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Summary

A computational fluid-dynamic analysis was conducted When half the wing rotation is conducted near the end
to study the unsteady aerodynamics of a model fruit fly of a stroke and half at the beginning of the next stroke
wing. The wing performs an idealized flapping motion (symmetrical rotation), the lift at the beginning and near
that emulates the wing motion of a fruit fly in normal  the end of a stroke becomes smaller because the effects of
hovering flight. The Navier—Stokes equations are solved the first and third mechanisms above are reduced. The
numerically. The solution provides the flow and pressure mean lift coefficient is smaller than that of the rotation-
fields, from which the aerodynamic forces and vorticity advanced case, but is still 80% larger than the quasi-
wake structure are obtained. Insights into the unsteady steady value. When the majority of the rotation is
aerodynamic force generation process are gained from the delayed until the beginning of the next stroke (rotation
force and flow-structure information. delayed), the lift at the beginning and near the end of a

Considerable lift can be produced when the majority of stroke becomes very small or even negative because the
the wing rotation is conducted near the end of a stroke effect of the first mechanism above is cancelled and the
or wing rotation precedes stroke reversal (rotation third mechanism does not apply in this case. The mean
advanced), and the mean lift coefficient can be more than lift coefficient is much smaller than in the other two
twice the quasi-steady value. Three mechanisms are cases.
responsible for the large lift: the rapid acceleration of the
wing at the beginning of a stroke, the absence of stall
during the stroke and the fast pitching-up rotation of the Key words: insect, flight, fruit fly, Drosophila sp., wing,
wing near the end of the stroke. computational fluid dynamics, unsteady aerodynamics.

Introduction

It has been shown that conventional aerodynamic theoryhat this was a new mechanism of lift enhancement, prolonging
which was based on fixed-wing aircraft and steady-state flothe benefit of the delayed stall for the entire stroke. This
conditions, cannot explain the generation of large lift by thenechanism of lift enhancement was confirmed by
wings of small insects (for reviews, see Ellington, 1984agomputational fluid-dynamic analyses (Liu et al., 1998; Lan
Spedding, 1992). In the past few years, a great deal of wodnd Sun, 2001).
has been conducted to reveal the unsteady mechanismsRecently, Dickinson et al. (1999) conducted force
involved. Dickinson and Go6tz (1993) measured thameasurements on flapping robotic fruit fly wings and showed
aerodynamic forces of an aerofoil started impulsivelythat a large lift force was maintained during the translational
(Reynolds numbelRe=100) and showed that the lift was phases of the up- and downstrokes and brief bursts of high lift
enhanced by the presence of a dynamic stall vortex. But lificcurred during stroke reversal when the wing was rotating.
enhancement was limited to only approximately 2—3 chordhey explained the large lift force during the translational
lengths of travel because of the shedding of the dynamic stadhases by the delayed-stall mechanism of Ellington et al.
vortex. The wings of most insects travel approximately fiv§1996) and suggested some possible explanations for the
chord lengths during an up- or downstroke (Weis-Fogh, 1973)arge lift force recorded during wing rotation. Only force

Ellington et al. (1996) performed flow-visualization studiesmeasurements were conducted by Dickinson et al. (1999); if
on a hawkmothManduca sextaising a mechanical model of simultaneous flow-field information had been obtained, further
the hawkmoth wings. They discovered that the dynamic stalhsights into the high lift generation process could be obtained.
vortex on the wing did not shed during the translational motion In the present paper, we conduct a computational fluid-
of the wing in both the up- and downstrokes because it wadynamic analysis on unsteady aerodynamic force generation
stabilized by a strong spanwise flow. The authors suggestéok a model fruit fly wing in flapping motion. Unsteady
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wherec is the mean chord length, the wing-span i< 2the
total wing lengthl (the distance between tlyeaxis and the
wing tip) (Fig. 1A) is 2.76, andro is 1.6 or 0.58.

The flapping motion considered in the paper is an idealized
one, similar to that considered by Dickinson et al. (1999). A
stroke consists of the following three parts, as shown in
Fig. 1B: pitching-down rotation and translational acceleration
at the beginning of the stroke, translation at constant speed and
constant angle of attack during the middle of the stroke, and
pitching-up rotation and translational deceleration at the end of
the stroke. In normal hovering flight, the wing motion during
the upstroke is identical to that during the downstroke. The
translational speed is denoted tyy which takes a constant
value U (the reference velocity) except at the beginning and

