed to this
new level, it is important to have an animal and behavioral
model in which (i) muscle length changes and the recruitment
pattern of the responsible fiber types can be determined, (ii)

the overall body biomechanics are well defined and (iii) the
molecular and biophysical properties of the fiber types are
measurable.

The frog Rana pipienspresents a superb model in all these
respects. Although different fiber types in frogs are not
anatomically separated as in fish (Rome et al., 1984), the
extensor muscles used for jumping are quite homogeneous in
fiber type and mechanical properties (Lutz et al., 1998). In
addition, there is compelling evidence that during maximal-
distance jumping all the extensor muscle fibers are maximally
activated (Hirano and Rome, 1984; Lutz and Rome, 1994,
1996a). Thus, the extensor muscles of a jumping frog behave
similarly to an isolated muscle experiment in which the fiber
(or bundle pure in fiber type) is maximally activated by direct
electrical stimulation. This represents a tremendous
simplification in terms of modeling. Further, frog muscle fibers

1683The Journal of Experimental Biology 205, 1683–1702 (2002)
Printed in Great Britain © The Company of Biologists Limited 2002
JEB4140

Comparative musculoskeletal modeling represents a
tool to understand better how motor system parameters
are fine-tuned for specific behaviors. Frog jumping is a
behavior in which the physical properties of the body and
musculotendon actuators may have evolved specifically to
extend the limits of performance. Little is known about
how the joints of the frog contribute to and limit jumping
performance. To address these issues, we developed a
skeletal model of the frog Rana pipiens that contained
realistic bones, joints and body-segment properties. We
performed forward dynamic simulations of jumping to
determine the minimal number of joint degrees of
freedom required to produce maximal-distance jumps and
to produce jumps of varied take-off angles. The forward
dynamics of the models was driven with joint torque
patterns determined from inverse dynamic analysis of
jumping in experimental frogs. When the joints were
constrained to rotate in the extension–flexion plane, the
simulations produced short jumps with a fixed angle of
take-off. We found that, to produce maximal-distance

jumping, the skeletal system of the frog must minimally
include a gimbal joint at the hip (three rotational degrees
of freedom), a universal Hooke’s joint at the knee (two
rotational degrees of freedom) and pin joints at the ankle,
tarsometatarsal, metatarsophalangeal and iliosacral joints
(one rotational degree of freedom). One of the knee
degrees of freedom represented a unique kinematic
mechanism (internal rotation about the long axis of the
tibiofibula) and played a crucial role in bringing the feet
under the body so that maximal jump distances could be
attained. Finally, the out-of-plane degrees of freedom were
found to be essential to enable the frog to alter the angle of
take-off and thereby permit flexible neuromotor control.
The results of this study form a foundation upon which
additional model subsystems (e.g. musculotendon and
neural) can be added to test the integrative action of the
neuromusculoskeletal system during frog jumping.
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are amenable to all physiological and biophysical techniques.
Finally, because of the large muscle strains compared with
cyclical locomotory movements such as running and
swimming, the muscle length changes and overall body
mechanics during the one-shot ballistic jump of frogs can be
relatively easily quantified (Calow and Alexander, 1973;
Hirano and Rome, 1984; Marsh, 1994; Marsh and John-Alder,
1994; Peplowsiki and Marsh, 1997).

Still, a significant obstacle to integrating from muscle
function to locomotion is that the musculoskeletal system
of any animal is complex. Previously, we conducted
experiments on the semimembranosous muscle of frog and
tried to relate its mechanical performance to overall jumping
performance (Lutz and Rome, 1994, 1996a,b). However, frog
hindlimbs have in excess of 15 muscles that contribute to
overall performance, and these muscles may perform
different types of contraction (Mai and Lieber, 1990; Olson
and Marsh, 1998; Gillis and Biewener, 2000). Thus, it is
difficult to predict whole-animal movements from the
mechanics of a single (or even a few) muscles.
Musculoskeletal modeling can be an enormous help by
keeping track of the forces generated by multiple muscles, so
that the net action of all the muscles can be determined. In
addition to muscle function, modeling can provide insight
into how other physical components (e.g. joints, ligaments,
bones and segment mass distributions) affect the
transformation of neuromotor commands into limb and body
motions (Crago, 2000; Dhaherlab et al., 2000; Pandy and
Sasaki, 2001; Yeadon, 1990).

In this study, we developed a skeletal model of the frog
that contained the bones, joints and segment masses and
moments of inertia as a first step towards creating an
integrative musculoskeletal model. In addition to measuring
and describing the anatomical features of the frog skeleton,
we used the model along with a reverse-engineering approach
to test important aspects of the design and function of the
skeletal system of frogs. Frog jumps differ from those of
humans and other mammals in several important ways. In
frogs, the hindlimb bones do not lie in a single plane
throughout the jump, and hindlimb joint rotations other than
extension are prominent (Lombard and Abbot, 1906; Gans
and Parsons, 1966). Further, two joints (the tarsometatarsal
and iliosacral), which are nearly fixed in humans, are flexible
in proficient jumpers such as Rana pipiens, and they may
contribute greatly to performance (Emerson and de Jongh,
1980).

We tested the importance of the extra joints and degrees of
freedom using our model. We performed a series of forward
dynamic simulations of jumping while varying the number of
joints and degrees of freedom in different configurations of the
model. We compared simulated jumping performance with the
jumping performance of real frogs. Further, because the ability
to alter the jumping trajectory may be important in the frog’s
behavioral repertoire, we also tested how these additional
joints and degrees of freedom create opportunities to produce
a wide range of jumping trajectories.

Materials and methods
Kinematic and inverse dynamic analyses of frog jumping

To obtain the joint torque information necessary to drive our
forward-dynamic simulations and ultimately to compare the
kinematics of virtual jumps with actual jumps, we needed first
to analyze the three-dimensional kinematics of jumping frogs.
High-speed cine film (200 frames s–1) of jumping frogs by Lutz
and Rome (1994, 1996a,b) was analyzed. The film contained
orthogonal views of jumps (top and side views), and
corrections were made, as detailed by Lutz and Rome (1996a),
for parallax errors that occur with a 45 ° mirror. From the films,
we determined the trajectory of the frog’s center of mass
(COM), which was located near the center of the abdominal-
thoracic segment, the three-dimensional joint angles at the
hip and knee and the one-dimensional joint angles
(flexion–extension) about the iliosacral, ankle, tarsometatarsal
and metatarsophalangeal joints (Fig. 1). We followed a
procedure detailed by Vaughan et al. (1996) for calculating
three-dimensional joint angles at the hip and knee. This
procedure is detailed in Electronic Appendix 1. In short, three
markers were digitized on the pelvis, thigh and calf segments.
An orthogonal x, y, z reference system was embedded in each
of these segments based on the locations of the markers. The
angular orientation of the segments was determined in three-
dimensional space, and the orientation of one segment was
determined relative to another (e.g. the thigh relative to the
pelvis and the calf relative to the thigh). Five jumps in three
different frogs were examined in this way.

To find the torques produced during jumping (Fig. 1), we
performed an inverse dynamic analysis. The joint velocities
and accelerations were estimated using a difference equation
in which the difference between data points was 5 ms (i.e.
200 frames s–1). The time series of joint angles, joint velocities
and joint accelerations were input to SIMM (Software for
Interactive Musculoskeletal Modeling, Motion Analysis
Corporation, Santa Rosa, CA, USA), which is a graphical
modeling environment, together with the estimated inertial
parameters of the frog body segments (e.g. center of mass
location, mass and inertia tensor, see Segmental inertial
measurements). Dynamics Pipeline Software (Motion Analysis
Corporation, Santa Rosa, CA, USA) was then used to connect
the SIMM motion file to SD/Fast (Symbolic Dynamics, Inc.,
Mountain View, CA, USA). The SD/Fast software then solved
the following inverse dynamic equation for the system (in 1 ms
time steps):

T(q,q̇) = q̈I − [G(q) +V(q,q̇)] , (1)

where q is a vector of generalized coordinates, which includes
three hip angles, three knee angles and flexion–extension
angles at the ankle, tarsometatarsal and iliosacral joints (for
kinematic descriptions, see Establishment of local coordinate
frames), q̇ and q̈ are the first and second derivatives,
respectively, of q, T(q,q̇) is the vector of joint torque inputs
(due to muscle activation) that is driving joint motion, G(q)
and V(q,q̇) are vectors of gravity- and motion-dependent terms
and I is the system mass matrix. SD/Fast used Kane’s method
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to compute T(q,q̇) required to produce the body-segment
rotations measured from kinematic analyses. In performing
these calculations, the metatarsal segment was assumed to be
rigidly fixed to the ground to avoid having to supply the ground
reaction forces to the inverse dynamics solver. Joint torque
values were computed for a total of five jumps by three
different frogs.

Bone scanning

The bones of the frog Rana pipiens(Schreber) were scanned
using a three-dimensional laser scanner (resolution 50µm)
manufactured by Cyberware (Cyberware Inc., Monterey, CA,
USA) and controlled by a Silicon Graphics O2 UNIX
computer. An average-sized frog, 28 g mass and with an
extended hindlimb length of approximately 90 mm, was killed
with an overdose of Tricaine (Sigma Chemical Co.) and pithed
in accordance with IACUC procedures. Excess muscle, organs
and connective tissues were dissected from the skeleton, but
all tissues surrounding the joints were left intact to ensure
proper joint motion. The intact skeleton of the frog was placed
on a rotating stage, and the scanner was initiated to move in
the horizontal direction to obtain one surface scan of the
skeleton. The stage was rotated by 10 °, and a second surface
scan of the skeleton was taken. The skeleton was scanned and
rotated 36 times (i.e. in 10 ° increments) to obtain a complete
three-dimensional scan. The skeleton was then placed on the
rotating stage in a different orientation and a second three-

dimensional scan was obtained. This was performed five times
to obtain five complete scans. The scans were merged into a
single three-dimensional image of the skeleton using software
from Cyberware. Individual bone segments were then
disarticulated, and the remaining skeletal complex was scanned
using the above procedure. All the removed bone segments
were individually scanned as well. This procedure was used so
that the relative positioning between bone segments was
maintained in the graphical modeling environment (see below).
For example, the femur and tibiofibula, which are connected
at the knee joint, were scanned together with connective tissues
intact and then individually scanned after disarticulating the
two bones. The individual scans were then correctly positioned
relative to each other by matching their orientations to an
overlaid scan of the entire bone complex.

