
Although the link between organismal structure and function
has been recognized for centuries, it is clear that the strength
of this relationship varies tremendously. Evolutionary theory
suggests that this relationship should be particularly strong
when the consequences of deviations from optimal designs are
energetically costly. In this light, the relationship between the
structural design of the wing and the mechanics and energetics
of flight in the Order Chiroptera constitutes an informative case
study for several reasons: (i) powered flight imposes extreme
mechanical and energetic demands on the locomotor system
(Kurta et al., 1989; Swartz, 1997; Swartz, 1998; Thomas, 1975;
Thomas and Suthers, 1972; Winter et al., 1993), raising the
metabolic cost of deviations from optimal mechanical design
relative to that for terrestrial locomotion in quadrupeds; (ii)
dermopterans and primates, the nearest non-flying relatives
of bats (Simmons, 1995), provide considerable comparative
information about the likely nature of bat ancestors; and (iii)
the diversity in body size, flight style, wing shape and
phylogenetic affinity of the nearly 1000 extant species of bats
furnish rich comparative material within the group.

Both classic and recent results demonstrate that the bat wing

is unique among mammalian limbs in anatomical design and
mechanical function and suggest that the specialized features
of the bat musculoskeletal system are linked directly to flight
capabilities (Findley et al., 1972; Hermanson and Alternbach,
1983; Holbrook and Odland, 1978; Norberg, 1970a; Norberg,
1972a; Norberg, 1972b; Papadimitriou et al., 1996; Strickler,
1978; Swartz, 1997; Swartz, 1998; Swartz et al., 1992; Swartz
et al., 1996; Vaughan, 1959; Vaughan, 1970b). Similarly,
significant contributions have been made to our understanding
of the kinematics of bat flight (e.g. Aldridge, 1986; Aldridge,
1987; Baggøe, 1987; Brandon, 1979; Norberg, 1970b;
Norberg, 1976a; Norberg 1976b; Norberg, 1990; Rayner,
1987; Rayner et al., 1986; Vaughan, 1970a). Some components
of these kinematic and morphological studies have also
contributed directly to our understanding of flight mechanics,
including the interrelationship between wing membrane
tension and aerodynamic force (Norberg, 1972a; Pennycuick,
1973), the velocity-dependence of wing kinematics (Aldridge,
1986) and the relationship between wing inertia, energetics and
maneuverability (Norberg, 1976a; Thollesson and Norberg,
1991).
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We combine three-dimensional descriptions of the
movement patterns of the shoulder, elbow, carpus, third
metacarpophalangeal joint and wingtip with a constant-
circulation estimation of aerodynamic force to model the
wing mechanics of the grey-headed flying fox (Pteropus
poliocephalus) in level flight. Once rigorously validated,
this computer model can be used to study diverse aspects
of flight. In the model, we partitioned the wing into a
series of chordwise segments and calculated the magnitude
of segmental aerodynamic forces assuming an elliptical,
spanwise distribution of circulation at the middle of the
downstroke. The lift component of the aerodynamic force
is typically an order of magnitude greater than the thrust
component. The largest source of drag is induced drag,
which is approximately an order of magnitude greater

than body form and skin friction drag. Using this model
and standard engineering beam theory, we calculate
internal reaction forces, moments and stresses at the
humeral and radial midshaft during flight. To assess the
validity of our model, we compare the model-derived
stresses with our previous in vivo empirical measurements
of bone strain from P. poliocephalusin free flapping flight.
Agreement between bone stresses from the simulation and
those calculated from empirical strain measurements is
excellent and suggests that the computer model captures a
significant portion of the mechanics and aerodynamics of
flight in this species.

