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Summary

We combine three-dimensional descriptions of the than body form and skin friction drag. Using this model
movement patterns of the shoulder, elbow, carpus, third and standard engineering beam theory, we calculate
metacarpophalangeal joint and wingtip with a constant- internal reaction forces, moments and stresses at the
circulation estimation of aerodynamic force to model the humeral and radial midshaft during flight. To assess the
wing mechanics of the grey-headed flying foxPteropus validity of our model, we compare the model-derived
poliocephalu3 in level flight. Once rigorously validated, stresses with our previousn vivo empirical measurements
this computer model can be used to study diverse aspects of bone strain from P. poliocephalusn free flapping flight.
of flight. In the model, we partitioned the wing into a Agreement between bone stresses from the simulation and
series of chordwise segments and calculated the magnitude those calculated from empirical strain measurements is
of segmental aerodynamic forces assuming an elliptical, excellent and suggests that the computer model captures a
spanwise distribution of circulation at the middle of the significant portion of the mechanics and aerodynamics of
downstroke. The lift component of the aerodynamic force flight in this species.
is typically an order of magnitude greater than the thrust
component. The largest source of drag is induced drag, Key words: flight, wing mechanics, aerodynamics, computational
which is approximately an order of magnitude greater modelling, Chiroptera, baBteropus poliocephalus

Introduction

Although the link between organismal structure and functiorms unique among mammalian limbs in anatomical design and
has been recognized for centuries, it is clear that the strengtiechanical function and suggest that the specialized features
of this relationship varies tremendously. Evolutionary theoryf the bat musculoskeletal system are linked directly to flight
suggests that this relationship should be particularly strongapabilities (Findley et al., 1972; Hermanson and Alternbach,
when the consequences of deviations from optimal designs at883; Holbrook and Odland, 1978; Norberg, 1970a; Norberg,
energetically costly. In this light, the relationship between thd972a; Norberg, 1972b; Papadimitriou et al., 1996; Strickler,
structural design of the wing and the mechanics and energetit878; Swartz, 1997; Swartz, 1998; Swartz et al., 1992; Swartz
of flight in the Order Chiroptera constitutes an informative caset al., 1996; Vaughan, 1959; Vaughan, 1970b). Similarly,
study for several reasons: (i) powered flight imposes extrenmsdgnificant contributions have been made to our understanding
mechanical and energetic demands on the locomotor systeshthe kinematics of bat flight (e.g. Aldridge, 1986; Aldridge,
(Kurta et al., 1989; Swartz, 1997; Swartz, 1998; Thomas, 1973987; Baggge, 1987; Brandon, 1979; Norberg, 1970b;
Thomas and Suthers, 1972; Winter et al., 1993), raising thdorberg, 1976a; Norberg 1976b; Norberg, 1990; Rayner,
metabolic cost of deviations from optimal mechanical desigi987; Rayner et al., 1986; Vaughan, 1970a). Some components
relative to that for terrestrial locomotion in quadrupeds; (ii)of these kinematic and morphological studies have also
dermopterans and primates, the nearest non-flying relativesntributed directly to our understanding of flight mechanics,
of bats (Simmons, 1995), provide considerable comparativiacluding the interrelationship between wing membrane
information about the likely nature of bat ancestors; and (iiifension and aerodynamic force (Norberg, 1972a; Pennycuick,
the diversity in body size, flight style, wing shape andl973), the velocity-dependence of wing kinematics (Aldridge,
phylogenetic affinity of the nearly 1000 extant species of bat$986) and the relationship between wing inertia, energetics and
furnish rich comparative material within the group. maneuverability (Norberg, 1976a; Thollesson and Norberg,

Both classic and recent results demonstrate that the bat win§91).
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However, despite decades of study, we understand much lds®ader comparative analysis of the flight mechanics of bats
about the mechanics and energetics of flying than we do tiiat differ in wing morphology and/or flight behavior. We
walking, running or swimming in vertebrates; this, in turn,believe this model can be employed to gain insight into diverse
limits our knowledge of how flight capacity and the intricateproblems in the mechanics and evolution of bat flight in future
array of physiological and morphological specializationsstudies.
associated with it have evolved. In part, this is because our
insight is constrained by our limited understanding of the
nature of the complex and dynamically changing forces
experienced by the wing during flapping flight and the Model outline
technical difficulties of approaching this subject empirically. Our model of bat flight is based on the grey-headed flying
To meet these challenges and thereby gain new insight into thex, Pteropus poliocephalusTemminck. The model is
mechanics and energetics of the bat wing, we have developednstructed to employ empirical descriptions of morphology
a three-dimensional computer simulation of bat flight.and kinematics, along with reasonable assumptions concerning
Computer modeling is a powerful approach to gaining insighderodynamics, to estimate accurately all but one of the forces
into the complexities of animal flight and has been adoptedxperienced by a bat wing (see below). The model then solves
with success in diverse ways by students of bat, bird and insdotr the remaining force, the internal force carried by the wing
flight (e.g. Bennett, 1977; DeLaurier, 1993a; Ellington, 1975structures. For this analysis, we subdivided the wing into a
Ellington, 1978; Ellington, 1984; Ennos, 1988; Norberg,series of segments or strips and measured the shape and mass
1975; Norberg, 1970b; Norberg, 1976a; Pennycuick, 196&f each wing segment (Fig. 1). Instantaneous force balance
Pennycuick, 1975; Rayner, 1986; Rees, 1975; Spedding, 1992as then applied locally to each wing segment or strip. We
Spedding and Delaurier, 1995; Withers, 1981). quantified the three-dimensional motion of critical wing

Our model computes wing bone stresses, joint forces arldndmarks over the wingbeat cycle using high-speed films of
moments and other mechanical and energetic parameters fren®. poliocephalusnade in a wind tunnel (Bartholomew and
wing kinematics and structural geometry placed in a context d@arpenter, 1973) and used this information to compute the
a well-founded, realistic and detailed aerodynamic model. Thimertial forces of each wing segment (see below, section on
wing anatomy of bats is particularly well suited to this kind ofdynamics). We modeled the force induced by air flow around
engineering analysis: the wing comprises a jointed networthe wing as an aerodynamic force, separated into lift and drag
of virtually rigid structural supports interconnected by ancomponents, plus an added mass force. In this model of level
essentially two-dimensional elastic membrane; bats operate flight at constant velocity, we assumed constant circulation
Reynolds numbers high enough for appropriate application ¢gee below, section on aerodynamic force distribution and
inviscid aerodynamic theory; and bat flight occurs at Strouhalonstant-circulation flight). Because of this assumption, it is
numbers at which complex unsteady forces are far lessnecessary to quantify wing segment camber, incident air
important than for insect flight. In this context, our model isspeed, angle of attack and unsteady aerodynamic effects. We
structured to estimate accurately the forces experienced by thlso assumed an elliptical, spanwise distribution of
wing, to analyze in detail one of these forces, the internal forceserodynamic force (see below, section on aerodynamic force
developed in the wing, and, ultimately, to detail further thedistribution and constant-circulation flight) and adjusted the
contributions to a critical element of the internal forces, themplitude of the aerodynamic force to balance mean lift with
wing membrane forces. body weight over one wingbeat cycle.

In addition to its detail and accuracy, this model is We employed Newton's second law of motion to balance
noteworthy in that we are able to validate key aspects by direttie inertial force of a wing strip with the external forces as well
comparison of the model's estimates of wing bone stresses the internal force within the wing segment, and then used
with empirically measured values (Swartz et al., 1992). A wellthe segmental balance of forces at each instant in time to solve
validated model of bat flight should be able to reproduce, ifor the internal force carried by the wing structures. We
order of increasing sophistication, appropriate skeletal loadingalculated the stresses developed at the midshaft of the
(tensionversuscompression), the general pattern of change ithumerus and radius by summing the internal forces over all
skeletal stress in relation to the wingbeat cycle, stresses sffrips distal to the bone site of interest and computing the
realistic magnitude and details of changes in stresses duringoments of these forces about the bone’'s midshaft. We
the wingbeat. We are also able to compare the predictions ofodified these maximum possible internal forces and moments
the model concerning the vertical movements of the animal’by subtracting the forces and moments transmitted directly by
center of mass with measurements made directly from windhe plagiopatagium (armwing) to the body, and then employed
tunnel flights (Bartholomew and Carpenter, 1973). standard engineering beam theory to convert the remaining

Here, we describe the structure of the model, evaluate ithree orthogonal forces and moments at the midshaft into
ability to reproduce important aspects of bat flight mechanicsormal and shear stresses at the bone surface, and compared
realistically and examine the sensitivity of the model to varioustresses calculated for the humeral and radial midshafts with
inputs and assumptions. Once validated and evaluated fetresses inferred from strains measured empirically in flying
parametric sensitivity, we intend to apply the model to @ats (Swartz et al., 1992). The close correspondence between

Materials and methods
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Fig. 1. Plan-view of the ventral surface of the wing of a
Pteropus poliocephalu$eld in a horizontal plane, a
position similar to that at the middle of the downstroke. (threesegments)  (four segments)
The wing is subdivided into 14 chordwise strips; there

MCP Il
are seven segments between the shoulder and the ca e . o
(the plagiopatagium or armwing), three between th —&0— \\%ngt'p

Proximal Distal

Armwing ~-handwing=>-<——nhandwing—>

(seven segments)

carpus and the metacarpophalangeal (MCP llI) joint of L I Y o
the third digit (the proximal handwing) and four between \
the MCP Il joint and the wingtip (the distal handwing). b\

The locations of the centers of mass of these strips <~ - ‘%x 1 E R N VR
relative to a reference line connecting the two shoulders \

(broken line) are indicated by the filled circles. The large
circles labeled shoulder (glenohumeral joint), carpus, °
MCP IIl and wingtip were used as digitizing markers for
collecting kinematic data. For the third wing segment
(subscriptp), the length of the wing chordsp, the
leading edge positiongy, and the distance from the /JY

/

Shoulder Capus

\

segmental center of mass to the reference tpeare

also indicated. The variation in these parameters within

the wingbeat cycle is represented in the model by a §§
second subscript, g, that ranges from 1 to 40 with the 40

equal time increments within the complete wingbeat
cycle. 112131415161 7181911001111 12113114

the model estimates and the empirical data provides robulsbne stresses. Therefore, we possess detailed information
evidence that the model approximates the mechanics of babncerning thein vivo loading of the humerus, radius,
flight in biologically meaningful ways. As further validation, metacarpals 1l and V and proximal phalanges Ill and V for
we also compared the vertical displacement of the animalthis species. Third, high-speed dorsal, lateral and oblique
center of mass during the wingbeat cycle, as predicted by ttigms of individuals of this species flying in a wind tunnel
model, with the empirically observed vertical motion. provide detailed information concerning wing kinematics
The computer program that solves the equations an@artholomew and Carpenter, 1973). Fourth, level flight is
algorithms presented below was written in Fortran 77 (Prprobably an ecologically relevant flight mode for this species
Fortran, version 5.0, Absoft) and run on a Power Macintoshiven that these fruit-eating bats often fly 30-50km during
G3. The program provides outputs (bone stresses, joifibraging bouts on a single night and may migrate hundreds of
moments, etc.) at 40 time steps evenly spaced over the couiSlemeters in a year (Eby, 1991).
of a single wingbeat cycle. Hence, the tine®rresponding to

the integer value of the time stgps given by: Validation byin vivo strain recordings
Measurements of bone surface principal strain magnitudes and
qT . . R . .
t=gAt=——, 1) orientations were made from eight individ&alpoliocephalusn
40 previous studies (Swartz et al., 1992; Swartz et al., 1993). In these

since 40 time steps are used in the period of one wingbe&tudies, animals were wild-caught and trained to fly the length of
Because the force balance employed in the model applies &t30m flight cage without stopping. Within 2 weeks of capture,
every instant of flight, the discretized time step does not incupsette strain gauges were surgically implanted on the subperiosteal
any approximation other than the possibility of interpolatingsurfaces of the midshafts of wing bones, and the animals recovered

model output between time steps. fully from the effects of surgery. We then collected data from up
_ _ to nine strain gauge elements simultaneouslya lightweight
Choice of species cable (100Hz) and synchronized the data with video recordings

