
The mechanical properties of biological structures and their
materials are among the most fundamental of the numerous
factors that dictate how plants and animals survive in their
environment. An elephant could not stand on legs of mucin,
nor could a fish swim with an integument of ivory. Such
extreme examples are so obvious as to appear absurd.
However, in many cases, the precise implications of strength,
stiffness or the viscous characteristics of an organism’s
construction may be more difficult to discern. For example, the
intertidal zone of rocky coasts is characterized by the routine
imposition of large hydrodynamic forces, which might be
expected to place strong constraints on material properties and
morphology. Nevertheless, intertidal plants and animals
embrace an extraordinarily wide range of structural and
mechanical options.

Much of the apparent freedom of intertidal organisms to
exhibit a diversity of form has been attributed to the presumed
equivalent effectiveness of two quite different strategies: being
both stiff and strong (as are barnacle tests, for example) or
being highly extensible (like seaweeds). This general idea,
which has reached near-paradigm status in the marine
ecological literature, has been based on the observation that
stretchy materials can be much weaker than stiffer materials
yet still absorb as much energy before breaking (Koehl, 1982;
Koehl, 1984; Koehl, 1986; Johnson and Koehl, 1994). Thus, if
it is the energy of the system that determines the forces acting
on organisms, plants and animals can trade strength against

extensibility in coping with those forces. This concept has
functioned as a standard argument in attempts to explain how
relatively weak and flimsy surf-zone organisms nonetheless
manage to survive large forces imposed by breaking waves.
We, for example, have made such remarks in recent work (e.g.
Gaylord and Denny, 1997).

Unfortunately, although this explanation is grounded in
proper physics, a more critical evaluation suggests that it can
be misleading when applied to coastal benthic organisms. The
difficulty arises from the implicit assumption that energy
constrains the loading. While such may indeed be the case for
a falling rock climber jerked to a halt by a safety rope, where
the climber’s kinetic energy and the rope’s stiffness determine
the rate of deceleration and thus the peak force, this situation
differs from that encountered when forces are applied by flow.
In the surf zone, for instance, only a negligible portion of the
energy associated with any passing wave is absorbed by a
given organism. As a result, the magnitude of applied force is
not, in practice, limited by the amount of energy available; it
is dictated, rather, by local hydrodynamic interactions between
the plant or animal and the water moving past it.

The implications of this distinction can be important. Under
conditions in which a fixed amount of energy controls the
loading regime, peak force and peak deformation are always
inversely related. Because the energy expended doing work
equals the integral of force through distance, a larger force can
be applied only if the maximum deformation decreases. In
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The diversity of form among benthic marine plants and
animals on rocky coasts is remarkable. Stiff and strong
organisms grow alongside others that are compliant and
flimsy. Given the severity of wave action on many shores
and thus the potential for the imposition of large
hydrodynamic forces, this immediately raises the question
of how, from this overall spectrum of designs, flexible and
weak organisms survive. A number of explanations have
been proposed, most emphasizing one or more of several
possible advantages of deformability. Here, we explore
quantitatively two of the more common of these

explanations: (i) that strength can be traded against
extensibility in allowing stretchy organisms to withstand
transient wave forces, and (ii) that greater compliance (and
thus longer organism response times) allows universally for
the amelioration of brief loads. We find that, although these
explanations contain kernels of validity and are accurate
for a subset of conditions, they are not as general as has
often been assumed.
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contrast, in the surf zone, where the magnitude of force is set
by hydrodynamics (i.e. where the energy of deformation is
effectively no longer constrained), it is possible for large forces
to be imposed on organisms of any degree of stretchiness. The
apparent benefits of extensibility, as rationalized by simple
energy arguments and as applied to wave-swept plants and
animals, therefore become obscured.

This conclusion resurrects the question of how weaker
organisms such as seaweeds do, in fact, manage to survive in
the stressful arena of the surf zone. At least two other related,
but subtly different, classes of mechanism have been
proposed. First, lower stiffness and higher extensibility can
alter the magnitudes of applied loads by changing the way in
which organisms interact with flow. Intertidal plants, for
example, passively reorient and reconfigure, reducing drag
(Carrington, 1990; Gaylord et al., 1994), and it has been
suggested that long kelps in oscillatory flows avoid large
relative water velocities by swaying with the fluid during
portions of each cycle (Koehl, 1982; Koehl, 1984; Koehl,
1986). Similarly, erect seaweeds in deeper waters may reduce
moment arms and peak bending loads by deflecting towards
the substratum in response to horizontal forces (Charters et al.,
1969; Gaylord and Denny, 1997). Byssal extensibility in
mussels may reduce the maximum forces borne by individual
threads by allowing isolated tethers to stretch until others
come into play (Bell and Gosline, 1996). Additional examples
abound (e.g. Koehl, 1977; Patterson, 1984; Harvell and
LaBarbera, 1985; Sponaugle and LaBarbera, 1991; Johnson,
1993; Vogel, 1994).

