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Summary

Cyclic-nucleotide-gated (CNG) channels are crucial for are candidates for mediating changes in cyclic GMP
sensory transduction in the photoreceptors (rods and sensitivity including transition metals, such as MNi* and
cones) of the vertebrate retina. Light triggers a decrease in  Zn2*, and lipid metabolites, such as diacylglycerol.
the cytoplasmic concentration of cyclic GMP in the outer Moreover, CNG channels are associated with protein
segments of these cells, leading to closure of CNG channelskinases and phosphatases that catalyze changes in
and hyperpolarization of the membrane potential. Hence, phosphorylation state and allosterically modulate channel
CNG channels translate a chemical change in cyclic activity. Recent studies suggest that the effects of circadian
nucleotide concentration into an electrical signal that can rhythms and retinal transmitters on CNG channels may
spread through the photoreceptor cell and be transmitted be mediated by such changes in phosphorylation. The goal
to the rest of the visual system. The sensitivity of of this paper is to review the molecular mechanisms
phototransduction can be altered by exposing the cells underlying modulation of CNG channels and to relate
to light, through adaptation processes intrinsic to these forms of modulation to the regulation of light
photoreceptors. Intracellular Ca2* is a major signal in  sensitivity.
light adaptation and, in conjunction with Ca2*-binding
proteins, one of its targets for modulation is the CNG
channel itself. However, other intracellular signals may be Key words: cyclic-nucleotide-gated  channel, modulation,
involved in the fine-tuning of light sensitivity in response phosphorylation, protein—protein interaction, insulin-like growth
to cues internal to organisms. Several intracellular signals factor I, calmodulin, photoreceptor, sensory transduction.

Cyclic-nucleotide-gated channels and phototransduction

Rods and cones are the cells of the vertebrate retina thatncentration of cGMP and closure of cyclic-nucleotide-gated
transduce visual information into neural signals. Thes€CNG) channels. The resulting decrease in the steady inward
remarkable cells not only possess all the molecular machinefgark current’ hyperpolarizes the membrane potential,
necessary for generating the light response but they alsdtimately leading to a decrease in the tonic release of the
contain systems for adjusting light sensitivities in accord witmeurotransmitter glutamate from the presynaptic terminals.
the level of background illumination. The only exogenous The genes encoding CNG channels have been cloned, and
ingredients needed for signal transduction are the chromophatteeir transmembrane structures have been deduced from the
11<is retinal, provided by the retinal pigment epithelium primary amino acid sequence (for a review, see Zagotta and
(RPE) (Dowling, 1987), and €3 which enters through ion Siegelbaum, 1996). Even though voltage has little effect on
channels and is the crucial signal for adaptation (Fain et achannel opening, CNG channel proteins are members of the
2001). Unlike invertebrate photoreceptors (Crow and Bridgeyoltage-gated superfamily of ion channel proteins, having
1985; Renninger et al.,, 1989), until recently there hagparticularly high homology with voltage-gated" Khannels
been little evidence for extrinsic modulation of the(Fig. 2) (Jan and Jan, 1990). Like Khannels, each subunit
phototransduction cascade by chemical transmitters. of a CNG channel has a cytoplasmic N terminus, six

The molecular steps of rod phototransduction are wellnembrane-spanning segments and a cytoplasmic C terminus.
understood (Fig. 1). Single photons induce isomerization ofn addition, the fourth membrane-spanning segment of CNG
rhodopsin, leading to activation of the G-protein transducirthannels has several positively charged amino acids spaced
and of phosphodiesterase, which hydrolyzes cyclic GMPRhree residues apart. In voltage-gated channels, these charges
(cGMP). This leads to a decrease in the cytoplasmifunction as the voltage sensor for gating, but even though this
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Fig. 1. The phototransduction cascade. Light causes photoisomerization of rhodopsin, activating the heterotrimeric Grgrhiein. tfde
GTP-bounda-subunit activates phosphodiesterase (PDE), which degrades cGMP to GMP. The decrease in cGMP concentration leads tc
closure of cyclic-nucleotide-gated (CNG) channels, resulting in two effects, a decreadg iimfl@aand hyperpolarization of the membrane
potential. The resulting decrease in intracellulaf*Gancentration is important for adaptation. Lowered intracellulg Cancentration
disinhibits guanylate-cyclase-activating protein (GCAP), leading to activation of guanylate cyclase (GC) and resynthests of cGM

motif is fairly well conserved in CNG channels, gating of these
channels is relatively voltage-insensitive. The region betwee A
the fifth and sixth membrane-spanning segment is a re-entre
loop, known as the ‘P’ domain, because it has proved to be tl
crucial pore-lining region of the channel that determines th
conductance and ion-selectivity properties of the channe
(Goulding et al.,, 1993). CNG channels are thought to b
tetramers (Liu et al.,, 1996), with each of four subunits
contributing a pore-lining ‘P’ domain.