Key words: flight, wing mechanics, aerodynamics, computational
modelling, Chiroptera, bat, Pteropus poliocephalus.
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However, despite decades of study, we understand much less
about the mechanics and energetics of flying than we do of
walking, running or swimming in vertebrates; this, in turn,
limits our knowledge of how flight capacity and the intricate
array of physiological and morphological specializations
associated with it have evolved. In part, this is because our
insight is constrained by our limited understanding of the
nature of the complex and dynamically changing forces
experienced by the wing during flapping flight and the
technical difficulties of approaching this subject empirically.
To meet these challenges and thereby gain new insight into the
mechanics and energetics of the bat wing, we have developed
a three-dimensional computer simulation of bat flight.
Computer modeling is a powerful approach to gaining insight
into the complexities of animal flight and has been adopted
with success in diverse ways by students of bat, bird and insect
flight (e.g. Bennett, 1977; DeLaurier, 1993a; Ellington, 1975;
Ellington, 1978; Ellington, 1984; Ennos, 1988; Norberg,
1975; Norberg, 1970b; Norberg, 1976a; Pennycuick, 1968;
Pennycuick, 1975; Rayner, 1986; Rees, 1975; Spedding, 1992;
Spedding and DeLaurier, 1995; Withers, 1981).

Our model computes wing bone stresses, joint forces and
moments and other mechanical and energetic parameters from
wing kinematics and structural geometry placed in a context of
a well-founded, realistic and detailed aerodynamic model. The
wing anatomy of bats is particularly well suited to this kind of
engineering analysis: the wing comprises a jointed network
of virtually rigid structural supports interconnected by an
essentially two-dimensional elastic membrane; bats operate at
Reynolds numbers high enough for appropriate application of
inviscid aerodynamic theory; and bat flight occurs at Strouhal
numbers at which complex unsteady forces are far less
important than for insect flight. In this context, our model is
structured to estimate accurately the forces experienced by the
wing, to analyze in detail one of these forces, the internal forces
developed in the wing, and, ultimately, to detail further the
contributions to a critical element of the internal forces, the
wing membrane forces.

In addition to its detail and accuracy, this model is
noteworthy in that we are able to validate key aspects by direct
comparison of the model’s estimates of wing bone stresses
with empirically measured values (Swartz et al., 1992). A well-
validated model of bat flight should be able to reproduce, in
order of increasing sophistication, appropriate skeletal loading
(tension versuscompression), the general pattern of change in
skeletal stress in relation to the wingbeat cycle, stresses of
realistic magnitude and details of changes in stresses during
the wingbeat. We are also able to compare the predictions of
the model concerning the vertical movements of the animal’s
center of mass with measurements made directly from wind-
tunnel flights (Bartholomew and Carpenter, 1973).

Here, we describe the structure of the model, evaluate its
ability to reproduce important aspects of bat flight mechanics
realistically and examine the sensitivity of the model to various
inputs and assumptions. Once validated and evaluated for
parametric sensitivity, we intend to apply the model to a

broader comparative analysis of the flight mechanics of bats
that differ in wing morphology and/or flight behavior. We
believe this model can be employed to gain insight into diverse
problems in the mechanics and evolution of bat flight in future
studies.

Materials and methods
Model outline

Our model of bat flight is based on the grey-headed flying
fox, Pteropus poliocephalusTemminck. The model is
constructed to employ empirical descriptions of morphology
and kinematics, along with reasonable assumptions concerning
aerodynamics, to estimate accurately all but one of the forces
experienced by a bat wing (see below). The model then solves
for the remaining force, the internal force carried by the wing
structures. For this analysis, we subdivided the wing into a
series of segments or strips and measured the shape and mass
of each wing segment (Fig. 1). Instantaneous force balance
was then applied locally to each wing segment or strip. We
quantified the three-dimensional motion of critical wing
landmarks over the wingbeat cycle using high-speed films of
a P. poliocephalusmade in a wind tunnel (Bartholomew and
Carpenter, 1973) and used this information to compute the
inertial forces of each wing segment (see below, section on
dynamics). We modeled the force induced by air flow around
the wing as an aerodynamic force, separated into lift and drag
components, plus an added mass force. In this model of level
flight at constant velocity, we assumed constant circulation
(see below, section on aerodynamic force distribution and
constant-circulation flight). Because of this assumption, it is
unnecessary to quantify wing segment camber, incident air
speed, angle of attack and unsteady aerodynamic effects. We
also assumed an elliptical, spanwise distribution of
aerodynamic force (see below, section on aerodynamic force
distribution and constant-circulation flight) and adjusted the
amplitude of the aerodynamic force to balance mean lift with
body weight over one wingbeat cycle.