B . near the end of a stroke. During the deceleration at the end of
Downstroke a stroke and the acceleration at the beginning of the following
W) stroke,ut is given by:
‘\ wr=0.5[1+cos(1—-T1)/AT]; TISTST1+ATy, D
- whereuct=uy/U, t=t*U/c, wheret* is (dimensional) timeTz is
Upstroke

the time at which the deceleration near the end of a stroke starts
ﬁ / f} and 11+At; is the time at which the acceleration at the
beginning of the next stroke finishes. In the calculatigh,
Fig. 1. Sketches of the reference frames and wing motioroxXygis determmes the .aZImuthaI-ro'tatlonaI sPeeq of the wing.
an inertial frame, with the&z plane in the stroke plane'xy'Z is a Denotlng the az'mmhal'mtlat'onal sPe?d @s we have
frame fixed on the wing, with the axis along the wing chord and W(T)=Uro, wheret is non-dimensional time. The angle of
theZ axis along the wing spat is the azimuthal angle of the wing, attack of the wing is denoted by which also takes a constant
a is the angle of attack arlds the distance between tieaxis and  value except at the beginning or near the end of a stroke.
the wing tip or the wing length. (B) The motion of a section of theFollowing the experimental work of Dickinson et al. (19%99),
wing. is set as 40° in the present study. Around stroke reversal,
changes with time, and the angular velodityjs given by:
aerodynamic forces and flow fields are obtained . .
simult)z;neously by numerical solution of the Navier—Stokes a"=0.500"{1 ~cos[A(T-T)/AT]};  T=T<THATr, (2)
equations. The high lift generation process can be explainaghered*= ac/U, ao* is a constanty, is the non-dimensional
further on the basis of force and flow-field information. Thetime at which the rotation starts aid, is the time interval
flapping motion of normal hovering flight (Fig. 1), similar to over which the rotation lasts. In the time inter&ad, the wing
that used by Dickinson et al. (1999), is considered. rotates froma=40° to a=140°. Therefore, whem\t; is
specified, dpt can be determined (around the next stroke
) reversal, the wing would rotate from¥140 ° toa=40°, so the
Materials and methods sign of the right-hand side of equation 2 should be reversed).
The model wing and its kinematics The Reynolds number is defined Re=cU/v, wherev is the
As in Dickinson et al. (1999), the planform of the wing kinematic viscosity, an&e=136 is used here, as in Dickinson
considered in the present study is approximately the same asal. (1999), as typical of a fruit fly wing. A stroke angle of
that of a fruit fly Drosophilasp.) wing (see Fig. 2B). The 155° is assumed, approximately the same as that used by
wing section is an ellipse whose thickness is 12% of th®ickinson et al. (1999). On the basis of the stroke angle, the
aerofoil chord length, and the radius of the leading and trailingon-dimensional time taken for one cycle (two strokes) is
edges is 0.2% of the aerofoil chord length. Followingapproximately 10.8. In the calculation, the wing starts the
biomechanics convention, the azimuthal rotation of the windlapping motion in still air. The calculation is stopped when
about they axis is called ‘translation’ and the pitching rotation periodicity in the aerodynamic force and flow structures is
of the wing near the end of a stroke and at the beginning @jpproximately reached.
the following stroke is called ‘rotation’. The speed at the span
locationrg is called the translational speed of the wing, and The Navier—Stokes equations and the computational method
ro is the radius of the second moment of wing area and is In the flapping motion considered in the present paper, the
determined byo=(/s2dS'S)}, wherer is the radial distance and wing performs translational motion (azimuthal rotation) and
Sis the wing area. For the model fruit fly wing consideredpitching rotation. To calculate the flow around a body
the distance between the wing root and yhexis is 0.36, performing unsteady motion (such as the present flapping wing),
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one approach is to write and solve the governing equations inTde transformed equations written in conservative form are as
body-fixed, non-inertial frame of reference with inertial forcefollows:
terms added to the equations. An advantage of this approach

that the coordinate transformation that generates a bod 0 LAD o tBU o [LH

— B-0+— G0+ G-0=0, (8)
conforming computational grid does not need to vary with time 06 WO on@¥o ¢ PO
and the grid is generated only once. But, in this approach, some
treatment is needed to handle the far-field boundary conditior 0Q

0
when the bpdy .is rqtating (yelocity at the far-field boundary ﬁ'*ﬁ(e‘al) + an (f-f) + 6Z 9-g»=0, (9
tends to be infinite), introducing extra terms into the equations. _ _ _
Another approach is to write and solve the governingvheredis the Jacobian of the transformation and:

equations in an inertial frame of reference. By using a time- A=Exu+E+ Ew (10)
dependent coordinate transformation and the relationship

between the inertial and non-inertial frames of reference, a body- B=nxu+nyv+nzw, (11)
conforming computational grid in the inertial frame of reference C=Qwu+ Qv+ Law (12)

(which varies with time) can be obtained from a body-
conforming grid in the body-fixed non-inertial frame, which

needs to be generated only once. This approach does not ne _i 0 (13)
special treatment for the far-field boundary conditions and 1 E(
moreover, since no extra terms are introduced into the equatior
existing numerical methods can be applied directly to the
solutions of the equations. This approach is employed here. Dlxp +UA+ G D
The non-dimensionalized three-dimensional incompressibli yp + VA+ Etv (14)
unsteady Navier—Stokes equations, written in the inertia zp+wA+Eth
coordinate systero,x,y,z (see Fig. 1A), are as follows:
AL 3) f= %XE:\L:S: :]h\l: : (15)
, = y t
O’
ax 6y 0z J 0+ WB+ Nws
gu aU V@JFW@ @Xp+uC+ZtuD
ot ax ay 0z § Jp+VCH+ Ztv (16)
d 1 a2 2 2,0
P, 6u+g+ﬂm, @ zp+wC+ZtWD
“ox " Re 0ox2  0y2  0y2[]
g 1§ Jug+ (‘M )uq + (@ I Jug O
ov ov ov av _1 O
RSV AN ev-gra B )ve+ (@M v+ (@ @)ve o (17)
ot Uox oy Moz” [ @ )we+ (@ -0 Iwn + (@ I I)wg
ap 1 g2y 92v 9L
+ . .
o e e T oy tap © g 0B U (@0 Jun (02 ) O
fo=rg %m B e+ (@ M v+ (@ @) o (18)
ow ow  ow  ow [ @ )weg+ (@ @ )wy+ (@ [ )weg
—+UuU—+V—+tw—=
ot ox ay 0z
o, 1 Do oPw oAl g Q@)U+ (@0 un + (@2 e O
"oz TRe oo T oy Toye © 0= oo %m B ve+ (@M v+ (@ @ )ve 5 (19)
[ g )weg+ (4 @ )wy+ (I 1] )Wy