We selected the speci®teropus poliocephaliyghe grey- of the animals’ wing movements. Data from individual rosette
headed flying fox, for the first application of our bat flightelements were analyzed to obtain maximum and minimum
model for several reasons. First, this species occurs ptincipal strain magnitudes and orientations, and strain values were
relatively high densities in the proximity of Brisbane, converted to stresses assuming that the compact cortical bone of
Australia, and the University of Queensland and has therefothe long bones of the wings of large bats is similar in its mechanical
been a subject of previous research (e.g. Carpenter, 198&pperties to that of other mammals and birds (Carter, 1978; Beer
Swartz, 1998; Swartz et al., 1992; Swartz et al., 1993). Seconalhd Johnston, 1981; Biewener, 1983; Currey, 1987). Model
individuals are large (adult body mass typically 550—950 g)predictions of bone stresses were then calculated for specific
facilitating mechanical assessment of functionally importananatomical sites from which strain data had been collected, and the
wing structures, includingn vivo measurements of wing experimentally determined stress profiles for a given recording
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Table 1.General flight characteristics and morphological variable chord and width, determined anatomically (see
parameters employed in the model below) (DeLaurier, 1993b; Norberg, 1976a; Thollesson and
Norberg, 1991). We subdivided the wing into 14 rectangular

i 1
E&ﬂ;v;;%fggzgzgiz;ﬂ (ms?) %_gg segments: seven segments of equa] width between the
, 1 shoulder and the carpus, three equal-width segments between
Flapping frequency,= % (Hz) 3.03 the carpus and the third metacarpophalangeal (MCP) joint and
Total massM (s) 0.699 four equal-width segments between the third MCP joint and
Mean wing lengthB (m) 0.462 the wingtip (Fig. 1). Because the wing changes its three-
Body width, W (m) 0.070 dimensional conformation during the wingbeat, we calculated
Mean wing spanS=W+2B (m) 0.994 the instantaneous segment widths and segment motions by
Mean wing areah (m?) 0.0697 linear interpolation of the distances between the carpus, third
Wing Ioading,%? (Nm?) 49.2 MCP joint and wingtip positions, respectively. Because all
@ segments between two proximodistally adjacent landmarks
Aspect ratio,Z—A 7.09 are defined to have equal widths, elbow flexion causes the
Mean wing chordc=5(m) 0.151 width of the seven armwing segments to decrease, although
B ' we assumed that the chord of each rectangular segment
Humerus lengthl.h (M) 0.110 remains constant. We write the width of a wing segment as
Humerus outer diameterReh (mm) 5.53 Wpg, Where the subscrigh denotes the wing segment and
Humerus inner diameterRa (mm) 3.53 increases from proximal to distal, and the subscrigetnotes
Radius lengthl.r (m) 0.145 the time step during the wingbeat cycle. Since the model does
Egg:zz ic;]ur']tg: gi':rn;g:::g' ((I'I:l]nT)) g'gg not employ lift coefficients, the angle of attack of each wing
Plagiopatagium skin thicknes(mm) 0.20 segment is not required as input to the model. As a result, we

consider each wing segment to be parallel to the
cranial-caudal axis at all times. However, wing segment
site were normalized to a standardized wingbeat cyclgitching angle and angle of attack variations are modeled
synchronizing the mid-downstroke, downstroke—upstrokéntrinsically through the calculation of the spatial orientation
transition and upstroke—downstroke transition. of aerodynamic forces over time.
We sectioned the wing and, for each strip, we measured

Morphological parameters and general flight characteristics mass,mp, chord along the strip’s midlingp, leading edge

Mass, wing size and shape and the dimensions of individugbsition (perpendicular distance from the center of the
wing bones were assessed by direct weight measuremelgading edge to a reference line connecting the left and right
tracings of wing outlines and measurements of high-resolutioglenohumeral joints)ep, and center of mass position with
radiographs of a member of the study population used irespect to the shoulder-to-shoulder reference likee.g
previous work (Swartz et al., 1992) (Table 1). Although theThollesson and Norberg, 1991) (Fig. 1, Table 2). Values of
model data were measured from a single individual killede, are negative, indicating a position cranial to the reference
following completion of bone strain recording, theseline. We determined the position of the center of mass of
parameters vary relatively little among individuals of a giveneach segment by attaching it to a rigid cardboard rectangle
body mass, and the small intraspecific variation would have nof known mass and locating the center of mass of the
significant effect on model results. Video recordings of flyingcardboard—wing ensemble. We shaped the wing to match the
foxes were used to estimate the flight speed of the bats (Swaptan view of an individual wing in the middle of the
et al., 1992). A typical flight spead of approximately 6m3  downstroke; at this point in the wingbeat cycle, the wing is
was estimated from the time needed to fly approximately 25 nmearly horizontal and coplanar. For the wing kinematics
this represents a moderate speed for this species. We measugatployed in the model (see below), the middle of the
the wingbeat period and detailed kinematics (see also sectidownstroke corresponds to the dimensionless tiifw0.38.
on wing kinematics) from a high-speed film of a flying fox inDuring the middle of the downstroke, we determined the
a wind tunnel. Wing length was measured as the distance fromidline leading edge positions of all wing segments relative
the proximal shoulder to the proximal carpus plus the distande straight lines adjoining wing landmarks in order to
from the carpus to the wingtip for a fully extended handwingposition wing segments in the cranial-caudal direction. We
Body width is taken as the shoulder-to-shoulder distance. Wealculated the position and motion of coplanar wing
calculated the mean area of a single wing from plan-viegegments by linear interpolation between adjacent wing
photographs of a deeply anesthetized study subject with itandmarks. We kept the distances from segmental leading

wings fully extended. edges to the straight lines connecting adjacent wing
. _ landmarks constant over the entire wingbeat cycle, in effect
Wing segmentation conserving the shape of the flapping wing. Wing segment

In the computer model, we conceptually divided the wingoosition determined where the forces acting on that wing
at mid-downstroke into a series of rectangular segments gegment were applied.
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Table 2.Wing segment morphology and geometry at the mid- T

downstroke Norrinerial a<esy

Leading Center ()
edge of mass Inerial axe
Mass,m, Chord,cp  position,ep position,dp ~Z Mean path of shoulde \h
Actual path of shoulder

Segmentp (@) (m) (m) (m) p Shoulde!
1 52.060 0.223 -0.0063 0.0617
2 24.740 0.215 -0.0035 0.0695
3 4.632 0.197 -0.0157 0.0589
4 11.766 0.174 -0.0284 0.0162
5 5.042 0.165 -0.0419 -0.0172
g iégg 81?2 :88?3‘11 :88232 Fig. 2. Orientations of and relationships between the inertial and

) : ' ) non-inertial coordinate systems; the actual and mean paths of the
8 6.466 0.181 —0.0897 -0.0767 - . .

shoulder are depicted from a lateral view of the bat moving from left
9 3.107 0.185 —-0.0969 —-0.0552 - - S .
to right across the figure. Theaxis is perpendicular to the plane of

10 1.956 0.158 ~0.1032 ~0.0605 the page and is represented by the filled circles
11 1714 0123  -0.1011 -0.0652 Pag P y '
12 1.303 0.102 -0.0895 -0.0573
13 0.781 0.057 -0.0796 -0.0592 . .
14 0.414 0.021 0.0686 ~0.0666 instead computed internally by the model through the force

balance on the body. The unit vectors giving the direction of
Measurements of leading edge position and the position of th@ach coordinate axis aréor thex axis, | for they axis andk

center of mass are chordwise relative to a reference line through tf@er the z axis. We model the left wing implicitly through
left and right glenohumeral joint (see Fig. 1); negative values areymmetry across thgz, or midsagittal, plane. This symmetry

cranial to the reference line. is a reasonable assumption for forward flight and gliding, but
would not be appropriate when modeling more complex flight

maneuvers.
Wing kinematics Three-dimensional coordinates of wing landmarks were

In this section, we outline our method of describing in thre¢aken from high-speed movies of wind-tunnel flight
dimensions the motion of the carpus, the third MCP joint an@Bartholomew and Carpenter, 1973). We selected these films
the wingtip. The three-dimensional positions of these majofor analysis of wing kinematics because of their far greater
wing landmarks over one wingbeat cycle suffice to capture theesolution than the video recordings made during previous
large-scale features of wing motion; for the purposes of owrivo strain measurement experiments (Swartz et al., 1992;
model, we define the beginning of downstroke as the onset &wartz et al., 1993). The films were converted to video and

downward motion of the carpus. analyzed with the Peak Performance Motion Analysis System
o o (Peak Performance Technologies, Englewood, CO, USA) to
Origin and axes for movement description obtain detailed information regarding the dynamically

The body of a flying bat accelerates and deceleratashanging positions of the carpus, third MCP joint and wingtip
vertically during ‘level’ flight and cannot therefore be used aselative to the right shoulder. The spatial resolution of the
an inertial frame of reference from which to measure theligitizing process corresponds to approximately +2cm, or
accelerations of the animal’s wing. Here, instead, we descritmpproximately +5 % of the mean wing length and +12 % of the
the motion of the wing relative to the mean position of thanean wing chord. From both head-aw fflane) and lateral/¢
glenohumeral joint averaged over the entire wingbeat cyclglane) views, approximately 170 sets of two-dimensional
which constitutes the origin of an inertial coordinate systenctoordinates were obtained for one complete wingbeat cycle.
moving with the mean forward flight speed of the bat. We fixed he right shoulder coordinates were subtracted from each wing
the origin of a second coordinate system to the rightandmark position. We combined the two views into a
glenohumeral joint and related the motion of this non-inertiatomposite of wing motion by overlaying tlkecoordinates of
coordinate system to the inertial coordinate system (Fig. 2ing motion at the carpus, third MCP joint and wingtip. We
We defined our axes such that #haxis points horizontally to illustrate representative motion of the carpus and wingtip
the right of the direction of flight for the right wing (distally projected onto thexy plane with respect to the shoulder
along the wing at mid-downstroke), thexis points vertically  (Fig. 3).
upwards (in the dorsal direction) and thexis points in the The wingbeat cycle of flying foxes, like that of some birds,
opposite direction to flight (in the caudal direction along thecan be partitioned into approximately 65% downstroke
cranial-caudal axis). We denote the absolute acceleration ahd 35% upstroke. Sinusoidal motion, necessarily 50 %
the glenohumeral joint (or shoulder) as the global acceleratiocsiownstroke and 50 % upstroke, is therefore not appropriate to
a with respect to the non-inertial origin. The global describe these wing motions, and one would have to resort to
acceleration of the shoulder is not knownpriori, but is  Fourier series expansions to describe wing kinematics; we have
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Fig. 3. Representative illustration of the ~ 047 Downstroke 0.37 Upstroke
complex kinematics of the bat wing after o
curve-fitting raw data; this view depicts

the movements of the carpus (open~
squares) and wingtip (filled circles) with=
respect to the shoulder joint during both3
a downstroke and an upstroke. The Iineé
connecting the shoulder (coordinates®
0,00 and the carpus schematicaIIyS
represent armwing length, and thoseg 0.1
between the carpus and the wingtip;

0.21

0.1

handwing length. Time intervals -0.24 = Carpus -0.21

between data points are equal and show « Wingtip .

that the wrist, in particular, moves far  -0.3 T T T T T -0.3 : : : L .
more rapidly in midstroke than at other 0 01 02 03 04 05 06 0 01 02 0.3 04 05
times in the wingbeat cycle. Horizontal distance (m)

instead selected cyclic polynomials to describe wing motion Wing landmark positions neaf/T=1 were not precisely
realistically. We curve-fitted the time change in Xhg andz  periodic because of rounding errors in the curve-fit coefficients
positions of the carpus, third MCP joint and wingtip relative(Table 3). Moreover, double differentiation of position curves
to the right shoulder with eighth-order polynomials using awith continuous acceleration guarantees continuity of the
least-squares algorithm (KaleidaGraph, version 3.0.5acceleration at end points but not continuity in the slope of the
Abelbeck Software) (Table 3). For example, we wrote thecceleration. These are subtle effects that become very
position of the carpus along tlexis as: pronounced when taking derivatives of the position data. We
enforced periodicity in all position curves by using the value

2 3 4 . . -
Xe(t) = mo+m T t + szzL+ rr13T3t— + m4-|—4L+ att/T=0 in place of the value obtained frdfi=1. Continuity
T T2 T3 T4 @ and smoothness in velocity and acceleration profiles was
t5 t6 t’ t8 obtained by applying Savitzky—Golay smoothing filters to the
5 ha 75 8 -
meT -|—5+m‘3T6 Te+m7T T7 +meT T8’ position, velocity and acceleration curves (Press et al., 1989).