Such benefits reflect primarily the capacity of organismal
compliance to affect the magnitudes of forces as they are being
applied. In addition, another class of mechanism can modulate
the deformations induced by a given force. Because compliant
plants and animals must stretch farther than stiffer organisms
for internal stresses to balance an externally applied load, and
because this stretching takes time, full deformation may not be
attained before a short, transient force is removed. Two
components interact to cause this effect. First, because the
mass of an organism must be accelerated before substantial
deformation can ensue, a brief load may be expended almost
entirely in overcoming inertia. It has commonly been assumed
that this inertial hurdle ameliorates the consequences of many
of the brief forces that act on flexible plants and animals in the
surf zone (Koehl, 1984; Koehl, 1986; Denny et al., 1985;
Denny, 1987; Johnson and Koehl, 1994; Gaylord, 2000).
Unfortunately, this phenomenon has not been fully explored in
a quantitative fashion, leaving the biological relevance of the
concept unclear.

A second attribute that may alter the consequences of
transient loads is the viscous component of the material
properties of plants and animals, a trait that causes so-called
‘retardation’ (simplistically, a lag) in the deformation
response to an applied force. Koehl (Koehl, 1984) has pointed
out that such viscous behavior can increase the effective
structural rigidity of an organism subjected to a transient
load. This is equivalent to noting that viscosity can reduce

the maximum deformations induced in plants or animals by
brief forces, a phenomenon that may work to partially counter
some of the reorientation and reconfiguration processes noted
above.

Given the complexity of these issues linking stiffness,
extensibility, strength, viscous characteristics and response to
transient loads, we believe that a careful reconsideration of the
basic principles is in order. We address two specific points
here. First, we outline in further detail the problem with
assuming that constraints on energy dictate the loading regime
of benthic marine organisms (common misconception 1, see
below). Second, we provide a general, quantitative exploration
of the importance of inertia and viscous damping for two
classes of simplified organism – those with relatively uniform
distributions of mass along their lengths that bear applied
forces primarily in tension, and those with relatively uniform
distributions of mass that bear forces in bending – subjected to
very brief loads. The goal here is to examine more closely the
assumption that longer response times in organisms always
ameliorate the effects of transient forces (common
misconception 2, see below).

This approach assists primarily in clarifying the fundamental
tenets of the response of compliant organisms to transient
loads. Concomitantly, it may also serve to improve our
understanding of the consequences of the exceptionally brief
forces associated with the impingement of breaking waves on
emergent plants and animals, a phenomenon that has recently
been recognized as perhaps the most dangerous loading
scenario operating in the surf zone of rocky coasts.

Common misconception 1: energy trade-offs limit fluid
forces

If one considers the balance of forces acting on a benthic
plant or animal in flow, it is apparent that those forces can be
separated into three major components. The first encompasses
all the external loads pushing or pulling on an organism. These
external forces are then counteracted (or modulated) by the
other two components: the organism’s inertia, and the internal
elastic or viscous mechanisms operating within the tissues of
the plant or animal that resist its deformation.

It is here that the difficulty arises in assuming that the energy
of the system dictates the applied force, because such an
assumption allows for a realistic accounting of only two of the
three above components. To see why this is so, we consider a
simplified, idealized organism of mass, m, attached to the
substratum by an elastic organ (e.g. a stalk, stipe or appendage)
that exhibits stiffness, k. In this situation, the three force
components are related through the following equation which
describes the organism’s motion:

where Fexternal is the applied force, ξ is the displacement of
the organism’s mass (acting to stretch its attachment organ)

d2ξ
dt2

+ kξ ,Fexternal= m (1)
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and t is time. The left-hand side quantifies the external
force, and the first and second terms on the right-hand side
represent organism inertia and the elastic restoring forces
associated with the extension of the organism’s ‘tether’,
respectively.

The solution to equation 1 depends on the magnitude of the
external force and how it varies through time. However, if we
ignore for the moment any externally applied loads to make
the left-hand side zero, we find that the resulting equation has
the form of a simple harmonic oscillator, which exhibits
sinusoidal motion (see, for example, Ohanian, 1985). If the
organism has initial velocity, U, at zero displacement, then it
oscillates according to:

As the organism moves back and forth, its maximum
extension, ξmax, occurs when the sine term in equation 2 equals
1. The maximum force applied to the tether, Fmax, equals
kξmax. Thus:

That is, reducing the stiffness reduces the maximum force.
What is important about this equality here, however, is that

it has the same form as the expression we would derive under
the assumption that a particular parcel of kinetic energy, GmU2,
is converted into and determines the elastic energy of
deformation, Gkξmax2 (calculated as the integral of the
force/extension curve; see, for example, Gere and Timoshenko,
1990), induced within an organism as it stretches. In this
situation (i.e. when energy constrains the loading), the kinetic
and deformation energies equal each other, and we can solve
for kξmax as before to estimate the maximum force applied to
the organism’s tether. Once again, we regain an expression that
resembles equation 3. However, recall that, in deriving
equation 3, we completely ignored all details of the external
forcing. The fact that we achieve the same result here reveals,
therefore, that the assumption that a specifiable unit of kinetic
energy sets the peak deformation and load disregards entirely
what are likely to be important fluid dynamic factors
influencing total imposed force.

