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Summary

The effects of adenosine and adenine nucleotides on velocity in the lateral arteries from 98+92 to 74+69 mm.
haemolymph velocity and on heart rate and scaphognathite Heart rate is increased from 69.3+7.4 to 81.2+6.2 beats min
frequency were investigated in the American lobster and scaphognathite frequency from 86.9+29.0 to
Homarus americanusThe infusion of 0.25-2.4nmolgtmin™?  147.1+35.0 beats mirt. The effects of adenosine are rapidly
adenosine produced steady-state concentrations of reversed after the cessation of the infusion of this purine. The
2-3umol|~1 adenosine and approximately 8dmoll~linosine  adenylates cause similar but lesser changes and the effects
in the haemolymph. No changes in haemolymph are protracted, probably because of low in vivo activities of
concentration of AMP, hypoxanthine, xanthine or IMP were  nucleotidases.
observed.

Adenosine increases haemolymph velocity in the sternal
artery from 55429 to 204+53mms! and in the posterior ~ Key words: adenosine, ventilation, heart performance, heamolymph
aorta from 21+7 to 54+28 mms! and reduces haemolymph  velocity, lobsterHomarus americanus.

Introduction

The crustacean circulatory system is able to react to sevenallsed-Doppler-flowmetry and of photoplethysmography lend
ecological demands interfering with oxygen delivery such athemselves well to the measurement of heart rate, haemolymph
environmental hypoxia (Butler et al.,, 1978; Wheatly andvelocity (Reiber et al., 1992) and ventilation rate (Depledge,
Taylor, 1981; McMahon, 1992; Reiber et al., 1992; Airries and.984).

McMahon, 1994), air exposure (Taylor and Wheatly, 1981; Amongst cardiovascular adaptations, chronotropic and

Airries and McMahon, 1996) or exercise (Herreid et al., 1983inotropic effects of the heart have been documented for many
Hamilton and Houlihan, 1992; Hokkanen and DeMont, 1992¢rustaceans. The influence of mediators such as proctolin,
Reiber, 1994; Reiber et al., 1997) with various physiologicabctopamine, dopamine, serotonine and crustacean cardioactive
adaptations. An increase in gill ventilation, heart rate, strokpeptides on the circulatory system has been investigated
volume and haemolymph flow and a redistribution of thgWilkens et al., 1985; McGaw et al., 1994). These

haemolymph to areas of enhanced oxygen demand magurohormones, which are released from the pericardial organ,
intensify the supply of oxygen to the tissues (Wheatly anghass directly to the heart where they have been found to have
Taylor, 1981; McMahon and Burnett, 1990; McMahon,both chronotropic and inotropic effects (Cooke and Sullivan,

1995a). 1982). In addition to hormones, metabolites such as lactate or

Based on a deluge of work (McMahon and Wilkens, 1983)urate originating from muscle tissue or the hepatopancreas
it was suggested (McMahon and Burnett, 1990) that th&nction as metabolic modulators, increasing the oxygen
circulatory system of advanced decapod crustaceans migaffinity of haemocyanin in many crustaceans (Truchot, 1980;
allow fine graded regulation of cardiac output and haemolympNlorris et al., 1985). These internal mediators may transfer to
flow as well as selective haemolymph distribution, and therebthe cardio-ventilatory system information related to external
augment oxygen supply to the tissues. To a certain exterabiotic factors such as lack of ambient oxygen or flight and
ventilatory and circulatory control mechanisms in advancedight responses.
crustaceans may even be functionally equivalent to those of theAmongst the many internal factors known to act
vertebrate autonomic system (McMahon, 1995b). Thessystemically in animals, adenosine is predominant since it can
statements and the availability of two non-invasive methodexert several important cardiovascular actions. In vertebrates
raised new interest in the efficiency of the crustaceaespecially, the adenosine-induced increase in coronary blood
cardiovascular physiology. In particular, the techniques oflow has been the subject of numerous investigations (Drury
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Fig. 1. Original tracing of the haemolymph velocityn the
sternal artery of the American lobstéfopmarus americanus.
(A) A tracing showing the haemolymph velocity (1 unit of Z:MMM -2
velocity=110.66 mmd) in a quiescent animal (1-10min), I
during the infusion of 2.4nmofgbodymassmint of i B ClL
adenosine (11-20 min) and during subsequent recovery lasting ; ' ' ; T