, - . The amount of smoothing was carefully tested to have no
whe_:remo, - T8 are the f!tt_ed coefficients, and the Wlngt?eatperceptible effect on landmark positions and yet still eliminate
perlo_d_T IS wrltten_ explicitly as part of the pqunomlal the growth of spurious discontinuities near end points. We
CQefﬂC'.entS' Qne wingbeat cycle Iastgd _from/_msl INNON-  cajculated wing landmark velocities from second-order finite
dlm_ensmnal time regardiess of varlatlo_ns in the W'ngbe%iﬁerences of the smoothed position curves and accelerations
period. We ensure_d th_at th_e p_olynon_wl_al was P‘?”Od'c rom second-order finite differences of the smoothed velocity
O<UT<1 _by enforcing identity in posmon, velocity and curves. Finally, we calculated the position, velocity and
acceleration at=0 andt=1. We chose to impose these threeacceleration of each wing segment from linear interpolation

continuity conditions by the following three relationships,,..\con coplanar wing segments, as described in the previous
among the coefficients: '

section.
28my 14mp 1Omg 6my  3ms :
me= - - - - 3) Dynamics
TS T4 T3 T2 T! , "
From the curve fits of position data, we calculated the
48my 22mp 15ms  8my  3ms magnitude, orientation and location of the gravitational,
=~ T i T3 a2 4) inertial, added mass and aerodynamic forces acting on each
T T T T T wing segment over the course of one wingbeat cycle. We then
2Im; 9 6mg 3mu  ms solved for the internal force carried by wing structures within
mg= - - - 5) a segment by invoking Newton’'s second law of motion at

T e T T T discrete instants of time. We summed the internal forces within
leaving six degrees of freedamp, ..., ms with which to fitthe  all wing segments to calculate the instantaneous global
data. All x direction curve fits have correlation coefficients acceleration of the bat shoulder. We corrected the magnitudes
r=0.959 whereas aW direction curve fits have correlation of the segmental aerodynamic forces in order to enforce the
coefficientsr=0.993. Displacements in thalirection were an level-flight criterion (no net vertical acceleration of the body
order of magnitude smaller than those in the other twover an entire wingbeat cycle). Finally, we calculated reaction
directions and matched the accuracy of the position data in dirces and moments at the humeral and radial midshafts by
three directions, resulting in curve fits with correlationassuming that each bone carries the entire internal load of all
coefficientsr>0.44. more distal wing structures minus the load carried directly to
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Table 3.Coefficientan; of eighth-order least-squares polynomial curves fitted toxhg ¢) coordinates of the carpus, third
metacarpophalangeal (MCP lll) joint and wingtip landmarks relative to the right shoulder with wingbeat pefi@Bs

Carpus MCP IlI Wingtip
Coefficient Xe Ve Z Xmp Ymp Zmp Xt Yt z
mo 0.13471 0.072759 -0.09268 0.21825 0.021098-0.07569 0.23897 -0.11647 -0.04721
m T 0.31943 0.29216  0.079774 0.70163 0.78646-0.00953 2.0003 0.93837 0.30125
mpT2 2.6721 -0.41251 2.0709 0.48889 2.0915 1.9933 1.0832 22.625 0.56812
mgT3 -35.576 -26.245 -21.375 -40.175 -59.600 -23.253 -82.368 -245.60 -16.924
maT4 160.86 166.95 84.838 230.49 293.55 97.225 393.35 1051.1 61.923
msT® -368.59 -455.36 -174.36 -584.06 -706.20 -206.46 -841.44 -2392.4 -91.409
meT® 450.01 624.43 196.57 744.49 901.97 240.92 916.71 2983.4 55.540
my T’ -278.40 -419.21 -115.60 -466.44  -580.40 -146.98 -493.17 -1909.4 -5.7441
mgT8 68.706 109.56 27.780 114.50 147.80 36.562 103.83 489.29-4.2554

Subscripts ¢, mp and t denote the carpus, third MCP joint and wingtip, respectively.

the body by the plagiopatagium (see below, section on forcethe same vector direction as the acceleration of a wing segment.

moments and stresses on the wing skeleton). The horizontal acceleratiogz.qand the vertical acceleration
o Ssy.gare the two components of the global acceleration at each
Gravitational force instant of time and must be solved for iteratively in the program.

The action of gravity on the wing of a large bat is typicallyWe note that the Einstein summation convention is not implied
an order of magnitude smaller than the aerodynamic forca this paper by the use of repeated subscripts.
encountered in level flight because the former acts only on the
wing mass while the latter supports the entire body mass (e fdded mass force
Thollesson and Norberg, 1991). Nevertheless, the segmentalThe added mass force resists the acceleration of the wing
gravitational force is given by: and is sometimes considered part of the inertial force since it
Fo = meoi ©6) is proportional to the acceleration perpendicular to the plane of
gp=~Mpd) a wing segment (DeLaurier, 1993b). The magnitude of this
wheremp is the segmental mass apé a unit vector of the acceleration is a-n and it is always aligned with the unit normal
globaly axis pointing in the direction opposite to gravitationalvectorn. We define the normal vectogq at any timeg to point
accelerationg. The gravitational force acts at the center ofaway from the dorsal face of wing segmpnthe component
mass of each wing segment (see Table 2 for the chordwise pq of the normal vectonpq is always zero given that we
positions of the centers of mass relative to the positions of tressume, as a first approximation, that wing segments remain
leading edge). We assumed that the center of mass lies prallel to the cranial-caudal axis of the body at all times. We

midspan of each wing segment. write the added mass force for wing segnpeat timeq as:
Near the wingtip, the trapezoidal and triangular shape of the

last few wing segments would cause the center of mass to | _ u:EI mTleqszPO% +

located more proximal to the shoulder than the midline of the ™9™ 5 4 D{[ Bpdpa

wing segment. We did not include this effect because segme —_— S T (8)

widths and masses near the wingtip are sufficiently small the (8y-pg* Asy-aMy-pdlNx-pd

the effect of any correction is negligible. [ax-pdx-pat (8y-pq+ @sy-QNy-pd Ny-pai},

Inertial force wherewpq is the mean width of wing segmemat timeq, po
. . . . . is the density of air, and the added mass coeffic@nt0.9,
Inertial forces on the wing vary with wing motion and t.hqsis that of a thin plate of finite width entraining the voluwhe
. ) 8f air contained within the cylinder whose width is that of the
to values Compgrable .W'th the. Iarg'e aerodyna.mjl'c force\?/ing segment and whose diameter is that of the segment chord,
exerted on the wing during flapping flight. By definition, theV:(Tl\Nqupz)/4. The added mass force opposes wing segment

@tceleration and acts through the center of a wing segment at

as well as the force carried by the wing structures for a give\w 42 andcy/2. The magnitude of the added mass force on a
wing segment. On the basis of segmental accelerations, tB en wing segment is comparable with that of the inertial

inertial force on wing segmeptat timeq is given by: force whenevermy=(0.9nwpqGo200)/4 or my=0.6g for P.
Fi-pg=Mpapg=Mp[ax-pd + (@y-pq+ asy-aj + (@zpat+asz.9k], (7)  poliocephalus

where each component of a force is treated independently Berodynamic force
the model. The inertial force acts at the center of mass and inThe aerodynamic force consists of lift and thrust
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components that arise from the rates at which air is drawn u 0 eOF25

ahead of the wing and pushed down behind the wing. In oL Cp,= .89 +logo BLDD =0.01, 9)
study species, the aerodynamic forces are the largest and m 0 0o

significant forces experienced by the wing, although segmentg}v

inertial forces during a flapping cycle can momentarily achiev 151m and, the approximate length of the hair on the bat

the magnitude of segmer!tal aerpdynamic forces (see Result\ﬂng, is 4«107°m. The drag coefficient is relatively insensitive
Together, the aerodynamic and inertial forces account for MOR! the ratioc/l. We write the total skin friction on both sides
of the external load exerted on wing structures. Skin frictioQ)f both wingsDs as:

along the surface of the wings, form drag on the body and
induced drag from vortices in the wake provide the total drag poU?
experienced during flight. We combined the total drag and th Dr=4Cp 2 Ak=Drk, (10)

animal’'s weight to find the total aerodynamic force and

distributed this force over all the wing segments. In the absendd1€reA is the mean area of a single wing. Skin friction acts
of detailed wing profiles in flight, we prescribed thel" the plane of each wing segment and opposes forward flight.

aerodynamic force generated by each wing segment throque use the mean wing area rather t_han the inst_antaneo_us wing
an elliptical, spanwise distribution of circulation (Norberg, &€& because this drag component is too small in magnitude to
1990) at the middle of the downstroke as a plausiblé"a”am an exact treatment. We also assumed that the flight

approximation for a bat wing in fast forward flight (Rayner etsPee_OU was constant over a wingbeat cycle when evaluating
al., 1986; Rayner, 1986; Spedding, 1987) (see also section §F9; We will show below that the global acceleratengis

aerodynamic force distribution and constant-circulation flight){0© Small to cause significant changes in flight speed.
Variation in wing span is a fundamental method of generating W€ approximated body shape as a sphere and assumed that

thrust under the constraint of constant circulation (Speddingl’ low around the body has a turbulent boundary layer and a
and Delaurier, 1995); bats, including. poliocephalus typical Qrag cogff|0|enCD,b=O.5 (White, 1991). In contrast to
experience significant variations in tip-to-tip wing span duringfhe bodies of birds, those of bats are not streamlined, and can,
steady flight which makes constant-circulation flight plausibldndeed, resemble a sphere to some extent because of the
(see also Fig. 3). We also took care to ensure that the directioR&Portions of the ribcage. Moreover, form drag is smaller than
of the segmental aerodynamic forces over one entire wingbet€ induced drag, which mitigates against searching for a
cycle were such that mean lift equaled weight and mean thrugfecise nymencal value of the drag coefficient. Our results for
equaled total drag. We assume that the small radius &fiS Species (see below) demonstrate that there is not much
curvature of the leading edge of the wing produces |Ov@yolutlonar_y pressure to drive bat body streamlining _from a
leading-edge suction efficiency (DeLaurier, 1993b); thaPiomechanical perspective. It follows that the form ddags:

consequence of this assumption is that the aerodynamic forr -

hite, 1991), where the mean wing chool,is equal to

200 hwe
must _act almost normal to the wing instead of in a vertica Db=Cpp E’&S B—Ekszk, (11)
direction. 02 0040

Drag whereW is the shoulder-to-shoulder width of the body, and

We modeled three distinct drag components that do not arigasz Is the _cros_s-se_ctlonal area of the Sphere' Form drag _acts
in the opposite direction to the direction of flight. Once again,

from circulation about a wing segment: skin friction over the . . :
surface of the wing, form drag of the body and induced dra e assumed that the flight spagds constant over a wingbeat
ycle.

from wingtip vortices that exist because of the finite wing span: , )
¢Induced drag represents the continuous conversion of free-

The first two drag components are proportional to the square o - h q | ;
the flight speed, whereas the induced drag is inverse ream momentum into the wasted angular momentum o

proportional to the square of the flight speed:; hence, the induc@indtiP vortices. We assumed that a constant and uniform

drag is an order of magnitude larger than skin friction or fornjnduced drag exists across the entire wing span, including
drag on account of the relatively low flight speed. Thebehlnd the body. However, since we do not consider segmental

maximum segmental velocity can reach several times th@ngles of attackin our model, we added induced drag explicitly
forward flight velocity, and this argues against using thd® €ach wing segment, rather than implicitly through a
forward flight velocity in the model; however, we found thatdownwash angle that alters the orientation of the aerodynamic

the skin friction drag is negligible for this bat species at théOrce (DeLaurier, 1993b). We calculated the induced drag on

moderate flight speeds employed in this model and that a mota® basis of the mean wing span and an assumed elliptical

precise treatment is therefore unwarranted here. As suggesfdigiribution of lift along the wing span (Norberg, 1990). The
by Norberg (Norberg, 1972a), we assume fully turbulentnduced drag@i becomes:

boundary layer flow over the entire bat wing because of th 2k(Mg)?2
small leading edge radius and the presence of hair near tl Di= MU
leading edge of the wing. The turbulent drag coefficiam of
a flat, rough plate is approximately: where Mg is total weight,k=1.2 is a constant proposed by

k=Dik, (12)
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Pennycuick (Pennycuick, 1989) a8ds the mean wing span. where detailed variations in drag and thrust are unimportant in
Induced drag acts in the opposite direction to the direction afomparison. Consequently, we will define mean wing
flight. If the instantaneous wing span is defined as the shortgshrameters that will facilitate a simple and consistent
distance from one wingtip to the other along the wing surfacenathematical approximation of the thrust force. We define
then one standard deviation in the wing span is 7.5% of thilae mean width of a given segmerver the entire wingbeat,
mean. and the mean wing segmental afgaas:

The total draddt on the bat in forward flight is the sum of
skin friction drag, body form drag and induced drag:

1 40
Wo= — O Wpg, 16
Dt=Ds+Dp+Di=Dik, (13) i 40; " =

whereDy is the magnitude of the total drag. We have assumed

that the total drag is constant over time because it is an ord 14

of magnitude smaller than the aerodynamic force. On the bas Ap= Z WpCp, (17)
of the data in Table 1, the ratio of mean total NMifg to total p=1

d is Mg/D=9 for thi ies. Th itude of th . . s
rag 1S Vg or this species © magniude o eFP be consistent with the value of skin friction drag above. We

aerodynamic force is found by adding the squares of the li N X
and drag components, thereby making the lift contributiorﬁ:"’_IICUIate that=0.0633n# from the mean distances between

roughly 80 times more important than the drag contribution. Vﬁ”gl Ia2ndr_rr1srks(,j_f?nd thebgt(\a/\(/)metrtyh of segmegtal. chords
We assumed for all drag components that the forward ﬂiglj‘Table 1)' deih : elrencel eI tegr;] € measure vtv|r|1glgr§a

velocity U is constant over one wingbeat cycle. To evaluat able 1) and the value calculated here 'S approximately o

We also assumed that form drag and induced drag are each

this approximation, we considered the deceleration caused b% ; ted by thrust ted uniform th lenath
the total drag over one-quarter of a wingbeat cycle. If ghgounteracted by thrust generated uniformly over the mean leng

deceleration is uniform and approximately equaads-Di/M of the tWOf W|n%s, B. Vgg \(/jvrltedtf:je mean thTUSt neededt to
over a duratiori/4, then we can write the fractional change jinoVercome form drag and induced drag on a wing Segpest

flight velocity as approximately: O O
g yasapp Y Th-p=—Db Ez—;gk:n.w (18)
AU 1 &T/“ e A DT ”
U UJp VYT (14) 0
Ti.p:_Di %TBEk:Ti.pk, (19)

This value is approximatelyl.4 % forPteropus poliocephalus
and is 100 times smaller thah justifying the approximation \yhere hoth quantities are averaged over one wingbeat cycle.

of constany. We define mean wing lengtB,as:
Thrust 14

Bat wings must generate thrust from wing segment B= Z Wp, (20)
circulation to counteract the drag, as described above. Thru p=1

can be achieved during part of a wingbeat cycle by temporaril,

orienting a component of the aerodynamic force in thdo recover the values of the form drag and induced drag given
direction of flight and always arises from an asymmetry in thé the previous section. We calculatBe¢0.431m from the
wingbeat cycle (Spedding and DeLaurier, 1995). Sustaineghean distances between wing landmarks. Since we distributed
horizontal flight requires that the mean total thrust over onghese two components of thrust uniformly over the wing span,
wingbeat cycle equals the total drag. In the absence of moveéhereas lift tapers near the wingtips, the relative importance
specific information on thrust generation, we modeled thef net thrust to lift increases distally.

variation in net thrust over one wingbeat cycle by making the Passive aeroelastic wings supported by leading edge spars
following plausible assumptions: the body does not generatend to produce maximum thrust during the middle of the
thrust, and the skin friction of a wing segment is overcome bglownstroke as a result of wing twisting that rotates the
thrust from the same segment. Therefore, the mean fhrpist aerodynamic force towards the direction of flight (DeLaurier,
required over one wingbeat cycle to overcome skin friction 01993c). Therefore, we assumed sinusoidal variation in thrust

both sides of a wing segmepis: over the wingbeat cycle, with the maximum thrust occurring
during the middle of the downstroke. We calculated the

_ @OUZD _ magnitude of the thrust explicitly to find the orientation of the

Tr.p=—2Cp- i EWpCpk—Tf-pka (15) aerodynamic force. In the absence of specific thrust

observations, we verified posteriorithat sinusoidal thrust
where the negative sign indicates a force in the cranialariation does not strongly affect our simulation results.
direction andw, is the mean segmental width. Once again, wddeally, a more precise thrusting function is desirable,
note that the aerodynamic force is dominated by lift to the poirgarticularly one that captures the 65 % downstrakeus35 %
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upstroke cycle, but we did not feel that such an effort wa 16— —
germane to this work at present. We write the magnitude of tt 14 1
thrust at wing segmemtand timeq as: . mi
o 1.2 _
Ft.pg= (Tr.p+ To-p* Ti-p) + (Tr-p+ To-p+ Ti.p)cOS(2Tty),  (21) )

. , .- E (]
where f=11 is the flapping frequency, the argument within the &1 —
cosine function is expressed in radians, and the ftigne § 0.8
associated with the integgris written: g 06

3 0
tq=Ato — tmid, (22) O 04
wheretmiq is the time at the middle of the downstroke, and 0.2
At=T/40 is the time step. The maximum thrusk:3¢ To.p+ Ti.p)
occurs whenAto=tmig, and thrust is equal to zero when O 5> 3 4567 891011121314

Atg=tmig+(T/2) during the upstroke. The mean thrust generate
by both wings over one wingbeat cycle is equal to the toteu

drag since the contribution from the cosine function averageFig. 4. Elliptical distribution of the magnitude of aerodynamic forces
to zero. at each wing segment; segment 1 is adjacent to the shoulder and

segment 14 includes the wingtip (see Fig. 1).

Wing segment

Aerodynamic force distribution and constant-circulation flight _ _
The magnitude of the total aerodynamic foFemeeded to bubbles in the_wake of a kestréhlco tlnnunculusto reveal _
sustain forward flight is a combination of weight and total dragh@t flapping flight need not be accompanied by the shedding

components with a mean value over one wingbeat cycle of: of spanwise vortices from the trailing edge of a wing. The
absence of vortex shedding implies a constant circulation about

Fa=\/(Mg)2+Dt2. (23) each spanwise segment_of th_e W_ing _in fast forward fligh_t.
Consequently, constant circulation implies that each spanwise
There are three constraints for all plausible spanwiseiing segment maintains an aerodynamic force that changes
distributions of the total aerodynamic force. First, the increase iorientation but not absolute magnitude during the wingbeat
circulation proximal to the wingtip is dictated by the cycle. It has been demonstrated that bats can use a constant-
mathematical singularity of the wingtip vortex itself: all plausiblecirculation gait during fast forward flight and that bat wings
spanwise distributions of the aerodynamic force are similar ne@ossess sufficient passive and active control to achieve
the wingtip, with spanwise circulation becoming zero. Second;onstant-circulation flight over an entire wingbeat cycle in fast
flow visualization around a gliding model bat indicates that théorward flight (Rayner et al., 1986). The approximately 6ms
body and uropatagium are capable of producing lift (P. Wattglights from which our data were collected may not fall strictly
unpublished data). As a result, we postulate the spanwisdthin the fast flight category; Norberg and Rayner (Norberg
distribution of aerodynamic force generated by the armwings arehd Rayner, 1987) estimate that the maximum range and
the body to be a relatively constant plateau. Third, the constraiminimum power flight speeds for flying foxes of this mass are
that mean lift over one wingbeat cycle equals body weighapproximately 10 and 7.5 misrespectively, on the basis of the
bounds the possible numerical values of a constant aerodynangieneral relationship they estimated between body mass and
force plateau. An elliptical distribution of the total aerodynamidlight velocity. In any case, neither the constant-circulation
force over the wing span is a common and convenient choice fareory of flapping flight nor the flow visualization on which it
engineers designing subsonic fixed-wing aircraft and eveis based is capable of providing the spanwise distribution of the
ornithopters (DeLaurier, 1993b). It produces minimum induce@erodynamic force. Therefore, an elliptical aerodynamic force
drag as well as a uniform downwash across the wing span; thubstribution combined with the constant-circulation hypothesis
an elliptical distribution of aerodynamic force over the wing spamppears to be a reasonable starting point for modeling purposes.
would be energetically favorable for flying mammals. Given the In our model, we defined the magnitude of the aerodynamic
three constraints mentioned above, an elliptical distribution diorce on a wing segmeptas:
aerodynamic force is an appropriate and plausible way of
connecting an aerodynamic force plateau to wingtip vortices. To
balance weight, any other plausible distribution that is less thamhere I'pq is the circulation about the midline of the wing
an elliptical distribution somewhere along the span must also Is@gment andipq is the instantaneous width of the wing segment.
greater than the elliptical distribution elsewhere along the spakVe invoked the constant-circulation hypothesis when we made
We expect errors incurred by actual deviations in the spanwiske magnitude of the aerodynamic fofGgwpg constant over
distribution of aerodynamic force from the chosen elliptical forntime for each wing segment. There are two possible
to be small in magnitude compared with other approximationmterpretations of constant circulation. The global constant-
made in the model. circulation hypothesis requires that the sum of circulation along
Spedding (Spedding, 1987) used stereoscopy of small heliuthe entire wing span remain constant during flapping flight. The

Fa-p=poUl paWpg, (24)
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local constant-circulation hypothesis requires that the sum ¢ _ _ 2WCR
circulation between two close material markers along the win Fa.0=poUl0gW= w 0O’ (27)
span remains constant. The sum of circulation along the win n[«g + BmigO

O 0

span is directly proportional to the aerodynamic force. The globe

hypothesis allows for a spanwise redistribution of circulation, harew is body width andFa is the total aerodynamic force,
which would lead to visible vortex rings being shed from the, simple function of total drag and body weight.

trailing edge. An absence of such vortex rings implies the

stronger local hypothesis, which we are using here. Because we Net drag and lift

are using sums over wing segments instead of integrals along\y/e defined net drag by adding the drag and thrust acting on
wing span in this work, we make our material markers coincident, -, wing segment. The net drag on wing segmantimeq
with the wing segment boundaries and enforce a constapt given by:

aerodynamic force over each wing segment. Because a bat wing

undergoes significant folding in flight, we have chosen the middle Fd-pg=—(Tt-p* To-p* Ti-p) + cOS(Atg)k =Fa.pdk,  (28)

of t'he dow_nst_roke as the most appropriate wing config'uration ahd acts in the plane of the wing segment opposing the
which to distribute the aerodynamic force along the wing spanyirection of flight. We calculated the magnitude of the lift from
Of the 40 time steps simulated by the model, mid-downstroke {s¢ mathematical relationship between the magnitude of the
identified as the integeFQ, whereAly=tmig=00.38 or Q=15.  5r0gynamic force and the magnitude of its two orthogonal

We approximated the smooth elliptical distribution oo honents, Jift and thrust. Hence, the lift on wing segment
traversing each wing segment with the value of the circulatiog; timeq is written:

at the segment midline, resulting in a spanwise distribution o*

C|_rculat|on that resembles a despendlng stalrpase over the entFI_pq: / (Fap-Frp)(epd + Ny-paj) = FlpgMepd + Ny-pai) s (29)

wing length from root to tip (Fig. 4). The circulatidng is

calculated according to theaxis position of the midline of where the lift componerft.pq of the aerodynamic force acts
each wing segment relative to the center of the body at th@rmal to the plane of a wing segment. We assumed that the
instant of the middle of the downstroke. Because the maximufift on each segment acts at a fixed proportiégs4, of the
circulation exists midway between the shoulders, thehord,cp, behind the leading edge of a wing segment. This is

circulation about a wing segmemis given by: a typical location for the center of lift of a thin airfoil with a
significant parabolic camber and angles of attack between 5
On 02 and 15° (Katz and Plotkin, 1991).
BE +XpQ E
Fog= 2CFa - 0 0. (@5 . ' Internal force' '
w O ow O The internal force is the force carried by the wing structures
HBFZ +BmidgpoU EE +Bmid% that enables the wing to undergo the observed accelerations

and to resist the external forces applied to the wing. We invoke
(Norberg, 1990), whergyq is the position of the midline of a the common form of Newton’s second law of motion for wing
wing segment relative to the shouldBsq is the instantaneous segmenp at timeq so that:

wing length atmig, Fa is the total aerodynamic force a@ds -F =

a multiplicative constant. This equation is strictly valid only Mp3pq = Fi-pa=Fg-pa+ Fm-pg* Fi-pg* Fa-pg* Fpa,  (30)

for straight wings with constant wing span. Since we hava&vhere the internal forcgyq is not given any subscript. We did
made several approximations while distributing thenot calculate the internal force explicitly in the model since we
aerodynamic force along the wing span at one instant in timgere interested in the relative contribution of inertial and
and since the wing moves and changes shape duringexternal forces to bone stresses. Moreover, the inertial and
wingbeat, circulation must be multiplied by an aerodynamiexternal forces act at different locations on a given wing
constantC to ensure that the mean lift exactly balances bodgegment, requiring both a net internal force and a net internal
weight over one wingbeat cycle. We solved for themoment about the center of mass for each wing segment.
aerodynamic constar@ by iteration. We approximated the Instead, we relied on the definition of the internal force as the
circulation about the body (from shoulder to shoulder) by: inertial force minus the gravitational force, added mass force,
lift and net drag, and computed the contributions from these