where u, v and w are three components of the non- , ) .
dimensional velocity ang is the non-dimensional pressure. Where the symbdll is the gradient operator, and the velocity
In the non-dimensionalization), a constant velocity given gradients and the metrics of the transformation were written

above,c, the mean chord length of the wing, acit) are 25

taken as the reference velocity, length and time, respectivel ou
Equations 3-6 are transformed from the Cartesian coordina Fi =Uug, etc. (20)
system X,y,zt) to the curvilinear coordinate syste&n,¢,1) €
using a general time-dependent coordinate transformation i
the form: 0%
— =¢&x, etc. (22)

E=E(xy.zt), n=nxyzt), ={xyzt) and t=t. (7) 0x
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'F|'g1. 1A also. shpws a .wmg—flxed coordinate systermr ’, W= 55##& X w&“\‘““
(o', X,y',Z). The inertial coordinate®,y,z) are related to the ?’0‘"“"3‘3’3‘:‘:‘%‘5‘:" =5§§$§M‘:‘“‘“‘
. . . . oo N
wing-fixed coordinates o{,x,y,Z) through the following Wzg&’:}%&%};ﬁ i%}i@g}gtfzgsts:\\\\‘\““‘
; . SSSS RS P §
relationship: L R ssssssssssss R A
elations p ......"' """""":}::" 5 SS ~:¢;§§§§§§§g‘\“““‘“‘“‘““‘“‘ “

etk
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. . . 4};277,’,""

[zO cosusing  —sinasing cosh¥O [@cosp TS g

I OJ ‘ ““““““‘\‘\\“\ 2 %%%%“‘:“" "".

22 SR S Sy

; ; A . SRS I eSS
wherea is the distance betweenando'. Using equation 22, ““:‘Wsﬁ. -,WO {7

. . . . . (I~ o
the metrics in the inertial coordinate syster®y,&,&2.E1), “Q‘Q’Q’“’#.‘#i." =‘»".'¢,'¢'¢'¢'0’

(Nx.Ny.NzNt), x,Ly,{z,Lt), which are needed in equations 8 and
9, can be calculated from those in the body-fixed, non-inerti
coordinate systeméx,&y.,&2), (Nx,Ny,Nz), Cx.{y,{z), Which
need to be calculated only once. As the wing moves, tr
coordinate transformation functions vary witky(zt) such
that the grid system moves and always fits the wing. The wing
fixed non-inertial frame of reference' «',y',Z) is used in the
initial grid generation and also in the description of the
calculated results.

Equations 8 and 9 are solved using the algorithn
developed by Rogers and Kwak (1990) and Rogers et ¢
(1991) and are in the same form as that solved by Rogers
al. (1991). The algorithm is based on the method of artificie S
compressibility, which introduces a pseudotime derivative o
pressure into the continuity equation. Time accuracy i
the numerical solutions is achieved by subiterating ir
pseudotime for each physical time step. The algorithm use
a third-order flux-difference splitting technique for the
convective terms and the second-order central difference fiFig. 2. Portions of the body-conforming grid near the wing surface.
the viscous terms. The time derivatives in the momentur(A) In a sectional plane; (B) in thg=0 plane (see Fig. 1A for a
equation are differenced using a second-order, three-poirdefinition of this plane).
backward-difference formula. The algorithm is implicit and
has second-order spatial and time accuracy. For details
the algorithm, see Rogers and Kwak (1990) and Rogers &olutions must be provided. In the present calculations,
al. (1991). numerical uncertainties are mainly associated with time

At the inflow boundary, the velocity components arediscretization (i.e. time step values), spatial resolution and far-
specified as free-stream conditions while the pressure field boundary location. The effects of these variables on the
extrapolated from the interior. At the outflow boundary, thecomputed solutions will be discussed below together with the
pressure is set equal to the free-stream static pressure and ¢atculated results.
velocity is extrapolated from the interior. On the wing surface,
impermeable wall and no-slip boundary conditions were Evaluation of the aerodynamic forces
applied, and the pressure on the boundary is obtained throughOnce the Navier—Stokes equations have been numerically
the normal component of the momentum equation. solved, the velocity components and pressure at discretized