The three-dimensional images of the individual bone
segments were converted into bone files by a utility program
in SIMM 2.2. The bone files, which list the polygons and
polygon coordinates that compose the three-dimensional
image, were then imported into SIMM, where the correct
orientation between bones was maintained.

Establishment of local coordinate frames

In SIMM, the individual bone segments were positioned in
a configuration that served as an arbitrary starting point or
reference anatomical position. In this configuration, all the
bones rested in a horizontal plane (see Fig. 2). A local
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Fig. 1. Joint kinematics (A) and joint torque
patterns (B) during a maximal-effort jump
in Rana pipiens. (A) The joint angle
changes during the take-off phase of
jumping (when the feet are in contact with
the ground) are shown. In each panel, the y
axis (joint angle) has the same range of
160 °. (B) The net torques due to the
combination of active muscle forces,
passive forces in connective tissues and
forces arising from interaction between the
metatarsal segment and the ground (see
Materials and methods). In each panel, the y
axis (torque) has a range of 0.8 N cm. The
joint degrees of freedom (DOFs) illustrated
are: extensor DOF of the hip (Hip ext.),
extensor DOF of the knee (Knee ext.),
extensor DOF of the ankle (Ankle ext.),
adduction DOF of the hip (Hip add.),
external rotation DOF of the hip (Hip rot.),
adduction DOF of the knee (Knee add.),
external rotation DOF of the knee (Knee
rot.) and the iliosacral joint.
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coordinate frame was attached to the following bone
segments: femur, tibiofibula, astragalus–calcaneus segment,
metatarsophalangeal segment, pelvis, urostyle, vertebral
column (all nine vertebrae considered as a single rigid
segment) and skull.

The orientation and the origin of the local coordinate frames
(LCFs) were established as follows. The pelvis LCF was
oriented such that the x axis pointed from the central
acetabulum of the right hip joint through the central
acetabulum of the left hip joint. The z axis was orthogonal to
the x axis and pointed dorsally in the reference configuration
(i.e. out of the page when looking down on the frog). The y
axis was determined by the right-hand rule and pointed
caudally along the long axis of the pelvis. The origin of the
pelvis LCF was positioned mid-way between the centers of the
right and left acetabula.

The LCF for both the right and left femora was oriented such
that the x axis was parallel to the long axis of the femur and
pointed to the frog’s left when in the reference position. The z
axis was orthogonal to the x axis and pointed dorsally in the
reference position. The femur y axis was determined by the
right-hand rule and pointed caudally in the reference position.
The origin of the femur LCF was positioned at the
instantaneous center of femoral rotation relative to the pelvis
(see Joint kinematics: descriptions, measurements and
modeling). This position was located approximately 1.5 mm
from the most central, proximal point of the femur and
within the femoral head. The LCFs for the tibiofibula,
astragalus–calcaneus and metatarsophalangeal segments were
oriented in a manner similar to that of the femur LCF, i.e. the
x axis for each LCF was parallel to the long axis of the bone
segment, the z axis pointed dorsally in the reference
configuration and the y axis was determined by the right-hand
rule. The origin of each of these segments’ LCFs was
positioned to intersect with the most proximal, central point of
the respective bone segment.

The origin of the vertebral segment’s LCF was positioned
at the most caudal, central tip of the sacrum. The sacrum is the
most caudal vertebra next to the elongated urostyle, and its
transverse processes form a joint with the most rostral tips of
the iliac crest (Emerson and de Jongh, 1980). In the reference
configuration, the z axis of the vertebral segment pointed
dorsally, the x axis pointed to the left of the frog and the y axis
pointed caudally. The origin of the skull’s LCF was positioned
at a central point within the foramen magnum at the level of
the skull’s attachment to the first vertebra. The axes were
oriented similarly to that of the vertebral segment’s axes.
Finally, the origin of the urostyle’s LCF was positioned at the
most rostral, central tip of the urostyle, where it articulated
with the sacrum. In this report, we do not discuss LCFs for the
forelimb bones and for the clavicle–scapula–sternum segment.

Joint kinematics: descriptions, measurements and modeling

A joint specifies the displacements that relate the position and
orientation of a moving bone segment relative to a reference or
fixed bone segment. In the frog model, the following joints were

defined: hip joints, displacement of the femur relative to the
pelvis; knee joints, displacement of the tibiofibula relative to the
femur; ankle joints, displacement of the astragalus–calcaneus
segment relative to the tibiofibula; tarsometatarsal joints,
displacement of the metatarsophalangeal segment relative to the
astragalus segment; iliosacral joint, displacement of the
vertebral segment relative to the pelvis; and sacro-urostyle joint,
displacement of the urostyle relative to the vertebral segment.
The forelimb joints were ignored, and the joint between the first
vertebra and skull was fixed such that the angle between their
respective y axes was 0 °.

We used a custom-made jig apparatus (see Lutz and Rome,
1996a) to measure the kinematics of a moving joint member
with respect to a fixed joint member. For each joint examined,
the fixed and mobile bone segments were removed from frogs
as a single unit. Major limb muscles were removed from the
bone segments, but small muscles, ligaments and other
connective tissues surrounding the joint capsule were left
intact. The fixed and mobile members were rigidly secured to
the stationary and moving arms of the jig, respectively, by
Mizzy low-heat compound. For the hip, the pelvis was fixed
and the femur was mobile. For the knee, the femur was fixed
and the tibiofibula was mobile. For the ankle, the tibiofibula
was fixed and the astragalus–calcaneus segment was mobile.
For the tarsometatarsal joint, the astragalus was fixed and the
metatarsal segment was mobile. For the iliosacral joint, the
pelvis was fixed and the vertebral column was mobile. The jig
permitted 180 ° of rotation and unopposed translation of the
mobile member relative to the fixed member within a single
plane of motion. A digital camera (Nikon Coolpix 990,
1.8 megapixels) was positioned orthogonal to this plane of
motion, 1.83 m from the approximate center of the joint. The
horizontal and vertical dimensions of the digital image were
calibrated by placing rulers in the view of the camera along
both dimensions.

The joint members were placed in the reference position in
the jig (reference position shown in Fig. 2), and the mobile
member was first rotated about its z axis. Rotation about the z
axis is the primary range of motion in the frog hindlimb joints
and was referred to here as flexion–extension. The top row of
Fig. 3 shows the flexion–extension ranges of motion for the
hip, knee, ankle and tarsometatarsal joints. Counterclockwise
rotation of the left femur about its z axis was termed hip
extension and clockwise rotation was termed hip flexion
(opposite convention for the right hip). Counterclockwise
rotation of the left tibiofibula was termed knee flexion and
clockwise rotation was termed knee extension (opposite for the
right knee). Counterclockwise rotation of the left astragalus
segment about its z axis was termed ankle extension and
clockwise rotation was termed ankle flexion (opposite for the
right ankle). The flexion–extension angle for each joint was the
angle between the x axis of the moving segment and the x axis
of the fixed segment (dotted line in top row of Fig. 3). Each
hindlimb joint was rotated through a 160 ° range of
flexion–extension, and a digital image was captured at each
10 ° increment.
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After measuring flexion–extension kinematics at the
hindlimb joints, the joint members were re-positioned in the
jig and placed in the reference configuration. The moving
member was then rotated about its y axis. Rotation about
the y axis of a hindlimb bone was referred to here as
abduction–adduction. The second row of Fig. 3 shows the
abduction–adduction ranges for the hip and knee. The ankle
and tarsometatarsal joints had small (<20 °) ranges of
abduction–adduction and are not shown. Counterclockwise
rotation of the left femur and tibiofibula about the respective y
axes was termed adduction and clockwise rotation was termed
abduction (opposite convention for the right hindlimb). The
abduction angle was the angle between the zaxis of the moving
member in the reference position (dotted line in the second row
of Fig. 3) and the z′-axis in the rotated position. The femur was
rotated through an abduction–adduction range of 120 °, and the
tibiofibula was rotated through a range of 60 °, each in 10 °
increments.

After measuring abduction–adduction kinematics at the
hindlimb joints, the joint members were re-positioned in the
jig and placed in the reference configuration. The moving
member was then rotated about its long axis (x axis) using the
jig’s second, independent axis of rotation. Rotation about
the long axis of a hindlimb bone is referred to here as

external–internal rotation. The third row of Fig. 3 shows the
external–internal ranges of motion for the hip and knee. The
ankle and tarsometatarsal joints had small (<15 °) ranges of
external–internal rotation and so are not shown. When viewed
proximally to distally down the shaft of the moving bone (as
in Fig. 3), counterclockwise rotation about the long axis was
termed internal rotation and clockwise rotation was termed
external rotation. The external–internal rotation angle was the
angle between the y axis of the moving segment in the
reference position (dotted line in third row of Fig. 3) and the
y′-axis in its rotated position. The femur was rotated through
a range of 100 °, and the tibiofibula was rotated through a range
of 60 °, each in 10 ° increments.

To measure the kinematics of the iliosacral joint, the pelvis
was secured to the fixed arm of the jig and the vertebral column
was secured to the moving arm. The vertebral column was
rotated through a 100 ° range of motion about its x axis, and
images were captured every 10 °. When viewed from the
frog’s right side (as in the lower right panel of Fig. 3),
counterclockwise rotation of the vertebral segment was termed
vertebral extension and clockwise rotation was termed flexion.
Rotations about the other axes of the vertebral segment are
minimal in the frog (Emerson and de Jongh, 1980), so these
were not measured. Iliosacral joint images were captured in
four frogs, hip joint images in eight frogs, knee images in six
frogs and ankle images in five frogs.