Fog= 2CFa forces separately. We also calculated the component of the
Ow O (26) internal force associated with tension in the plagiopatagium
n ékz + Bmid SpoU (see below, section on plagiopatagium tension).
the maximum circulation in the elliptical distribution at Global acceleration

x=-W/2. Substituting this value of the circulation into the To calculate the body’s global acceleration, we employed
definition of the aerodynamic force generated by the bodthe estimate of total internal force transferred from the wings
yields: to the body. We assumed that the position of the shoulder joint
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relative to the center of mass is fixed then, working from th
inertial reference frame of the global axes, approximated tt
force transfer from the wings to the body by summing th
segmental internal forces from the wing root to the wingtip &
each instant of time. The components of the total internal forc
transferred from both wings are:

14
Fy-04=2 Z Fy-pa, (31)
p=1
14
Fz-0q=22|:z-pq, (32) Fig. 5_. Schematic diagram of the rgctangular idealization of_ the
= armwing membrane. The and z coordinate axes used to describe

membrane deflection mathematically are indicated; ythexis is
where thex axis components from both wings are equal angerpendicular to the plane of the membrdfédndicates the point of
Opposite, resu'ting in no acceleration of the center of masapplication and approximate orientation of the skin internal faxce,
along thex axis at any time in forward flight. To complete the is the mean armwing chord abdis the instantaneous shoulder-to-
force balance, we calculated the mass of the body minus t&/Pus distance.

wings my as:
14 the left side of this equation equal to zero. Under this condition,
%:M_szp_ (33) lift from the wings and body balances body We|gh.t over
one wingbeat cycle. We used a Newton—Raphson iterative

p=l convergence scheme to compute value€fontil the left side

The vertical force balance on the body supported by both wingsas less than 0 at each iteration. The Newton—-Raphson
at timeq is: scheme converged in less than 60 iterations to final values of
C=1.2 as well as final values of global accelerations. The
aerodynamic constant is greater than unity largely to
whereasy.qis the vertical component of the global accelerationcompensate for the significant wing folding that occurs at the
andFaois the aerodynamic force generated by the body. Thend of the downstroke.

horizontal force balance provides at tiqie

Mpasy-g=— Fy.oq— Mg + Fa.0, (34)

Plagiopatagium tension
Mbasz.¢= =~ Fz.00, (35) Lift acting on the armwing causes the plagiopatagium to
where aszq is the horizontal component of the global billow and thereby increases the tension of the skin. Because
acceleration. Form and induced drag of the body have alrea@y this coupling between lift and skin tension, we replaced total
been accounted for in the net drag of each wing segment. veemwing forces with skin internal forces; skin force represents
solved these two equations for the two components of the glob&le sum of skin tension integrated along the chordwise
acceleration iteratively because the equation&fggandFz.pq direction and does not include the frictional drag, which is
contain the global acceleration components within inertial term&ccounted for separately through the net drag. We therefore
developed a simple model of passive plagiopatagium
Level flight criterion deflection due to quasi-steady lift to determine the internal
As mentioned above, we ensured that the mean lift was equ@rces of the skin that are transferred directly to, and indirectly
to body weight over the wingbeat cycle by adjusting théhrough, the humerus and radius.
aerodynamic constar@. Without explicit knowledge of the ~ To calculate the magnitude and location of this force, we
correct value ofC, we adopted the following approach: we assumed that the skin of the plagiopatagium is linearly elastic
made two initial estimates near unity, observed the resultingnd orthotropic, that skin thickness remains constant during the
trend in the mean vertical component of the global acceleratioingbeat cycle, that shear stresses in the skin may be neglected
and used these results to guide more accurate estimates of &gl that the intrinsic musculature of the membrane,
aerodynamic constaf To do this, we averaged the equationparticularly the mm. plagiopatagiales, does not affect skin
for the vertical component of the global acceleration over onténsion near the fifth digit during the wingbeat. This final

wingbeat cycle to obtain: assumption comes from our hypothesis that the muscles will
only have a localized effect on membrane tension, perhaps by
1 X 40 influencing local camber for aerodynamic purposes or by
20 Z Fsy-oq=— 0 Z Fy.oqg—Mug+ Fa.0, (36) damping oscillations in the wing membravi@ modulating
F1 1 skin stiffness. These localized effects will probably have little

influence on skin tension measured elsewhere in the wing. The
where the correct value of the aerodynamic consIanbkes nature of elastic problems is such that a local perturbation of
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the global solution is rapidly smoothed out of existence. ThiandT; in the spanwise and chordwise directions respectively.
local versusglobal dichotomy is a consequence of the elastid@o capture the most important contribution to deflection (and
partial differential equation being elliptical: the stress at everjience skin tension) and yet maintain a tractable analytical
point on the wing membrane is in some way an average of tlelution, we approximated the complete linear solution of the
stresses surrounding that point. Therefore, elastic materigh@rtial differential equation by the first eigenmode solution
quickly erase any evidence of local perturbations. corresponding to the boundary conditions that there is no
We characterized the plagiopatagium as a rectangular sheaémbrane deflection along the distal, cranial and proximal
coplanar with the plane connecting the shoulder, elbow aneldges, and that the slope of the membrane deflection be zero
carpus if the wing membrane was not deformed by lift (Fig. 5)along the caudal edge of the rectangle. The linearized partial
The long axis of this rectangular membrane is parallel to thdifferential equation applies whenever lateral membrane
line connecting the shoulder to the carpus. The rectangletieflections are small enough to be considered remaining in the
chordwise dimension is the mean armwing cheyénd its  undeflected plane, which is an assumption that must be verified
spanwise dimension is the instantaneous shoulder-to-carpasposteriori We find the approximate solution for membrane
distanceba. For this analysis, we used a coordinate system witheflection out of the plane:
its origin at the carpus, itsaxis parallel with the long edge of

the rectangle and positive proximally, and taxis parallel _16AP 0 4b2c? E . DTXE . E"F'IZE 3
with the fifth digit and positive caudally (Fig. 5). The location T ATy +bT, Dsm aDSInEpaD’ (37)

and orientation of the total skin internal for€gjustifies the

approximation of the plagiopatagium as a rectangle since thghere the skin tensionik andT; are functions of through
line of force action passes distal of the armwing bones (séBe orthotropic constitutive relationships:

below). Newton's third law requires that the plagiopatagium
induce a force normal to the armwing that is equal to the li
that it is replacing. Part of the liftis accommodated by the angle
tarrs that the forcees makes with the plane of the fifth digit
and the body, and we distributed the remainder of the liftvhere we assumed uniform plane stress across the membrane
evenly along the armwing bones acting normal to the armwinghicknessts=0.2mm. We evaluated the spanwisgx) and

We estimated the spanwidg) and chordwiseHy,) elastic ~ chordwise §z7) skin strains by assuming that, when under no
moduli of P. poliocephaluglagiopatagia from published mean tension, the membrane had a chordwise lergtland a
values of moduli of plagiopatagia of other bats, yieldixg spanwise lengthmin, the minimum value dfa. It follows from
=3 MPa andEx;z=37 MPa; these values correspond closely tdhe definition of an arc length that the strainis:
the elastic moduli found for the plagiopatagia #f
jamaicensisthe only large fruit-eating bat from which these 1 &ba Y[R
data have been collected (Swartz et al., 1996). Howeve BoE To 1+EI9FXE dx-1, (40)
because this species is an order of magnitude smaller in bot |
mass tharP. poliocephaluswe also explored the effects of and that membrane deflection out of the plane both determines
lower moduli on force transfer. We further assumed theand is determined by skin tension. We do not provide a sign
Poisson’s ratiozx=1 as a typical value for skin composed of convention forAP or Y because the square of the derivative
crossed fiber sheaths (Frolich et al., 1994). Symmetry of th@y/0x makes these quantities positive. We did not calculate the
skin stress tensor associated with mechanical equilibriurstrainez; since we were interested in the tensiaralong the
requires thavxz=(Exxvzx)/Ezz=0.8, whereyx; is Poisson’s ratio  edgex=0, where the straiaz; is identical to zero andi;=Tx
of the plagiopatagium due to loading along xtexis. from the definitions of the Poisson’s ratios.

Although inertial forces exerted on the skin can probably We calculated the skin tensidi at 20 discrete locations
approach the magnitude of aerodynamic forces near the carpaldng the distal edge of the plagiopatagium using a
during periodic rapid wing acceleration, we modeled only the&Newton—-Raphson convergence scheme at each location to
skin deformation induced by the instantaneous lift acting oBolve iteratively the balance between deflection and tension.
the plagiopatagium. We divided total armwing lift by thewe found uniform skin tensions along the fifth digit except for
instantaneous plagiopatagium at®gea to find mean pressure a brief period during the upstroke at which time the skin
differencesAP (proportional to the wing loading), assumed totension approached zero and also became non-uniform. To
act uniformly at each instant of time over the plagiopatagiungalculate a particulafx, we transformed the integral fe,

as the source of membrane deflection. We adopted a quagito a complete elliptical integral of the second ki, 172):
steady model of membrane deflection out of the plane bv

neglecting the retarding effect of membrane inertia on change 2ba g mnd
V1+<2E On, —0-1
o 2

Tx = tsExx(Exx + Vzx€z2) Exx (38)

Tz=tsEzAVxzExx + €22)€xx (39)

(41)

in plagiopatagium deflection over time. We computed the EXX:T[bmin

linear solution of the partial differential equation governing
membrane deflectiory using the method of separation of wheremss?/(1+s) ands is the value of the derivativ@Y/dx
variables by assuming uniform values of the skin tenslans evaluated ax=0. We estimated(m,1v2) from a fifth-order
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Fig. 6. Schematic diagram of coordinate systems employed in the model. The origin of the global, inertial coordinate egatenh as the
mean vertical position of the shoulder joint and travels forward at constant mean velocity (see also Fig. 2); its patheds bydiba
horizontal dotted line, and its location at mid-upstroke is given in the center of the figure. The origin of the globattiaboeioelinate
system is located at the shoulder joint and accelerates vertically and horizontally with the bat. It is shown at thre¢hgoivitsgbeat cycle:

late downstroke (left), mid-upstroke (center) and late upstroke (right). For both these coordinate syskxaaris thelirected perpendicular to
the plane of the page, directly to the bat’'s right. At mid-upstroke and mid-downstroke, the global inertial and non-iegrtainaide
(center). The true flight path of the shoulder is indicated by the dashed linexpcatoordinate systems can be centered at any anatomical
point of interest, such as the shoulder, the midshaft of the humerus or radius or the carpus. In this illustration, tlelecalstoly, 2)
coordinate system with its origin at the humeral midshaft are shown by gray heavy dashed lines; once xagais,ishdirected perpendicular

to the plane of the page. Local primed ¢, Z) coordinate systems are employed for computations of local stresses, etc; they are centered at
the origin of a corresponding,(y, 2 coordinate system, but are rotated such thak ties is directed along the length of the humerus (or
radius) and the axis is directed perpendicular to the local wing surface. The Igcal',(Z) coordinate system at the humeral midshaft is
illustrated here, with axes depicted by barred black lines. Late in the upstroke (rightmost illustration), from a latematejgated here, the
undersurface of the wing would be interposed between the observer ahdritlg axes; this is depicted schematically by gray shading.