Native CNG channels in photoreceptors and olfacton
neurons are heteromultimers, containing homologouand
B-subunits (Kaupp et al., 1989; Dhallan et al., 1990; Gouldiny B
et al.,, 1992; Liman and Buck, 1994; Korschen et al., 199& Biasatiis:
Gerstner et al., 2000). Exogenous expression of rod ¢ —
olfactory a-subunits in Xenopus laevisoocytes results in
functional CNG channels with properties that are similar, bu  niracellular
not quite identical, to those of their native counterparts NH> e
Expression off3-subunits alone fails to prqduce f_unctlonal Y498 Cyclic-nucleotide-
channels; when they are co-expressed withubunits, the binding site
resulting channels more closely resemble native channels.

Our understanding of photoreceptor CNG channel gatinFig- 2. (A) Three-dimensionfal structure of a cyclic-nucleotide-gated
and modulation has been greatly helped by structural ar(CNG) ghannel. Fopr subunlt_s are arrangec_:l to form a common pore.
functional comparisons with closely homologous CNGThere is a cyclic-nucleotide-binding site on each subunit.

channels from olfactorv receptor neurons. The vertebral(B) Diagram of the primary structure of tbesubunit. The cylinders
Y P ) indicate hydrophobic segments thought to represent transmembrane

0Ifac’qon signaling cascade In_vol\_/es odorants binding to Gdomains. The sS4 segment is the voltage sensor for voltage-
protein-coupled receptors, activation of adenylate cyclase algependent transition in these channels: the region between S5 and

synthesis of cyclic AMP, leading to activation of olfactory s is thought to be part of the channel pore (P domain). The cyclic-
CNG channels and depolarization of the membrane potentienucleotide-binding domain is in the C-terminal region of the CNG