A body-conforming grid was generated by using a Poissogrid points for each time step are available. The aerodynamic
solver based on the work of Hilgenstock (1988). The gridorce acting on the wing arises from the surface pressure and
topology used was an O-H grid. A portion of the grid used fowiscous stress along the wing surface. Integrating the pressure
the wing is shown in Fig. 2. and viscous stress over the wing surface at a time step gives

A code based on the above numerical method was writtethe total force acting on the wing at the corresponding time
by Lan and Sun (2001), and it was verified by the analyticahstant. The lift of the wingl., is the component of the total
solution of the boundary layer flow on a flat plate and validatetbrce perpendicular to the translational velocity and is positive
by comparing the calculated and measured pressumhen itis directed upwards. The dréy,is the component of
distributions on a wing. When the code is used in the presetite total force parallel to the translational velocity and is
study, before making observations pertaining to the physicglositive when directed opposite to the direction of the
aspect of the flow, estimates of the accuracy of the computddhnslational velocity of the downstroke. The lift and drag
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coefficients, denoted b@_ and Cp, respectively, are defined 15; A Upsroke Downstroke
as follows: 1t : : <1
L 2 05} . N
= S  OR” . emmmmmmnenee o 0
CL= 0.50U%5 ’ (23) g o5 N g
-1} -1
D -15 & S
Cp= (24) 17 18 19 20 24 22 23 24 25 26 27
0.50U%S’ t
3+B _
wherep is the fluid density. — -—- Grid 1
--- Grid2
—Grid3

Results and discussion
A typical case

First, we considered a case (henceforth called case A) wi
the following conditionsAt,=3.48, approximately the same
as in Dickinson et al. (199951:=2.6, approximately twice -1r
that used by Dickinson et al. (1999) (smaller values will be 18 20 22 22 26
used in future cases), the wing-rotation axis is at &@m T
the leading edge of the wing and most of the wing rotatiol C

occurs near the end of a stroke with only a very small portio 4r
at the beginning of the next stroke (wing rotation precede A
stroke reversal). As found by Dickinson et al. (1991), wher o 0 <
wing rotation preceded stroke reversal, a large lift force coul \/—\/
be produced. Fig. 3 gives the translationgi)(and rotational -4r
(a*) velocities of the wing and the IifC() and drag Cp)
coefficientsversust during one cycle (the time constants,
andTtr in equations 1 and 2 can be read from Fig. 3A). The
contours of the non-dimensional spanwise component cFig. 3. Wing translationalu*) and rotational ¢*) non-dimensional
the vorticity wy are given in Fig.4 (in the non- velocities (A), lift coefficientCL (B) and drag coefficien€Cp (C)
dimensionalizationl) andc were used as reference velocity Plotted against non-dimensional time In B, the quasi-steady lift
and length, respectively) and sectional streamline plots (secCefficient is also plotted for comparison.
in theo,x,y',Z frame moving with the wing) in Fig. 5. These
figures will be used to explain the aerodynamic force
behaviour. As noted above, since the flow conditions in the down- and
In Fig. 3, the results calculated using three different gridsipstrokes are essentially the same, only one stroke is
are plotted. Grid 1 had dimensionsx83x35 in the normal discussed here. At the beginning of the strokel§.7-18),
direction, around the wing section and in the spanwis€L increases to peak at approximately 1.2, and variati@pin
direction, respectively, grid 2 was %27x49 and grid 3 was is small. During this period, the wing accelerates towards the
93x109x71. The normal grid-spacings at the wall for the aboveight and rotates clockwise by only a small angle, i.e. from
three grids were 0.003, 0.002 and 0.002, respectively. The=134.4° at1=16.7 toa=140° att=17.5 (see Fig. 4A,B);
outer boundary for all three grids was set at 10 chord lengthus, its motion is mainly translational acceleration. In fast
from the wing, and the time step used was 0.02. There was onthanslational acceleration, as shown by Lan and Sun (2001), a
a slight difference between the results calculated using gridspgeak inC. could be produced as a result of the generation of
and 2 and almost no difference in the results for grids 2 and 8trong vorticity layers in a short period, giving a large rate of
Calculations were also performed using a larger computationahange of fluid impulse. As can be seen in Fig. 4C, at the end
domain. To isolate the effects of domain size, the outeof the acceleration, a new layer of positive vorticity has
boundary was sited farther from the wing by adding more grifiormed around the leading edge and upper surface of the wing,
points in the normal direction of grid 3. The results showe@&nd a new layer of negative vorticity has formed on the lower
that siting the outer boundary more than 10 chord lengths awayrface of the wing extending beyond its trailing edge (starting
from the wing had no effect on the results. It was concludedortex).
that a grid size of 98L09x71 was appropriate for the present Betweent=18 andr=19.4, the wing translates (azimuthally
study. rotates) with constant speedoat40 ° (wherea'=180 °-e and
Variations inCL andCp over a flapping cycle in the present a=140 °); a largeC,, approximately 1.3, is maintained. If the
study were similar to those of Dickinson et al. (1999) (see theiving is not in azimuthal rotation but is moving like an
figs 1D and 3A). A comparison of the calculated lift with theaeroplane wing, as shown by Lan and Sun (2001), stall would
measured values will be given below. accur at approximately two chord lengths of travel after