Although such a simplification may be appropriate in
specific situations (such as for the falling climber mentioned
earlier), it will not be generally valid for organisms in flow.
Indeed, if we explicitly and realistically model all three force
components in equation 1, we find that lower stiffness can at
times actually increase rather than decrease the total force that
acts on benthic marine plants and animals (Denny et al., 1997;
Denny et al., 1998; Gaylord and Denny, 1997). This contrasts
with the more commonly accepted prediction embodied by
expressions of the form of equation 3 in which the maximum
force rises monotonically with increases in stiffness. In short,
we find that arguments based solely on energy trade-offs are
too simple to capture important aspects of the loading regimes
of organisms in aquatic environments.

Common misconception 2: longer organism response
times always ameliorate brief loads

Given the above difficulties with traditional qualitative
arguments regarding trade-offs between strength and
extensibility in flow-dominated organisms, we turn now to a
consideration of the related (and often accompanying)
argument that flexible marine plants and animals ameliorate
brief loads by having long response times (=long natural
periods of motion). We examine this more complicated issue
in three steps. First, we outline the essential physical
characteristics of what are likely to be the briefest and largest
forces imposed on many intertidal organisms. Second, we
describe measurements of the relevant material properties of
seaweeds, which we use as examples of compliant benthic
organisms in general. And finally, we present results from
numerical experiments, in which idealized, simple model
organisms are loaded by pulsatile forces, either in tension or
in bending, to examine the consequences of differences in
material properties and gross morphology. We find once again
that overly simplistic arguments can be misleading. Although
flexible organisms may indeed experience attenuation of the
effects of transient forces under some conditions, this is not
necessarily a general outcome. Rather, the outcome can depend
fundamentally on the way in which a plant or animal is loaded
and the extent of tuning between the time course of the force
and the natural frequency of movement of the organism.

Surf-zone forces

Of primary importance for intertidal plants and animals
experiencing transient loads are the effects of the direct
impingement of crashing waves on emergent organisms on the
shore. Recent data suggest that such forces may include many
of the most severe loads typically encountered (Gaylord, 1999;
Gaylord, 2000). An example of a field recording of forces
imposed by a breaking wave on a 1 cm diameter spherical force
sensor is shown in Fig. 1A. These data demonstrate the rapidly
varying nature of wave forces over time and the overwhelming
dominance of the initial force spike (for technical details of the
sensor and measurement techniques, see Gaylord, 1999).
Fig. 1B presents an enlarged view from Fig. 1A of the region
of initial impingement of the wave. This graph indicates the
exceptionally brief durations of such impingement pulses (this
particular example lasts only 0.08 s, for instance). Fig. 2
generalizes to show a histogram of field-recorded impingement
force duration from approximately 70 waves, demonstrating
that pulses with durations as short as or shorter than 0.05 s are
common.

Material properties of seaweeds

The mechanical properties of the tissues of organisms can be
quantified in a number of ways, but are perhaps most easily
described in terms of two basic parameters, an elastic modulus
(E) and a loss modulus (Eloss). The first parameter represents a
material’s stiffness, while the second represents its viscous
character (for a more complete discussion of these quantities,
see Ferry, 1980). In general, both properties vary as a function

km.!Fmax= U (3)

sin t .ξ = U (2)! !m
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of the time scale over which they are measured. Because of this,
they are traditionally determined by deforming a tissue sample
at a wide range of forcing frequencies, the approach taken here.
A full description of the techniques employed is given by Hale
(Hale, 2001) and is sketched again here as follows.

Algal samples were collected at Hopkins Marine Station,
Pacific Grove, California, USA, and inserted fresh into the
dynamic testing apparatus of Lillie and Gosline (Lillie and
Gosline, 1996). This apparatus stretches samples between two
grips at multiple frequencies. Each specimen was prestrained
to approximately 10 % and held at this extension until the
resulting tension stabilized (approximately 3 min). The
prestrain was used to ensure that samples did not become slack
during testing. Deformations were subsequently induced in
each sample by driving one grip of the testing machine via an
electromagnetic vibrator. This vibrator is controlled by a
function generator that creates random motion (band-limited
white noise) with maximum displacements of approximately
±0.15 mm. In the test pieces used, this corresponded to ±1.32 %
strain, superimposed on the 10 % prestrain. During testing,
signals from a strain transducer (attached at one grip) and a

force transducer (mounted at the other grip) were fed into a
cross-channel spectrum analyzer (Wavetek model 5820A),
allowing detection of the phase lag between stress and strain.
At each frequency, the elastic and loss moduli were calculated
from the spectral coefficients relating the in-phase and out-of-
phase components of stress to strain. Ferry (Ferry, 1980)
explains these relationships in detail. Since the mass density
(ρ) of most seaweeds is quite similar to that of sea water
(Gaylord and Denny, 1997), it was assumed to equal
1025 kg m−3 for the purposes of the numerical experiments
reported below.

Both the elastic modulus and the loss modulus of the two
example species examined in this study, Pelvetia compressa
and Calliarthron cheilosporiodes (for morphological
descriptions, see Abbott and Hollenberg, 1976), varied little
across a wide range of frequency (Fig. 3A,B). The elastic
moduli shown in Fig. 3A are also of the same general
magnitude as values reported previously for a variety of
macroalgae (106 to 108N m−2; for a review, see Denny et al.,
1989). Note that the small blips in the curves of Fig. 3A
occurred in association with the natural modes of vibration of
the experimental apparatus and do not represent actual
discontinuities in the way that the elastic modulus varies with
frequency.

