
Flapping foil propulsion has received considerable attention
in the past few years as an alternative to the propeller. This
mode of propulsion, which involves no body undulation, has
many applications, such as propulsion of submersibles,
maneuvering and flow control, that are of interest to the
hydrodynamic community and unconventional aerodynamics
of micro aerial vehicles (MAVs) and the study of aircraft flutter
that are of interest to the aerodynamic community.

Flapping foil propulsion is also important in the area of bio-
fluid dynamics for the study of propulsion in insects, birds and
certain aquatic animals. Flying animals generate lift and thrust
as a consequence of the interaction between the flapping
motions of the wings and the surrounding air. These animals
also perform maneuvers involving rapid plunging and pitching
motions. Conventional steady-state theories do not predict
sufficient forces to meet those required for flight (Ellington,
1984). Therefore, we need to understand the unsteady
aerodynamics of flapping wings undergoing highly three-
dimensional motions with widely varying geometries.

Experimental work on two-dimensional flapping foils has
been carried out by Anderson (1996) and Freymuth (1999).
Computational studies have been performed by Jones and
Platzer (1997) and Ramamurti and Sandberg (2001). While
two-dimensional wing section investigations can yield useful
insights on the coupled pitching and heaving dynamics,
nothing can be learned concerning the influence of spanwise
flow. It is therefore essential to carry out computations for

actual three-dimensional insect wings. Ramamurti et al. (1996)
computed three-dimensional unsteady flow past moving and
deforming geometries in a simulation of a swimming tuna with
caudal fin oscillation.

The three-dimensional wing strokes of insects can be
divided into two translational phases and two rotational phases.
During the translational phases, the upstroke and the
downstroke, the wings move through the air with high angles
of attack, and during the rotational phases, pronation and
supination, the wings rotate rapidly and reverse direction.
Dickinson et al. (1999) studied the effects of translational and
rotational mechanisms of the wing in Drosophila
melanogaster. They directly measured the forces produced by
flapping wings and explained the aerodynamics of insect flight
by interactions between three unsteady flow mechanisms. The
‘delayed’ stall mechanism is a translational mechanism which,
in two dimensions, produces high lift in the initial phases of
translation until eventual flow separation; in three dimensions,
the spanwise flow effectively prevents stall. Rotational
circulation and wake capture are rotational mechanisms that
depend mainly on the pronation and supination of the wing
during stroke reversal. Walker and Westneat (1997) have
studied experimentally the kinematics of fin motion in a fish,
the bird wrasse Gomphosus varius. Liu and Kawachi (1998)
numerically investigated the flow over a hovering hawkmoth,
Manduca sexta. They reported the presence of a spiral leading-
edge vortex to which they attributed the lift enhancement
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A finite element flow solver was employed to compute
unsteady flow past a three-dimensional Drosophila wing
undergoing flapping motion. The computed thrust and
drag forces agreed well with results from a previous
experimental study. A grid-refinement study was
performed to validate the computational results, and a
grid-independent solution was achieved. The effect of
phasing between the translational and rotational motions
was studied by varying the rotational motion prior to the
stroke reversal. It was observed that, when the wing
rotation is advanced with respect to the stroke reversal,

the peak in the thrust forces is higher than when the wing
rotation is in phase with the stroke reversal and that the
peak thrust is reduced further when the wing rotation is
delayed. As suggested by previous authors, we observe
that the rotational mechanism is important and that the
combined translational and rotational mechanisms are
necessary to describe accurately the force time histories
and unsteady aerodynamics of flapping wings.
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mechanism. They validated their results by comparing the
computational streak lines found in a two-dimensional
hovering airfoil with the experimental smoke visualization, but
they did not directly compare instantaneous forces.

Here, we extend the two-dimensional pitching and heaving
airfoil computations to three dimensions. This study will
address the role of the rotational motion in detail. Also, the role
of the leading edge vortex and the interaction between the axial
flow and this leading edge vortex are investigated. The primary
objectives were (i) to validate the three-dimensional
computations by comparing the forces with the experimental
results of Dickinson et al. (1999) and performing grid-
refinement studies, to verify the hypothesis of Dickinson et al.
(1999) that rotational mechanisms of the wing form the basis
by which the insect modulates the magnitude and direction of
the forces during flight and (ii) to provide data on the forces,
moments and power required for the development of a robotic
fly.