18 20 22 24 26
T
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Fig. 4. (A-H) Vorticity plots at three spanwise locations at various times during one stoke.and r3 denote locations 0.75, 0.5 and
0.25wing lengths from the wing root, respectivelynon-dimensional timey, angle of attack. Solid and broken vorticity lines indicate positive and
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1=19.4,0=140°
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negative vorticity, respectively. The magnitude of the non-dimensional vorticity at an outer contour is 1. Starting freandbetour, for the first 21
contours, the contour interval is 0.2, for the next 30 contours, the contour interval is 0.5, and for the remainderafr)at@oontour interval is 5.
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Fig. 5. Sectional streamline plots at three spanwise locations at various times during oneistrokedrs denote locations 0.75, 0.5 and
0.25wing lengths from the wing root, respectivalynon-dimensional timeg, angle of attack (the spatial interval of the incoming streamlines
can be seen from the right of each plot).

starting, or at=18.7, andC_ would start to decrease at about around the leading edge of the wing and a new layer of
this time. In the present case (Figs 4C—E, 5A-C), the dynamitegative vorticity near the trailing edge of the wing. From
stall vortex does not shed, stall is absent and a l@rgean  1=20.8 to1=22.1, the wing is in deceleration, causing sharp
therefore be maintained; this is the ‘stall-absence mechanismdecreases irC. and Cp (Lan and Sun, 2001). The above
revealed by Ellington et al. (1996). discussion shows that pitching-up rotation causesind Cp

Near the end of the stroke, betwaefi9.4 and=22.1, large to increase rapidly, and deceleration causes them to decrease
values ofC_ andCp occur, peaking at=20.6 (Fig. 3). From rapidly, forming the large peaks @ andCp in the last part
1=19.4 tot=20.6, while still translating with constant speed,of the stroke.
the wing rotates (pitches up) rapidly. This motion, fast When the wing moves like an aeroplane wing under steady-
pitching-up while translating with constant speed, results irstate conditions, at the same Reynolds number and angle of
sharp increases i and Cp, also due to the generation of attack Re=136 anda=40 °), the calculate@_ is 0.59. Vogel
strong vorticity layers over a short period (Lan and Sun, 2001§1967) measured the forces on a thin plate cut to the shape of
As seen in Fig. 4F, a new layer of positive vorticity is formeda fruit fly wing in a wind tunnel, a@Re=200 anda=40°, C.
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A Upstroke Downstroke

17 18 19 20 21 22 28 24 25 26 27

18 20 22 24 26

18 20 22 24 26

Fig. 6. Effects of the period of acceleratioAty§. The wing
translational () and rotational*) non-dimensional velocities (A),
lift coefficient CL (B) and drag coefficien€p (C) plotted against

non-dimensional time.

was approximately 0.6. In fact, from our steady-state

3F
2

[EEY

18 20 22 18 20 22
T T

Fig. 7. Effects of the wake from previous strokes. Oftand drag

Cp coefficients plotted against non-dimensional timduring one
stroke. The solid lines represent results replotted from Fig. 6; the
dashed lines represent results from a wing started in still air.
ATy, period of acceleration.

wing, the largeCL in the middle of the stroke by the stall-
absence mechanism and the la@gepeak near the end of the
stroke by the rapid pitching-up rotation of the wing while in
constant-speed translation. However, Dickinson et al. (1999)
gave somewhat different explanations for @iepeaks at the
beginning and near the end of the stroke. These explanations
are investigated in greater detail below.

Effects of acceleration at the beginning of a stroke and effects
of the wake of the previous strokes

calculations and from the measurements of Vogel (1967), the Fig. 6 presents results for whém: is varied in equation 1

maximum value of C_. at steady-state conditions

approximately 0.6. For reference, we used this maxi
CL value and the translational velocity of the wing
(velocity atrg), to estimate the quasi-steady lift of

wing, 0.6(0.pu2S), and therefore the quasi-steady
coefficient, 0.6(+2/U?). The quasi-steady lift coefficient
plotted in Fig. 3B for comparison. For the flapping mo
described abové;, is much larger than the corresponc
quasi-steady value for most of the stroke. The mean

of CL is 1.2, more than twice the quasi-steady value
in Fig. 3). As seen in Fig. 3, this large me@n results
from three causes: th€. peak at the beginning of t
stroke, the large&C, in the middle of the stroke and f
large C. peak near the end of the stroke. The al
analysis showed that ti& peak at the beginning of t
stroke could be explained by the rapid acceleration ¢

Fig. 8. Velocity vectors in the middle section of the wing

the start of a stroke, corresponding to the vorticity fiel
Fig. 4A. The horizontal arrow at the top right represents
velocity of the wing in the phase of constant-speed trans
and it serves as a scale for the velocity vectors in the figure
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A Upstroke Downstroke
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Fig. 9. Effects of pitching-axis location (as a percentage of mean cho

length ¢ from the leading edge of the wing). Li@ and dragCp 18 20 22 24 26

coefficients plotted against non-dimensional tinekiring one cycle. T

Fig. 10. Effects of the pitching-up rotation rafa,. The wing
translational ") and rotationald*) non-dimensional velocities (A),
lift coefficient CL (B) and drag coefficien€p (C) plotted against
non-dimensional time.