polynomial curve fit that had a standard deviation of 0.12 %y, z) and the point on the skeleton about which we seek the
about the exact integral values ovetri<1 (Abramowitz and momentMg as o, Yo, z0). By varying the location of the point
Stegun, 1965). We found that=th01 andE(0.017v2)=1.57 for ~ for which the analysis is carried out, we may then analyze the
most of the wingbeat, and therefore employed a linear solutioskeletal loading and bending at any location on the wing skeleton
since tanl=5° is the angle that the membrane makes with thef the armwing that is biologically significant and through which
undeflected plane along the edg®. The total skin internal a known fraction (usually taken as 100%) of the remaining
force Fs pulling proximally on the fifth digit is the integral of internal force is transmitted. Although the analysis applies
the tensionTyx along thez axis fromz=0 to x=ca and can be generally to any location along the armwing, we focused here on
approximated byFs=Txca over most of a wingbeat (Fig. 5). the moments about the humeral and the radial midshafts, to carry
Since the fifth digit is free to rotate about the carpus, we alsaut comparisons of model estimates with empirically measured
calculated the total momeMs induced by the skin forcEs.  values (Swartz et al., 1992). We defined three moment arms:
The correct point of action of the total skin internal force is

found fromz=(Mg/Fs)=0.5ca in this special coordinate system. =X =0, (42)

Forces, moments and stresses on the wing skeleton ly=yt—yo, (43)

To analyze the effect of flight-related forces on the skeleton, L=z (44)
we designated the point at which an inertial or external or skin 2=4720,

membrane force vectdi: acts on a given wing segment &s ( that relate the distance between the applied force and the
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location of the moment. We calculated the monMptabout
the point ko, Yo, 20) induced by the forc€s at (x:, yf, z) as:

Mox=ly Frz =12 Fsy | (45)
T T

1,2
MOy:|zfo_|foz, (46)
Moz=Ix ny _|y Fx , (47)
(Meriam and Kraige, 1987). To calculate the total force an /—\

moment vectors at bone midshafts, we summed the inertial ai
external force$pg and their respective momemil.pqover all
wing segments and fractions thereof that are distal to the bone
midshaft using the appropriate locations ¥, z) for all five Fig. 7. Definitions of the orientations and signs of longitudinal and
forces within a given wing segment. We then subtracted tpshear st.resses with respect to midshaft.cross sections of the humerus
internal force and moment about the bone midshaft associat?"d radiusta,2 shear stressyi, longitudinal stressor, transverse
with the skin force since it is transmitted directly to the bodyStress'
We note that our calculations implicitly contain close
approximations of the moments of inertia of the wing through We assumed that the humerus and radius are straight circular
the summation of segmental inertial forces, although weylinders of inner radiugj, outer radiudl, and length_, and
neglected the small moments of inertia induced by the finitthat the medullary cavity has no capacity to resist bending or
width of the wing segments (Thollesson and Norberg, 1991)torsion. We also assumed that the neutral axis intersects the
From the total force and moment vectors at a bone midshaftentroid of the cylinder’s cross section. To calculate stresses,
we calculated stresses at dorsal and ventral sites on a bone/s balanced the total force and moment vectors at midshaft
circumference treating the bone as a beam of circular croggth longitudinal normal stressem and shear stresses.
section (Popov, 1978). We considered the center of the boukstributed within the bone at the surface of a perpendicular
cross section as the origin of a local coordinate system parallelidshaft cut. When integrated over the proximal surface of the
to the global coordinate system (Fig. 2, Fig. 6). We convertedut, the normal and shear stress distributions represent three
total force and moment components written in the lgcglz  force and three moment components that are equal in
coordinate system into a primed y, Z coordinate system magnitude but opposite in sign to the total force and moment
oriented to the bone long axes. This primed system shares tbemponents. We considered tensile normal stresses and left-
origin of the local coordinate system, but possesg’ axis handed (or clockwise) shear stresses as positive (Fig. 7). We
oriented parallel to the bones’ long axes (positive distally), also assumed that the resulting stresses can be superimposed
Z axis in the plane of the wing (positive caudally) anptiaxis  linearly given that superposition of stresses is quite accurate
normal to the wing plane (positive dorsally) (Fig. 6). Weup to approximately 1% strain; we note that the peak humeral
defined the angl# as the angle between the armwing and theind radial strains irP. poliocephalusrarely exceed 0.3%
horizontalx axis. The angl@ defines a new' axis normal to  (3000ug) (Swartz et al., 1992).
the armwing. We also definafl as the angle by which we  Assuming that a bending moment induces a linear increase
rotate they’ axis to align thed axis with the long axis of the in normal stress. with increasing distance from the neutral
humerus or radius. The coordinate transformations from thaxis, we calculated the magnitude of the normal stress induced

local axes to the primed axes are: by My as:
X' =cos\cogpx+ simcospy +sinfiz, (48) oL=— 4MyZ 1)
J 7
y' =—Ssin\ +Cog/A, (49)

whereJ, the polar second moment of area of the bone cross
i . section, ism(R,*-R4), and we are free to chooBe<z <R,.

Z =cossingx —simsingy +cospz. G0 For positiveMy, the cranial face of the bone is in tension
The same transformation is used to relate the primedhile the caudal face is in compression, as indicated by the
component$y, Fy, Fz andMy, My, My to their respective  sign of oL. The magnitude of the normal stress induced by
unprimed components; we reapplied the transformation ddlz is:
each instant of time since the anglesand y change My
throughout the wingbeat cycle. To calculate the agglee oL=- ,
applied the law of cosines to the triangle formed by humera J
lengthLn, radial length_r and the instantaneous distance fromwhere positiveMz indicates tension along the bone’s dorsal
the shoulder to the carpus. This yielded the angles interior gurface. Assuming that stress increases linearly froixi thes
this triangle, which then provided the position of the elbowin the radial direction, the magnitude of the shear stress
joint and the angl@ for either the humerus or the radius. induced by the torsional momeld is:

(52)
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2MyR' is extended, the wing membrane is placed under significant
T1,2= 3 (53) tension. This tension exerts forces on the humerus and radius

) ) ) that tend to bend them in the plane of the wing in a cranially
whereR <R<Ro. This shear stress is uniform around the bongqnyex manner, placing the cranial bone surfaces in tension

circumference, and the maximum values of both the normgl,g the caudal surfaces in compression. Values of model

and shear stresses occur at the bone outer redRs predictions for stresses on the cranial and caudal surfaces of
The normal stress induced by the foFgevas calculated by  {he pones are therefore strongly affected by input values of skin

assuming that the force is distributed evenly over the crosgoquli (Fig. 8A:; see also sensitivity analysis, below). Because

section, giving rise to a normal stress: this bending is largely restricted to the plane of the membrane,
Fy skin modulus input has little effect on estimates of shear and
oL= (54) longitudinal dorsal and ventral normal stresses (Fig. 8B,C).

Ac To date, no studies of the mechanical properties of bat wing
where Ac is the bone’s cross-sectional area. Forces actinghembranes have included large megachiropterans (Studier,
perpendicular to the long axis of the bone give rise to shedi972; Swartz et al., 1996). Therefore, we began our analyses
stresses that are not distributed evenly along the bone crassing values for mean spanwise and chordwise skin moduli
section (Beer and Johnston, 1981). The magnitude of the sheaeasured from bats an order of magnitude smaller in body
stress ay'=0, Z=+R, due to the internal forcey is: mass than our model species. On the basis of a physical
inspection of the wing membranes of many bat species, we
_ , (55) expected these values to be considerably higher than the true
3J moduli of P. poliocephalusnving membrane skin, and carried
where, for positivery, shear stress is positive on the cranialout analyses using lower values for moduli as well,
(leading) and negative on the caudal (trailing) surface of thEraintaining the empirically measured ratio of spanwise to
bone. The magnitude of the shear stress due to the interf@iordwise modulus (Fig. 8). When the model employs a

force Fz atz=0, y=+R, is: spanwise modulu; of 0.5 MPa, one-sixth of the mean spanwise
5 stiffness of the wing membranes of smaller bats (Swartz et al.,

Ty0= 4F7zRo (56) 1996), the magnitudes of estimated bone stresses on the cranial

’ 33 and caudal bone surfaces are most similar to those on the dorsal

. . . nd ventral surfaces, so we conducted all further analyses with
where, for positivez, shear stress is positive on the dorsaf;‘is lower value for the skin moduli; this is reflected in the

and negative on the ventral surface of the bone. The two

MAGNLIGeS OF12 1en et 9Dl 0 oy o PO, 0301 s “spcuncs m ol Lo s eept i el
along the outer perimeter of the bone. b

Swartz et al. (Swartz et al., 1992) assumed that compa@f’merus share an overall pattern of change with respect to the
cortical bone is a transversely orthotropic material and use Ingbeat cycle: stresses reach a pea'lkJust aft.er the initiation of
ublished values for compact bone moduli and Poisson’s rati ownstroke and another peak of similar, slightly greater or
b P Qightly lower magnitude at the middle of downstroke; stresses

(Carter, 1978) to convert empirical measured strains int en decrease to their lowest values shortly after the initiation
estimated stresses. They used a valua sfl5 Gpa, wheré1y ﬁj upstroke (Fig. 9). On the cranial aspect of the humerus,

is the compressional longitudinal elastic modulus of bone, e longitudinal stress peaks just after the beginning of

typical value for mammalian compact cortical bone (Currey o
1561) ine horeare o obvious sources of ransversamness OIS, DS @ P Tiowdh v o e
applied to the humerus or radius, we assumed that apgt€d Py

Hence, the longitudinal strain is simplyzo1/E1 and transverse initiation of upstroke in concert with the stress minima of the

strainse,=—0.461 exist due to Poisson’s ratio effects alone, evenother sites. Longitudinal stresses at all sites are higher than

in the absence of externally applied transverse forces. shear stresses t'hroughout the greater part of the ngt.)eat cycle
with the exception of the downstroke—upstroke transition, at

which time longitudinal stress values approach zero.
The underlying basis of the similarity in the stress profiles
Results ; .
o at all anatomical locations modeled becomes clear when total
Model predictions stress is partitioned into components due to gravitational,
Humeral and radial stresses inertial, added mass, net drag, handwing lift and armwing
We used the model described here to estimate stresses atithembrane (plagiopatagium) tension stresses (Fig. 10, Fig. 11).
mid-dorsal and mid-ventral locations on both the humerus anthe inertial stresses display the pattern of timing observed for
the radius, and at the cranial (leading edge) and caudal (trailimgt stresses at all sites other than the cranial humerus,
edge) midshaft of the humerus; we did not calculate cranial ardisplaying peaks just after the initiation of downstroke and at
caudal stresses on the radius because we did not have empirizéd-downstroke, and minima at the downstroke—upstroke
data with which we could compare the model results. transition. Although the general shape of the inertial stress
During the portions of the wingbeat cycle in which the wingcurve for the cranial humerus is similar in overall form to that
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Fig. 9. Stresses computed by the model throughout the wingbeat
assuming the spanwise elastic modulus of theBkito be 0.5 MPa.

Shear gress MIPa)

and drag are virtually always very low, typically below 4 MPa
and often close to 1 MPa. The only exception to this pattern is
in the longitudinal stress at the cranial mid-humerus; in this
0 01 0.2 03 case, the thrust engendered at mid-downstroke is large enough
Time (s) to generate significant bending in the plane of the wing,

Fig. 8. Longitudinal and shear stresses computed by the model at tA€Creasing  tension on the cranial surface by up to
midshaft of the humerus throughout the wingbeat cycle as a functighPProximately 7MPa or 20 % of total stress at this location.
of spanwise elastic modulus of the skifk. (A) Longitudinal Stress due to plagiopatagium tension is also relatively small,
stresses on the cranial surface of the bone. (B) Longitudinal stressgenerally around 2—5MPa but reaching contributions as high
on the dorsal surfaces of the bone. (C) Shear stresses on the dogsl10 MPa to the total longitudinal stress on the dorsal and
surface of the bone. ventral surfaces of the humerus. The contribution of
plagiopatagium stress to the total stress at the cranial edge of
of the dorsal and ventral bone surfaces, the magnitude tie humerus is much greater, as high as 40MPa, for the
inertial stress (+5 te-10 MPa) is far smaller here than stressgeometric reason noted above. If the model used a higher value
due to tension in the plagiopatagium, so plagiopatagiurfor spanwise membrane modulus, this contribution would be
stresses dominate. Skeletal stresses due to gravity, added masasn higher. Stresses in the humerus and radius due to the lift
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generated by the handwing are significant (5-20 MPa) and
show a consistent plateau with little variation in magnitude
throughout the downstroke.