Tensile organisms

We begin our exploration of the consequences of transient
forces applied to organisms with differing structural attributes
by examining the simplified case of an idealized plant or
animal that resists forces primarily in tension, as do many
floppy seaweeds once they have passively reoriented to align
with flow. Because we are concerned with the imposition of
very brief loads, where stresses within an organism may not
have time to reach equilibrium with the applied force, classical
engineering expressions become invalid, and we must consider
the propagation of stress waves through the organism. In such
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situations, the response of a thin, rod-like, viscoelastic
organism subjected to an axial force F applied at its distal end
(Fig. 4A) is governed by the longitudinal wave equation
(Kolsky, 1963; see Appendix):

where ξ is the axial displacement of the tissues at a given
position (x) and time (t) within the organism. Evisc is the
viscous modulus, a material parameter that can be calculated
as Eloss/ω from the experimental measurements, where ω is the
frequency of loading in rad s−1. Values of Evisc for Calliarthron

cheilosporiodesand Pelvetia compressaare shown in Fig. 3C.
Equation 4 (termed a Voigt representation; Ferry, 1980) is a
standard first-order model that accounts for both viscous and
elastic characteristics. Boundary conditions are given in
Table 1, where F is the applied force, A is the organism’s
cross-sectional area cut perpendicular to its long axis, and L is
its length. We solve equation 4 numerically using standard
finite difference techniques and a variation of the implicit
Crank Nicolson method (see, for example, Ferziger, 1981).

For our first example, we present the response of a 10 cm
long, relatively stiff, rod-like organism (length to diameter
ratio 50) that has material properties similar to that of coral
(E=5×1010N m−2, ρ=2820 kg m−3; Vincent, 1982; Lide, 1998)
subjected to a 0.05 s duration, tensile pulse oriented parallel to
its long axis. We begin by ignoring all damping, setting Evisc

to zero, returning to a discussion of the effects of viscosity
below. The pulse is assumed to exhibit the shape of the first
half of a sine wave, as shown by the dashed line in Fig. 1B,
which mimics the character of actual pulses recorded in the
field.

In this first case, there are no surprises. The displacements
induced at a given location within the organism vary in direct
proportion to the instantaneous magnitude of the applied force.
Displacements also increase with distance from the organism’s
point of attachment because of the additive effects of
displacements of more proximal tissue elements (Fig. 5A).
Similarly, the strains (∂ξ/∂x, which represent the localized
degree of stretch) also vary in direct proportion to the
instantaneous magnitude of the applied load, although they are
constant throughout the organism (Fig. 5B). For generality,
both the displacements and the strains in Fig. 5 are normalized
by the maximal displacements or strains that would arise in
response to a constant (i.e. static) force with the same
magnitude as the peak of the applied pulse. This allows the
consequences of any interactions between flexibility and the
transient character of the load to be easily evaluated. When
maximal normalized values differ from 1, this indicates
important deviations from the effects of a static load. In this
particular case, we find that the details of the propagation of
stress waves are unimportant and that deformations remain

∂2ξ
∂t2

∂2ξ
∂x2

= E + Evisc ,
∂3ξ

∂t∂x2
ρ (4)
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Fig. 3. Material properties of two example species of seaweed, a
coralline red alga, Calliarthron cheilosporiodes, and a brown
rockweed, Pelvetia compressa. Measurements on C. cheilosporiodes
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carbonate nodules (see Abbott and Hollenberg, 1976). (A) Elastic
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essentially in equilibrium with the external force throughout
the time course of its application. In other words, the ultimate
effects of the brief force pulse are exactly what we would
expect if we simply noted its magnitude alone.

Consider, however, a longer (L=1 m, again with a length to
diameter ratio of 50) and compliant, undamped, rod-like
organism with elastic material properties akin to those reported
above for seaweeds (E=107N m−2, ρ=1025 kg m−3). When this
flexible organism is subjected to a 0.05 s half-sine tensile force

pulse, we observe a very different outcome from that for the
short, stiff organism. Maximum displacements now overshoot
static values by 50 % (Fig. 6A). We also observe oscillations
continuing after cessation of the force pulse. These oscillations
represent vibration at the organism’s natural frequency.
Although analogous oscillations do, in fact, occur within the
organism of Fig. 5 as well, they are of imperceptibly small
amplitude since the pulse applied to the short, stiff organism

B. GAYLORD, B. B. HALE AND M. W. DENNY

Table 1.Boundary conditions used with equations 4 and 5 in the numerical experiments

Basal end (x=0) Distal end (x=L)

Tensile organisms ξ (0,t)=0

Organisms in bending ζ (0,t)=0

All symbols are defined in the list of symbols.