beginning of a stroke); other conditions are the same as in ca
A. A larger acceleration results in a largér peak at the
beginning of the stroke, indicating that tle peak at the
beginning of a stroke is closely related to the rapid acceleratic
of the wing. Dickinson et al. (1999) considered that the large

CL peak'at the beginning of a str'oke could 'be explained by tF 15 A Upstroke Downstroke
mechanism of wake capture. This mechanism was revealed .
Dickinson (1994) for a two-dimensional aerofoil in a
simplified flapping motion with two opposite strokes, in which
the flow generated by the first stroke could increase th
effective fluid velocity, and hence the lift, at the start of the
next stroke. In a recent study by Sun and Hamdani (2001),
was shown that, for a two-dimensional aerofoil, if the first
stroke was very short and the dynamic stall vortex did not she
(or a vortex street similar to the von Karman vortex street di
not form), the mechanism of wake capture would not exist. Fc
a three-dimensional wing in flapping motion, Ellington et al.
(1996) showed (see also above) that the dynamic stall vortt
does not shed and, therefore, that the mechanism of wa
capture might not exist.

To investigate the effect of the vorticity wake left from the
previous strokes, the wing was started from still air and move
in the same way as in a stroke of the flapping motion. Th
results are shown in Fig. 7 together with the results from Fig.
for comparison. The difference between these two sets
results represents the effect of the wake from the previot

1k —— Advanced
-~ ----Symmetrical
—-Delayed

Fig. 11. Effects of the timing of wing rotation. The wing
translational (") and rotational*) non-dimensional velocities (A),
lift coefficient CL (B) and drag coefficien€p (C) plotted against ! | , ! ,
non-dimensional timet. Rotation is defined as advanced, 18 20 22 24 26
symmetrical or delayed with respect to stroke reversal. T
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Fig. 12. (A-E) Vorticity
plots at three spanwise
locations at  various
times during one stroke
(symmetrical rotation).
ri, rz and rz denote
locations at 0.75, 0.5 and
0.25wing lengths from the
wing root, respectively. E
T, non-dimensional time;
o, angle of attack. The
magnitude of the non-
dimensional vorticity at
an outer contour is 1.
Starting from the outer
contour, for the first 21
contours, the contour
interval is 0.2, for the next
30 contours, the contour
interval is 0.5, and for the
reminder of the contours,
the contour interval is 5.
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A 1=16.7,0=47.4°
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Fig. 13. (A—F) Vorticity plots at three spanwise locations at various times during one stroke (rotation delayeah)drs denote locations at
0.75, 0.5 and 0.25winglengths from the wing root, respectivelpon-dimensional timeg, angle of attack. The magnitude of the non-
dimensional vorticity at an outer contour is 1. Starting from the outer contour, for the first 21 contours, the contousift@nfal the next
30 contours, the contour interval is 0.5, and for the reminder of contours, the contour interval is 5.
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strokes. At the beginning of the stroke (and throughout thBickinson et al. (1999) as analogous to the Magnus effect.
stroke), the effect of the wake from the previous stroke does ndthen a moving cylinder or sphere spins, the friction between
increase th&, slightly decreasing it instead. This detrimentalthe fluid and the surface of the body tends to drag the fluid near
effect of the wake from the previous stroke ©n can be the surface in the same direction as the rotational motion.
predicted from the vorticity plots shown in Fig. 4. At the startSuperimposed onto the usual non-spinning flow, this ‘extra’
of the stroke (Fig. 4A), the dynamic-stall vortex from thevelocity contribution creates a higher-than-usual velocity
previous stroke (dashed lines in Fig. 4A), which has clockwiséhence lower pressure) at the top of the body and a lower-than-
vorticity, is under the leading edge of the wing and the trailingisual velocity (hence higher pressure) at the bottom, resulting
edge from the last stroke (solid lines in Fig. 4A), which hasn lift. This phenomenon is called the Magnus effect. The
counterclockwise vorticity, is below the wing. These vortices ardlagnus effect is a steady-state flow phenomenon. Note that it
positioned such that they would produce downwash velocity inannot explain the largép peak that accompanies the latgje
front of the wing, decreasing its lift. Fig. 8 gives the absolutgeak (see Figs 3 and 6) (see also fig. 1D in Dickinson et al.,
velocity vectors in the middle section of the wing, correspondind999). It was shown above that the la@eand Cp peaks at
to the vorticity field in Fig. 4A. At this point, wing rotation has the end of the stroke were due to the effects of rapid pitching-
almost finished and translation has just started, so there is almasgt rotation. This effect would be expected to become weaker
no motion of the wing and the flow velocity shown in Fig. 8 iswhen the location of the rotation axis is moved rearward or
caused by the wake from the previous stroke. The downwashvhen the rotation rate is lower. Fig. 9 gives the results for three
front of the wing can be clearly seen. The above results shodlifferent locations of the rotation axis (including that in case A,
that the wake from the previous stroke does not increase the hfthere it was located at @ #om the leading edge of the wing);
and that the larg€L peak at the beginning of a stroke is due toother conditions are the same as in case A. When the rotation
the rapid acceleration of the wing. axis is moved rearward, the pegak(andCp) decreases greatly.
From Fig. 7, it can also be seen that, when the accelerationFig. 10 presents the results for different rotation rates
is larger (smalleiAty, Fig. 7B), the effect of the wake from (varying At in equation 2 while the other conditions are kept
previous strokes becomes weaker and that, during the rapigde same) (see Fig. 10A for the motion conditions). A lower
pitching-up rotation of the wing near the end of a stroke, theotation rate (largeAty) produces a smalleg. peak. These
effect of the wake is very small. results further show that the lar@ peak near the end of a