We employed Newton’s second law of motion to balance
the inertial force of a wing strip with the external forces as well
as the internal force within the wing segment, and then used
the segmental balance of forces at each instant in time to solve
for the internal force carried by the wing structures. We
calculated the stresses developed at the midshaft of the
humerus and radius by summing the internal forces over all
strips distal to the bone site of interest and computing the
moments of these forces about the bone’s midshaft. We
modified these maximum possible internal forces and moments
by subtracting the forces and moments transmitted directly by
the plagiopatagium (armwing) to the body, and then employed
standard engineering beam theory to convert the remaining
three orthogonal forces and moments at the midshaft into
normal and shear stresses at the bone surface, and compared
stresses calculated for the humeral and radial midshafts with
stresses inferred from strains measured empirically in flying
bats (Swartz et al., 1992). The close correspondence between
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the model estimates and the empirical data provides robust
evidence that the model approximates the mechanics of bat
flight in biologically meaningful ways. As further validation,
we also compared the vertical displacement of the animal’s
center of mass during the wingbeat cycle, as predicted by the
model, with the empirically observed vertical motion.

The computer program that solves the equations and
algorithms presented below was written in Fortran 77 (Pro
Fortran, version 5.0, Absoft) and run on a Power Macintosh
G3. The program provides outputs (bone stresses, joint
moments, etc.) at 40 time steps evenly spaced over the course
of a single wingbeat cycle. Hence, the time t corresponding to
the integer value of the time step q is given by:

since 40 time steps are used in the period of one wingbeat.
Because the force balance employed in the model applies at
every instant of flight, the discretized time step does not incur
any approximation other than the possibility of interpolating
model output between time steps.

Choice of species

We selected the species Pteropus poliocephalus, the grey-
headed flying fox, for the first application of our bat flight
model for several reasons. First, this species occurs at
relatively high densities in the proximity of Brisbane,
Australia, and the University of Queensland and has therefore
been a subject of previous research (e.g. Carpenter, 1985;
Swartz, 1998; Swartz et al., 1992; Swartz et al., 1993). Second,
individuals are large (adult body mass typically 550–950 g),
facilitating mechanical assessment of functionally important
wing structures, including in vivo measurements of wing

bone stresses. Therefore, we possess detailed information
concerning the in vivo loading of the humerus, radius,
metacarpals III and V and proximal phalanges III and V for
this species. Third, high-speed dorsal, lateral and oblique
films of individuals of this species flying in a wind tunnel
provide detailed information concerning wing kinematics
(Bartholomew and Carpenter, 1973). Fourth, level flight is
probably an ecologically relevant flight mode for this species
given that these fruit-eating bats often fly 30–50 km during
foraging bouts on a single night and may migrate hundreds of
kilometers in a year (Eby, 1991).

Validation by in vivo strain recordings

Measurements of bone surface principal strain magnitudes and
orientations were made from eight individual P. poliocephalusin
previous studies (Swartz et al., 1992; Swartz et al., 1993). In these
studies, animals were wild-caught and trained to fly the length of
a 30m flight cage without stopping. Within 2 weeks of capture,
rosette strain gauges were surgically implanted on the subperiosteal
surfaces of the midshafts of wing bones, and the animals recovered
fully from the effects of surgery. We then collected data from up
to nine strain gauge elements simultaneously via a lightweight
cable (100Hz) and synchronized the data with video recordings
of the animals’ wing movements. Data from individual rosette
elements were analyzed to obtain maximum and minimum
principal strain magnitudes and orientations, and strain values were
converted to stresses assuming that the compact cortical bone of
the long bones of the wings of large bats is similar in its mechanical
properties to that of other mammals and birds (Carter, 1978; Beer
and Johnston, 1981; Biewener, 1983; Currey, 1987). Model
predictions of bone stresses were then calculated for specific
anatomical sites from which strain data had been collected, and the
experimentally determined stress profiles for a given recording
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Fig. 1. Plan-view of the ventral surface of the wing of a
Pteropus poliocephalusheld in a horizontal plane, a
position similar to that at the middle of the downstroke.
The wing is subdivided into 14 chordwise strips; there
are seven segments between the shoulder and the carpus
(the plagiopatagium or armwing), three between the
carpus and the metacarpophalangeal (MCP III) joint of
the third digit (the proximal handwing) and four between
the MCP III joint and the wingtip (the distal handwing).
The locations of the centers of mass of these strips
relative to a reference line connecting the two shoulders
(broken line) are indicated by the filled circles. The large
circles labeled shoulder (glenohumeral joint), carpus,
MCP III and wingtip were used as digitizing markers for
collecting kinematic data. For the third wing segment
(subscript p), the length of the wing chord, cp, the
leading edge position, ep, and the distance from the
segmental center of mass to the reference line, dp, are
also indicated. The variation in these parameters within
the wingbeat cycle is represented in the model by a
second subscript, q, that ranges from 1 to 40 with the 40
equal time increments within the complete wingbeat
cycle.
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site were normalized to a standardized wingbeat cycle,
synchronizing the mid-downstroke, downstroke–upstroke
transition and upstroke–downstroke transition.