∂ζ

∂x
(0,t) = 0

∂ξ

∂x
(L,t) + EviscA           (L,t)

∂2ξ

∂t∂x
F(t) = EA

∂2ζ

∂x2
(L,t) − EviscI             (L,t) = 0

∂3ζ

∂t∂x2
−EI

∂3ζ

∂x3
(L,t) − EviscI             (L,t)

∂4ζ

∂t∂x3
F(t) = −EI

Fig. 5. Response of a short and stiff organism to a 0.05 s half-sine
tensile force pulse. L=0.1 m, E=5×1010N m−2, ρ=2820 kg m−3.
(A) Observed axial displacements at three locations along the length
of the organism, relative to the displacement that would arise at the
tip of the organism if the load were constant. (B) Observed strains
relative to the strain that would arise if the load were constant. L,
length; E, elastic modulus; ρ, mass density.
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arise if the load were constant. L, length; E, elastic modulus; ρ, mass
density.
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varies over time scales that are much longer than the
organism’s natural period, imparting little energy at its
resonant frequency. We also note differences between Figs 5B
and 6B in the character of the strains induced in the organisms.
In the case of the longer, compliant organism, we find that the
strains developed in its tissues are no longer uniform along its
length, but now vary strongly with position (Fig. 6B). Maximal
strains occur at the base of the organism where it attaches to
the substratum, with magnitudes approaching values twice as
large as those arising from a constant force. As discussed
further below, this doubling of strain is tied to the fact that the
rise time of the force pulse is short relative to the time it takes
a stress wave to propagate the length of the organism. In this
particular situation, therefore, we find that being longer and
more compliant actually exacerbates the consequences of the
brief load in question. This conclusion is exactly the opposite
of what one would expect given traditional qualitative remarks
regarding the operation of flexible, biological ‘shock
absorbers’.

Organisms in bending

Of course, not all intertidal plants and animals necessarily
bear loads in tension. Many have erect growth forms and are
subjected predominantly to lateral forces that tend to bend
them. As we shall see, the consequences of brief loads of given
duration under such lateral loading conditions can differ
dramatically from their tensile analogues.

The propagation of waves of bending in a viscoelastic,
rodlike organism subjected to a lateral force applied at its distal
tip (Fig. 4B) is given by (Graff, 1975; see Appendix):

where ζ is the displacement perpendicular to the undeformed
long axis of the organism at a particular location (x) and time
(t) within the organism and I is the second moment of area of
the organism cross section (here πr4/4, where r is the cross
section radius; see, for example, Denny, 1988), cut
perpendicular to the organism’s long axis. The product EI is
the flexural stiffness, an index of the plant or animal’s
resistance to bending. The boundary conditions for equation 5
are given in Table 1.

Considering once again an undamped, short and stiff coral-
like organism subjected to a 0.05 s half-sine force pulse, this
time applied laterally as in Fig. 4B, we see a very different
behavior from the tensile loading scenario. Unlike in the tensile
case (Fig. 5), the normalized displacements do not track the
force trajectory smoothly, but instead oscillate about the
underlying sinusoidal curve (Fig. 7A). The longitudinal strains
within the organism (calculated as r∂2ζ/∂x2; Gere and
Timoshenko, 1990) also vary as a function of location
(Fig. 7B), much as they did in the flexible, longer tensile
organism of Fig. 6B. Fig. 8 plots multiple snapshots of the
entire organism oscillating to illustrate more clearly the nature
of the bending motion. Note, however, that in spite of the

spatio-temporal variation shown in Figs 7 and 8, the peak
normalized displacements and strains do not differ markedly
from 1.

This final point does not hold true in the case of the longer,
compliant, undamped organism subjected to a 0.05 s lateral
half-sine force pulse. In this case, displacements and strains
do not resemble the force trajectory in the slightest (Fig. 9).
Indeed, their magnitudes during the first 0.15 s following
imposition of the force (the standard time window used in
Figs 5–7) are miniscule. It is only when we expand our
observations to longer times that oscillations become
apparent (Fig. 10). In the case of displacements, the primary
motions occur with a period of approximately 3 s, with
higher-frequency components superimposed (Fig. 10A).
The strain trajectories are even more complicated because
of the reflection and superposition of multiple modes of
bending (Fig. 10B). Even after 7.5 s, no clear repeatable
pattern is discernible. Although higher-order fluctuations
would, of course, damp out in any true material with
finite viscosity, the complexity of the displacement and
strain time series is still striking (for snapshots showing the
nature of the oscillations of the entire organism, see also

∂2ζ
∂t2

∂4ζ
∂x4

= −EI − EviscI ,
∂5ζ

∂t∂x4
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organism if the load were constant. L, length; E, elastic modulus; ρ,
mass density.
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Fig. 11). The most important point of Fig. 10, however, is the
fact that the peak magnitudes of both the displacements and
the strains are far smaller than one would expect simply on
the basis of the magnitude of the applied force (less than 30 %
as large in the case of the strains). This situation therefore
provides a classic example of a situation in which the
consequences of a brief load are greatly attenuated by
organism inertia.

The fundamental governing parameters

The differences among the dynamic behaviors observed in
Figs 5–11 illustrate the need for a better understanding of the
interactions between organisms and transient loads. In
addition, real plants and animals are not perfectly elastic but
possess viscous traits as well. As it turns out, by
nondimensionalizing equations 4 and 5, we can specify
completely, using only two underlying dimensionless
parameters, the maximal normalized strains produced by force
pulses in viscoelastic organisms of the simplified form we
model here.