stroke is due to the pitching-up rotation of the wing.
Effects of varying the location of the wing-rotation axis and

the rotation rate Effects of the timing of wing rotation
The largeC. peak near the end of a stroke was explained by In the above analyses, wing rotation preceded stroke
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reversal. Here, the effects of shifting the rotation in time arétr=16.7 to1=18), the wing rotates clockwise, from=47.4°
studied. Two cases are considered. In the first, rotation occus a=115.5° (Fig. 13A,B). The formation of the starting
symmetrically with respect to stroke reversal, i.e. half thesortex is suppressed by this rotation (compare Fig. 13B with
rotation is conducted in the latter part a stroke and the oth&igs 4C and 12B), and a vortex with positive vorticity
half in the early part of the following stroke. In the second cas€ppposite in sign to that of the starting vortex) is formed at
rotation is delayed with respect to stroke reversal. Othahe leading edge of the wing. This helps to explain the
conditions are as in case A. The lift and drag coefficients aneegativeC, at the beginning of the stroke. In the last part of
shown in Fig. 11 together with results for case A (rotatiorthe stroke, from at=20.8 to1=22.1, the wing is in rapid
advanced) for comparison. The timing of the rotations is givedeceleration and has almost no rotation. As a result, a new
in Fig. 11A. layer of positive vorticity on the lower surface and around the
In the case of symmetrical rotation, compared with therailing edge of the wing and a new layer of negative vorticity
rotation-advanced case (case A), near the end of the stroke thethe upper surface and around the leading edge of the wing
increases irC. andCp start later and lower peak values areare formed (compare Fig. 13F with Fig. 13E). Lan and Sun
attained. This is because there is less time for the wing {@001) showed that such formation of new vorticity layers,
conduct pitching-up rotation while translating at constanbpposite to that of a wing in acceleration, would cause the
speed. At the beginning of the stroka, is also smaller (no lift to decrease sharply. This helps to explain @epattern
CL peak exists) because, at this point, the wing is conductinig the last part of the stroke.
pitching-down rotation, cancelling some of the effect of the

translational acceleration. The medh is 0.91 which, Comparisons between the model-wing experiment and fruit fly
although smaller than that for case A, is still 80 % larger than data

the .quasi-ste.ady value. . We have presented above a detailed analysis of the unsteady
Fig. 12 gives gxamples of thg yOfthlty plots  for ¢orces that occur in connection with the flow structure. Here,
symmetrical rotation. At the beginning of the strokee compare the results of those calculations with experimental

(Fig. 12A,B), the wing performs the same translationalegyits and with data applicable to free-hovering flight of the
acceleration as in case A (frore16.7 tot=18, towards the it fly Drosophila virilis

right). But since it also rotates clockwise (fram86.5° to
0=140°) and the rotation axis is near the leading edge of th@ . : . .
omparison with model-wing experiment

wing (0.Z from the leading edge), a large part of the wing~ " ,
moves backwards (towards the left). As a result, the starting Dickinson et al. (1999) measured the unsteady lift of a

vortex (Fig. 12B) has less vorticity and moves less fafobotic wing modelled on the fruit fly. Their lift is presented
downstream from the wing than in case A at in dimensional form and, for comparison, we need to convert
corresponding time (Fig. 4C). Sun and Hamdani (2001) anlj into the lift coefficient. In their experiment, the fluid density
Lan and Sun (2001) showed that, if the starting vortex i§ Was 0.8810%kgns, the wing lengt was 0.25m and the

weaker and moves less far downstream in a given time, le%dnd areaS was 0.0167rh The translational speed at the
lift will be generated. This helps to explain the smallerat ~ WiNg tip during the constant-speed translation phase of a

the beginning of the stroke. Near the end of the stroke, e.§ifoke, given in fig. 3D of Dickinson et al. (1999), is

at 1=20.9 (Fig. 12D), the wing has just started pitching-up .E35ms_l and, thereforg, the re{erence speed (speed at
rotation and a small new vorticity is generated [at thg0=0-58) is calculated ag=0.14ms=. From the above data,

corresponding time in case A (see Fig. 4G) a strong nef)-5U?S=0.14N. Using the definition &, (equation 23), the
vorticity layer is generated]. This helps to explain the smallefift in fig. 3A of Dickinson et al. (1999) can be converted to
CL peak near the end of the stroke. CL (F|g_. 14). TheCL curve from Fig. 6B Wlt.hA.Tt:1.14