for 40 min. (B,C) Expanded velocity tracings during 9s of the 0 2 4 6 8 0 2 4 6 8
control and infusion phases. Time (s)
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and Szent-Gyorgyi, 1929; Gerlach et al., 1963; Bohm, 1987)jnonitored by means of photoplethysmography (Depledge,
Adenosine is produced by the breakdown of ATP and i1984).
accumulates within the tissues or is released into the blood Adenosine, dissolved in lobster saline (Zeis et al., 1992),
(Zimmermann, 1992). It can therefore become effective during/as infused into the infrabranchial sinus via a catheter through
hypoxia or ischaemia, when the rate of energy consumptiatime arthrodial membrane at the base of the fourth pereiopod by
exceeds the rate of energy production. By analogy wittmeans of a syringe pump (Infors, Basel, Switzerland). All
experiments on vertebrates (Chiba and Himori, 1975; Bohmnfusions, which lasted for 10 min, were carried out with an
1987; Bennett and Drury, 1931), adenosine might also badenosine solution of 10 mmaot] pH 8.0.
expected to affect the circulatory and ventilatory system of Haemolymph samples were drawn from the pericardial
some crustaceans. Therefore, we investigated adenosine- aidus, which was accessible through a perforation drilled into
adenine-nucleotide-induced changes in ventilation rate, cardidice carapace before the experiment. Blood samples were
performance and haemolymph velocity in the American lobstezollected in ice-cold 0.6 mot} perchloric acid. Immediately
Homarus americanus after mixing, the samples were centrifuged for 25min at
20000g. The supernatant was brought to pH 6.0 using
0.75mol 1 KoHPQu. The precipitate was removed, and purine
Materials and methods derivatives were measured in the resulting supernatant
Essentially following the method of Reiber et al. (Reiber eaccording to Deussen et al. (Deussen et al., 1988) using high-
al., 1992), a directional pulsed-Doppler-flowmeter (545C-4erformance liquid chromatography (HPLC). If the various
Bioengineering, University of lowa, USA) and piezoelectricpeaks in the chromatogram could not accurately be assigned
transducer crystals of 1mm diameter (Crystal Biotechto a particular compound, the sample was treated with an
Hopkinton, USA) were used to measure haemolymph velocitgppropriate enzyme of the purine catabolism to shift the peak
in the sternal artery, the posterior aorta and the lateral arterigsthe chromatogram.
of the American lobsteHomarus americanusThe animals Values given in this study are meanss.h. To compare
had a mean body mass of 500-1000g. They were kept oontrol values with those obtained during and after the
aerated recirculating sea water at 15+2°C. During thelifferent interventions a Kruskal-Wallis ANOVA on ranks
experiments, which were also carried out at this temperaturejas performed on raw data. Multiple comparisaessus
the animals were unrestrained in a 401 aquarium. Animals weintrol values were carried out by Dunnett’s test or Dunn’s
chilled on ice during surgical manipulation and they wereest. Differences were considered significar<®.05.
allowed to recover for at least 7 h afterwards. The experiments
were started when heart rate and haemolymph velocity
achieved constant levels over at least 40 min. When the same Results
animal was used for several purine infusions at different rates Haemolymph velocity, heart rate and scaphognathite
within one experimental set, the animal was allowed to recover frequency
for 2—7 h between treatments, while the catheter and the crystalHaemolymph velocities were measured in the sternal artery,
remained implanted. The same experimental arrangemetite posterior aorta and the lateral arteries before, during and
was used to measure heart frequency. Ventilation rate wasdter the application of various doses of adenosine. Fig. 1 shows
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sternal artery of the American lobstdomarus americanysduring
Fig. 2. Haemolymph velocity in the sternal artery of the American the infusion of adenosine at 0, 0.25, 0.5, 1.2, 2.4 and
lobster Homarus americanusn undisturbed animals (0-10min), 4.8 nmolg!body massmint. Values are means £p. (N=5, 6, 8,
during the infusion of three different concentrations of adenosine (A10, 9 and 9, respectively). An asterisk denotes a value significantly
0.25, (B) 1.2 and (C) 2.4 nmotfpody mass mint (10-20min) and  different from the control valud&0.05).
in recovering animals (20—-40 min). Values are meass.{N=6, 10

and 9 in A-C, respectively). An asterisk denotes a value significantl, . . .
different from the control valué®&0.05). The Doppler signals resulting from the haemolymph velocity