In the case of tensile organisms, the two fundamental
parameters are:

τtensionrepresents the pulse period, T (which is twice the pulse
duration since the force lasts for only half a full sine wave),
relative to the natural period of longitudinal vibration of the
organism [4L/√(E/ρ); see Graff, 1975]. It is therefore a
nondimensional form of the pulse period. ηtensionrepresents the
retardation time (Evisc/E; Ferry, 1980) of the material from
which the organism is constructed relative to the organism’s
natural period of longitudinal vibration. The retardation time
quantifies how slowly a material responds to a sudden change
in force, a measure of how viscously it behaves. Thus, ηtension

.ηtension= (7)
E/ρ!Evisc

4EL

,τtension= (6)
E/ρ!T

4L
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is an index of nondimensional damping. Fig. 12A shows the
relationship between these parameters and the peak normalized
strains produced by half-sine tensile pulses of a range of
periods.

In the case of organisms in bending, the two governing
parameters are analogous:

τbending represents the pulse period divided by the natural
period of the primary mode of bending oscillation
[1.79L2/√(EI/ρA); see Graff, 1975], and ηbending equals the
retardation time divided by the natural period of the primary
mode. Fig. 12B shows the relationship between these
parameters and the peak normalized strains produced by half-
sine lateral pulses of a range of periods.

There are a number of similarities as well as a number of
important differences between Fig. 12A and 12B. For instance,
both tensile organisms (Fig. 12A) and organisms in bending
(Fig. 12B) can experience strains either less than or greater
than static strains, depending on the duration of the force pulse
and the degree of damping. We have already observed a subset

of these possibilities in Figs 5–11. In the case of tensile
organisms of the simplified form we model here, however,
there is an underlying tendency for force pulses that are short
enough (i.e. far enough to the right in Fig. 12A) to produce
maximal strains that are double those resulting from a constant
force. Only the presence of viscous damping offsets this effect.

For organisms subjected to bending, in contrast, substantial
decreases in force pulse duration result in an attenuation of
maximal strain even in the absence of damping. Although peak
strains can still exceed static values by a factor of as much as
2, this strain exacerbation occurs only in a narrow range in
which there is tuning between the organism’s natural period of
oscillation and the pulse period. This situation is analogous to
what happens in the initial stages of resonance in plants or
animals that are forced periodically (as opposed to with a finite
pulse) near their natural frequency (Denny et al., 1998). As
τbending decreases, the normalized maximal strains decline
dramatically as a consequence of organism inertia, leading to
the behavior seen previously in Fig. 10.

The general curves of Fig. 12 therefore serve to emphasize

.ηbending= 0.56 (9)!Evisc

EL2

EI

ρA

,τbending= 0.56 (8)!T
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two important points. First, an increase in response time (i.e.
greater compliance) does not always lead to an amelioration of
the consequences of a brief force. In fact, in the case of a
relatively long pulse, where 1/τtensionor 1/τbendingis less than 1,
an increase in response time can produce higher strains. Second,
even when response times are much longer than the duration of
an applied force (i.e. if 1/τtensionor 1/τbendingis much greater than
1), attenuation of the effects of that force occur consistently only
in organisms that carry that load in bending and/or are
substantially viscously damped. We note that the inertial
attenuation that occurs in bending arises because a bending load
lasting shorter than the time required for a stress wave to
propagate the length of the organism cannot generate a
contiguous lever arm all the way to the base of the organism,
and axial strains vary roughly in proportion to that lever arm (we
ignore the effects of shear; see, for example, Timoshenko, 1937).
In contrast, strains in simple tensile organisms depend only on
the local effects of a force (there is no lever arm).

Fig. 12 encompasses the total possible parameter space for
the loading scenarios we consider. In practice, however, only

a subset of this overall space may be available to real plants
and animals since particular species-specific characteristics
(material properties, for example) may constrain the values of
component parameters in equations 6–9. In the case of the
algae we test in this study, ratios of nondimensional pulse
period to nondimensional damping (τ/η) are essentially
constant across frequency, with τ roughly equal to 50η in either
tension or in bending, for both Calliarthron cheilosporiodes
and Pelvetia compressa(Fig. 13A). Given this relationship,
these algae will span only particular trajectories through
Fig. 12A,B. As is shown in Fig. 13B, the course of these
trajectories suggests that seaweeds may often be so lightly
damped that they experience substantial attenuation of brief
forces primarily only in bending. Table 2 lists, for reference,
the nondimensional pulse periods corresponding to the cases
examined in Figs 5–11.

Size and shape

Equations 6–9 and the data of Figs 12 and 13 include
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Fig. 12. Peak strains resulting from half-sine pulses, relative to the
maximum strains that would arise in response to constant forces, as a
function of nondimensional pulse duration (τtension or τbending) and
nondimensional damping (ηtension or ηbending). (A) Tensile
organisms. (B) Organisms in bending. Note the capacity for inertial
attenuation in the bending case.
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intrinsically the effects of organism size. Although it is perhaps
intuitive that longer organisms have longer response times (i.e.
their natural periods of motion are greater relative to a
particular pulse period, resulting in smaller values of τ), it is
also true that increases in L lead to lower effective levels of
viscous damping. A close examination of Fig. 12 reveals that
such changes to ηtension or ηbending can affect the maximal
strains as much as or more than the accompanying shift in the
organism’s natural period of motion. Changes in size are also
likely to be relatively more important than equivalent
percentage shifts in material stiffness, since E is raised only to
the ±1/2 power in the dimensionless parameters, while L
appears linearly or is squared.