Morphological parameters and general flight characteristics

Mass, wing size and shape and the dimensions of individual
wing bones were assessed by direct weight measurement,
tracings of wing outlines and measurements of high-resolution
radiographs of a member of the study population used in
previous work (Swartz et al., 1992) (Table 1). Although the
model data were measured from a single individual killed
following completion of bone strain recording, these
parameters vary relatively little among individuals of a given
body mass, and the small intraspecific variation would have no
significant effect on model results. Video recordings of flying
foxes were used to estimate the flight speed of the bats (Swartz
et al., 1992). A typical flight speed U of approximately 6 m s−1

was estimated from the time needed to fly approximately 25 m;
this represents a moderate speed for this species. We measured
the wingbeat period and detailed kinematics (see also section
on wing kinematics) from a high-speed film of a flying fox in
a wind tunnel. Wing length was measured as the distance from
the proximal shoulder to the proximal carpus plus the distance
from the carpus to the wingtip for a fully extended handwing.
Body width is taken as the shoulder-to-shoulder distance. We
calculated the mean area of a single wing from plan-view
photographs of a deeply anesthetized study subject with its
wings fully extended.

Wing segmentation

In the computer model, we conceptually divided the wing
at mid-downstroke into a series of rectangular segments of

variable chord and width, determined anatomically (see
below) (DeLaurier, 1993b; Norberg, 1976a; Thollesson and
Norberg, 1991). We subdivided the wing into 14 rectangular
segments: seven segments of equal width between the
shoulder and the carpus, three equal-width segments between
the carpus and the third metacarpophalangeal (MCP) joint and
four equal-width segments between the third MCP joint and
the wingtip (Fig. 1). Because the wing changes its three-
dimensional conformation during the wingbeat, we calculated
the instantaneous segment widths and segment motions by
linear interpolation of the distances between the carpus, third
MCP joint and wingtip positions, respectively. Because all
segments between two proximodistally adjacent landmarks
are defined to have equal widths, elbow flexion causes the
width of the seven armwing segments to decrease, although
we assumed that the chord of each rectangular segment
remains constant. We write the width of a wing segment as
wpq, where the subscript p denotes the wing segment and
increases from proximal to distal, and the subscript q denotes
the time step during the wingbeat cycle. Since the model does
not employ lift coefficients, the angle of attack of each wing
segment is not required as input to the model. As a result, we
consider each wing segment to be parallel to the
cranial–caudal axis at all times. However, wing segment
pitching angle and angle of attack variations are modeled
intrinsically through the calculation of the spatial orientation
of aerodynamic forces over time.