in the posterior aorta were different from those in the sternal

artery. As can be seen from the original tracings (Fig. 4), the
an original tracing of haemolymph velocity in the sternal artenhaemolymph flow in this artery reverses to some extent with
during an experiment which lasted for 60 min. After a 10 mirevery heart beat. The retrograde velocity of the haemolymph
control period, adenosine at 2.4 nmdligody mass mint was  was highly variable during control and experimental periods.
infused over a period of 10 min. The animal then was allowe@he net increase of the haemolymph velocity was at most only
to recover, and the first 40min of recovery are showntwofold and thus smaller in this vessel than in the sternal artery.
Adenosine evoked an approximately threefold increase inder control conditions, the average haemolymph velocity
haemolymph velocity during systole. Haemolyph flow did notwas 21+7.0mm3¥ and this gradually increased to 28+27,
return to zero in controls and it was increased during an89+20 and 54+28 mntin the presence of adenosine at 0.25,
following the infusion of adenosine. 1.2 and 2.4nmoldbody mass mirt, respectively. Cessation

Increasing the concentrations of adenosine increaseaf the adenosine infusion again caused a rapid decrease of the

haemolymph velocity (Fig. 2). During the first 20 min of the purine effect and control levels were reached after 10 min
control period, velocity averaged 55+29 nrhsThe infusion  (Fig. 5).
of 0.25nmolglbody massmirt of adenosine increased the The haemolymph velocity in the lateral arteries was very
haemolymph velocity to 106+54mimls and adenosine variable among specimens even under control conditions
concentrations of 1.2 and 2.4 nmotgody mass mint resulted  (Fig. 6). Only if the animals were left undisturbed for several
in haemolymph velocities of 172+61 and 204+53mts hours could stable haemolymph velocities of 98+82 rmirhe
respectively. Higher concentrations of adenosine had no furthestimated. In contrast to the results from the haemolymph
effects; the haemolymph velocity levelled off between arvelocities in the sternal artery and the posterior aorta, the value
infusion rate of 2.4 and 4.8nmofdodymassmirt of  of this variable was reduced by 25 % in the lateral arteries when
adenosine (Fig. 3). From Fig. 2, it is also obvious that thelifferent amounts of adenosine were infused, but the reduction
haemolymph velocity had already slightly decreased before thgas not significant. Again, haemolymph velocities within the
end of the infusion of adenosine and dropped to control levetgnge of control values were achieved within minutes after the
within 10 min after cessation of the treatment. infusion was stopped.
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Fig. 4. Original tracing of the haemolymph velocityn the % 4 -4
posterior aorta of the American lobstelgmarus americanus. T [
(A) A tracing showing the haemolymph velocity (1 unit of 21 2
velocity=110.66mmd) in a quiescent animal (1-10min), ﬂ ,I'[ h n J‘H\, R ﬂ n ﬁ ﬂ ]'\ ﬂ o
during the infusion of 2.4nmotgbodymassmint of ISR R R R R Y TR

adenosine (10—-20 min) and during subsequent recovery lasting 0 5 7 5 8
for 40 min. (B,C) Expanded velocity tracings during 9s of the 0 2 4 6 8
control and infusion phases. Time(s)

Besides its effects on haemolymph velocities, adenosineeart and ventilation rates. Again a large increase in beat
also affects heart rate and scaphognathite frequency. Sindglequency was found following adenosine application. The
contractions of the heart cause a pulsatile haemolymph flow.
Thus, the frequency can be resolved from the Doppler sign |
and quantified in the presence of different adenosine dosag g | A
(Fig. 7). Quiescent specimens showed an average heart ri
of 69.3+7.4beatsmid. The frequency was significantly
increased by a factor of 1.09, 1.14 and 1.17 in the presen
0.25, 1.2 and 2.4nmotgbody massmint of adenosine,
respectively. Higher doses of adenosine often caused
transient bradycardia and even sometimes cardiac arrest whi__ 2
switched over to a tachycardia (Figs 7, 8C). The positiviu
adenosine-dependent, chronotropic effect disappeared Withg 8
approximately 10min after the infusion of adenosine was
terminated. The beat frequency of the scaphognatite w2
significantly elevated in the presence of 4.8 nmbbgdy
mass min! of adenosine and increased from 86.9+29.0 tc
147.1+35.0 beats miA (Fig. 8C).