Global body motion

The model predicts that the bat's center of mass has a
positive (upward) vertical acceleration through the greater part
of the downstroke, downward acceleration through the end of
the downstroke and beginning of the upstroke and upward
acceleration once more during the second half of the upstroke
(Fig. 12). Downward acceleration reaches a maximum of
nearly 13N; given that this animal's mass is approximately
8004, this acceleration is close tg.2This large acceleration
occurs because the wing is folded such that some aerodynamic
force acts downwards near the top of the upstroke. In addition,
the upward wing acceleration near the end of the downstroke
causes further downward acceleration of the body.

During the middle half of the downstroke, the body is
accelerating forward, but it loses its forward acceleration and
gradually decelerates during the end of the downstroke and first
half of the upstroke (Fig. 12). Near the upstroke—downstroke
transition, there is a brief forward acceleration followed by a
brief deceleration before the acceleratory phase of the
downstroke begins. The magnitude of the fore—aft component
of the acceleration of the center of mass (¥2N) is small
compared with the vertical acceleration. As a consequence,
forward flight speed varies little during single wingbeats in
level flapping flight.

Model validation: comparisons with empirical data
Humeral and radial stresses

To determine the degree to which our model accurately
estimates bone stresses, we compared midshaft longitudinal
and shear stresses calculated from the model with values
computed from directly measuradvivowing bone strains of
bats from the same study population. In this earlier study
(Swartz et al., 1992), maximum and minimum principal strain
magnitudes and orientations throughout the wingbeat cycle
were computed from data obtained from rosette strain gauges
surgically implanted around the midshaft circumference of the
humerus and radius; post-operative recordings, synchronized
with video recordings, were made as bats flew the length of a
30m flight cage at moderate speed.

We found that the model can predict effectively not only the
general shape of the stress curve, but also the timing of both
major and secondary stress peaks in relation to the wingbeat
cycle (Fig. 13). Moreover, stress magnitude estimates
correspond quite closely to empirically measured values, with
predicted values deviating from recorded values by
approximately 5-30% for longitudinal and shear stress peaks.

Fig. 10. Longitudinal and shear stresses at the humeral midshaft
computed by the model for an entire wingbeat wingbeat assuming
the spanwise elastic modulus of the skix to be 0.5MPa; total
stress (solid heavy line) is partitioned into components due to each of
the individually modeled forces exerted on the wing.
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Fig. 12. Vertical and forward components of the global acceleration
of the bat as computed by the model.

et al.,, 1992). The constitutive model for bone presented by
Carter (Carter, 1978) is almost volume-conserving and predicts
€2=0.4&; from the Poisson’s ratio alone in the absence of
externally applied transverse stress. It is therefore possible that
transverse stresses observed in bat bones are largely due to
Poisson’s ratio effects. We computed transverse stresses from
the model asTt=0.460., whereor is transverse andy is
~_Shear(dorsal andventra) Io.ngitudinal midshaft bone stress, and then compared thes'e

with transverse stress values calculated from the rosette strain
gauge data (Fig. 14). Correspondence between the predictions
and measured values is excellent and detailed in some cases,
but only moderate in others.

Stress(MPa)

- v v by by v by by Lya
40O 0.1 0.2 0.3

Global body motion

Because the model predicts the net vertical force exerted on
the bat's center of mass during the wingbeat, a comparison of

Downstroke

2 ~—Upstroke—
_10(')|||||||||||||||||||||||||||||||||

0.1 0.2 0.3

the vertical changes in position of the bat's center of mass
calculated from the model with those measured directly from
film provides a strong test of model accuracy. Body

Time (s) oscillations are slightly greater in the wind-tunnel flight than

Fig. 11. Longitudinal and shear stresses at the radial midshaiin the simulation but, overall, oscillations computed from the
computed by the model for an entire wingbeat wingbeat assumirgimulation and measured directly from film show a high degree
the spanwise elastic modulus of the sk to be 0.5MPa; total  of correspondence (Fig. 15).
stress (solid heavy line) is partitioned into components due to each of
the individually modeled forces exerted on the wing. Sensitivity analysis
The model’'s output values for bone stresses and global body
Deviations between the predicted and recorded values aneotion descriptors are sensitive to various inputs and model
sometimes greater during the lower-stress portions of thessumptions to greatly varying degrees. To assess the
loading cycle and occasionally differed by as much as a factémportance of these effects, we carried out a sensitivity analysis
of 2—-3. These deviations arise partly from an ‘offset’ thain which we varied each of 10 model inputs by *5% and
appears in some of our results: predicted and measured stressputed the resulting changes in 24 model outputs (Table 4).
plots are very closely matched in shape but offset by As noted above, the elastic modulus of the wing membrane
20-25MPa. This phenomenon is particularly striking at theskin in the spanwise direction has a significant effect on estimates
cranial surface of the humerus (Fig. 13). of skeletal stress; a 10% change in modulus can produce a nearly
Empirically recorded bone strains indicated relatively largeequal change in bone stress (Table 4; see minimum longitudinal
transverse stresses at the humeral and radial midshafts (Swastzss, cranial and caudal radius). The sensitivity analysis
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Table 4.Per cent change in model outputs for a 10 % chargé€4 to +5 %) in model input parameters (top row)

Model inputs
Skin Skin Center of Added
elastic Poisson’s  Skin Thrust Downstroke Form aerodynamic  mass Elliptical  Pennycuick
Model outputs modulus ratio friction phase step drag pressure  coefficient modifier constant
Skin tension
Maximum 9.942 -0.014 <0.001 -0.002 <0.001 <0.001 <0.001 -0.001 0.004 0.001
Minimum 3.407 -0.808 0.010 0.041 0.010 0.012 <0.001 -0.088 0.475 0.255
Humeral stress
Dorsal and ventral
Max. longitudinal -0.137 0.173 -0.055 -0.776 2.194 -0.074 -0.405 0.959 2.686 -1.609
Min. longitudinal —0.107 0.121 -0.004 1.017 0.613 -0.002 -0.456 -0.517 1.518 -0.041
Max. shear -2.128 -0.035 0.096 19.291 10.174 0.196 19.693 9.029 21.230 4.257
Min. shear -0.292 -0.047 0.014 -1.043 2.480 0.036 2.297 -0.139 2.201 0.781
Cranial and caudal
Max. longitudinal -1.865 0.479 -0.098 -1.149 2.430 -0.095 6.756 0.545 1.682 -2.066
Min. longitudinal —7.603 0.018 -0.002 3.685 0.649 -0.001 0.511 -0.015 0.107 -0.031
Max. shear -0.439 -0.019 0.095 17.406 8.953 0.182 17.312 7.857 18.676 3.952
Min. shear -0.003 -0.045 0.014 -1.041 2.577 0.036 2.396 -0.142 2.275 0.794
Radial stress
Dorsal and ventral
Max. longitudinal -0.024 -0.173 0.159 6.329 -0.587 0.234 4.797 0.292 1.564 5.089
Min. longitudinal —0.230 0.020 -0.002 -0.523 3.147 0.003 2.846 -0.467 2.009 0.072
Max. shear 0.194 -0.326 0.006 -1.781 -0.314 0.006 1.435 0.630 -1.674 0.125
Min. shear 0.301 -0.370 0.036 0.319 -3.551 0.044 0.117 -1.417 -4.493 0.969
Cranial and caudal
Max. longitudinal -3.917 0.784 -0.032 -0.059 3.653 -0.017 11.934 0.076 0.407 -0.380
Min. longitudinal —9.025 0.016 -0.001 2.465 0.694 -0.001 0.607 0.025 -0.007 -0.021
Max. shear 0.003 -0.328 0.007 -1.813 -0.321 0.006 1.433 0.639 -1.695 0.128
Min. shear 0.258 -0.362 0.036 0.320 -3.508 0.045 0.116 -1.425 -4.500 0.973
Acceleration
Max. upward <0.001 <0.001 0.014 -0.681 -0.222 0.017 <0.001 0.594 -0.608 0.376
Max. downward <0.001 <0.001 0.007 0.082 0.020 0.008 <0.001-0.227 0.483 0.169
Velocity
Max. forward <0.001  <0.001 0.007 0.029 <0.001 0.006 <0.001 <0.001 <0.001 0.120
Min. forward <0.001 <0.001 -0.006 0.183 <0.001 -0.005 <0.001 <0.001 <0.001 -0.112
Displacement
Max. vertical <0.001 <0.001 -0.008 -0.590 -0.174 -0.010 <0.001 0.267 -0.700 -0.213
Min. vertical <0.001  <0.001 0.004 1.113 0.257 0.004 <0.001 -0.280 0.816 0.084

Changes >1.0% are in italics; those >5.0% are in bold italics.

indicates that this effect arises from the influence of skin modulis many model input parameters. Whole-body outputs
on skin tension. Bone shear stresses are also rather sensitivgaocelerations, velocities and displacements of the animal’s
aerodynamic parameters, e.g. the timing of peak thrust within theenter of mass) are virtually unaffected by changes in model
downstroke, the timing of mid-downstroke within the entireinputs (Table 4). Longitudinal bone stresses are not influenced
downstroke, the location of the center of aerodynamic pressuby changes in values of skin Poisson’s ratio, skin friction or
and the added mass coefficient. The humerus and radius are riotm drag and are only minimally affected by variation in the
however, affected equally; humeral shear stress is more than atdded mass coefficient.

order of magnitude more sensitive than radial shear stress.
Longitudinal stresses are influenced by the same parameters, but

generally to a lower degree. The cranial and caudal maximum Discus_sion_
longitudinal stresses, however, are moderately sensitive to the Model validation
location of the center of pressure (Table 4). The flapping flight of vertebrates and the aerodynamics and

In contrast, the model results are quite robust to variatiomechanics underlying this mode of locomotion are extremely
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Fig. 13. Comparison of bone stresses computed by the model, assuming the spanwise elastic modulus Bfxthe Is&if.5 MPa, with the
forces computed from surface strains measured empirically during natural flight (Swartz et al., 1992).
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Fig. 14. Comparison of transversely oriented bone stresses computed from the model, assuming the spanwise elastic ma#in&ssatothe
be 0.5 MPa, with the forces calculated from empirically gathered rosette strain data and the published value for thedRioissdose.

complex phenomena. The supporting structures of ththeir ability to simplify intractably complicated problems and
vertebrate wing are made from composite materials whoge allow investigators to vary parametrically single constituent
internal architecture far outstrips most engineered materials glements that cannot be teased apart experimentally — is
complexity of design. Many of these materials, particularlycounterbalanced, however, by their greatest weakness. If the
muscles, tendons, skin and, in the case of birds, feathers, guleenomena we model are those whose complexity defies ready
not linearly elastic and possess mechanical properties that campirical study, how are we to assess the validity of our
change dynamically through the wingbeat cycléa
modulation of tensions in any of a large number of wing
muscles. Wing surfaces move through space in a manner tt
is rarely spatially simple and that varies a great deal along ¢
axis from shoulder to wingtip. The forces experienced by th
wing also vary among anatomical regions and throughout tFr~
wingbeat cycle and comprise more numerous and less eas=
estimated components than limb forces in typical mode.S
of terrestrial locomotion. Together, these and othe
considerations suggest that computer modeling may be ¢
especially productive approach to gaining greater insight int:
how vertebrates in general, and bats in particular, fly.

The greatest strength of computer modeling approaches
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Fig. 15. Comparison of the vertical oscillations of the bat's center of — Mode
mass over one wingbeat cycle as computed fromthe modelandas gl vv v v v v v v vy
measured directly from wind-tunnel film footage (Carpenter, 1985). 0 01 0.2 03
Empirical measurements are meanssto? (N=18). Time (s)
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models? Here, we present a model that facilitates analysis @ériation in kinematics and/or body motion in bats in relation
some of the tremendous complexity of bat flight dynamicgéo wing kinematics, flight velocity, etc. at the level of detail
while retaining a strong link to empirical studies. This modeheeded to assess such features as wingbeat amplitudes on this
is sufficiently detailed to predict both the net motion of a flyingscale, we believe that in the future it may be possible to relate
animal’s center of mass and the stresses developed in the bokesematics to variation in aspects of flight performance such
of the wing throughout the wingbeat cycle. As a consequencas the lift generation reflected in the motion of the center of
we are able to assess the validity of our model with a degreeass.
of rigor unusual for computer models of animal flight.