The images were analyzed to determine the locations of
the instantaneous centers of rotation about each joint axis
examined (see Lieber and Boakes, 1988). To minimize the
errors associated with determining the instantaneous center of
rotation, extended wires (4 cm in length) were placed into the
moving segment before the joint images were captured. One
wire was placed along the long axis of the bone and a second
wire was placed perpendicular to the long axis. Markers
(1 mm2) were then placed at the tips of each wire. The marker
positions (A and B) at each successive joint position were
digitized in Matlab. The location of the instantaneous center of
rotation was determined to be the intersection point of the
perpendicular bisectors of vector AnAn+1 and vector BnBn+1,
where n refers to the position number and n+1 is the position
resulting from a 10 ° rotation (Kinzel and Gutkowski, 1983).

The joint images were analyzed to determine the locations
of the LCFs for the fixed and moving segments. The origins of
the LCFs were marked on both segments using small dots of
paint (approximately 0.50 mm2). The dot locations were
digitized at successive rotation angles (10 ° increments). The
location of the moving segment’s origin was subtracted from
the location of the fixed segment’s origin at each rotation angle.
Thus, for each joint axis, the x and y locations of the moving
segment’s LCF relative to the fixed segment’s LCF were
described as a function of the rotation angle θ. This
information was used to model the appropriate kinematic
functions in SIMM. In SIMM, three kinematic functions were
specified for each joint, one for each joint axis. So, for
example, translation between the femur and pelvis in the plane
of hip extension was specified as a function of the hip extension
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angle. SIMM smoothly interpolates between the discretely
specified variables using a natural cubic spline.

For three-dimensional rotations, the order of rotations about
the specified axes is important and must be specified for a

unique description of joint motion, i.e. the rotations are not
commutative (Kinzel and Gutkowski, 1983). In our joint
definitions, we specified the order of rotations to be rotation
about the z axis, x axis and then y axis of the proximal
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segment’s LCF. Rotation about the z axis, i.e. flexion–
extension, is the primary range of motion in the hindlimb, so
this was chosen as the first rotational component in each joint.
We found that changing the order of rotations had no
discernible effect on the dynamic behavior of frog models
examined (see Forward dynamic modeling).

Segmental inertial measurements

The mass, moment of inertia and center of mass were
determined for each of the hindlimb and trunk segments. These
measurements were then entered into a segment description file
for inputting to SIMM. The segment mass and moments of
inertia were determined in four frogs that had similar segment
lengths (an extended hindlimb length of approximately 90 mm,
see Table 1) and total mass (28 g) to the frog that was laser-
scanned. Each frog was killed and frozen in the reference
position. The body was cut into a number of segments; care
was taken to make the cuts at similar positions and orientations
in each frog. The segments included the thigh, calf, astragalus,
foot (both metatarsals and phalanges included), a pelvic
segment, which spanned from the most caudal aspect of the
pelvis (ischium) to the most rostral tip of the iliac crest, an
abdominal-thoracic (trunk) segment, which spanned from the
tip of the iliac crest to the base of the skull, and the skull (see
Fig. 4). These segments contained muscle, skin, tendon, organs
and bone. Because these tissues have slightly different
densities, an average density was measured for each segment.
To do this, each segment was weighed to determine its mass
(M) and then lowered into a water-filled graduated cylinder and
its volume (v) was determined by weighing displaced water.
The average density (ρ) was then calculated as described in
Nigg (1999) as:

The moments of inertia for each segment were calculated as
described by Yeadon (1990) based on a simplifying assumption
that segment density was uniform and equal to the averaged
density. Each segment was represented as a geometric solid of
uniform density. We modeled the thigh, calf, pelvic, abdominal-
thoracic and skull segments as stadium solids (see Yeadon,
1990). A stadium solid is an elongated geometric solid bounded
by parallel stadia (i.e. a rectangle with an adjoining semicircle
at each end of its width) on its two ends. The stadium
dimensions were estimated by measuring several parameters of
the frog segments. These parameters included the perimeter,
width and depth of the segment ends (i.e. the bounding stadia)
and the segment length (i.e. distance between the stadia). The
astragalus segment was modeled as a cylinder, the foot segment
was modeled as a cone and the specific dimensions for each
were measured (see Electronic Appendix 2 for calculation of
moments of inertia for each segment).

Forward dynamic modeling

In this study, we used forward dynamic simulations to test
how different degrees of freedom in the hindlimb joints of

the frog affect jumping performance. Forward dynamic
simulations were performed using the Dynamics Pipeline
software, which works by connecting the skeletal model in
SIMM to SD/Fast. SD/Fast computes and solves the equations
of motion for the model when given a set of forces or torques
acting on the skeletal system. A separate equation of motion is
solved for each degree of freedom and is of the general form
described for other rigid-body, musculoskeletal models
(Crago, 2000; Zajac, 1993):

q̈ = I–1[G(q) +V(q,q̇) +TM(q,q̇) +TP(q,q̇) +TE(q,q̇) , (3)

where variables are defined as previously described (see
equation 1) and I –1 is the inverse mass matrix, TM(q,q̇) is the
vector of joint moments due to muscle forces, TP(q,q̇) is a
vector of passive moments due to stretching of connective
tissues about the joints and TE(q,q̇) is a vector of moments that
arise from interactions with the environment. In this study, we
excluded submodels of the muscles and neural control to focus
solely on the joint degrees of freedom that are critical for
jumping performance. Therefore, to drive the motion of the
model, we specified a pattern of joint torque inputs instead of
specifying a muscle activation pattern. Thus, TM(q,q̇) from
equation 3 was replaced with user-defined pattern of torque
inputs, TI. In addition to simplifying the control input, we
assumed the contributions of passive structures TP(q,q̇) to be
negligible, so this term was removed from equation 3.

A series of progressively higher-dimensional models was
constructed in which a kinematic degree of freedom (DOF) that
was constrained in one model was relaxed in a subsequent
model. The four models are described in the Results and shown
schematically in Fig. 5. We used two strategies to examine the
dynamic behavior of the frog models. In the first strategy, we
wanted to explore the range of dynamic behaviors that the
model was capable of producing. To do this, we applied unit
torque steps about each relaxed, rotational DOF in the model
to drive its motion. The torque steps were 80 ms in duration
and applied synchronously about each joint. A vector of
random numbers was generated before each simulation run to
scale the magnitude of the applied torque steps. The scalars
ranged from 0 to 0.009 N m for the hip extensor torque, from
–0.004 to 0.004 N m for the hip external (–) or internal (+)
rotation torque, from –0.004 to 0.004 N m for the hip adduction
(–) or abduction (+) torque, from 0 to 0.007 N m for the knee
extensor torque and from 0 to 0.007 N m for the ankle extensor
torque. We set the maximum value for the extensor scalars (i.e.
hip, knee and ankle extensor torques) to be the peak torque that
the real frog produces during a representative, maximal-
distance jump (see Kinematics and inverse dynamic analyses
of frog jumping). For the other scalars, we chose an
intermediate range of values in which both directions of torque
(e.g. hip abduction and hip adduction) could be produced.
For each model, 1000 simulations was run with different
randomized scaling factors. We determined the trajectory of
the COM, the take-off angle and the joint angles for each
simulation run.

The second strategy to examine the dynamic behavior of the

(2).ρ=
M

v
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frog models was simply to use the torque values produced by
the real frog to drive the motion of the models. If we could not
produce a maximal-distance jump in the model under study,
then clearly something was lacking in the model.

Several assumptions were made in all the jumping
simulations. In models 1–3, the right and left foot segments
(metatarsals and phalanges) were fixed to the ground. In model
4, only the phalanges were fixed to the ground. By modeling
the foot–ground contact as a jointed connection, ground
reaction forces were automatically included in the model rather
than having to supply them explicitly (Nigg, 1999). However,
because each frog model was connected to the ground, jumping
distance had to be estimated. Jump distance was calculated as
the sum of the horizontal displacement of the COM during
the take-off and aerial phases of the jump. The horizontal
displacement during the aerial phase was estimated using
ballistics equations described by Hirano and Rome (1984).

A second assumption we made in each simulation was that
the forelimb segments could be removed without any effect on
jumping performance. The forelimb segments are not likely to
contribute much, if any, power to the jump (Calow and
Alexander, 1973; Hirano and Rome, 1984; Peters et al., 1996;
Marsh, 1994). Also, the small mass of the forelimb segments
(approximately 5 % of total body mass) is likely to have a
negligible effect on the trajectory of the center of mass. We
also assumed that the atlanto-occipital joint and intervertebral
joints did not contribute significantly to jumping, and these
joints were therefore held rigid in each model. Finally, we
assumed that the iliosacral joint was a revolute joint in each
model. The digitized measurements provide evidence that this
joint may be a gliding joint, in which trunk translation and
rotation are independent of one another (see Behavior and
modeling of the ankle, tarsometatarsal, metatarsophalangeal
and iliosacral joints in Results). However, gliding joints
are computationally difficult to model, and others have
hypothesized that translation of the trunk (relative to the pelvis)
may be important only during swimming and in frogs
specialized for swimming (Emerson and de Jongh, 1980).

Static analysis of force transmission

Measurements of the ground reaction force (GRF) can be
used to predict the trajectory of the frog’s COM using
relatively simple ballistics equations (Hirano and Rome, 1984;
Marsh, 1994). It is unclear whether and how the frog actively
varies the GRF to generate different trajectories and take-off
angles. If the goal is to produce a maximal-distance jump, the
frog should generate GRFs that are oriented at approximately
42 ° to the ground (Hirano and Rome, 1984). However, if the
goal is to jump over an obstacle or to generate low take-off
angles (i.e. high accelerations), the frog must adjust the GRF
to higher or lower angles, respectively. The degrees of freedom
in the hindlimb models and the associated starting
configuration might limit this ability. To examine the range of
force directions that each model can produce, we calculated the
Jacobian matrix for each model in its starting configuration,
which was determined from video analysis of jumping frogs

(see Kinematic and inverse dynamic analyses of jumping
frogs). The transpose of the Jacobian matrix relates the joint
torques to the GRF by the following:

τ =JTF , (4)

where τ is an n-dimensional joint torque vector, F is an m-
dimensional end-effector output force and JT is the transpose
of the Jacobian matrix. J is an m×n matrix, where m denotes
the degrees of freedom of the end-effector space and n denotes
the number of actuated joint variables (calculation of J is
shown in Electronic Appendix 3). For each of the models, the
GRF during simulation runs was calculated at the starting
configuration of the limb. The velocity and joint angles of the
ensuing, dynamic jumps were then calculated. The GRFs at the
starting limb configuration were related to the trajectory of the
frog models using linear regression techniques.