There are also differences in the way the dynamics of
organisms subjected to tensile or bending pulses depend on
shape. In equations 6 and 7, which govern simple tensile
organisms, we find that the only parameter related to
morphology is plant or animal length (A does not appear). In
contrast, in equations 8 and 9, which govern organisms in
bending, we find not only a greater sensitively to L (it is
squared), but two other composite shape-dependent terms
appear as well: EI and ρA. The first composite term, via its
inclusion of I, accounts for the influence of the distribution of
tissue about the axis of bending, a factor that has important
implications for how effectively a plant or animal will resist a
lateral load. The second composite term is the mass per unit
length, a measure of how stocky the organism is. Together, the
appearance of these two variables in the dimensionless
parameters for bending indicate that shape plays a relatively
critical role in setting peak strains for organisms loaded by
brief lateral forces. Note, however, that if there are strong
discontinuities in distributions of mass along the length of an
organism loaded either in tension or in bending, these
discontinuities can affect an organism’s dynamics.
Unfortunately, although such effects are likely to be important
in many real plants and animals, a full analysis of their
consequences awaits further study.

Reconfiguration, reorientation and ‘going with the flow’

The numerical experiments we have conducted here have

assumed implicitly that the applied force is independent of the
response of the organism to that force. This has greatly
simplified the underlying analysis. However, in reality,
exceptionally compliant organisms subjected to large
hydrodynamic loads may deform sufficiently during the
application of a force that the force itself changes. This occurs
whenever deformations are severe enough to alter substantially
the way the fluid flows relative to the plant or animal.

Generally, the alteration of relative flow acts to decrease the
externally applied load. However, because an organism also
acquires momentum while deforming, such behavior may also
engender a susceptibility to subsequent inertial forces imposed
as a moving plant or animal reaches the limit of its range of
motion and gets ‘jerked’ to a halt by its tether. Mathematically,
this effect derives from an increase in the d2ξ/dt2 term in force
balances of the form of equation 1. Denny et al. (Denny et al.,
1997; Denny et al., 1998) and Gaylord and Denny (Gaylord
and Denny, 1997) have explored this topic in some detail,
noting that such inertial effects ensure that deformation (even
with its reduction of applied external load) provides a net
advantage only under certain circumstances.

Two of the more common situations in which deformation
may alter applied forces to a net advantage have already been
mentioned in the Introduction. One is the case of plants or
animals that passively reconfigure (becoming more
streamlined) in response to relatively slowly applied loads. In
this scenario, an organism deforms, but the rates of
deformation are so slow that the organism gains little
momentum. This prevents a finite inertial force from being
imposed. A second case in which deformation has been
proposed to provide benefit arises for large kelps in subtidal
habitats (Koehl, 1982; Koehl, 1984; Koehl, 1986). Although
these organisms do acquire substantial momentum while
swaying beneath waves, the bidirectional flows to which they
are subjected often reverse before longer individuals reach the
end of their tethers. This may allow individuals to gain the
benefits of decreased relative fluid velocities without having to
cope with the negative consequences of rapid deceleration.
Further study of this topic is needed for conclusive verification,
however.

Reorientation or ‘going with the flow’ behavior is less likely
to be advantageous in intertidal regions. In the surf zone, where
flows may travel tens of meters before reversing, even
relatively long organisms routinely become fully extended.
Under these conditions, being longer often just postpones the
imposition of a force, rather than decreasing its magnitude. Of
course, brief loads (such as those associated with the
impingement of waves on emergent organisms on the shore;
Fig. 1) often last shorter than the time required for reorienting
tensile plants and animals to become extended in flow. Thus,
many impingement forces may be expended largely in
straightening compliant organisms rather than in producing
dangerous deformations (for experimental evidence of this
phenomenon, see Gaylord, 2000). However, in those
somewhat rarer situations in which an organism is unlucky
enough to be already extended when a wave arrives,

Table 2.Dimensionless parameter values governing the
maximal dimensionless strains induced by a 0.05 s half-sine

force pulse in the model organisms of Figs 5–11

Tension Bending

1/τtension ηtension 1/τbending ηbending

Short and stiff coral 9.5×10−4 0 0.085 0
Long and compliant 0.41 0 36 0

seaweed

τtension, nondimensional form of pulse period for an organism in
tension; τbending, nondimensional form of pulse period for an
organism in bending; ηtension, index of nondimensional damping for
an organism in tension; ηbending, index of nondimensional damping
for an organism in bending.
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impingement forces may be applied essentially at full strength.
Under these conditions, the length of the organism continues
to play a role in determining response time, as described in
Figs 12 and 13.

Concluding remarks
Traditional views regarding the design of benthic marine

organisms have emphasized three potential advantages of low
stiffness and extensibility: (i) an enhanced ability to
reconfigure or reorient in flow (resulting in improved
streamlining or a reduction in relative flow speed), with
consequent decreases in applied force, (ii) the ability to
experience lower peak forces while absorbing equivalent
amounts of energy, and (iii) a capacity for amelioration of the
effects of brief loads via an increase in response time. Point i
appears to provide robust benefits as long as the organism
avoids the specter of excessive momentum. Unfortunately,
although points ii and iii are appealing in their simplicity and
may be relevant under a subset of conditions, they are also
unlikely to be applicable in a fully general context.