Like rod CNG channels, olfactory CNG channels are voltagechannel.
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insensitive, non-selective in their permeability to monovalentalmodulin in rods (Hsu and Molday, 1993) or otheP'ca
cations and do not desensitize with prolonged exposure tunding proteins in cones (Rebrik and Korenbrot, 1998),
ligand. However, olfactory CNG channels have a largerdirectly binds to and inhibits CNG channels by reducing their
diameter pore and can be fully activated by either cyclic AMRensitivity to cGMP. In rods, €dcalmodulin binds to th@-
or cyclic GMP (Dhallan et al., 1990; Goulding et al., 1992).subunit of the rod CNG channel protein (Chen et al., 1994; Hsu
Analysis of chimeric CNG channels, formed by substitutingand Molday, 1993; Weitz et al., 1998; Grunwald et al., 1998).
segments of rod with olfactory CNG channels, has elucidatefihe binding of Cé&t/calmodulin to CNG channels can alter the
crucial segments, and in some cases individual amino acidsteraction between the N and C termini of channel subunits,
that mediate the effects of modulators on CNG channel gatinghich may be important for gating (Varnum and Zagotta,
(Table 1). 1997). According to this scenario, the drop in intracellul&@*Ca
Photoreceptor CNG channels play the central role imoncentration during the light response should favor the
phototransduction. Therefore, intracellular or extracellulareopening of CNG channels, thus extending the operating
messengers that alter the behavior of CNG channels coutdnge of the rod light response. However, the shift in cGMP
potentially alter vision. For example, changing the sensitivitysensitivity is rather small (two- to threefold) compared with the
of CNG channels to cGMP (i.e. changing tKe, for  large change in rod light sensitivity during light adaptation
activation) could result in a change in visual sensitivity, eithe(100- to 1000-fold), suggesting that this mechanism makes
in response to signals external to an organism, such as lighmly a minor contribution to adaptation in rods (Koutalos and
itself during light and dark adaptation, or in response to internafau, 1996), although it makes a larger contribution to
signals, such as circadian or hormonal regulation. Sensogdaptation in cones (Rebrik and Korenbrot, 1998).
signaling can be altered by affecting upstream steps in the It should be noted that &#calmodulin also modulates
phototransduction cascade, thereby changing the concentrati@NG channels in olfactory neurons, but here the binding site
of cyclic nucleotides. These effects are not the subject of this on thea-subunit rather than other subunits of the channel
review, even though the changes in electrical signals that res(ltiu et al., 1994). Like the rod CNG channel, the cyclic-
would ultimately be mediated by CNG channels. The goal ofiucleotide-sensitivity (to both cGMP and cAMP) of olfactory
this review is to consider the various ways in whichCNG channels is reduced by €4Kramer and Siegelbaum,
photoreceptor CNG channels are modulated in the hope @P92). Odorant responses are mediated by an increase in cyclic
elucidating the molecular mechanisms of visual modulation. AMP concentration, which opens CNG channels, depolarizing
the cell and allowing C4 influx. The increased Gainflux,
followed by inhibition of CNG channels by &&almodulin,
Modulation of CNG channels by C&*/calmodulin constitutes a negative feedback system that plays a crucial role
Ca&* plays a central role in photoreceptor adaptation. Thén olfactory adaptation in these cells (Kurahashi and Menini,
closure of CNG channels during illumination leads to al997).
decrease in the influx of €3 which permeates through both
rod and cone CNG channels. However, the activity of the
Na'/Ca*/K* exchanger is maintained, so the combination of Regulation by nitric oxide
decreased influx through CNG channels and maintained efflux Nitric oxide (NO) is an important signaling molecule in the
through the exchanger results in a net decrease in thetina (for a review, see Cudeiro and Rivadulla, 1999). The
cytoplasmic C& concentration. The decrease in 2€Ca major target for NO in most cell types is soluble guanylate
concentration, through largely unknown mechanisms, appeacgclase, which, by synthesizing cGMP, can lead to activation
to contribute to shaping the kinetics of the rising and fallingof CNG channels. In some olfactory neurons, NO can directly
phases of the light response (Matthews, 1985; Lagnado amdtivate CNG channels even in the absence of cyclic
Baylor, 1994; Gray-Keller and Detwiler, 1994). However, thenucleotides (Broillet and Firestein, 1996), but there is no
fall in Ca&* concentration is more clearly important for evidence that NO has a direct affect on photoreceptor CNG
mediating adaptation during steady illumination (for a reviewchannels (Trivedi and Kramer, 1998). One crucial locus for NO
see Pugh et al., 1999). In rod outer segments; @gulates action appears to be a cysteine residue (C460) in-theunit
phototransductiorvia several C#&-binding proteins. Thus, of the olfactory channel (Broillet, 2000), a residue that is also
recoverin regulates rhodopsin phosphorylation and helpsonserved in the olfactofy-subunit and in the rod- and -
terminate the activity of rhodopsin, and guanylate-cyclasesubunits. Why the rod channels are unaffected by NO remains
activating protein (GCAP) regulates cGMP synthesis by mystery. Moreover, since the physiological relevant dose of
guanylate cyclase, replenishing cGMP after the peak of thdO is unclear, the physiologically significance of CNG
light response. A mathematical model of rod phototransductiochannel modulation by NO remains uncertain.
suggests that GCAP and recoverin play a major role in
mediating the effects of €aon light adaptation, at low and
high ambient light levels, respectively (Koutalos et al., 1995; Modulation by transition metals
Koutalos and Yau, 1996). The sensitivity of CNG channels can also be altered by
In addition to these effects, &€a in conjunction with transition metals, such as3iand Z#* (Karpen et al., 1993;
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Gordon and Zagotta, 1995a). Like other divalent cation§indings, exogenous introduction of PLC, inositol
(notably C&* and Mg*), at sufficiently high concentrations trisphosphate, or PKC fails to alter light responses measured
these ions induce a voltage-dependent block by binding to sité®m truncated rod outer segments (Jindrova and Detwiler,
within the permeation pathway of the CNG channel. However1998). Thus, it remains to be demonstrated that products of
Ni2* and Z#* have an additional effect on channel gating.lipid metabolism have a physiological role in mediating or
Experiments on rod and olfactory CNG chanoetubunits  modulating the vertebrate light response.

have demonstrated that the two channels are affected in

remarkably different ways by these metals and have elucidated

the structural basis for this difference. Rogubunits contain Regulation of CNG channels by phosphorylation

a crucial histidine (H420) necessary for potentiation of channel Neurotransmitter modulation of physiological processes,
gating by N£*. The olfactorya-subunit lacks a histidine at the such as neurotransmitter release and muscle contraction, often
position equivalent to H420. However, unlike the rod channeinvolves ‘cross-talk’, in which one biochemical signaling