To this end, computations are performed for various phase
angles between the rotation and translation motions, and the
time history of the unsteady forces is compared with the
experimental results. The flow solver we employ is a finite-
element-based incompressible flow solver based on simple,
low-order elements. The simple elements enable the flow solver
to be as fast as possible, reducing the overheads in building
element matrices, residual vectors, etc. The governing
equations are written in Arbitrary Lagrangian Eulerian form,
which enables flow with moving bodies to be simulated. The
details of the flow solver, the rigid body motion and adaptive
remeshing are given by Ramamurti et al. (1995) and are
summarized below.

Materials and methods
The incompressible flow solver

The governing equations employed are the incompressible
Navier–Stokes equations in Arbitrary Lagrangian Eulerian
(ALE) formulation. They are written as:

∇ · v = 0 . (3)

Here, p denotes pressure, and va=v–w, the advective velocity
vector, where v is flow velocity and w is mesh velocity and
the material derivative is with respect to the mesh velocity w.
Both the pressure p and the stress tensor σ have been
normalized by the (constant) density ρ and are discretized in
time t using an implicit time-stepping procedure. It is
important for the flow solver to be able to capture the
unsteadiness of a flow field. The present flow solver is built
as time-accurate from the onset, allowing local time stepping
as an option. The resulting expressions are subsequently

discretized in space using a Galerkin procedure with linear
tetrahedral elements. To be as fast as possible, the overheads
in building element matrices, residual vectors, etc., should be
kept to a minimum. This requirement is met by employing
simple, low-order elements that have all the variables (v,p) at
the same location. The resulting matrix systems are solved
iteratively using a preconditioned conjugate gradient
algorithm (PCG), as described by Martin and Löhner (1992).
The flow solver has been successfully evaluated for both two-
dimensional and three-dimensional laminar and turbulent flow
problems by Ramamurti and Löhner (1992) and Ramamurti et
al. (1994).

To carry out computations of the flow about oscillating and
deforming geometries, one needs to describe grid motion on
a moving surface, i.e. to couple the moving surface grid to the
volume grid. The volume grid in the proximity of the moving
surface is then remeshed to eliminate badly distorted
elements. The velocity of the mesh is obtained in a manner so
as to reduce this distortion. A detailed description of the
various mesh movement algorithms is given in Ramamurti et
al. (1994). In that study, smoothing of the coordinates was
employed for the mesh movement with a specified number of

(2)
dv

+ w · ∇v ,
dt

=
∂v

∂t

(1)
dv

+ va · ∇v + ∇p = ∇ · σ ,
dt
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Fig. 1. (A) Schematic diagram of a hovering Drosophila showing the
orientation of the x,y,z coordinate system. (B) Schematic diagram of
the flapping Drosophila wing. The position of the wing is shown at
three different times during the flapping cycle. The coordinate
system (x′,y′,z′) is fixed to the wing, and the wing rotates about the z′
axis throughout the cycle. R, wing length; φ, wingbeat amplitude.



1509Three-dimensional computational study of insect flight

layers of elements that move rigidly with the wing. In two-
dimensional studies (Ramamurti and Sandberg, 2001), the
grid showed that the elements at the edge of the rigid layers
were very distorted after one cycle of oscillation. This is due
to a residual mesh velocity that is present as a result of the
non-convergence of the mesh velocity field. This will appear
whether a spring-analogy or a Laplacian-based smoothing is
used.