In the case of point ii, emphasizing the advantages of
extensibility-mediated energy absorption, there is an implicit
assumption of a specific type of loading that is at odds with
what is experienced by many plants and animals in flow. This
incongruence leads to predictions that may be exactly the
opposite of what happens in some circumstances in nature. For
example, longer tensile organisms would be expected always
to experience lower strains than shorter organisms with the
same modulus and cross-sectional area since equivalent
amounts of energy are more readily absorbed by greater
volumes of tissue. As Figs 5 and 6 show, however, if it is the
force that is dictated rather than the energy, as may be typical
of many organisms in flow, then longer plants and animals that
are subjected to the same potential static strain can at times
actually experience greater realized strains than their shorter
counterparts.

In the third point, which suggests that higher compliance
increases response times and ameliorates the consequences of
brief loads, we also find a need for qualification. In the case of
organisms with strong discontinuities in shape, dynamic models
can often be simplified by ‘lumping’ mass elements at specific
localized regions (for valid applications of this approach, see,
for example, Denny et al., 1998) since the relatively inefficient
transmission of stress waves across discontinuities provides a
propagation ‘bottleneck’ dominating the overall response of the
organism. Under these conditions, attenuation of rapidly varying
forces via increased response time may be a routine outcome.
However, we notice that, when internal stress waves propagate
within organisms of more uniform shapes, strains produced even
by exceptionally brief loads need not be attenuated. Indeed, in
the case of tensile organisms, it may be more typical for the
effects of very brief loads to be doubled compared with static
expectations. It is primarily in organisms that bear forces in
bending in which opportunities for amelioration of brief forces
occur. However, it is also clear that, even in organisms that bear

applied loads in bending, where inertial attenuation is a common
component of the dynamics, increased compliance is not always
beneficial. When increased flexibility causes the period of an
applied pulse to correspond to the natural period of oscillation
of an organism, internal strains are once again elevated. Viscous
damping can offset such effects, but not all surf-zone organisms
(seaweeds seem to be an example; Fig. 13B) appear to possess
sufficient internal viscosity to take full advantage of such
processes.

Clearly, there are other important factors that affect the basic
issues explored in this study. In particular, most organisms do
not exhibit constant stiffness ( see, for example, Purslow, 1991;
also see Gaylord and Denny, 1997 for analogous effects of
large deflections in bending). Many plants and animals also
have material properties that vary as a function of location
within an organism (e.g. Koehl and Wainwright, 1977; Vincent
and Gravell, 1986) or depend on whether the organism is
stretched or compressed (e.g. Biedka et al., 1987; Gaylord and
Denny, 1997). Perhaps most critically, many intertidal plants
and animals possess complicated morphologies that resemble
only marginally (or not at all) the simplified shapes we analyze
here. Such complexities of shape can influence dramatically
how stress waves propagate through an organism, as noted
above. Furthermore, many forces are applied not as
concentrated loads but are instead distributed across a finite
region of an organism’s structure. Nevertheless, despite these
additional (and important) complexities, the general patterns
we describe here provide an initial framework for
understanding a number of fundamental principles in the
dynamics of benthic marine organisms. In particular, this study
may be useful for evaluating the consequences of the brief and
dangerous forces imposed by breaking waves as they impinge
directly on emergent organisms on the shore.

Appendix
Longitudinal viscoelastic waves

The axial stress, σ, at a given location in a tensile organism
is assumed to depend on both the axial strain and the rate of
strain (see, for example, Kolsky, 1963):

A gradient in stress across an infinitesimal tissue element
within the organism causes that element to accelerate
according to Newton’s Second Law. Thus:

Substituting equation A1 into equation A2 yields equation 4 of
the text.

Viscoelastic waves of bending

Given the relationship of equation A1, the internal bending
moment, M, at a given location in an organism in bending

∂σ

∂x
= ρ .

∂2ξ

∂t2
(A2)

∂ξ

∂x
+ Evisc .

∂2ξ

∂t∂x
σ = E (A1)
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depends both on the organism’s curvature and on its rate of
change of curvature (see, for example, Gere and Timoshenko,
1990):

where κ is the curvature. For relatively small deflections:

Neglecting rotational effects, the transverse shear, V, is related
to the internal moment by the standard expression of statics:

Much as in equation A2, a gradient in shear across an
infinitesimal tissue element causes that element to accelerate:

Combining equations A3–A6 yields equation 5 of the text.

List of symbols
A cross-sectional area
E elastic modulus
Eloss loss modulus
Evisc viscous modulus
F force
Fexternal externally applied force
Fmax maximum force
I second moment of area of the organism’s cross 

section
k stiffness
L length
m mass
M internal bending moment
r radius of a cross section
t time
T pulse period
U velocity
V transverse shear
x given location within an organism
ηbending index of nondimensional damping for an organism 

in bending
ηtension index of nondimensional damping for an organism 

in tension
κ curvature
ρ mass density
σ axial stress
τbending nondimensional form of pulse period for an 

organism in bending
τtension nondimensional form of pulse period for an 

organism in tension

ω frequency of loading
ξ axial displacement
ξmax maximum extension
ζ lateral displacement
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