Several publications report a release of adenine compoun2
from endothelial cells (Deussen et al., 1993) or from isolate%
vessel preparations from the rabbit aorta (Sedaa et al., 199
causing many different responses (Burnstock, 1996). It i
conceivable that not only adenosine, but also ATP, ADP an
AMP similarly influence respiration and circulation in
Crustacea. Fig. 8A shows the haemolymph velocities in th
sternal artery resulting from a 10min infusion of T ; . T T
4.8 nmol g body mass mint each of adenosine, AMP, ADP 0 10 20 30 40 S0 60
and ATP. The effect of adenosine was most pronounce: Time (min)

significantly increasing haemolymph velocity from 86.8+29.2 L i
to 147.1435.0mmé. When adenylates at the sameF'g' 5 Haemolymph velocitiess in the. posterlor aorta o_f the

. . . American lobsterHomarus americanusn undisturbed animals
concentration were infused, th.ls effect was reduced as ﬂ(0—10 min), during the infusion of three different concentrations of
number of phosphate groups increased (AMP>ADP>ATP), cnosine (A) 0.25, (B) 1.2 and (C) 2.4nndlgpdy mass mirt
Recovery following infusion was protracted and, in the case ¢(10-20min) and in recovering animals (20-40min). Values are
ATP, haemolymph velocities remained significantly elevate(means +sp. (N=8, 6 and 10 in A-C, respectively). An asterisk
40 min after cessation of the nucleotide application. denotes a value significantly different from the control value

Adenine compounds caused similar response patterns (P<0.05).

Adenosine:

mph veloci
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Fig. 6. Haemolymph velocitiesv) in the lateral arteries of the

American lobsterHomarus americanusn undisturbed animals Fig. 7. Heart ratdH of the American lobsteHomarus americanus
(0-10 min), during the infusion of three different concentrations ofin undisturbed animals (0-10min), during the infusion of three
adenosine (A) 0.25, (B) 1.2 and (C) 2.4 nmdllgpdy mass mint different concentrations of adenosine (A) 0.25, (B) 1.2 and
(10-20min) and in recovering animals (20-40min). The low(C) 2.4nmolgltbody massmint (10-20min) and in recovering
velocity values during the infusion period are not significantlyanimals (20-40 min). Values are means.zz (N=13, 15 and 19 in
different from the control values. Values are mearspt (N=6, 7  A-C, respectively). An asterisk denotes a value significantly
and 10 in A—C, respectively). different from the control valud>£0.05).

infusion of the adenylates initially caused a transienperiod. Within 2min of ending the application of adenosine,
bradycardia and a reduction in the beat frequency of th#ne concentration in the haemolymph dropped to
scaphognathite. With higher numbers of phosphate groups, tBed5+0.05umol I, a value not significantly different from the
elevation of heart and ventilation rates was less pronouncemntrol value. Inosine, the first metabolite arising from
during the infusion period, but remained high or even increaseatienosine degradation, showed a near linear concentration
in the case of ATP during recovery (Fig. 8B,C). increase from 1.1+1.4 to 81.5+33u#ol 171 during 10 min of
From these experiments it is obvious that the adenosinadenosine infusion. During recovery, the inosine concentration
dependent upregulation of some systemic variables was readigcreased logarithmically, reaching 18.5#@roll™1 after
abolished within 10min of the cessation of the treatment30 min of recovery. Hypoxanthine and xanthine levels tended
indicating a rapid catabolisation of this purine or itstoincrease slightly, butindividual variability is too pronounced
rephosphorylation to AMP. Therefore, the steady statéo obtain significant results. IMP concentrations were always
concentrations of AMP and adenosine and of some of itselow the detection limit of @mol I™.
degradation products were measured in the haemolymphAn infusion of an adenosine solution of 0.03 and
(Fig. 9). In quiescent, non-infused animals 4+4nmbll 0.24ulmin~tgtbodymass could elicit a response from
adenosine (detection limit 2nmo}) can be measured in the baroreceptors known to occur in some Crustacea (Burggren et
haemolymph. The infusion of 2.4nmofdpody massmint  al., 1990). Lobster Ringer’s solution was therefore infused at
adenosine over a period of 10min resulted in a significard flow rate of 0.24lmin~2g~2body mass for 10 min. This was
increase in the steady-state concentration of this purine in thiellowed by an adenosine application for 10 min at the same
haemolymph to 3.1+3;9moll-1, but its concentration fell to flow rate of 2.4 nmolgtbody mass mirt. Fig. 10 shows that
1.6x1.6umol 1 before the infusion was terminated. Eventhe infusion of lobster saline at this flow had no effect on
though the standard deviations were enormous, the increasehiaemolymph velocity in any of the three vessels investigated
adenosine concentration was significant during the infusioor on heart rate. Subsequent infusion of adenosine (Fig. 10A)
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Fig. 8. Haemolymph velocitie¥]) in the sternal artery (A), heart rafe;(B) and scaphognathite frequencies{; C) of the American lobster,
Homarus americanysn undisturbed animals (0—10 min), during the infusion of adenosine (Ado), AMP, ADP and ATP at a rate of 4.8nmolg
body mass mint each (10—20 min) and during recovery (20—40 min). Values are means(M is given in the respective graphs). An asterisk
denotes a value significantly different from the control vaRe9(05).