Sensitivity analysis

We examined how sensitive jumping performance was to
variations in the magnitude of individual joint torques. The
torque pattern that was estimated using an inverse dynamic
analysis of jumping was systematically modified by scaling the
magnitude of each torque (e.g. the hip extensor torque) to
80–120 % of its base value. Each torque component was
individually examined in this way, including the iliosacral
extensor torque. The sensitivity SP of the vertical and
horizontal velocities of the COM and the sensitivity of take-
off angles in response to a change in the torque magnitude
about a single axis was determined as:

SP= [(∆V/V)/(∆T/T)] , (5)

where V is a variable describing the trajectory (e.g. peak
vertical velocity, horizontal velocity or take-off angle) and T
is the joint torque, which is varied during the batch of
simulations.

Results
Kinematic and inverse dynamic analyses of jumping frogs

The hindlimb and iliosacral joint kinematics were determined
for five jumps in three different frogs (mean peak take-off
velocity 1.7±0.08 m s–1, mean ±S.E.M.). Fig. 1A shows the joint
kinematics during a maximal-effort jump in one frog. The peak
take-off velocity of the COM during this jump was 1.95 m s–1,
which occurred approximately 80 ms into the jump. The time
course and range of hip, knee, ankle and iliosacral extension
were similar to previously published values (Calow and
Alexander, 1973; Lutz and Rome, 1996a; Peters et al., 1996).
In addition, we found that flexion occurred about the
tarsometatarsal joint for the first 60 ms and extension occurred
about this joint for the last 15–20 ms. We also found some
degree of rotation about the secondary degrees of freedom at
the hip and knee joints. For the jump shown in Fig. 1A, there
was a moderate amount of external rotation (range 30 °) and
abduction (range 25 °) about the hip joint. These joint motions
acted to bring the femur into the same plane as the long axis of

W. J. Kargo, F. Nelson and L. C. Rome



1691Role of kinematic degrees of freedom in frog jumping

the pelvis. We also found moderate degrees of internal rotation
(range 30 °) and abduction (range 20 °) about the knee joint.
These joint motions acted similarly to bring the tibiofibula into
the same plane as the femur and long axis of the pelvis.

On the basis of the kinematics of the analyzed jumps and the
measured inertial parameters of the hindlimb and axial segments
(Table 1), we estimated the net torques produced about each of
the degrees of freedom during jumping. We used an inverse
dynamic analysis and assumed the metatarsal segment to be
rigidly fixed to the ground (see Materials and methods). The net
torques about the iliosacral, hip, knee and ankle joints, which
correspond to the jump shown in Fig. 1A, are presented in
Fig. 1B. Net torques at each joint varied with time. Extensor
torques about the iliosacral, hip, knee and ankle joints peaked at
successively later times into the jump (15, 40, 50 and 70ms,
respectively) and this temporal staggering was consistent for
each jump analyzed. The peak magnitude of the extensor torque
was larger about the hip than about the knee and ankle
joints (0.85±0.02Ncm, 0.7±0.04Ncm and 0.7±0.04Ncm,
respectively; means ±S.E.M., N=5 jumps) and relatively smaller
about secondary degrees of freedom at the hip and knee. For
some jumps (data not shown), hip adduction torques were
more significant (e.g. peak of 0.65Ncm; peak magnitude
0.4±0.05Ncm, mean ±S.E.M., N=5 jumps). The finding that
extension ranges of motion and extensor torques were larger
than motion and torques about the other degrees of freedom
indicates that most of the joint work was performed by hip, knee
and ankle extension.

Bones and segment properties of Rana pipiens

The bone segments that were laser-scanned and used to
construct the skeletal models of Rana pipiensare shown in Fig.
2. The mass, moment of inertia, center of mass and geometric
dimensions were determined for each of the hindlimb and
trunk segments (Fig. 4), and the mean values from 4 frogs are
shown in Table 1.

Behavior and model of the hip joint

A goal of this study was to determine the importance of joint

degrees of freedom to jumping performance. It was first
necessary to measure the behavior and degrees of freedom of
each joint in the real frog and then use this information to
model the appropriate behavior of the virtual joints.

Flexion–extension is the primary range of motion at the
hindlimb joints and represents rotation of a bone segment about
the zaxis of its LCF. The locations of the instantaneous centers
of rotation for each joint during flexion–extension are shown
as a collection of red dots in the top row of Fig. 3. The
instantaneous centers of hip extension tended to cluster into a
single, circumscribed region (area 1.6±0.19 mm2, mean ±
S.E.M., N=8) located within the femoral head and
approximately 1.5 mm from its most proximal point. This tight
clustering indicated that the location of the instantaneous
center was approximately constant throughout the range of

Table 1. Body-segment properties of Rana pipiens

Proximal Distal

Length Width Depth Width Depth Mass Volume ρ Ix Iy Iz

Segment (mm) (mm) (mm) (mm) (mm) (g) (cm3) (g cm−3) (g cm2) (g cm2) (g cm2)

Pelvis 23.1 14.9 12.1 10.1 10.9 3.6 3.3 1.1 2.5 3.1 4.2
Femur 26.8 15.1 10.1 7.3 5.5 2 1.8 1.1 0.6 1.9 2.3
Tibiofibula 30.7 7.3 4.9 5 4.8 1.4 1.2 1.2 0.2 1.2 1.4
Astrag. 15.4 4.9 4.9 4.9 4.9 0.4 0.4 1 0.1 0.8 0.8
Foot 28 4.9 4.9 4.9 4.9 0.5 0.5 1.1 0.1 0.2 0.2
Skull 19.2 25.1 16.2 5 3.1 3.8 3.8 1 1.8 1.6 1.7
Trunk-spine 20.2 25.2 17.4 18.1 12.1 10.3 9.4 1.1 5.3 4.7 7.2

The body was divided into 11 rigid-body segments (see Materials and methods): skull, trunk-spine, pelvis, two femoral, two tibiofibular, two
astragalus–calcaneus (Astrag.) and two foot (metatarsals plus phalanges) segments. Segment length, the surface dimensions of the proximal and
distal segment ends, mass, volume, density (ρ) and moments of inertia about the segment axes (Ix, Iy and Iz) were determined for each segment.
Each value represents the mean of 4 frogs.

Trunk

Skull

Astragalus

Calf

Thigh

Pelvis

Foot

Fig. 4. The body segments of the frog were modeled as geometric
primitives of uniform density. To the left is a scanned image of the
whole frog body. To the right are the geometric solids used to
approximate the inertial properties of the skull, trunk, pelvis, thigh
and calf segments (stadium solids; see Materials and methods), the
astragalus segment (cylinder) and the foot segment (cone). The
dimensions, mass, averaged density and estimated inertias for each
segment are shown in Table 1.
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passively applied hip extension. This was in agreement with
previously reported data (Lieber and Shoemaker, 1992). Thus,
we modeled the virtual hip joint in the extension–flexion plane
as a revolute joint in which the position of the instantaneous
center of rotation was fixed. The location of the instantaneous
center of rotation was positioned 1.5 mm along the long axis
of the femur from its most proximal point.

The rotational DOFs of the femur about its x and y axes
represented hip external–internal rotation and hip abduction–
adduction, respectively. The sequence of instantaneous centers
of rotation for both external–internal rotation and abduction–
adduction (first column, bottom two panels of Fig. 3) tended
to cluster into a single, circumscribed region (areas
1.1±0.26 mm2 and 1.9±0.3 mm2, respectively, means ±S.E.M.,
N=8 frogs). For abduction–adduction, the instantaneous
centers clustered in a position located approximately 1.5–2 mm
from the femur’s most proximal point. For external–internal
rotation, the instantaneous centers clustered at a position near
the center of the acetabulum. The tight clustering indicated that
the location of the instantaneous center of rotation about each
joint axis was approximately constant throughout the passively

applied range of motion. Thus, the hip joint could be modeled
as a gimbal joint, which consists of three independent revolute
joints. The intersection of the instantaneous centers of rotation
for each revolute joint was positioned 1.5 mm along the long
axis of the femur, from its most proximal point, and at the level
of the central acetabulum.

Behavior and modeling of the knee joint

For the majority of frogs examined (four out of six) the
flexion–extension kinematics at the knee conformed most
closely to a rolling joint. As shown in Fig. 3 (top row, second
panel from left), the positions of the instantaneous centers of
rotation for the knee traversed a curve that approximately
traced the joint surface of the proximal bone. The
instantaneous center of rotation was located at one end of this
curve at the extreme range of flexion and ‘rolled’ to the other
end of the curve, along the surface of the proximal bone, as the
moving segment was extended. Thus, we modeled the
flexion–extension of the virtual knee as a rolling joint so that
the tibiofibula segments smoothly traversed an arc of 70 ° along
the surfaces of the distal femur.