In the rotation-delayed case (Fig. 11), near the end of gPProximately the same as that used by Dickinson et al,
stroke, there is n&€_ peak; insteadC, decreases to very 1999) is plotted for comparison. The caIcuIa@a_@s clearly
small, even negative, values. This is because, in this periogmaller than the measured values, and they differ by almost
the wing is decelerating rapidly and the pitching-up rotatiorfn€ same amount throughout the majority of the stroke. The

rate is still very small (the majority of the rotation is delayed™0del wing used in the present calculations had an aspect ratio

until the next stroke). At the beginning of the stroke, althougt?f 2-76, which is much smaller than that used by Dickinson
it is in fast acceleration, the wing has a simultaneous rapi@t @- (1999), which can be calculated®S$=3.74. This partly

pitching-down rotation, resulting in a very small, even€Xplain the lowerC.. Despite the quantitative differences
negative,CL. The mearCy is only 0.50, much less than in between the calculated and experimental results, the overall

case A. Fig. 13 gives examples of vorticity plots for thePattern is very similar.

rotation-delayed case. Note that, at the start of the stroke, the

wing has rotated by only a few degrees (Fig. 13A) and thégomparison with fruit-fly data

the wing attitude and the vorticity around the wing are very Data for free hovering flight of the fruit frosophila virilis
different from those of case A (Fig. 4A). During the were taken from Weis-Fogh (1973); insect weight was
translational acceleration at the beginning of the strok&.96<10°5N, wing lengthl was 0.3 cm, the area of both wings
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3 L ?\ - Computat|0n L|St Of SymbO|S
5N Experiment a distance between the origins of the inertial and non-
2 ! inertial frames of reference
5 1 / ? c mean chord length
$ Co drag coefficient
OF ! CL lift coefficient
-1k D drag
: : J Jacobian of the transformation betwegyy,¢,J and
0 0.5 1 ENLD)
Cycle I wing length
Fig. 14. Comparison of the lift coefficie@, calculated here for the L lift
rotation-advanced case, with that taken from the experimental data bf mean lift
fig. 3A of Dickinson et al. (1999). n wingbeat frequency
0 origin of the inertial frame of reference
o origin of the non-inertial frame of reference
S was 0.058cry stroke anglep was 2.62rad and stroke p non-dimensional fluid static pressure
frequencyn was 240" radial position along the wing length
We investigated whether the insect weight can be balanceg radius of the second moment of wing area
by the mean lift calculated in the present study. From thge Reynolds number
definition of CL in equation 23: IS area of one wing
L =CL x 0.50U23, (25) S area of a wing pair
_ . t* time
whereL is the mean lift andCL is the mean lift coefficient yyw non-dimensional velocity component in thg,z
(air densityp is taken as 1.28.08gcnt4s?). The speed at directions, respectively
the radial locatiorro was defined as the translational speed;, translational velocity of the wing
of the wing, and the translational speed during the constangz+ non-dimensional translational velocity of the wing

speed translation phase of a stroke was taken as the refereqce reference velocity
speedU. To calculate of the results shown in Figs 3 and 11xyz  coordinates in the inertial frame of reference
the mean translational speed over a stroke was 0.826r 'y 7 coordinates in the non-inertial frame of reference

the hovering fruit fly of Weis-Fogh (1973), the meang angle of attack
translational speed is @arp=219cmsl, and U can be 180 °a
calculated a$J=219/0.825=265 cnt3. Inserting the values angular velocity of pitching rotation
of p, U and$ into equation 25, the mean lift can be written g+ non-dimensional angular velocity of pitching
as L=C_ x2.50<10°N. For L to equal the insect weighG_ rotation
should therefore be 1.860%/(2.50x105=0.78. Aty duration of pitching rotation, non-dimensional
For the symmetrical rotation and rotation-advanced casegg;, duration of translational acceleration, non-
CL was 0.91 and 1.20, respectively. Both exceed that needed dimensional
to balance the weight. It should be noted, however, that thg kinematic viscosity
angle of attack at midstroke used in these calculationgn z  transformed coordinates
was 40°, which may be larger than the actual valuep density of fluid
Calculations were performed with smaller angles of attack at non-dimensional timetét)
midstroke (other conditions kept the same). It was showi, time when translational deceleration starts, non-
that, when the angle of attack was 3&i, was 0.79 for dimensional
symmetrical rotation and 1.02 for the rotation-advanced casg, time when pitching rotation starts, non-
when the angle of attack was 34C, was 0.75 and 0.98, dimensional
respectively. [0) stroke amplitude
The above results show that, with symmetrical rotation anq, azimuthal rotation angle
an angle of attack at midstroke of approximately 36 °, the fruig, angular velocity of azimuthal rotation
fly can produce enough lift for hovering flight. Ellington (,, spanwise component of vorticity, non-
(1984b) observed many small insects in hovering flight, dimensional
including the fruit fly, and found an angle of attack of gradient operatord(0x,0/0y,0/0x)

approximately 35°, so our predicted value is in very good

agreement with the observations. The above results also showThis research was supported by the National Natural

that, if the insect employs a larger angle of attack or chang&xience Foundation of China. We thank the two referees
the timing of wing rotation, much greater lift can be producedvhose thoughtful questions and valuable suggestions greatly
for manoeuvring or other purposes. improved the quality of the paper.
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