showed the same effect on haemolymph velocity and on hedturamoto, 1998). Several of these compounds have been
frequency as documented previously (Figs 2, 5-7). identified in the pericardial organs of decapods, from where
Since adenosine is reported to be rapidly metabolized tilvey can be released into the haemolymph and transported to
inosine in human and dog plasma (Mo6ser et al., 1989) and their site of action (Alexandrowicz, 1953). Their chrono- and
lobster haemolymph (Fig. 9), this purine could also have @otropic effects on the heart of decapod crustaceans have been
potentiating effect on haemolymph velocities in the bloodstudied in detail (Beltz and Kravitz, 1986). Furthermore, the
vessels and on heart rate. To check this possibility, 2.4 ol gcirculatory and ventilatory sytems are tightly regulated
bodymassmint inosine was infused followed by by these compounds and allow appropriate physiological
2.4nmolglbody mass mint adenosine. Inosine increased responses by an animal to compensate for natural perturbations
neither haemolymph velocity in the arteries investigated nofMcMahon, 1995a; McMahon, 1995b; McMahon, 1999).
heart rate, but adenosine still had the same effects (Fig. 10B)hese compounds alone, however, cannot explain the range of
physiological reactions involved in environmental adaptation.
) ) The actions of purine nucleotides and nucleosides on
Discussion invertebrate organs and tissues have been known for many
Adenosine-dependent regulation of haemolymph flow  years (Burnstock, 1996). In the olfactory organ of lobsters and
The haemolymph flow of many crustaceans is mainlyother decapod crustaceans a population of purinergic receptors
channelled to the tissues through seven arteries, which exkists that can be excited by adenine nucleotides (Carr et al.,
from the ventricle. With the exception of the posterior aortal986). There are no recent investigations of the influence of
each vessel has at its origin a muscular, innervated semiluradenylates and adenosine on circulation and respiration in
valve, which can be stimulated either electrically by the centrairustaceans, therefore the effects of adenosine and adenylates
nervous system (Kihara et al., 1985) or by a variety ofvere assessed on respiration and circulation of the American
aminergic and peptidergic neurohormones (Kuramoto anbbbsterHomarus americanus.
Ebara, 1984; Kuramoto and Ebara, 1989; Wilkens and The infusion of adenosine gradually increased the
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Fig. 9. Steady-state concentratiopspl 1Y) of various metabolites in the haemolymph of the American lobkiararus americanuduring a
period (B-10min) of infusion of 2.4 nmold body mass mint of adenosine and the following recovery (10-40 min). Values are mesns +
(N=8). An asterisk denotes a value significantly different from the control Viaie0’).

haemolymph velocity approximately threefold in the sternakeveral causes. The diameter of the vessel might have increased
artery. This effect could be saturated at an infusion rate air the resistance to flow decreased, either of which would result
between 2.4 and 4.8 nmot'dhody massmirt of adenosine in a reduction of velocity. There might even be CNS-receptors
(Figs 2, 3), which led to a steady-state concentration ddictivated by adenosine, in which case the CNS drive to the
approximately fimoll1 adenosine in the haemolymph heart might show adaptation. So far, none of these possibilities
(Fig. 9). Thus, low concentrations of this purine were sufficienhave been investigated.