W. J. Kargo, F. Nelson and L. C. Rome

Fig. 5. The four frog models on which forward dynamic simulations of jumping were performed. Here, we assume that the hindlimbs are
symmetrical with respect to jumping. Hence model 1 had five rotational degrees of freedom (DOFs). These DOFs are flexion–extension at the
iliosacral (1), hip (2), knee (3), ankle (4) and tarsometatarsal (5) joints. Model 2 had seven rotational DOFs. The two extra DOFs compared
with model 1 (6 and 7, shown in red) are abduction–adduction and external–internal rotation at the hip. These DOFs permitted the plane of the
hindlimb to be rotated under the body and at different angles relative to the ground. Model 3 had eight rotational DOFs. The extra DOF
compared with model 2 (8, shown in red) is external–internal rotation at the knee. This DOF permitted the distal limb, consisting of the
tibiofibula, astragalus segment and foot, to be rotated further under the body. Model 4 had nine rotational DOFs. The extra DOF compared with
model 3 (9, shown in red) is flexion–extension at the metatarsophalangeal joint. This DOF permitted the frog to move its center of mass longer
distances during the ground-contact phase of the jump and to achieve higher take-off velocities
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The rotational DOF of the tibiofibula about its x axis was
termed knee external–internal rotation. The range of knee
external–internal rotation was approximately 60 ° (±30 ° from
the reference configuration) before significant torsion of
connective tissues surrounding the knee joint was noticed. The
locations of the instantaneous centers of rotation tended to
cluster into a single, circumscribed region located at the level
of the mid-tibial crest (second column, bottom panel of Fig. 3).
Thus, we modeled the knee joint as a type of universal or
Hooke’s joint, which consists of two independent joints. Knee
flexion and extension occurred about a rolling joint, and knee
external–internal rotation occurred about a revolute joint
whose instantaneous center of rotation was located at the
instantaneous center for knee flexion. That is, as the
instantaneous center for knee flexion traversed the surface of
the distal femur, the instantaneous center for external rotation
was carried along with it. The measured range of knee
adduction, i.e. rotation about the y axis, was 45–50 ° (see
second column, middle panel in Fig. 3).

Behavior and modeling of the ankle, tarsometatarsal,
metatarsophalangeal and iliosacral joints

For the majority of frogs examined (three out of five), the
flexion–extension kinematics at the ankle conformed most
closely to a rolling joint. As shown in Fig. 3 (top row, third
panel from left), the positions of the instantaneous centers of
rotation for the ankle traversed a curve that approximately
traced the joint surface of the proximal bone. The location of
the instantaneous center of rotation was located at one end of
this curve at the extreme range of flexion and ‘rolled’ to the
other end of the curve, along the surface of the proximal bone,
as the moving segment was extended. Thus, we modeled the
virtual ankle joints as a rolling joint so that astragalus segments
smoothly traversed a 90 ° arc along the surfaces of the
tibiofibula.

The tarsometatarsal joint was modeled as revolute joint. The
instantaneous center of rotation was positioned at the point of
contact between the distal end of the astragalus segment and
the proximal metatarsals (see location of red dot in Fig. 3, top
row, right panel).

Because of the difficulty in accurately measuring kinematics
about this small and delicate metatarsophalangeal joint in the
jig (the ends of the two bones were less than 1 mm in diameter),
we simply modeled this joint as a revolute joint. The position
of the instantaneous center of rotation was placed at the point
of intersection between the bone segments.

The measurement of iliosacral kinematics is shown in
Fig. 3 (bottom right panel). Flexion–extension of the
vertebral segment occurred about its x axis. We examined
iliosacral kinematics in four frogs. The instantaneous center
of vertebral rotation did not follow a consistent path among
these frogs. This variability might be due to the fact that the
iliosacral joint is to some extent a true gliding joint. In a
gliding joint, the x- and y-translations and rotations within the
plane are independent of each other. To avoid the
complexities associated with modeling such a joint, we

approximated the iliosacral joint as a revolute joint, in
which the center of rotation was located at the contact
point between the tip of the iliac crest and the transverse
processes of the sacrum. The measured range of motion was
90 ° (30 ° extended relative to the reference position and 60 °
flexed).

Four models of jumping frogs

A schematic diagram of the kinematic degrees of freedom
making up the four skeletal models is shown in Fig. 5.

Model 1: planar hindlimb model

For simplicity in modeling, it has sometimes been assumed
that the hindlimb joints of frogs extend within a single plane
during jumping and that other DOFs at the hip and knee could
be ignored (Alexander, 1995). In model 1, we assessed this
possibility by constraining all the hindlimb joints to only flex
and extend. The initial flexion angles at the start of the
simulations were determined for the hip, knee, ankle,
tarsometatarsal and iliosacral joints (see Kinematic and inverse
dynamic analyses of jumping frogs). If the pelvis of model 1
was positioned at 15–20 ° to the ground, similar to the real frog,
then the plane in which the hindlimb was oriented would also
be at 20 ° to the ground. Extension of the hindlimb within this
plane would necessarily lead to a low take-off angle and,
hence, a short jump distance (blue trace in Fig. 6D). Take-off
angles of 42 ° are necessary for maximal-distance jumping.
Thus, to test whether model 1 could in theory permit maximal-
distance jumping, it was necessary to invoke an
unphysiological starting position in which the pelvis was tilted
at 42 ° to the ground and the hindlimbs rested in an unnatural
starting position (see Fig. 6A).

We first examined the range of dynamic behaviors that
model 1 could produce from its starting position. A batch of
1000 simulations was run in which we randomly varied the
magnitude of the extensor torque steps applied about the
iliosacral, hip, knee and ankle joints. Trajectories of the virtual
frog’s COM are shown in Fig. 6B. For illustrative clarity, only
100 trajectories are shown starting from the onset of the torque
steps for a period of 95 ms. This is the approximate duration
from onset of electromyographic activity to toe-off in the real
frog. The COM followed a similar initial path for each
simulation run. This was because model 1 permitted hindlimb
movements in only a single plane (i.e. extension). Variations
in the magnitude of the extensor torques between simulation
runs produced variations in the magnitude of the GRF but
not in the GRF orientation. Consequently, the vertical and
horizontal velocities of the COM were linearly correlated
among the simulation runs (Fig. 6E, r2=0.97, P<0.001; i.e.
initial take-off angles were the same for each run and equal to
the angle of pelvis tilt).

We tested whether model 1 could reproduce maximal-
distance jumping. To do this, we used the torque values
generated by the real frog to drive the forward dynamics of
model 1. Only the hindlimb ‘extensor’ torques and the
iliosacral torque were used to drive the model dynamics (i.e.
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the other hindlimb DOFs were fixed, and torques about these
DOFs were therefore zero). When model 1 was placed in a
physiological starting position in which the pelvis was oriented
at 15 ° to the ground, the take-off angle was also 15 ° and the
jump distance was only 0.380 m (blue lines in Fig. 6B–D).
Even when unphysiological starting positions were used
(pelvis tilted at 42 ° to the ground; red lines in Fig. 6B–D), the
jump distance was only 70 % of that obtained by the real frog.
The black lines in Fig. 6C,D represent the trajectory of a real
frog jumping at 25 °C. The peak total velocity (i.e. the vector
sum of the vertical VV and horizontalVH velocities) of the 42 °
run was 1.83 m s–1 compared with 2.33 m s–1 for the real frog,
and the trajectory of the COM during the ground-contact phase
resulted in a predicted jump distance of 0.552 m compared with
0.704 m for the real frog. The inability to produce both
maximal-distance jumping and a range of take-off angles
suggests that additional DOFs and joints are critical for
jumping.

Model 2: three-DOF hip joint

In the actual frog, the hip joint is not constrained to only
extend during jumping; other DOFs at the hip might be critical
for jumping performance. Model 2 captures the three-
dimensional properties of the hip by adding the external–
internal rotation and abduction–adduction DOFs. The
remaining hindlimb joints were constrained to only flex and
extend. The hip was positioned in its initial configuration as
determined from the kinematic analysis: flexed by 32 °,
adducted by 18 ° and internally rotated by 15 °. The knee and
ankle were initially flexed by 155 ° and 150 °, respectively.

We first examined the range of dynamic behaviors that
model 2 could produce. To do this, a batch of simulations was
run in which we randomly varied the magnitude of the torque
steps applied about each rotational DOF. Trajectories of the
virtual frog’s COM are shown in Fig. 7B. Both internal and
external rotation torques were applied about the femur’s x axis,
and both abduction and adduction torques were applied about
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Fig. 6. Jumping performance of model 1.
(A) Model 1 did not permit rotations other than
flexion–extension at the hindlimb joints. In a
normal starting position (shown in Fig. 7A), jump
distance was very short compared with the real
frog (blue versusblack recordings in D). Hence, to
assess better its jumping potential, model 1 was
placed in an unnatural starting position in which
the plane of the hindlimbs and the long axis of the
pelvis were oriented at 42 ° to the ground. The
purple, orange and green arrows represent the
ground reaction forces (GRFs) at the starting
position that were produced by a unit extensor
torque (1 N m) about the hip, knee and ankle joints,
respectively. GRFs are in normalized units (i.e. N
per N m of torque), so a torque value of 0.009 N m
at the hip will produce 0.15 N of GRF (i.e.
0.009 N m×15 N N–1m–1). At the starting position,
a unit hip extensor torque produced the largest
propulsive GRF. (B) The path of the center of mass
(COM) of the frog during the ground-contact phase
of the jump for 100 simulation runs in which the
magnitudes of the extensor torques driving each
relaxed DOF were randomly varied. The red path
in B–D represents the simulation run in which the
actual torques produced by the real frog were used
to drive the model. The blue path represents a
simulation run in which model 1 was placed at a
more natural starting position in which the pelvis
was oriented at 15 ° to the ground. (C) The vertical
VV and horizontal VH velocity of the COM for the
red and blue runs did not match the velocity of the
real frog (black lines). (D) The predicted jump
distances for the red and blue runs were shorter
than those for the real frog. (E) The vertical and
horizontal velocities were tightly correlated (r2=0.97, P<0.001) during simulations, signifying that take-off angles were the same for each run
and equal to the angle of pelvis tilt. This occurs because the vectors of GRFs for a given torque are in the same direction for each joint (see A).
(F) Accordingly, the magnitudes of vertical and horizontal velocities were tightly correlated to GRF (r2=0.90, P<0.01 for vertical and r2=0.81,
P<0.01 for horizontal velocities).
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the femur’s y axis. Five hundred trajectories are shown starting
from the onset of the torque steps for a period of 95 ms. What
is most evident from Fig. 7B is that a large range of take-off
angles was produced in this model compared with model 1.
The take-off angles ranged from 0 to 90 ° relative to the
ground. The peak vertical and horizontal velocities of the COM
showed no significant correlation among simulation runs (see
Fig. 7E) because, unlike model 1, the individual hindlimb
torques produced different ratios of horizontal to vertical GRF.