We sectioned the wing and, for each strip, we measured
mass, mp, chord along the strip’s midline,cp, leading edge
position (perpendicular distance from the center of the
leading edge to a reference line connecting the left and right
glenohumeral joints),ep, and center of mass position with
respect to the shoulder-to-shoulder reference line, dp (e.g.
Thollesson and Norberg, 1991) (Fig. 1, Table 2). Values of
ep are negative, indicating a position cranial to the reference
line. We determined the position of the center of mass of
each segment by attaching it to a rigid cardboard rectangle
of known mass and locating the center of mass of the
cardboard–wing ensemble. We shaped the wing to match the
plan view of an individual wing in the middle of the
downstroke; at this point in the wingbeat cycle, the wing is
nearly horizontal and coplanar. For the wing kinematics
employed in the model (see below), the middle of the
downstroke corresponds to the dimensionless time t/T=0.38.
During the middle of the downstroke, we determined the
midline leading edge positions of all wing segments relative
to straight lines adjoining wing landmarks in order to
position wing segments in the cranial–caudal direction. We
calculated the position and motion of coplanar wing
segments by linear interpolation between adjacent wing
landmarks. We kept the distances from segmental leading
edges to the straight lines connecting adjacent wing
landmarks constant over the entire wingbeat cycle, in effect
conserving the shape of the flapping wing. Wing segment
position determined where the forces acting on that wing
segment were applied.
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Table 1.General flight characteristics and morphological
parameters employed in the model

Forward flight speed, U (m s−1) 6.0 
Flapping period, T (s) 0.33

1Flapping frequency, f =    (Hz) 3.03
T

Total mass, M (s) 0.699
Mean wing length, B (m) 0.462 
Body width, W (m) 0.070 
Mean wing span, S=W+2B (m) 0.994 
Mean wing area, A (m2) 0.0697

MgWing loading, (N m−2) 49.2 
2A

S2
Aspect ratio,  7.09

2A
AMean wing chord, c= (m) 0.151 
B

Humerus length, Lh (m) 0.110 
Humerus outer diameter, 2Roh (mm) 5.53 
Humerus inner diameter, 2Rih (mm) 3.53 
Radius length, Lr (m) 0.145
Radius outer diameter, 2Ror (mm) 4.24 
Radius inner diameter, 2Rir (mm) 2.23 
Plagiopatagium skin thickness, ts (mm) 0.20 
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Wing kinematics

In this section, we outline our method of describing in three
dimensions the motion of the carpus, the third MCP joint and
the wingtip. The three-dimensional positions of these major
wing landmarks over one wingbeat cycle suffice to capture the
large-scale features of wing motion; for the purposes of our
model, we define the beginning of downstroke as the onset of
downward motion of the carpus.

Origin and axes for movement description

The body of a flying bat accelerates and decelerates
vertically during ‘level’ flight and cannot therefore be used as
an inertial frame of reference from which to measure the
accelerations of the animal’s wing. Here, instead, we describe
the motion of the wing relative to the mean position of the
glenohumeral joint averaged over the entire wingbeat cycle,
which constitutes the origin of an inertial coordinate system
moving with the mean forward flight speed of the bat. We fixed
the origin of a second coordinate system to the right
glenohumeral joint and related the motion of this non-inertial
coordinate system to the inertial coordinate system (Fig. 2).
We defined our axes such that the x axis points horizontally to
the right of the direction of flight for the right wing (distally
along the wing at mid-downstroke), the y axis points vertically
upwards (in the dorsal direction) and the z axis points in the
opposite direction to flight (in the caudal direction along the
cranial–caudal axis). We denote the absolute acceleration of
the glenohumeral joint (or shoulder) as the global acceleration
a with respect to the non-inertial origin. The global
acceleration of the shoulder is not known a priori, but is

instead computed internally by the model through the force
balance on the body. The unit vectors giving the direction of
each coordinate axis are i for the x axis, j for the y axis andk
for the z axis. We model the left wing implicitly through
symmetry across the yz, or midsagittal, plane. This symmetry
is a reasonable assumption for forward flight and gliding, but
would not be appropriate when modeling more complex flight
maneuvers.