to exert a maximal response which, however, was sustained forDuring and after cessation of the infusion, adenosine was
longer periods. During the infusion period of adenosine aapidly metabolized by adenosine deaminase, resulting in an
reduction in the haemolymph velocity occurred that could havanosine accumulation in the haemolymph, whereas adenosine
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could barely be detected 2min after the infusion had beein Homarus americanusThis value for control animals is
terminated (Fig. 9). Its impact on the circulation is immediateconsiderably lower than that given by Reiber et al., who
(Fig. 8) and as pronounced as in other mediators such aseasured 38.9+4.1mlnihin quiescent American lobster
proctolin, crustacean cardioactive peptide (McGaw et al(Reiber et al.,, 1997), which probably approximates to
1994) or 5-hydroxytryptamine (Wilkens et al., 1985).59.8+6.3mImintkglbodymass in a specimen weighing
Responses to adenosine are of short duration because of a regdg. Whether this tenfold discrepancy is due to
enzymatic degradation by adenosine deaminase (Arch amdethodological differences, to false measurements, to the
Newsholme, 1978). Probably adenosine is geared to mediateatment of the animals (free roamirggsustethered) or to an
rapid, systemic responses to environmental stress such as fligidccurate calculation of the data has not been resolved yet.
and fight reactions. The posterior aorta also showed an adenosine-dependent
Haemolymph velocity \( in mms1) can be related to increase in haemolymph velocity by a factor of 2.6, which is less
haemolymph flow @, in mimin?) if the diameterd) of the  pronounced than in the sternal artery. This amounts to an increase
vessel is known. Reiber et al. (Reiber et al., 1997) measured time haemolymph flow from 2.3+0.8 mlmibkg=2bodymass in
diameter of several blood vessels in the American lobster. Thiiescent animals to 4.4+1.0mlmhkglbody mass during
mean diameterd] of the sternal artery was 1.8 mm (1.9 mm adenosine infusion, using a mean diameter of 1.86 mm for the
during systole and 1.7mm during diastole) in quiescenposterior aorta (Reiber et al., 1997). In contrast to the other
animals. Using the relatid@=v(d/2)2B (Chauveau et al., 1985), vessels investigated, a retrograde flow already occurred in the
the haemolymph flow in the sternal artery was estimated tposterior aorta under resting conditions (Fig. 4B) and was
increase from 5.6+2.9 to 21.5+7.5mlmikgtbodymass enhanced following adenosine infusion (Fig. 4C). This retrograde
when 2.4 nmolgtbody mass mint of adenosine were infused flow could be explained by the histological peculiarities of this
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vessel. All crustacean arteries have elastic layers adjacent to thAdenosine- and adenine-nucleotide-dependent increases in
lumen and should thus function as windkessels to dampen the circulation and ventilation
pulsatile flow produced by the pumping heart (Wilkens et al., Heart rate in a quiescent American lobster averaged
1997). The posterior aorta is the only vessel to contain striatétD.2+7.0beatsmid and increased significantly to 82+
muscles in the lateral walls, and these muscles are expected7t0 beats mint when 2.4 nmol gt body mass mirt of adenosine
counteract the transmural pressure generated by the heart dunmgre infused (Fig. 7). Prior to the frequency increase, a
systole. Furthermore the posterior aorta has no cardioarterienspicuous drop in heart rate occurred. Heart rates were then
valves at its origin; in this vessel the resistance is adjusted l®fevated during the later period of infusion and returned to
segmental valves at the origin of the six paired segmental arteriesntrol levels between 5 to 8 min. Except for the lateral arteries,
(Wilkens, 1997). If the posterior aorta, which is extended duringhis increase in beat frequency contributes to an increase in
systole, returns to its diastolic diameter, haemolymph should nbeemolymph flow through the vessels. In addition, the increase
only be driven through the six segmental branches, but alsoira scaphognathite frequency (Fig. 8C) enhances water flow
certain portion of haemolymph must be pumped back towardbrough the gill chamber, providing more oxygen to the
the venticle since no valves are present to prevent this flow. T@emolymph.
haemolymph in the segmental branches flows perpendicularly to It is unknown (1) to what extent adenosine itself is released
the haemolymph flow direction in the posterior aorta. Because ¢d the extracellular space, (2) whether adenosine nucleotides
that disadvantageous angle the transducer can only detect flonaire extracellularly converted to adenosine by ectoenzymes,
both directions of the main vessel. This is a weakness in tfend (3) whether the proportion of released adenyl compounds