To reduce the distortion of the mesh, the coordinates at the
new time xn+1 were obtained as a weighted average of the
original grid point location at time t=0(x0) and the location of
the point as if it moved rigidly with the body (xn+1

rigid):

xn+1 = x0f(r) + xn+1
rigid[1 − f(r)] , (4)

where the weighting function (f ) is a simple linear function
based on the distance from the center of rotation r, and is given
by:

f(r) = 0 for r < rmin , (5)

f(r) = 1 for r > rmax (6)
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Fig. 2. Kinematics of the flapping wing. (A) Angle of rotation of the
wing about the x axis (roll), and the z′ axis (pitch) for three different
phases between wing rotation and stroke reversal. (B) Translational
velocity of the wing tip and rotational (angular) velocity of the wing
for three different phases.
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Fig. 3. Time history of thrust (A) and drag (B) forces during one
wingbeat. The red lines are from the present study; the blue lines are
from Dickinson et al. (1999). The numbered broken lines in A refer
to times discussed in the text.
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and

The mesh velocity is then obtained using:

The values of rmin and rmax used in this study are 2.0 and
10.0, respectively. To reduce the computational effort, the
experimental arrangement of Dickinson et al. (1999) was
approximated by introducing a symmetry plane. Because of the
proximity of the wing at the beginning of the downstroke and
the rotation of the wing during the pronation phase, the normal
component mesh velocity of the points on the symmetry plane
can become non-zero. This would result in the points being

pulled away from the symmetry plane. To avoid this problem,
the points on the symmetry plane are allowed to glide along
this plane. A similar technique has been employed for the
simulation of torpedo launch from a submarine by Ramamurti
et al. (1995) where the gap between the launch tube and the
torpedo was small.

Results and discussion
The configuration of the hovering Drosophila

melanogaster is shown in Fig. 1A. The coordinate system
(x,y,z) is fixed to the body with the x coordinate normal to the
stroke plane. During the translational phases (upstroke and
downstroke), the wing moves from close to the y axis through
an angle φ, the wingbeat amplitude. The flapping wing
configuration used in the flow simulations is shown in
Fig. 1B. This is based on the experimental arrangement of
Dickinson et al. (1999). Fig. 1B shows the position of the
wing at three different times during the flapping cycle. The
coordinate system (x′,y′,z′) is fixed to the wing, and the wing
rotates about the z′ axis throughout the cycle. The planform
of the wing is derived from the Drosophila wing and is 25 cm
long and 3.2 mm thick. The experimental apparatus consisted
of two wings immersed in a tank of mineral oil. The viscosity
of the oil, the length of the wing and the frequency of the
flapping motion were chosen to match the Reynolds number
(Re) of a typical Drosophila melanogaster, approximately
136. The Re for the present calculations is defined on the
basis of the mean chord of the wing c– (6.7 cm) and the mean

(8)
1

(xn=1 − xn) .w =
∆t

(7)
(r − rmin)

for rmax > r > rmin .f(r) =
(rmax − rmin)
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Fig. 5. Instantaneous particle traces at the beginning of the
downstroke. Particles were released from a rake of rectangular grid
of points in a plane 0.8 mm away from the bottom surface of the
wing. Using the instantaneous velocity field, the positions of these
particles were obtained by integrating the velocity at these rake
points until the length of the traces exceeded a specified length or the
particles ended on a solid boundary or exited the computational
domain. These particle traces are colored according to the magnitude
of the velocity (in cm s–1) at that location. A leading edge vortex is
seen rotating in the counterclockwise direction, and a stagnation line
is shown near the z′ axis of rotation (dark blue traces).
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downstroke. The wing chord is aligned with the x axis of the x,y,z
coordinate system at this instant. The orientation of the y=10 cm
plane for which the velocity vectors are shown in Fig. 6 is indicated.
(B) Position of the wing at t=12.5 s. The orientation of the two planes
for which velocity vectors are shown in Fig. 7 is indicated.
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orientation of the plane relative to wing). L.E., leading edge. The vectors are colored according to the magnitude of absolute velocity (cm s–1)
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wing-tip velocity Ut (ignoring the forward velocity), as
follows:

where c–=2R/AR, Ut=2φnR, R is the wing length (25 cm), AR is
the aspect ratio of the wing, n is the frequency of flapping
motion, φ is the wingbeat amplitude (peak to peak, in rad) and
ν is the kinematic viscosity (115 cSt=115×10–6 m2 s–1).