We find that the model described here is able to make Sensitivity analysis
excellent estimates of aspects of wing and whole-body A notable feature of the sensitivity analyses presented here
mechanics from kinematics and structurally important aspects the dependence of stresses on the cranial and caudal aspects
of wing form and mass distribution. Indeed, a comparison obf the bones and the skin tension on the values for skin moduli
model results with empirically measured strains and of modekntered into the model (Fig. 8). Although relatively little is
predicted vertical oscillations of the center of mass with thosknown to date about the mechanical properties of wing
measured indicates that the model is surprisingly realistimembrane skin (Studier, 1972; Swartz et al.,, 1996), our
(Fig. 13, Fig. 15). The model is able to predict the overalanalyses indicate that they may play an important role in flight
pattern of bone stress change during the wingbeat, the propaechanics and aerodynamics. Although some previous work
modes of stress (tension, compression, shear), some of thas characterized wing membrane mechanical properties
small-scale changes in stress during a wingbeat and, widtross taxa and among wing regions (Swartz et al., 1996), these
varying precision, the magnitude of the wing bone stressesomparisons were based solely on the linear region of a
Hence, it is reasonable to conclude that the model capturesmplex,J-shaped stress—strain curve. The analyses presented
many of the features of horizontal constant-velocity flight thahere suggest that wing membranes may not reach these
are important to flight performance. The unverified assumption®latively high stiffness values during level flight at moderate
built into the model are therefore either likely to be confirmedspeed and may operate primarily in the toe region of the curve.
by future direct measurements or are of relatively littleFurther work will be needed to characterize more accurately
importance to the mechanical behavior of the wing in flight. this non-linear region of the wing membrane stress—strain

In addition to longitudinal stresses, the model is also able tourve and to determine the stiffness of the wing membrane
estimate the stresses oriented perpendicular to the long axesdofing natural flight behaviors.
the humerus and radius from a reasonable estimate of theBeyond this effect of skin modulus, the overall model
Poisson’s ratio of compact cortical bone (Fig. 14). Theesults are quite robust to variation in a number of input
relatively large transverse stresses observed in the armwipgrameters (timing of peak thrust and mid-downstroke, etc.)
bones of P. poliocephalusare, as a consequence, bestand extremely robust to a number of inputs (skin Poisson’s
understood as arising from this aspect of bone’s mechanicgdtio, coefficient of friction of the skin, form drag) (Table 4).
properties rather than from an off-axis pull by the wingWithin this overall pattern, it is striking that the humerus is
musculature or tension within the wing membrane, aspproximately an order of magnitude more sensitive than the
previously suggested (Swartz et al., 1992). Indeediadius to the timing of the mid-downstroke within the
decomposition of total force exerted on the wing into itswingbeat and the shear stresses due to the location of the
constituents demonstrated that the longitudinal stresses in thenter of mass. It is likely that this is a function of a
humerus and radius due to plagiopatagium tension are quitembination of the cross-sectional geometry of the bone and
low, typically less than 5MPa, and transverse forces shouldhe position of the bone within the wing which, in turn,
have roughly similar values. At some points in the wingbeainfluence the typical mode of loading of each of the bones.
cycle for some bones, however, model-based predictions dhe aerodynamic forces applied to the wing induce both
transverse stresses are considerably lower than recordemsion and bending in the skeleton, but the torsion is greater
values. These discrepancies may well indicate instances whdog the humerus because it is oriented such that forces at the
local muscle pull strongly influences recorded strains, and thegenter of pressure have a large torsional moment about the
may be employed in the future to develop specific hypothesémimerus (Swartz et al., 1992). Alteration in the model input
concerning the activity of particular wing muscles. parameters can act effectively to shift the position of this

Similarly, the model predictions of vertical movements ofcenter of pressure relative to the humerus, producing the
the bat's center of mass are closely, although not perfectlpbserved sensitivity. The midshaft of the radius, in contrast,
matched by empirical measurements (Fig. 15). The verticaé positioned closer to the center of pressure, and small
oscillations measured from the film records also display ahanges in its location have a smaller effect on computed
significant amount of variation. This variation and the lack ofadial stresses.
precise matching of the two curves is probably due in part to
the derivation of the empirical values from the mean of a Extensions and limitations of the model
number of wingbeats whose amplitude and frequency were not There are a number of important limitations to the model in
identical. Although, to date, there have been no studies @ present form. It applies strictly only to level, constant-



velocity flight of moderate speed and to a single species,
Pteropus poliocephalusVith modifications, this framework az.pq
can be extended to a greater range of flight behaviors and to a
variety of taxa. However, this will require additional data andasy.q
analysis, particularly the detailed documentation of kinematic
variation in relation to activity, body size, wing form, etc., andazy.q
the detailed analysis of structural design of the wings of other
species. Moreover, as the model is extended and employedBn
novel ways, it will not be possible to validatevia the bone  Bmid
strain analysis of level flight iR. poliocephalusin vivobone  ba
strain measurement is not feasible for very small bones and so
is unlikely to serve as an effective tool to assess flightbmin
mechanics in bat species much smaller than grey-headed flyidy
foxes, i.e. most of the nearly 1000 species of bat. It i€pp
conceivable thain vivo strain gauge measurement could beCp ¢
used, however, to obtain data that could serve to valida@m
models of higher speed or of accelerating or turning flight. It
will be critical, though, to seek additional means of externata
validation. With rigorous validation of model accuracy for cp
simple flight behaviors, however, it is possible to retain @p
degree of confidence in the model even for behaviors or taxap
for which such detailed validation is impossible. Ds
Finally, we note that this model is not restricted to predictinds
bone stresses and motions of the animal’'s center of mass. In
future studies, we will use the model to estimate joint force®;
and moments and flight energetics, as well as extending tix
model to behaviors including vertical and horizontalDy
acceleration and turning flight. Because the required modé&
inputs, detailed flight kinematics and specific measurements df
wing structure and mass distribution are simple in comparison
with direct measurement of skeletal stresses, membrane aRd
joint forces, etc., we will be able to extend the model to othefE;1
taxa. We believe that this kind of model can be employed tBxx
provide new insights into flight mechanics that will improveE;;
our understanding of wing morphology, kinematics andep
dynamics. It is a powerful tool for the generation of new
hypotheses concerning the mechanics and aerodynamics of ba
flight and, by identifying aspects of structural design and flighE
mechanics that could constrain behavior and influenc€a

organismal performance, it may help define and focus futurBa.pq

field and morphological studies.

Fd.pg
Fd
List of symbols Fs
A area of a single wing Ftpq
Ac cross-sectional area of bone
Ap area of a single wing segment Fx
a global acceleration of the shoulder with respect to thé
non-inertial origin Ftz
apq acceleration on wing segmenit timeq Fg
as global acceleration of the shoulder relative to the  Fgpq

inertial reference frame

axpq component of acceleration in thairection of wing  Fipq
segmenp at timeq Fi
aypq component of acceleration in tlgairection of wing  Fipq

segmenp at timeq Fi
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segmenp at timeq

component of acceleration in tkalirection of wing
segmenp at timeq

vertical acceleration component of the global
acceleration at timg

horizontal acceleration component of the global
acceleration at timg

mean wing length

wing length at the middle of the downstroke

instantaneous armwing length from shoulder to
carpus

minimum value ofoa

aerodynamic constant

form drag coefficient of body

frictional drag coefficient of wing surface

added mass coefficient of wing segments

mean wing chord

mean armwing chord

wing segment chord

body form drag vector

magnitude of body form drag

skin friction drag vector

magnitude of skin friction drag on both sides of both
wings

mean induced drag vector

magnitude of the mean induced drag

total drag vector

magnitude of the total drag

wing segment center of mass position at the middle
of downstroke

complete elliptic integral of the second kind

compressional Young’s modulus of bone

spanwise plagiopatagium elastic modulus

chordwise plagiopatagium elastic modulus

wing segment leading edge position at middle of
downstroke

internal force vector on wing segmenét timeq

magnitude of internal force

magnitude of aerodynamic force

aerodynamic force vector on wing segmeratt time
q

net drag vector on wing segmgnat timeq

magnitude of net drag

total force vector acting on skeleton

total force vector acting on skeleton due to wing
segmenp at timeq

magnitude ok component of total force vecté

magnitude ofy component of total force vectés

magnitude oz component of total force vectés

magnitude of gravitational force

gravitational force vector on wing segmeret time
q

inertial force vector on wing segmeantt timeq

magnitude of inertial force

lift vector on wing segmerg at timeq

magnitude of lift
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Fmpg added mass force on wing segmerstt timeq

Fm magnitude of added mass force

Fpq internal force

Fspq  total skin internal force on wing segmenat timeq
Fs magnitude of total skin internal force on wing

segmenp at timeq
Fsyq vertical component of the global force at tipe
Ftpg  thrust on wing segmemtat timeq

Ft magnitude of thrust

Fx magnitude ok component of total force vectét in
global inertial coordinate system

Fy magnitude ofy component of total force vecté# in
global inertial coordinate system

F2 magnitude oz component of total force vecté in
global inertial coordinate system

Fx magnitude ok component of total force vectét in
primed coordinate system

Fy magnitude ofy component of total force vecté# in
primed coordinate system

Fz magnitude oz component of total force vectés in

primed coordinate system

f flapping frequencyT 1

g gravitational acceleration, 9.81 r¢s

i unit vector of thex axis

J polar second moment of area

j unit vector of they axis

k unit vector of thez axis

k coefficient of induced drag

L bone length

Lh humerus length

Ly radius length

I length of wing hairs

Ix x component of moment arm Bf at (x, yf, z) about
(Xo, Yo, 20)

ly y component of moment arm Bf at (x, yf, z) about
(X0, Yo, 20)

Iz z component of moment arm Bf at (x, yf, z) about
(X0, Yo, 20)

M total mass

Mo moment vector about the poinb(yo, 20)

Mopg moment vector aboukd, yo, zo) due to forces on wing
segmenp at timeq

Mox x component of moment d&¥ about Ko, Yo, Zo)

Moy y component of moment d&¥ about Ko, Yo, Zo)

Moz z component of moment &f; about ko, Yo, 20)

My x component of moment &¥ about Ko, Yo, o) in
primed coordinate system

My y component of moment d&¥ about Ko, Yo, zo) in
primed coordinate system

Mz z component of moment &f: about ko, Yo, Zo) in
primed coordinate system

Ms magnitude of moment of total skin internal force
about carpus

m parameter of the complete elliptic integral of the
second kind

My mass of the body alone

Nz.pq

Tb
Top
T
Ttp
Ti
TX
TZ

tmid

X0

curve fit coefficient of a wing landmarks0—8

wing segment mass

unit vector pointing normal to dorsal face of wing

unit vector pointing normal to dorsal face of wing
segmenp at timeq

component of normal unit vector of wing segment
at timeq alongx axis

component of normal unit vector of wing segment
at timeq alongy axis

component of normal unit vector of wing segment
at timeq alongz axis

air pressure

proportional location of segmental center of lift
relative to chord length

integer value of wing segment

integer time step correspondingtt&d

integer value of time steps40

radius of bone

inner radius of bone

inner radius of humerus

inner radius of radius

outer radius of bone

outer radius of humerus

outer radius of radius

mean wing span

out-of-wing-plane slope of the plagiopatagium at the
fifth digit

wingbeat period

magnitude of mean thrust to overcome body form
drag

vector of mean thrust to overcome body form drag on
wing segmenp

magnitude of mean thrust to overcome skin friction
drag

vector of mean thrust to overcome skin friction drag
on both sides of wing segment

magnitude of the mean thrust to overcome induced drag

magnitude of the mean thrust to overcome induced
drag on wing segmenmt

spanwise plagiopatagium tension

chordwise plagiopatagium tension

time, O<t<T

time at the middle of the downstroke

time corresponding to the time step integer

plagiopatagium skin thickness

flight speed

volume

shoulder-to-shoulder width of body

mean width of a wing segment

width of wing segmenp at timeq

relative coordinate with origin at shoulder, carpus or
bone midshaft

x coordinate of the position of the carpus

x coordinate of inertial, external or skin membrane
force Fr acting on wing

x coordinate of bone location about which moments
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