applied method in the case of a macruran, because additiomdpends on the site of production (Rubio et al., 1973). In
haemolymph, which is driven to the tissues by means of activelyddition, throughout the animal kingdom different classes of
contracting muscular parts of the vessel, cannot be quantifiggurinoceptors have been reported that are excited by ATP,
Nevertheless, the Doppler method gives a good estimate ADP and AMP (Burnstock, 1996). It is therefore conceivable
velocity, and the 2.6-fold increase of haemolymph velocity in théhat the nucleotides evoke reactions similar to that of
vessel supplying the gut, midgut gland, pleopods, uropod and taitlenosine in crustaceans by binding either to the same or
muscles in the presence of 2.4nnmBlgpdy massmirt of  to different receptors as adenosine, or by extracellular
adenosine represents an augmented oxygen supply to the tiigradation of nucleotides to adenosine. Fig. 8A demonstrates
muscle, as for example during enhanced activity. If the vasculéine effects of adenosine and its nucleotides on haemolymph
muscles and the valves indeed work as suggested above, this Zélocity in the sternal artery. All four purines elicited a
fold increase should even be higher. significant increase in haemolymph velocity. The effect was
The hypothesis that the vascular muscles and the valves gfaded, with adenosine showing the greatest and ATP the
the posterior aorta work as suggested is corroborated bysanallest effect. Although a direct stimulation of purinoceptors
peculiarity of the Doppler traces of the sternal artery, whiclby adenylates cannot be excluded, it is assumed that
was also described (Reiber, 1994; Reiber et al.,, 1997) factonucleases dephosphorylate these purines to adenosine,
macrurans. Under resting conditions, the diastolic velocity invhich is not only indicated by the phosphorylation-dependent
the sternal artery did not return to O nrh@ig. 1). Similar to  gradation of the effects, but also by the delay of recovery. The
the diastolic retrograde flow in the posterior aorta (Fig. 4B,C)latter effect is probably due to the action of phosphatases and
the residual diastolic flow in the sternal artery was enhancettie 3-nucleotidase, which provide a long-lasting supply of
in the presence of adenosine (Fig. 1B,C). It is thereforadenosine because thervivoactivities are much lower than
possible that the haemolymph that was pumped out of thée highin vivoactivity of the adenosine deaminase (Arch and
posterior aorta during diastole by the contracting vasculakewsholme, 1978).
muscles was not only represented by the diastolic retrograde The heart ofCancer magisteis also known to react with an
flow (Fig. 4) but also by the diastolic residual flow in theincrease in rate after a bolus of 5-hydroxytryptamine, which is
sternal artery (Fig. 1), because it was driven through the bulbusleased during aggressive encounters that are usually coincident
arteriosus and further through the opened cardioarterial valvegth enhanced activity (McMahon, 1995b; Kravitz, 1988). It is
of the sternal artery. tempting to speculate that 5-hydroxytryptamine and adenosine
The lateral arteries, which have control flow rates ofactin a concerted manner, one mediator being released from the
1.9+1.7 mImirr kg~ body mass and transport only 1% of the neurohaemal organ, the other from muscle tissue.
cardiac output (McMahon, 1995a), show opposite effects. In Applications of adenyl compounds evoked similar graded
some specimens a slight increase of the haemolyph velocigffects on heart (Fig. 8B) and ventilation (Fig. 8C) rates. With
resulted from adenosine infusion, but in most experimentscreasing phosphorylation of the adenylate the respective
a slower flow occurred (Fig.6), which amounted tomaxima of both systemic variables were protracted; even at the
1.5+0.9 mIminml kg~ body mass, assuming a mean diameter oénd of recovery, high heart and scaphognathite rates were
0.8mm (Reiber et al., 1997). This decrease in the adenosioéserved, which again indicates that adenine nucleotides serve
response may result from shunting between arterial systems,@&s an adenosine pool and that the nucleoside is protected from
proposed by McMahon (McMahon, 1995b) for this vessel irrapid deamination by means of the phosphate groups. These
the presence of 5-hydroxytryptamine. conspicuous similarities between adenosine- and adenine-
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nucleotide-dependent reactions of the circulatory and those gfrriess, C. N. and McMahon, B. R. (1994). Cardiovascular
the respiratory system strongly suggest that both systems dcadaptations enhance tolerance of environmental hypoxia in the crab
not perform in concert by chance, but are under the common Cancer magister. J. Exp. Bidl90, 23-41.
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