We examined the GRFs produced by each hindlimb torque
at the starting limb configuration. Fig. 7A shows the GRF
vectors produced by a unit hip extensor (purple), knee extensor
(orange), ankle extensor (green), hip external rotation (yellow)
and hip adduction (blue) torque. The GRF vectors are based

on unit torque inputs, but it is important to keep in mind that
these vectors will be scaled by the actual torque values shown
in Fig. 1 (e.g. the GRF due to a unit hip extensor torque is
16.93 N N–1m–1 and thus the GRF due to 0.009 N m of hip
extensor torque is 0.15 N). A unit hip extensor torque produced
a large horizontal and smaller vertical force (ratio 15.5:6.8). A
unit ankle extensor torque produced a similar ratio of
horizontal to vertical force (13.2:8.0). A unit knee extensor
torque produced a relatively small horizontal force (2.1 N) and
a vertical force (7.2 N) comparable with that produced by hip
and ankle extensor torques. The knee extensor torque produced
a very large lateral force (18.2 N) compared with the lateral
forces produced by the hip (–5.1 N; negative values represent
medially directed forces) and ankle extensor unit torques

Fig. 7. Jumping performance of model
2. (A) Model 2 was placed in a normal
starting position. The colored arrows
represent ground reaction forces
(GRFs) as in Fig. 6. In addition, the
GRF per unit N m of torque is shown
for hip external rotation (yellow) and
hip adduction (blue). (B) The path of
the center of mass (COM) of the frog
during the ground-contact phase for
500 simulation runs in which the
magnitudes of hindlimb torques were
randomly varied. A large range of
take-off angles was produced from a
single starting position. The blue path
in B–D represents the simulation run in
which the actual torques produced by
the real frog were used to drive the
relaxed degrees of freedom. The red
path represents a simulation run in
which hip external rotation was
increased fourfold compared with that
produced by the real frog during a
jump. (C) The vertical VV and
horizontal VH velocities of the COM
for the red simulation run matched
those of the real frog (black lines)
better than the blue run. However, this
required an unphysiological level of
external rotation torque. (D) The
predicted jump distances for the red
and blue runs were smaller than those
for the real frog. (E) Unlike model 1,
the vertical and horizontal velocities
for each simulation run were not
correlated with one another (i.e. take-
off angle varied from trial to trial).
This was because individual torque
components produced different ratios
of vertical to horizontal GRF (see
arrows in A). (F) The magnitudes of
the hip (HE) and ankle extensor (AE) torques were significantly (P<0.01; r2=0.69 and r2=0.63, respectively) correlated with variations in the
peak horizontal velocity among the simulation runs. Only the magnitude of the hip external rotation (HR) torque was significantly (P<0.01,
r2=0.59) correlated with variations in the peak vertical velocity.
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(5.9 N). Both hip external rotation and hip adduction unit
torques produced relatively large vertical forces (11.1 and
9.3 N, respectively), but horizontal forces that opposed forward
translation (–8.0 and –9.1N, respectively).

On the basis of the static descriptions of torque transmission,
we predicted that hip and ankle extensor torques should
accelerate the COM most strongly in the horizontal direction
and that hip external rotation and adduction torques should
accelerate the COM most strongly in the vertical direction.
This relationship was in fact observed (see Fig. 7F). The
magnitude of both the hip and ankle extensor torques was
significantly (P<0.01) correlated with the peak horizontal
velocity of the COM (r2=0.69 and r2=0.63, respectively). The
magnitude of the hip external rotation torque was significantly
correlated with the peak vertical velocity (P<0.01, r2=0.59).
The hip adduction torque did not show a significant correlation
with peak vertical velocity. Thus, increasing the external
rotation torque will produce higher take-off angles and lower
acceleration take-offs, and increasing ankle and hip extensor
torques will produce lower take-off angles and higher
acceleration take-offs. However, it is important to keep in mind
that the majority of the jumping muscles are biarticular, and
independent regulation of hindlimb torques may not be
possible in the real frog.

We tested whether model 2 produced maximal-distance
jumping when the real jumping torques (shown in Fig. 1) were
used to drive its forward dynamics. To our surprise, we found
that model 2 did not produce maximal-distance jumping.
Instead, the take-off angle was approximately 13 ° and the
vertical velocity was only 0.4 m s–1 (blue trajectories in

Fig. 7B–D). This resulted in a predicted jump distance of
0.370 m (Fig. 7D). If we increased the hip external rotation
torque by four times that observed in the real frog, model 2
produced jumps that more closely resembled maximal-distance
jumps (red trajectory in Fig. 7B–D). That we could not produce
maximal-distance jumping in model 2 using physiological
estimates of hindlimb torque values suggested that additional
DOFs must be added to the frog model.

Model 3: two-DOF knee joint

The frog knee joint exhibits an overflexion mechanism in
which the calf is rotated along its long axis and carried over
the dorsal aspect of the thigh in the extreme ranges of knee
flexion (Lombard and Abbot, 1906). This over-flexion
mechanism may enhance the jumping performance of the
model. Thus, we added this DOF at the knee joint in model 3.
The knee was then internally rotated by 30 °, the estimated
rotation angle at the starting position of the jump (see Materials
and methods). As shown in Fig. 8, this rotation brought the
foot more underneath the body and more within the sagittal
plane compared with model 2 and, thereby, increased the
vertical component of the GRF. As described above, there is
an additional DOF in the knee in the adduction–abduction
plane. Preliminary simulations showed that this DOF had little
effect on jumping performance and thus, for computational
simplicity, we fixed this DOF so that the adduction angle was
constant at 90 °C. The remaining joint angles were the same as
the initial angles in model 2.

We first examined the range of dynamic behaviors that
model 3 could produce by randomly varying the magnitude

W. J. Kargo, F. Nelson and L. C. Rome

Fig. 8. Internal rotation of the
tibiofibula at the starting jump
position enhances the vertical
component of the ground reaction
force (GRF). Left column, model 3;
right column, model 2; bottom
panels, position of models at the
start (0 ms) of the jumping
simulation; top panels, position of
models and orientation of the GRF
(red arrow) 30 ms into the
simulation. Model 3 had an extra
degree of freedom about the knee
compared with model 2, wherein the
tibiofibula (the bone colored pink on
the right side of model 3) was
internally rotated about its long axis.
By bringing the foot under the frog’s
body, this internal rotation increased
the vertical component of the GRF
relative to the horizontal component during the early portion of the jumping simulation. The GRF shown for both models was calculated in
response to the same extensor torque pattern applied about the hip, knee and ankle joints.
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of torque steps applied about each rotational DOF. The
trajectories of the virtual frog’s COM, which were generated
by driving the forward dynamics of the model with randomized
torque steps, are shown in Fig. 9B. Both internal and external
rotation torques and both abduction and adduction torques
were applied at the hip. Five hundred trajectories are shown
starting from the onset of the torque steps for a period of 95 ms.
Similar to model 2, we found that model 3 produced a large
range of take-off angles (0–90 °) from a single starting position.
However, unlike model 2, we found that model 3 produced

near-maximal-distance jumping using physiological estimates
of hindlimb torque values.

When the hindlimb torques computed in the real frog were
used to drive the forward dynamics of model 3, the simulated
jump closely matched that of the real frog. Fig. 9C shows the
horizontal and vertical velocity of the COM of model 3 (red
lines) compared with the real frog (black lines). Fig. 10 shows
the hindlimb joint angles of model 3 (red lines) compared with
the real frog (black lines). The trajectory of the COM and the
hindlimb joint angles were very similar for the first 70 ms of the

Fig. 9. Jumping performance of
models 3 and 4. (A) Models 3
and 4 were both placed in the
normal starting position. The
colored arrows represent the
ground reaction forces (GRFs)
as in Figs 6 and 7 for both
models. Note that the GRF
generated by internal rotation at
the knee is mostly lateral in
direction (i.e. out of the page)
and hence is not shown. (B) The
path of the center of mass
(COM) of model 3 during the
ground-contact phase for 500
simulation runs in which the
magnitudes of hindlimb torques
were randomly varied. The red
path in B–D represents the
simulation run in which the
actual torques produced by the
real frog were used to drive the
degrees of freedom (DOFs)
in model 3. The blue path
represents the simulation run in
which the same torque pattern
was used to drive model 4.
(C) The vertical VV and
horizontal VH velocities of the
COM for the red simulation run
matched those of the real frog
(black lines) over the first 70 ms.
At this time, model 3 was
maximally extended and the
simulation ended. The vertical
and horizontal velocities of the
COM of model 4 more closely
matched those of the real frog
over the entire 90 ms take-off
phase (i.e. addition of the distal
joint allowed model 4 to extend
further during the remaining 15 ms of the jump). (D) The predicted jump distance for model 3 was less than that of the real frog. However, the
predicted jump distance for model 4 closely approximated that of the real frog. (E) As in model 2, vertical and horizontal velocities in model 3
were not correlated. (F) The magnitude of only the hip extensor (HE) torque was significantly (P<0.01, r2=0.71 ) correlated with variations in
the peak horizontal velocity among the simulation runs in model 3. No single torque component was significantly correlated with variations in
vertical velocity. In trials in which the ankle extensor (AE) torque was greater than 0.3 N cm (boxed region in the VV versusAE torque graph),
the time (T) taken for the ankle to extend past 90 ° was significantly (r2=0.61, P<0.05) correlated with variations in vertical velocity (right
panel). The later the ankle extended during the ground-contact phase, the larger the vertical velocity.
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jump. After that time, the hindlimb of model 3 was maximally
extended and the simulation was terminated. This early
termination was due to the fact that the metatarsophalangeal
segment of model 3 was rigidly secured to the ground. Thus,
unlike the real frog, the tarsometatarsal joint of model 3 did not
extend during the last 10–15 ms of the jump (this joint flexes
during the first 60–70 ms of the jump; see Fig. 10). The jump
of model 3 had a predicted distance of 0.612 m compared with
0.704 m in the real frog (Fig. 9D). Before examining how
adding the metatarsophalangeal joint enhances jumping
performance, we first examined in more detail why model 3
produced a much better jump than model 2.