The kinematics of the wing motion is obtained from the
experiments of Dickinson et al. (1999). The angles of rotation
about the x axis (roll) and the z′ axis (pitch) are shown in
Fig. 2A. The motion of the wing is prescribed using these two
angles. Fig. 2B shows the translational velocity of the wing
tip and the rotational (angular) velocity of the wing. Three
different phases between the translational and rotational
motions were used. In the ‘advanced’ case, wing rotation
precedes stroke reversal by 8 % of the wingbeat cycle;
‘symmetrical’ wing motion is where the wing rotation
occurs symmetrically with respect to stroke reversal; in
‘delayed’ wing motion, rotation is delayed by 8 % with
respect to stroke reversal. Wingbeat amplitude is 160 °,
flapping frequency is 0.145 Hz and the angle of attack at
midstroke is approximately 40 ° during both upstroke and
downstroke.

Symmetrical case

The flow solver described here is employed to compute
the flow past the Drosophila wing undergoing translation

and rotation. First, an inviscid solution was obtained
using a grid consisting of 178 219 points and 965 877
tetrahedral elements. An initial steady-state solution was
obtained in 1500 time steps. The unsteady solution using the
prescribed kinematics (Fig. 2) is then obtained. The surface
pressure on the wing is integrated to obtain the forces on the
wing along the three axes (Fx, Fy, Fz). The thrust T and the
drag D forces are then computed as T=–Fx and
D=√(Fy2+Fz2), respectively. These forces are compared with
those obtained from the experiments of Dickinson et al.
(1999).

The unsteady computation was carried out for five cycles of
oscillation. Fig. 3 shows the thrust and drag forces during one
cycle of the wingbeat and compares the values with those of
Dickinson et al. (1999). The present computations capture the
peak forces well. The mean thrust force is approximately
0.318 N, and the mean thrust coefficient Cr

– is 1.317. The mean
drag force is 0.375 N and the drag coefficient Cp

– is 1.55. The

(9)
c–Ut

,Re =
ν
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Fig. 9. Particle streaklines produced during the downstroke at
t=12.93 s. The particles were release from a rake of rectangular grid
on a plane 3.0 cm above (A) and 3.5 cm below (B) the wing parallel
to the wing and near the leading edge. The absolute velocities of the
particles (in cm s–1) are given in the color scale.
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force coefficients were obtained using the following non-
dimensionalization:

where T– and D– are the mean thrust and drag forces, respectively,
and r22(s) is the second moment of the dimensionless area of the
wing (0.40). The variation of these forces during the translational
phase of the wing is also predicted correctly, but the magnitude
of the thrust force during the downstroke is higher than that of
Dickinson et al. (1999). The kinematics is symmetrical between
the up- and downstroke, so the resultant force should also be
symmetrical. That this is not the case may be due the mechanical
play in the experimental arrangement, as suggested by M. H.
Dickinson (personal communication). To understand the
different mechanisms occurring during the wingbeat cycle, we
can divide the cycle into two rotational and two translational
phases. The rotational phase near the beginning of the
downstroke (pronation) occurs between time t0 and t3 (Fig. 3A).
Thrust decreases between t0 and t1, then increases until t2. This
behavior can be explained by a rotational mechanism. The wing
continuously rotates in a counterclockwise direction producing a
circulation pointing nearly along the +y direction. Between t0 and
t1, the wing is translating in the –z direction, resulting in a force
pointing in the –x direction, thus producing a peak in thrust at t0.

If a rotational mechanism alone were present, the thrust should
continue to decrease until t3; in fact, the thrust force increases
between t1 and t2. This happens after the wing changes direction
at the start of each half-stroke. Dickinson et al. (1999) attribute
this increase in thrust to a wake-capture mechanism in which the
wing passes through the shed vorticity of the previous stroke.