it has a histidine at position 396, which is involved in thepathway can modulate the activity of another. For years,
functionally opposite effect. Thus, channels composed dhvestigators have searched for cross-talk in vertebrate
olfactory a-subunits exhibit a depression of cGMP sensitivityphototransduction, with mostly negative results. PKC, which
in the presence of transition metals. From a functionails prominent in rod outer segments, appears to have no effect
perspective, there is the intriguing possibility that, in the retinagn light sensitivity (Xiong et al., 1997; Jindrova and Detwiler,
the free concentration of these ions (especiallg§Zmay be  1998). Cyclic-AMP-dependent protein kinase (PKA), although
sufficiently high, either at rest and/or in response to activity ocapable of phosphorylating phototransduction proteins
neuromodulator actions, to play a physiological role in rodncluding rod guanylate cyclase (Wolbring and Schnetkamp,
CNG channel regulation. Free or loosely bound*Zran be  1996) and phosducin (Willardson et al., 1996), also has no
detected in rods and cones (Wu et al., 1993; Kaneda et atlear role in acute modulation of the light response. Neither
2000), and Z#A* is tightly bound to rhodopsin (Shuster et al., PKA nor PKC has any reported effects on rod CNG channel
1996) and phosphodiesterase, where it is essential fauctivity, although other protein kinases and phosphatases do
enzymatic function (He et al., 2000). Exposure to light resultappear to modulate rod CNG channels (see below), supporting
a dramatic redistribution of chelatable?Zin rods (Ugarte and the idea that the phototransduction cascade might be regulated
Osborne, 1999), raising the possibility that2Zmplays a by neurotransmitter-elicited ‘cross-talk’. There is recent
dynamic role in phototransduction, perhaps with CNGevidence for modulation of cone CNG channels by an

channels as an important target. endogenous CGé&independent form of PKC (Muller et al.,
2001).
_ o _ Studies suggest that CNG channels can be modulated by
Regulation by lipid metabolites changes in phosphorylation state catalyzed by serine/threonine

Recent studies have shown that certain lipid metaboliteprotein kinases and phosphatases (Gordon et al., 1992) and,
including diacylglycerol (DAG), modulate native and more recently, by protein tyrosine kinases (PTKs) and
expressed rod CNG channels (Gordon et al., 1995; Crary et ghhosphatases (PTPs) (Molokanova et al., 1997). Two
2000; Womack et al., 2000). Even though DAG is an activatoapproaches have been used to investigate modulation by
of protein kinase C (PKC), the effect of DAG on CNG changes in phosphorylation state. First, researchers have
channels does not require the catalytic activity of proteirstudied changes in activity brought about by unidentified
kinases (Gordon et al., 1995). It is unclear whether DAG bindkinases or phosphatases endogenous to cells expressing the
to hydrophobic regions of the CNG channel protein or whethezhannels (either photoreceptors or exogenous expression
it deforms the bilayer in the vicinity of CNG channels, alteringsystems) (Gordon et al., 1992; Molokanova et al., 1997). The
their ability to open. Invertebrate phototransduction is thoughihvolvement of these enzymes has been deduced from the use
to be mediated by phospholipase C (PLC) (Ranganathan et af, specific kinase or phosphatase inhibitors. In the second
1995), and DAG metabolites have been implicated irapproach, defined kinases or phosphatases are applied directly
activating the light-sensitive ion channels Drosophila to CNG channels in a cell-free system (usually an excised
melanogastephotoreceptors (Chyb et al., 1999). Hence, therénside-out membrane patch) (Muller et al.,, 1998).
are interesting parallels in the finding that DAG also modulate¥nfortunately, kinases and phosphatases are often quite
CNG channels from vertebrate photoreceptors. It has long begromiscuous’: proteins that are not natural physiological
known that components of the phosphoinositide signalingargets may nonetheless still be substrates for the enzymes in
pathways exist in rod outer segments. In recent work, the PL& cell-free system. Therefore, conclusions about modulation
isoforms PL@4 (Peng et al., 1997) and P{IC(Ghalayini et based solely on exogenous enzyme application should be made
al., 1998), as well as aq@ype G-protein (G11) capable with caution.
of activating PLC (Peng et al, 1997), have been Rod CNG channels formed by expressing the bovinerod
immunocytochemically localized to vertebrate rod outersubunit gene irKenopus laevisocytes exhibit a particularly
segments. Moreover, PiC is translocated to membranes in clear type of modulation, attributable to changes in tyrosine
response to light (Ghalayini et al., 1998). Despite thesphosphorylation state (Molokanova et al., 1997; Molokanova
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Fig. 3. Modulation of cyclic-nucleotide-gated (CNG) channels by tyrosine phosphorylation. (A) Changes in amplitude of cGteactiv
current through CNG channels in an excised membrane patch. Currents were elicited by application of cGMP at concen@alios 25G%

and 200@mol =1 and recorded 1 and 10 min after patch excision and after a 3 min applicationwh@dd ATP. (B) Changes in cGMP-
sensitivity of CNG channels after patch excision and subsequent transient application of ATP. (C) Changes in the cydlie-sec&tvity

(K12) exhibited during the first 10 min after excision in the presence of serine/threonine and tyrosine protein kinases ands@hosphata
inhibitors. Values are meanss.m. (N=6-16 for different inhibitors).