We examined how the GRFs produced by the individual
hindlimb torques were different in model 3 compared with
model 2. The GRF vectors produced by unit torque inputs are
shown in Fig. 9A (purple, hip extensor; green, ankle extensor;
orange, knee extensor; yellow, hip external rotation; blue, hip
adduction). The GRFs produced by hip extensor, knee
extensor, hip external rotation and hip adduction torques were
similar to the GRFs produced by the same torques in model 2,
i.e. the ratio of vertical to horizontal to lateral force for each
torque was similar in both models. However, an ankle extensor
torque in model 2 produced GRFs that were dramatically
different from those produced in model 3. A unit ankle
extensor torque produced a vertical force that was twice that
produced in model 2 (15.8 N compared with 8.0 N). Thus,
internal rotation of the tibiofibula (Fig. 8, left panel) allowed
the ankle torque to produce a GRF with a larger vertical than
horizontal component (15.8:5.0). In terms of absolute values,
the real torque pattern in the frog produced a total GRF at the
starting limb position in which the vertical component was
0.99 N for one hindlimb (1.98 N for both limbs) and the
horizontal component was 1.01 N (2.02 N for both limbs). The
same torque pattern produced a GRF in model 2 that had a
vertical component of only 0.78 N and a horizontal component
of 1.23 N. Thus, the extra DOF at the knee permitted the ankle

torque to contribute more to the vertical acceleration of the
center of mass, which in turn produced a more optimal take-
off angle (42 °) for maximal-distance jumping.

On the basis of the static descriptions of torque transmission
in model 3, we predicted that variations in the magnitude of
the hip extensor torque should be related to variations in the
peak horizontal velocity of the jump. This relationship was
observed (see Fig. 9F, left panel; significant at P<0.01,
r2=0.71). We hypothesized that variations in the ankle
extensor torque, because of its increased contribution to the
vertical GRF at the starting position, should be related to
variations in the peak vertical velocity of the jump. However,
we found this was not the case (see Fig. 9F, middle panel).
Instead, a combination of kinematic and dynamic factors was
related to variations in the vertical velocity. In simulation runs
in which the ankle extensor torque was greater than 0.3 N cm,
the most notable factor correlated with variations in VV was
the time for the ankle angle to extend past 90 ° from a starting
angle of 150 ° (see Fig. 9F, right panel). This was because the
magnitude of the vertical force produced by the ankle torque
depended critically on the ankle angle. As the ankle extended
during the jump, the ankle torque produced less vertical and
more horizontal force. Thus, if the ankle extended early or at
an initially high rate in the jump, then the ankle torque
accelerated the COM more in the horizontal direction. If the
ankle extended later or at a slower initial rate, then the ankle
torque accelerated the frog more in the vertical direction. The
initial rate of ankle extension depended on the magnitude of
the hip and knee extensor torques. When these other torques
were high, the ankle extended later and higher take-off angles
were produced. If these torques were low and the ankle torque
was the same value, the ankle extended earlier and lower take-
off angles were produced.

Model 4: addition of the metatarsophalangeal joint

Freeing the metatarsal segment so that it can lift off the

W. J. Kargo, F. Nelson and L. C. Rome
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Fig. 10. Comparison of the joint kinematics of model 3
(red lines), model 4 (blue lines) and experimental frogs
(black line represents data from one frog). The forward
dynamics of models 3 and 4 were driven with the joint
torque pattern estimated from the kinematics of
experimental frogs. The hindlimb joint angles of both
models closely corresponded to the experimental data for
the first 70 ms of each simulation run. After 60–70 ms, the
metatarsal joint (Meta) of experimental frogs begins to
extend (lower right panel). Model 3 did not capture this
reversal of tarsometatarsal joint motion because the
metatarsal–phalangeal segment was fixed to the ground.
Model 4, which allowed passive rotation of the metatarsal
segment above the ground (i.e. no active torques were
applied about the tarsometatarsal joint), did capture this
kinematic effect. ab–add, abduction–adduction; Ext,
external.
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ground should, at the least, function passively to increase
jump distance. Jump distance is the sum of the horizontal
distances covered by the COM during the ground-contact and
aerial phases. Freeing the metatarsal segment should increase
the horizontal distance covered by the COM during the
ground-contact phase. If the vertical distance covered by the
COM is also increased, the duration of the aerial phase and
therefore the distance covered during the aerial phase will be
increased as well. Freeing the metatarsal segment should also
allow the other joint torques to produce GRFs for longer. We
examined how releasing the metatarsal segment and adding
a metatarsophalangeal joint in model 4 enhanced jumping
performance. The torque values calculated for the iliosacral,
hip, knee and ankle joints in the real frog were used to drive
the forward dynamics. No torques were applied about the
tarsometatarsal joint, and it therefore contributed only
passively to jumping performance. The simulation resulted in
a predicted increase in jump distance of 0.101 m compared
with jumps with the metatarsal segment fixed to the ground
(see Fig. 9D; trajectory with metatarsal fixed to the ground,
red line; metatarsal freed, blue line). The increase in jump
distance was due to an increase in take-off velocity, an
increased horizontal distance covered during the ground-
contact phase and an increased height at take-off, which
prolonged the aerial phase.

Discussion
In this study, we used a modeling approach to test what the

appropriate hindlimb model was for producing maximal-
distance jumping and for producing a flexible range of take-
off angles. We found that, to produce maximal-distance
jumping, the skeletal system of the frog must minimally
include a gimbal joint at the hip (three rotational DOFs), a
universal Hooke’s joint at the knee (two rotational DOFs) and
pin joints at the ankle, tarsometatarsal, metatarsophalangeal
and iliosacral joints. In addition, we found that a unique
mechanism at the knee joint provided an opportunity to flexibly
control the take-off angle that was not possible without this
mechanism. In the following, we discuss the approach used in
this study and the implications of our results for maximal-
distance jumping and locomotor control in the frog.

Reverse engineering approach to functional morphology

Reverse engineering is the process of disassembling a
product to determine how it is designed from the component
level upwards. In this study, we disassembled the skeletal
system of the frog into individual rotational DOFs at the joints
and then used these DOFs to construct progressively higher-
dimensional models. We tested the range of behaviors, both
dynamic and static, that each model structure could produce
and whether the model permitted maximal-distance jumping,
which is a behavior of great interest to integrative muscle
physiologists (see below). We found this modular approach to
be particularly useful because frog jumping is kinematically
quite different from human jumping. In particular, we found

that the internal rotation DOF at the frog knee joint, which is
insignificant in humans, played a very important role during
frog jumping. Adding this DOF to the frog knee joint
permitted the generation of a wide range of take-off angles not
attainable in simpler models and permitted a take-off angle of
42 %, which is necessary for maximal-distance jumping, when
using physiological estimates of torque values to drive frog
motion.

The approach in which modules are added to an existing
structure cannot be used to attribute a single function to any
individual module. Each module has its particular significance
for, and influence on, the functional totality, but at the same
time each module is regulated and limited in its function by
the other modules (Savazzi, 1999). For example, adding the
extra DOF at the knee permitted the expression of maximal-
distance jumping by allowing the limb to enter a particular
starting configuration otherwise not attainable (Fig. 8, left
panel). In this configuration, the extensor torque about another
DOF (the ankle) resulted in a larger vertical GRF compared
with models without the extra DOF at the knee and
consequently higher take-off angles close to 42 %. At the same
time, we found that transmission of the ankle torque to the GRF
was configuration-dependent. Thus, if extensor torques about
other DOFs (hip and knee) were too small, the ankle extended
early in the jump and the ankle torque produced a more
horizontal GRF and, consequently, lower take-off angles.
Therefore, both a correct balance of hindlimb torques and a
correct starting configuration were necessary for the expression
of maximal-distance jumping.

In addition, considerable care must be used when
interpreting our simulation results to differentiate between
kinematic effects and the effects of the reduced power
associated with removing DOFs. Removing a given DOF
eliminates motion about this DOF (kinematic effect) but also
eliminates joint work and power produced about this DOF. We
found that the distance of simulated jumps declined as DOFs
were removed from the model. One interpretation is that
motion about these DOFs (either pre-jump to position the joints
into the starting configuration or during the jump) are
necessary for the kinematic expression of jumping. However,
an alternative explanation is that removing DOFs also removes
the work generated around these DOFs and thus removes
mechanical energy from the system. Hence, in theory, this
reduced work, rather than kinematic constraints, could be
responsible for the reduced jump distance.

We assessed this possibility and found it not to be the case
for the secondary DOFs at the knee and hip. For instance,
model 3 was able to jump a far greater distance and generate
far greater power than model 1. The increase in power was not
due to added power generated about the secondary DOFs (two
at the hip and one at the knee). In model 3, the joint power
directly generated by the internal rotation of the knee was only
5 % of the total joint power, and the combined joint power
generated by hip rotation and abduction–adduction torques
appears to be negative. Hence, it is not the power generated
around the added DOFs that improved performance, rather it
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is the relief of kinematic constraints that enables the extensor
DOFs to increase their power output.