The position of the wing at the beginning of the downstroke
is shown in Fig. 4A. The chord in this case of symmetrical
rotation is aligned with the x axis at this instant. We found a

(11)
D–

ρUt
2c–Rr2

2(s)

,CD =
1

2
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1

2

Fig. 11. Particle traces prior to the end of the downstroke, t=14.65 s.
The particles were release from a rake of rectangular grid on a plane
3.2 cm above the wing parallel to the wing and near the leading edge.
Traces are colored according to the magnitude of absolute velocity
(in cm s–1).

A B

C Fig. 10. Flow patterns during the middle of the downstroke at t=13.79 s.
(A) Particle traces (streaklines). The particles were released on a plane parallel
to the wing and 3.9 cm below it, and velocity vectors are colored according to
the magnitude of absolute velocity (in cm s–1). (B) Velocity vectors on the xy
plane at z=20 cm. Velocity vectors are colored according to the magnitude of
absolute velocity (in cm s–1) and are of constant length. (C) Pressure contours.
Pressure is non-dimensionalized with respect to the dynamic head.



1514

separation bubble attached to the leading edge during the
interval t0–t1. Particles were released from a rake of rectangular
grid of points in a plane 0.8 mm away from the bottom surface
of the wing. Using the instantaneous velocity field, the positions
of these particles were obtained by integrating the velocity at
these rake points in both the positive and negative velocity

directions until the length of the traces exceeded a specified
length or the particles ended on a solid boundary or exited the
computational domain. These instantaneous particle traces are
colored according to the magnitude of velocity at that location.

Fig. 5 shows the leading edge vortex with vorticity oriented in
the +y direction. This leading edge vortex was created at the end
of the preceding upstroke. This vortex is located below the wing
and is rotating in the counterclockwise direction, which can be
seen from the velocity vectors shown in Fig. 6A. A possible
explanation for the increase in thrust between t1 and t2 is that the
wing moving through this wake benefits from the shed vorticity.
As the wing moves through this vortex during the downstroke, it
produces a stagnation region at the bottom of the wing near the
z′ axis (Fig. 5), resulting in an increase in thrust.

At the beginning of the downstroke (t1), the flow separates at
the leading edge and reattaches on the bottom of the wing as
shown in Fig. 6A. As the wing continues to move down, between
t1 and t2, the separation point of this bubble moves back along
the wing chord (Fig. 6). During the interval t2–t3, we observe a
trailing edge separation bubble forming (see Fig. 7A–C). A
similar separation region forms at the wing tip, as can be seen in
Fig. 7D–F. Fig. 4B shows the position of the wing at t=12.5s.
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Thrust production reaches a local minimum around this instant
(Fig. 3). In Fig. 7A,D, a large recirculation region can be seen in
the wake of the wing. This separated flow from the wing tip and
trailing edge will result in a higher pressure on the upper surface
of the wing and, hence, a reduction in the thrust. During the
interval t1–t3, the magnitude of the translational acceleration of
the wing decreases while that of the angular acceleration
increases (symmetrical phase, Fig. 8).

Between t2 and t3, the magnitude of the translational
acceleration is large enough to overcome the rotational effect
and, when the angular acceleration becomes large enough, the
rotational mechanism dominates, resulting in the observed
reduction in thrust until t3. Between t3 and t4, the translational
effect should result in a constant thrust because the
translational acceleration is almost constant during this period.
The rotational effect produces an increase in thrust between t3
and t4, with a plateau in the middle, which occurs when the
trailing edge vortex is shed. Similar trends are observed during
the supination phase prior to the beginning of the upstroke
(t4–t5) and at the beginning of the upstroke (t5–t7).