et al., 1999a). The key observation is a spontaneous two- $pontaneously in excised patches, the putative kinases and
threefold increase in channel cGMP sensitivity, such that CN@hosphatases must be constitutively active. Native CNG
currents activated by sub-saturating, but not saturating, cGM&hannels in rod photoreceptors are modulated in a similar
concentrations increase after patch excision (Fig. 3A). Omanner but, in the absence of2Gaan external transmitter is
average, theKjy, for activation by cGMP shifts from required to trigger changes in phosphorylation state (see
approximately 12@moll=1 to approximately 6Qmoll=1  below).

within 10 min of patch excision (Fig. 3B). Addition of ATP to  Pharmacological experiments support the above hypothesis
the superfusate partly reverses the effect, but the sensitivignd focus attention on PTKs and PTPs instead of
once again begins to increase when ATP is removed.\ATP-serine/threonine-specific enzymes. The increase in cGMP
S, which can often support irreversible thio-phosphorylation o$ensitivity upon patch excision is greatly reduced by vanadate,
proteins, elicits an irreversible effect on cGMP sensitivity.a PTP inhibitor, and the effect of ATP is blocked by
Non-hydrolysable ATP analogs, such as AMP-PNP, whichavendustin A or erbstatin, selective PTK inhibitors (Fig. 3C).
cannot act as substrates in phosphorylation reactions, have Imocontrast, specific inhibitors of serine/threonine kinases and
effect. The simplest interpretation of these results is that phosphatases have no effect. Finally, a specific tyrosine in the
protein phosphatase, which dephosphorylates the channejclic-nucleotide-binding domain of the rod chanmedubunit
increases the cGMP sensitivity, while a protein kinase, whiclY498) has been identified as a crucial site required for
phosphorylates the channels in the presence of ATP, makes tin@dulation. Substitution of this tyrosine with a phenylalanine
channels less sensitive to cGMP. Since the effects occetiminates modulation. The olfactory CNG chanaedubunit
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lacks a tyrosine at the equivalent position (F477), and i Ch‘m‘@ < Phosphorylation
does not exhibit modulation. However, when a tyrosine it i

substituted into this position (Y477F), modulation is seedPfess foccoo
introduced. Taken together, it seems very likely that the oocy!
contains constitutively active PTK(s) and PTP(s) thai
phosphorylate or dephosphorylate Y498 in the rod channe
decreasing and increasing cGMP sensitivity, respectively.

Closed

Activity-dependence of modulation by tyrosine

phosphorylation
Modulation of the rod CNG channel is influenced in an {iifin-A WM AN f78 66
intriguing manner by its opeversusclosed state. Studies on &88&d 5 \ Mll Addd - Yed 0 &ddddd