Maximal-distance jumping

Comparative physiologists have long been interested in frog
jumping because the frog is thought to have become well
adapted for explosive jumps. Muscle, connective tissue,
skeletal and neural are possible modifications to the system.
Muscle properties that contribute to jumping have been
addressed in other studies (Lutz and Rome, 1994, 1996a,b;
Lutz et al., 1998). Potential skeletal adaptations for jumping
may occur either in the morphology and mechanical
characteristics of bone or in the DOFs and ranges of motion
of the joints (Alexander, 1993). The present study did not
address how the morphology and mechanical characteristics
of bone contribute to performance (e.g. bone stiffness may
govern whether and how bones store and release mechanical
energy during movement) (see Blob and Biewener, 2001;
Calow and Alexander, 1973). However, we did address three
properties of the frog skeleton that enhanced jumping
performance: (i) addition of a functional hindlimb joint to the
limb complex, (ii) increased out-of-plane ranges of motion at
the hindlimb joints and (iii) specialization of the iliosacral
joint for jumping.

The astragalus and calcaneus are tarsal bones distal to the
tibiofibula that have become elongated in the frog. In most
other limbed vertebrates, the tarsal bones are relatively short
and, with the metatarsal bones, form an essentially rigid foot
segment. The skeletal changes in the frog yield a four-jointed
rather than three-jointed hindlimb structure with five rather
than four rigid segments (Gans and Parsons, 1966). Here, we
showed that, by adding a functional tarsometatarsal joint to the
hindlimb structure, jump distance could be increased 1.15-fold
(by 0.1 m or 2 body lengths). One part of this increase was
because the distance from the COM to the tip of the hindlimb
was increased at the time of take-off, thereby increasing the
take-off height and horizontal distance covered during the
ground-contact phase. A second part of this increase was
because the other hindlimb torques had a longer duration in
which to produce GRFs and propel the frog (Howell, 1944;
Alexander, 1995). Finally, a passive torque that is produced by
a modest spring about this added distal joint could further
increase jump distance by up to 0.08 m or 1.6 body lengths.

Out-of-plane rotations, other than flexion and extension,
have been hypothesized to allow the hindlimb to move from a
lateral, splayed position to a more anterior–posterior position
in the frog (Gans and Parsons, 1966). Rotation of the limbs
under the body will reduce the lateral GRFs produced by
extensor torques and increase the vertical GRFs. In this study,
the Jacobian matrix, which describes the differential properties
of the limb linkage (Tsai, 1999), was calculated at the starting
limb position for each model. The Jacobian matrix determines
how joint torques are transmitted to the ground–limb interface
and its form depends on the DOFs and configuration of the
linkage. We found that, if out-of-plane motions were permitted
at the hip and knee at the starting limb position (to match those

measured in experimental frogs), the same ankle torque
produced one-third of the lateral force and three times the
vertical force of that produced if out-of-plane motions were not
permitted. Similarly, the same knee torque produced three-
quarters of the lateral force and 1.25 times the vertical force.
Thus, out-of-plane rotations provided a setting for producing a
more balanced ratio of vertical to horizontal GRFs. To increase
further the vertical forces so that higher take-off angles could
be produced, a considerable amount of out-of-plane joint
torque had to be produced (both hip adduction and external
rotation torques). Both torque components produce large
vertical forces at the starting limb position.

The iliosacral joint has been hypothesized to be important
for frog jumping (Gans and Parsons, 1966; Emerson and de
Jongh, 1980). The primary motion at this joint during jumping
is, when viewed from the left side of the frog (nose pointing
to the left), clockwise rotation of the trunk relative to the pelvis.
This motion aligns the trunk with the GRF. If the trunk is not
aligned, a moment is produced about the trunk that causes it to
rotate away from the neutral position, which will in turn affect
the efficacy with which the COM is accelerated (Emerson and
de Jongh, 1980). The iliosacral joint might function in other
ways as well. For example, trunk rotation moves the COM of
the frog more directly over the ankle joint and therefore acts
to oppose early ankle extension. If the ankle unfolds later or at
a slower initial rate, the ankle torque produces relatively more
vertical compared with horizontal force. Under these
conditions, the frog can generate higher take-off angles. A
sensitivity analysis supported this role (see below) and showed
that larger iliosacral torques were associated with higher take-
off angles.

Locomotor control

Rana pipiensuse jumping as a general mode of terrestrial
locomotion and not only for explosive escape responses. Even
in the case of an escape response, the goal of frogs might not
necessarily be to maximize jump distance but instead to
maximize the horizontal acceleration (Emerson, 1978) or to
concatenate several high-velocity, low-trajectory jumps (Gans
and Parsons, 1966). Thus, selection of an appropriate skeletal
model not only rests on whether this model can express
maximal-distance jumping but also on whether it permits a
wide range of jumping trajectories. In the process of testing
this, we obtained insight into how the skeleton of the frog
provides control opportunities to the neuromuscular system.

One of the main findings of this study was that the knee joint
in the frog provided an opportunity for trajectory control that
was otherwise not possible. The peculiarity of the frog’s knee
joint has long been recognized (Lombard and Abbot, 1906). In
particular, the knee exhibits an over-flexion mechanism
whereby the calf is carried dorsally over the thigh in the
extreme ranges of knee flexion. This mechanism is thought to
be important for wiping movements to the cloaca and back
(Fukson et al., 1980; Giszter et al., 1989). However, even in
the resting position of the frog, the tibiofibula was internally
rotated by approximately 25–30 °. This degree of rotation was

W. J. Kargo, F. Nelson and L. C. Rome



1701Role of kinematic degrees of freedom in frog jumping

sufficient to double the vertical force contributed by the ankle
extensor torque at the starting limb position. Without this force,
the remaining torque components could not generate enough
vertical force to accelerate the frog vertically, and only
trajectories between 0 and 20 ° could be produced.

To examine how trajectory variations might be produced in
the real frog, we performed a sensitivity analysis in which
the torque pattern for maximal-distance jumping was
systematically varied and used to drive the forward dynamics
of model 4. Individual torque components forming the pattern
were scaled in amplitude while the other torques were
unaltered. We found that the take-off angle was most sensitive
to variations in the amplitude of the hip external rotation torque
(Fig. 11). Variations in torque by a factor of ±0.20 produced a
35 ° range of take-off angles, with increases in the torque
magnitude leading to increases in the take-off angle. We also
found that when the hip external rotation and knee extensor
torque were varied simultaneously by a factor of only ±0.10,
a 35 ° range of take-off angles could be produced. Interestingly,
the cruralis, gluteus magnus and tensor fascia latae all
externally rotate the hip and extend the knee and are activated
during jumping (Peters et al., 1996; Gillis and Biewener,
2000). Thus, these muscles represent target muscles by which
small variations in activation level might lead to large changes
in take-off angle. We found that the horizontal take-off
velocity, which probably determines in large part the success
of escape jumps (Gans and Parsons, 1966; Howell, 1944), was
most sensitive to variations in the amplitude of the hip extensor
torque (see Fig. 11). Thus, the semimembranosus, gracilis and
the dorsal head of the adductor magnus, which are the three
primary hip extensor muscles in the frog, represent target
muscles for controlling jump speed and distance (see Olson
and Marsh, 1998).

Limitations of forward dynamic simulation; future modeling

Although forward dynamic simulations have proved to be
a very useful tool to elucidate the role of various joint DOFs
in jumping performance, this approach has several
limitations. First, for computational simplicity, in most of the
simulations we assumed: (i) that the torques around different
joints were generated simultaneously, and (ii) that the torques
were generated instantaneously and remained constant
throughout the movement (i.e. torque steps). That torque
generation is simultaneous seems to be supported by actual
measurements (see Fig. 1), but the torques generated were
neither instantaneous nor constant. Nonetheless, by running
the models through the actual torques measured during
jumping, we were able to show that these assumptions did
not affect our general conclusions. As might be expected, a
constant torque during the simulation tended to result in
somewhat improved jumping. Thus, our findings of reduced
performance in models with fewer joint DOFs are a
manifestation of kinematic constraints rather than an
‘unnatural’ torque pattern.

A third limitation when discussing motor control is our
assumption that individual torques can be independently
manipulated. During maximal muscle recruitment and
activation, this may not be true because most of the hindlimb
muscles are biarticular and, hence, torques will necessarily be
coupled at adjacent joints. During submaximal recruitment or
activation, however, individual regulation of torques is
probably possible by differential recruitment (or activation) of
the muscles. Hence, the various levels of control of the take-
off angle with the different models are probably possible
during submaximal movements.

We believe that considerable improvements in modeling,
and hence our understanding of skeletal design, can be
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Fig. 11. The sensitivity of jumping performance
to variations in the magnitudes of the iliosacral
extensor torque and the hindlimb torques
examined using model 4. The torque pattern in
Fig. 9 was used to drive the forward dynamics,
and individual torques were scaled in amplitude
by a factor of 0.80–1.20. HR, hip external
rotation torque; HA, hip adduction torque; HE,
hip extensor torque; KE, knee extensor torque;
AE, ankle extensor torque; IE, iliosacral extensor
torque. The take-off angle (trajectory of the
center of mass, COM) was most sensitive to
variations in the amplitude of the hip external
rotation torque (i.e. the range of take-off angles
was largest when HR was scaled from 0.80 to
1.20 of its base value). The horizontal velocity
VH was most sensitive to variations in the hip
extensor torque. The vertical velocity VV was
most sensitive to variations in the hip external
rotation torque and the knee extensor torque.
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achieved by driving the skeleton with physiologically realistic
muscle–tendon actuators rather than joint torque inputs. In this
case, the observed rise in torque generation at the beginning of
the jump will probably be well represented by two important
mechanisms built into the actuator: the rate of muscle force
generation and tendon compliance. Further, the drop in torque
that occurs later in the jump will probably be closely
represented by two other important mechanisms: the
force/velocity properties of the muscle and the change in
moment arm with joint position. Finally, activation of a
biarticular muscle will lead to moments around both joints,
thus providing a realistic evaluation of the amount of coupling
of torque generation around adjacent joints.

In summary, our modular approach to examining the role of
joint DOFs during jumping has provided insight into the role
of the skeleton during frog jumping. This approach also
provided some insight into neuromuscular mechanisms to
control take-off angle and acceleration. These mechanisms will
be further addressed in future studies by embedding
musculotendon actuators and neural control within the skeletal
framework developed here.
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