Fig. 9 shows the instantaneous traces or streaklines of
particles released 3.0 cm above or 3.5 cm below the wing in a
plane parallel to the wing and near the leading edge. In Fig. 9A,
a wing tip vortex can be seen, but no leading edge vortex is
visible above the wing surface. A leading edge vortex spinning
in the counterclockwise direction is found below the wing
surface (Fig. 9B). Particle traces near the mid stroke are shown
in Fig. 10A. At this instant, the wing rotation axis z′ is aligned
with the body coordinate z (see Fig. 1B). Here, we can see the
beginnings of the leading edge vortex on the upper surface of
the wing that is also shown by the velocity vectors in the xy plane
at z=20 cm (Fig. 10B). Fig. 10C shows the pressure contours on
the upper surface of the wing. The pressure is non-
dimensionalized with respect to the dynamic head, GρUt2, where
ρ is the density of the mineral oil (880 kg m–3) used in the
experiments of Dickinson et al. (1999). A region of constant

pressure is present from the root of the wing up to approximately
60 % of the span and extending to the trailing edge. Fig. 11
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which wing rotation is delayed with respect to stroke reversal. The
results from the present computational model are compared with the
experimental data of Dickinson et al. (1999).
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shows the particle traces prior to the end of the downstroke.
Here, the leading edge vortex is clearly seen on the upper surface
of the wing.

Grid-refinement study

To assess the sensitivity of our computational results, we
carried out a grid-refinement study. The resolution of the grid
in the vicinity of the wing was doubled. The computations were
carried out using a grid consisting of approximately 238×103

points and 1.3×106 tetrahedral elements. The time step was
halved for this computation. The computed thrust forces are
shown in Fig. 12. It can be seen that the agreement between
the two analyses is very good; even the coarse grid produces
adequate resolution.

Viscous effect

To the study the effects of viscosity, a laminar viscous
computation was carried out, for Re=120. Because of the lack
of information on the transition to and the presence of
uncertainties in turbulence modeling, laminar flow was assumed
first. Fig. 13 shows the time history of the thrust and drag forces
for the inviscid and the viscous cases. The finer mesh employed
in the grid-refinement study (see above) was used for this
computation, and the mesh size near the leading and trailing
edge of the wing was approximately
0.02. It is clear that viscous effects are
minimal, and the thrust and drag forces
are dominated by translational and
rotational mechanisms. Hence, inviscid
computations were carried out to study
the effect of phasing between the
translational and rotational motions.

Effect of phasing

Fig. 14 compares the forces produced
when the rotational motion precedes
stroke reversal (‘advanced’ case) with
those of Dickinson et al. (1999). Again,
the agreement with the experimental
results is good. In this case, the peak in
the thrust force is achieved prior to the
beginning of the downstroke at t=10.76s
and is approximately 0.56N compared
with a value of 0.47N for the
symmetrical case (see Fig. 3A). This

can be explained by the rotational mechanisms discussed above.
The rotational effect diminishes prior to the beginning of the
downstroke, producing a negative thrust of 0.2N. The thrust then
increases until t=11.98s. During this period, the wing moves
through the wake created during the upstroke, as in the
symmetrical case, resulting in a high pressure on the bottom of
the wing. The velocity vectors near the leading edge are shown
in Fig. 15. During this period, both the translational and rotational
accelerations are in phase (Fig. 8). The peak thrust is
approximately 0.48N compared with a value of 0.28N for the
symmetrical case. Thereafter, the combined effect of rotational
and translational motions produces reduced thrust until a second
peak arises due to the rotational motion at t=14.23s, prior to the
beginning of the upstroke. The mean thrust force for one
wingbeat cycle is approximately 0.312N, and the mean thrust
coefficient CT

– is 1.291. The mean drag force is 0.457N and the
drag coefficient CD

– is 1.89.
In the ‘delayed’ case, where wing rotation is delayed with

respect to stroke reversal, the rotational motion does not
produce any thrust prior to the beginning of the downstroke
(Fig. 16A). The mean thrust force for one wingbeat cycle is
approximately 0.206 N and the mean thrust coefficient Cr

– is
0.854. The mean drag force is 0.457 N and the drag coefficient
CD
– is 1.496 (Fig. 16B). In the initial period following stroke

R. Ramamurti and W. C. Sandberg

L.E.

z

x
L.E.

z

x

T.E.

z

x
T.E.