homomeric rod CNG channels containmgubunits show that f
the channel can only be dephosphorylated when it is opent e . Dephosphorylation |
with cGMP and can only be phosphorylated when it is close pen-(P) p»-Open
by removing cGMP. Application of a saturating concentratiorrig 4. Schematic model illustrating the activity—dependence of
of cyclic AMP, a very weak partial agonist of the rod channelmodulation of cyclic-nucleotide-gated (CNG) channels by tyrosine
only weakly alters the ability of PTP to modulate the channephosphorylation and dephosphorylation. The top and bottom
supporting the notion that channel opening, rather than ligardiagrams represent closed and open channels, respectively; the left
occupancy of the cyclic-nucleotide-binding site, is responsibland right diagrams represent phosphorylated and dephosphorylated
for the activity-dependent effects of cyclic nucleotides.channels, respectively. The ovals represent cGMP molecules. The
Molokanova et al. (Molokanova et al., 1999b) have proposere|ative_ _thickness_ of the arrowheads rfapres_ents changes in_the
a model in which PTK and PTP compete for the same cfavor.ablllty of gating. PTK, protein tyrosine kinase; PTP, protein
overlapping sites on the channel, accounting for the opposirtyIrOSIne phosphatase.
activity-dependent  effects on  phosphorylation  anc
dephosphorylation (Fig. 4). According to this scenario, theytoskeletal proteins, G-proteins and protein kinases and
open channel conformation favors binding to PTP and thphosphatases. Recent biochemical studies have shown that the
closed conformation favors binding to PTK. Moreover, thenative rod CNG channel is bound to the *AKC&*/K*
interaction between the channel and either protein is mutuallgxchanger (Bauer and Drechsler, 1992; Schwarzer et al., 2000).
exclusive. In addition, the N-terminal domain of tflesubunit of the rod
The activity-dependence of modulation introduces archannel is similar to other glutamic-acid-rich proteins found
interesting bistability to rod CNG channel behavior. Thusjn photoreceptors, which bind to components of the
phosphorylation, which decreases cGMP sensitivity, leads tohototransduction cascade, such as phosphodiesterase and
an increase in the probability of channels being closedquanylate cyclase (Korschen et al., 1999), forming a
increasing phosphorylation by PTKs, which further decreasemacromolecular assembly termed a ‘transducisome’.
cGMP sensitivity. Conversely, dephosphorylation, which We have obtained indirect evidence that the rod CNG
increases cGMP sensitivity, leads to an increase in thehannel is stably associated with PTK(s). Moreover, at least
probability —of channels being open, increasingunder some circumstances, the PTK(s) can alter channel
dephosphorylation by PTPs and further increasing cGMRunction, even in the absence of ATP. Thus, PTKs can
sensitivity. In other words, when the channels are open (e.g. modulate CNG channels in two ways: first, by catalyzing
the dark), they will be drawn into a stable phosphorylated statphosphorylation and, second, through a non-catalytic allosteric
and when they are closed (in the light) they will be drawn inteffect that inhibits CNG channel gating.
a stable dephosphorylated state. The activity-dependence ofThe non-catalytic inhibition mediated by PTKs can be
modulation has been demonstrated for rod channels expressaitited by applying genistein, a PTK inhibitor that specifically
in oocytes, but has not yet been demonstrated for native CNiGteracts with the ATP-binding site on the enzyme
channels. If it indeed applies to rods, such activity-dependen¢Molokanova et al.,, 1999b). Application of genistein
might have important functional consequences for modulatiodramatically slows the gating of the rod CNG channels and
of phototransduction by offsetting or counteracting thereduces the steady-state current activated by cGMP. Various
negative feedback effects of light adaptation. results, including the observation that agents specific for PTKs
prevent genistein inhibition, suggest that genistein inhibition is
not mediated by a direct interaction between genistein and the
Regulation by protein—protein interactions CNG channel, but rather involves an indirect effect mediated
Rather than living as lonely isolated membrane proteins, iohy a PTK. The affinity and efficacy of genistein are much
channels are much more gregarious, forming macromolecul&igher for closed than for open channels, following the same
complexes with various signaling molecules includingactivity-dependent pattern of phosphorylation of CNG
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channels by PTKs. These results and others strongly sugg€ksF-1) (Waldbillig et al., 1991). IGF-l is particularly
that genistein inhibition involves genistein binding to the PTKinteresting because it is synthesized and released from retinal
which, through an allosteric interaction with the channelpigment epithelial cells (Waldbillig et al., 1991), which lie
hinders channel gating (Molokanova and Kramer, 2001). immediately adjacent to rod outer segments. Moreover, IGF-

The effect of genistein is not limited to rod CNG channelsbinding proteins, which may participate in the delivery of IGF-
expressed in oocytes, but also applies to native CNG channélgo receptors, are concentrated in the interphotoreceptor
in rods and cones and, to a lesser extent, to olfactory neurommtrix, situated between the RPE and the plasma membrane of
(Molokanova et al., 2000). Moreover, the same criteria used touter segments. The RPE plays several crucial roles in
suggest that genistein acts indirectly (through a PTK) alssupporting photoreceptors, including providing the
apply to inhibition of the native channels. It is unclear whethephotopigment 1Lisretinal to rod and cone outer segments and
CNG channels and PTK have an intimate nr

just a casual relationship with one anot A 9. B
Thus, we do not know whether the P ]
responsible for genistein inhibition is part Control IGF4 8| T

a stable complex with the CNG chan :

or whether it normally dissociates & & l
reassociates with the channel. Additic 6:

biochemical experiments are needed
identify the PTKs that regulate CN
channels and to understand the natur

their relationship. |100pA 4 % % é é é
3

K., (umol I'1)