z

x

A B

C D
t=11.81 s t=12.07 s

t=12.59 s t=12.76 s

Fig. 17. Velocity vectors near the leading
edge (A,B) and the trailing edge (C,D)
early in the downstroke for the ‘delayed’
case of wing motion in which rotation is
delayed relative to stroke reversal. Velocity
vectors are shown in the xz plane at
y=10 cm. The vectors are colored
according to the magnitude of velocity
(cm s–1) and are of constant length. L.E.,
leading edge; T.E., trailing edge.
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reversal, the rotational effect continues to produce a negative
thrust. Fig. 17A,B shows the velocity vectors near the leading
edge. The leading edge vortex from the upstroke is not present
after t=12.05 s. In this case, the high pressure on the bottom of
the wing together with the orientation of the wing cause a
reduction in thrust. Subsequently, the combined translational
and rotational mechanisms result in an increase in thrust. At
t=12.8 s, we observe a plateau region in the thrust (Fig. 16A).
During this period, the presence of a trailing edge vortex on the
upper surface (Fig. 17C,D) increases the pressure on the upper
surface of the wing, resulting in a temporary loss of thrust; when
this vortex leaves the trailing edge, thrust increases again.

Fig. 18 shows the magnitude of velocity in the xz plane at
y=10 cm at the beginning of the downstroke for the three cases
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Fig. 18. Magnitude of velocity in the wake of the wing at the
beginning of the downstroke for the three cases of wing motion:
rotation advanced (A), symmetrical (B) or delayed (C) relative to
stroke reversal. Velocity contours are shown in the xz plane at
y=10 cm. The contours are colored according to the magnitude of
absolute velocity (in cm s–1).

Fig. 19. Spanwise contribution to thrust for the ‘symmetrical’ case of
wing rotation relative to stroke reversal. The thrust generated at three
spanwise locations (quarter, half and three-quarter span) was
calculated and is shown together with the total thrust produced by the
wing and half the total thrust.
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Fig. 20. Moments about the wing coordinate system (x′,y′,z′) for the
‘symmetrical’ case of wing rotation. Mx′, My′, Mz′, moment about
wing rotation axis x′, y′ and z′, respectively.
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of wing motion in the wake created by the wing. Velocities are
greatest for the advanced case and smallest for delayed
rotation. The wing moving through the higher-velocity fluid
therefore produces an additional thrust in the advanced rotation
case, whereas the wing for the delayed case intercepts the flow
at an angle that produces negative thrust. Similar velocity fields
can be seen in the particle image velocimetry data of Dickinson
et al. (1999).

Mechanical aspects of the flapping wing

The results of the present study were then used to derive the
input forces, moments, power requirement and efficiency for
the creation of a robotic fly. First, the forces on the wing were
integrated to a particular spanwise location from the root. The
forces were obtained by marking this location and then
computing the force contribution of all the surface elements on
the wing up to this location. This location was then tracked
using the prescribed rigid body motion. The elements
contributing to the force up to this location are recomputed as
the surface mesh is regenerated due to the motion. Three
different spanwise locations were chosen: quarter span, half
span and three-quarter span of the wing. Fig. 19 shows their
force contributions compared with the total contribution of the
wing and half the total thrust force generated by the wing for
the symmetrical rotation case. It is clear from this figure that
nearly half the thrust is generated by the outer 25 % of the wing.

Moments about the wing root in the wing coordinate system
(x′,y′,z′) were then computed from the moments about the fixed
body coordinates and the prescribed kinematics of the wing
(Fig. 20). The moment about the wing rotation axis z′ (Mz′) is
nearly zero throughout the cycle, implying that there is no
torsional load on the system. The variation of moment about
the x′ (=x) axis (Mx′) is anti-symmetrical because only one
wing is considered for the moment computation.

The power input to the wing Pin is computed by:

where F is the force vector and wwing is the velocity of the
surface of the wing. Fig. 21 shows the instantaneous power
requirement for one wing for the three phases of wing rotation.
The mean power required is 0.024 W for the symmetrical case,
0.039 W for the advanced case and 0.024 W for the delayed
case. The mean thrust for the symmetrical case is 0.318 N;
values for the advanced and delayed cases are 0.312 N and
0.206 N, respectively.
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