Modulation by neurotransmitters

Can phototransduction be moduls
by  extrinsic  neurotransmitters?
photoreceptors from invertebrates, s
as Limulus polyphemys efferen  Perfusion
neurotransmitters can alter light sensitir  pipette
by influencing components of t
phototransduction cascade (for a review,
Barlow, 1990). Thus, octopamine chan
the frequency of spontaneous and ewc
‘quantum bumps’ (O’'Day and Lisme
1985), indicating a change in the rate
rhodopsin isomerization. In vertebr
retina, neurotransmitters such as dopai
(Akopian and Witkovski, 1996; Stella a
Thoreson, 2000), GABA (Barnes and Hi
1989) and glutamate (Picaud et al., 1¢
can modulate the activity of voltage-ga
ion channels in the inner segments
terminals of rods and cones, presumi
shaping the light response and alte 01 23 45 0 2_4 6 8
synaptic transmission. However, ul Time (s) Time (s)
recently, little was known about transmit  Fig. 5. Insulin-like growth factor | (IGF-I) increases the cyclic-nucleotide-sensitivity of
actions on the phototransduction casc¢ rod cyclic-nucleotide-gated (CNG) channels. (A) An increase in amplitude of the
itself, which occur in outer rather than in currents activated by application of 8-Br-cGMP (1, 2.5, 10, 25 an@r260~1 from left
segments. to right) in excised patct_]es f_rom rods expoge_d to control saline or to_saline containing
10umol I71 IGF-I for 10 min prior to patch excision. (B) Effects of a 10 min pretreatment
. . . with 1nmolF? to 100umoll=! IGF-I (values are means $EM., N=7-25) on the
signaling molecules have been found in apparent affinity of CNG channels. (C) A suction pipette was used to record the light
plasma membrane of rod outqr segme response of the rodga the inner segment (IS) while permitting continuous superfusion
Those that occur include dopamine recef  f control or IGF-I-containing solutions on the outer segment (OS). (D) Average rod
(Udovichenko et al., 1998), adenosine photoresponse waveforms in response to dim and saturating 10 ms light flashes (at time
receptors (Mcintosh and Blazynski, 19  zero) recorded in control saline and 4-6min after the beginning superfusion with
and receptors for insulin-like growth factc ~ 1umol I71 IGF-I.
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regulating the shedding of discs and from the apical end afitracellular C&* concentration (for a review, see Pugh et
outer segments and secretion of several growth factoed., 1999). A much more slowly recovering change in
important for photoreceptor development and long-termesponsiveness, lasting minutes to hours, termed
survival (Bok, 1993). The finding that one of the growth factorsphotochemical adaptation’, requires the RPE and has been
released by the RPE (IGF-I) also acutely regulates the liglattributed to regeneration of bleached photopigment (Dowling,
response (Savchenko et al., 2001) suggests that the RPE al€87). In addition to this type of slow adaptation, which is only
has a more dynamic neuromodulatory function. apparent at high light intensities sufficient to bleach most of
Application of IGF-I to rod outer segments leads to a twothe rhodopsin, there are more subtle changes in light sensitivity
to threefold increase in the sensitivity of CNG channels tan response to hormones or associated with free-running
cGMP (Savchenko et al., 2001) (Fig. 5A,B). The effect of IGFcircadian rhythms (see below). In addition, slow light-driven
| occurs within tens of seconds and dissipates with equaliurnal changes have been reported (Schaeffel et al., 1991;
rapidity after removal of IGF-I. Various lines of evidenceBirch et al., 1994). The modest effects elicited by IGF-I are
suggest that the effect of IGF-I involves a complex signalingnore likely to be involved in these more subtle slow changes
pathway, ending with tyrosine dephosphorylation of the rodn light sensitivity.
CNG channel. Parallel experiments performed on rod CNG
channel a-subunits expressed iXenopus laevisoocytes,
which have their own IGF-I receptors, show that IGF-I also Circadian regulation of CNG channels
increases the cGMP sensitivity of the channels, but only if the A variety of events in retinal photoreceptors are regulated in
crucial tyrosine (Y498) is present. Hence, when this tyrosina circadian manner. Photoreceptors exhibit circadian rhythms
is substituted with a phenylalanine (mutant Y498F), theén morphological features including the shedding of discs from
channels are unaffected when the oocyte is exposed to IGFeuter segments, retinomotor movements and outer segment
These results suggest that the effect of IGF-1 not only involveenewal (for a review, see Cahill and Besharse, 1993). The
tyrosine dephosphorylation but that the crucial target is thabsolute sensitivity of the light response (Lu et al., 1991;
same specific tyrosine residue implicated in spontaneoudcGoogan et al., 1998) and the relative contribution of rods
modulation in oocytes. and cones in driving postsynaptic responses (Manglapus et al.,
Further studies (Savchenko et al., 2001) show that IGF1998; Manglapus et al., 1999) also vary in a circadian manner.
alters the light response of rods (Fig. 5C,D). Suction electrod@ecent studies have show that the cGMP-sensitivity of cone
recordings of photocurrents from salamander rods show thahotoreceptor CNG channels varies with a circadian rhythm
IGF-1 increases flash responses at both dim and saturatifigo et al., 2001). Isolated chick cones appear to have an
light intensities. Focal electroretinogram recordings fromendogenous circadian clock resulting in a two- to threefold
mammalian retina also show that IGF-I increases thécrease in the cGMP-sensitivity of the CNG channels during
population light response from rods. The increase in théhe subjective night compared with the subjective day.
saturating light response is consistent with modulation of thinhibition of C&*/calmodulin-dependent protein kinase Il or
CNG channels. The resting concentration of free cGMP in ththe MAP kinase Erk, which exhibit circadian rhythms in their
dark is thought to be approximatelyu®ol =1, sufficient to  kinases activities, causes phase-dependent changes in the
open 2-5% of the CNG channels at any instant in time. Bgpparent affinities of the CNG channels for cGMP, suggesting
increasing the sensitivity of CNG channels to cGMP, a greatehat the rhythms in enzyme activity drive the rhythm in channel
percentage of channels will be opened (e.g. 10 %), increasisgnsitivity. The biochemical event ultimately responsible for
the amount of current available to be turned off by saturatingircadian channel modulation has not been determined. It will
light. The increased cGMP sensitivity of the channels will bébe interesting to determine whether tyrosine phosphorylation
offset to some extent by the negative feedback systenms dephosphorylation of the channel plays a role.
inherent in rod phototransduction. Thus, the increase in the
dark CNG current will result in an increase ircCiaflux, and
the resulting increase in internal aconcentration, in Concluding remarks
conjunction with GCAP, should inhibit guanylate cyclase, The proximal light-elicited signal that opens and closes
reducing the cytoplasmic concentration of cGMP. At steadfCNG channels in rods and cones is a change in the cytoplasmic
state, the size of the IGF-I effect should be inversely dependeo&GMP concentration. However, like virtually all ion channels,
on the efficiency of this homeostatic mechanism. For exampl&gNG channels are subject to modulation by a variety of other
IGF-I increases the CNG current elicited byngol I cGMP intracellular signaling systems. The sensitivity of CNG
by approximately 300 %, whereas the saturating light responshannels to cyclic nucleotides can be altered by*/Ca
is increased by only 25 %. calmodulin, transition metals, phospholipid metabolites,
It is possible that IGF-I plays a role in slow forms of lightchanges in phosphorylation state and interactions with
adaptation in rods. Rapidly decaying ‘photoreceptormembrane proteins such as protein tyrosine kinases. CNG
adaptation’, lasting seconds to minutes, is intrinsic to rods anthannels contain specific domains that act as receptor sites for
cones and can be attributed entirely to modulation of theach of these intracellular signals and, at least in some cases,
phototransduction cascade by light-driven changes iphotoreceptor cells possess specialized biochemical cascades
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for transmitting these modulatory signals to the channels. IRain, G. L., Matthews, H. R., Cornwall, M. C. and Koutalos, Y.(2001).

addition, extracellular transmitters, such as IGF-I, can activate Adaptation in vertebrate photoreceptd$ysiol. Rev8l, 117-151.
. i d leadina to modulation of CNG Charll,H_:‘lgerstner, A., Zong, X., Hofmann, F. and Biel, M(2000). Molecular cloning
signaling cascades, Ing ulatl and functional characterization of a new modulatory cyclic nucleotide-gated

The presence of specialized transmission and receptionchannel subunit from mouse retida.Neurosci20, 1324-1332.
machinery suggests that modulation of CNG channgphalayini, A. J., Weber, N. R., Rundle, D. R., Koutz, C. A., Lambert, D.,

itivit | . tant ohvsioloaical le i d Guo, X. X. and Anderson, R. E.(1998). Phospholipase C gammal in
sensiivity plays an important physiological role In roas. pgyine rod outer segments: immunolocalization and light-dependent binding

However, whereas the signaling systems are becoming wellto membranes] Neurochem70, 171-178.
understood, the message that they carry is still not clear. Doggrdon. S. E., Brautigan, D. L. and Zimmerman, A. L.(1992). Protein

. . S phosphatases modulate the apparent agonist affinity of the light-regulated
modulation of CNG channels contribute to changes in light jo,"channel in retinal rodsleurono, 739-748.

sensitivity during slow forms of adaptation such as diurnatordon, S. E., Downing-Park, J., Tam, B. and Zimmerman, A. L(1995).
regulation? What role does modulation of CNG channels play Diacylglycerol analogs inhibit the rod cGMP-gated channel by a

. diati h in liaht itivity tri d by si I phosphorylation-independent mechanigiophys. J69, 409-417.
IN mediating changes In lignt sensiuvity triggere y signa %ordon, S. E., and Zagotta, W. N(1995a). A histidine residue associated

intrinsic to organisms, such as circadian or hormonal signals?with the gate of the cyclic nucleotide-activated channels in rod
The advent of molecular biological techniques, in conjunction_photoreceptorsNeuron14, 177-183.

. . . . . . . Gordon, S. E. and Zagotta, W. N(1995b). Localizations of regions affecting
with biochemical and phyS|olog|caI studies, will undOUbtedly an allosteric transitions in cyclic nucleotide-activated chanhgsron14,

help to define the role of CNG channel modulation in fine- 857-864.
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