Three-dimensional coordinates of wing landmarks were
taken from high-speed movies of wind-tunnel flight
(Bartholomew and Carpenter, 1973). We selected these films
for analysis of wing kinematics because of their far greater
resolution than the video recordings made during previous in
vivo strain measurement experiments (Swartz et al., 1992;
Swartz et al., 1993). The films were converted to video and
analyzed with the Peak Performance Motion Analysis System
(Peak Performance Technologies, Englewood, CO, USA) to
obtain detailed information regarding the dynamically
changing positions of the carpus, third MCP joint and wingtip
relative to the right shoulder. The spatial resolution of the
digitizing process corresponds to approximately ±2 cm, or
approximately ±5 % of the mean wing length and ±12 % of the
mean wing chord. From both head-on (xyplane) and lateral (yz
plane) views, approximately 170 sets of two-dimensional
coordinates were obtained for one complete wingbeat cycle.
The right shoulder coordinates were subtracted from each wing
landmark position. We combined the two views into a
composite of wing motion by overlaying the x coordinates of
wing motion at the carpus, third MCP joint and wingtip. We
illustrate representative motion of the carpus and wingtip
projected onto the xy plane with respect to the shoulder
(Fig. 3).

The wingbeat cycle of flying foxes, like that of some birds,
can be partitioned into approximately 65 % downstroke
and 35 % upstroke. Sinusoidal motion, necessarily 50 %
downstroke and 50 % upstroke, is therefore not appropriate to
describe these wing motions, and one would have to resort to
Fourier series expansions to describe wing kinematics; we have

Table 2.Wing segment morphology and geometry at the mid-
downstroke

Leading Center 
edge of mass 

Mass, mp Chord, cp position, ep position, dp

Segment, p (g) (m) (m) (m)

1 52.060 0.223 −0.0063 0.0617
2 24.740 0.215 −0.0035 0.0695
3 4.632 0.197 −0.0157 0.0589
4 11.766 0.174 −0.0284 0.0162
5 5.042 0.165 −0.0419 −0.0172
6 3.196 0.166 −0.0594 −0.0296
7 4.578 0.172 −0.0771 −0.0644
8 6.466 0.181 −0.0897 −0.0767
9 3.107 0.185 −0.0969 −0.0552
10 1.956 0.158 −0.1032 −0.0605
11 1.714 0.123 −0.1011 −0.0652
12 1.303 0.102 −0.0895 −0.0573
13 0.781 0.057 −0.0796 −0.0592
14 0.414 0.021 −0.0686 −0.0666

Measurements of leading edge position and the position of the
center of mass are chordwise relative to a reference line through the
left and right glenohumeral joint (see Fig. 1); negative values are
cranial to the reference line. 

Mean path of shoulder
Actual path of shoulder

Non-inertial axes

Inertial axes
z

y
z

y

Fig. 2. Orientations of and relationships between the inertial and
non-inertial coordinate systems; the actual and mean paths of the
shoulder are depicted from a lateral view of the bat moving from left
to right across the figure. The x axis is perpendicular to the plane of
the page and is represented by the filled circles.
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instead selected cyclic polynomials to describe wing motion
realistically. We curve-fitted the time change in the x, y and z
positions of the carpus, third MCP joint and wingtip relative
to the right shoulder with eighth-order polynomials using a
least-squares algorithm (KaleidaGraph, version 3.0.5,
Abelbeck Software) (Table 3). For example, we wrote the
position of the carpus along thex axis as:

where m0, …, m8 are the fitted coefficients, and the wingbeat
period T is written explicitly as part of the polynomial
coefficients. One wingbeat cycle lasted from 0<t/T<1 in non-
dimensional time regardless of variations in the wingbeat
period. We ensured that the polynomial was periodic in
0<t/T<1 by enforcing identity in position, velocity and
acceleration at t=0 and t=1. We chose to impose these three
continuity conditions by the following three relationships
among the coefficients:

leaving six degrees of freedom m0, …, m5 with which to fit the
data. All x direction curve fits have correlation coefficients
r>0.959 whereas all y direction curve fits have correlation
coefficients r>0.993. Displacements in the zdirection were an
order of magnitude smaller than those in the other two
directions and matched the accuracy of the position data in all
three directions, resulting in curve fits with correlation
coefficients r>0.44.

Wing landmark positions near t/T=1 were not precisely
periodic because of rounding errors in the curve-fit coefficients
(Table 3). Moreover, double differentiation of position curves
with continuous acceleration guarantees continuity of the
acceleration at end points but not continuity in the slope of the
acceleration. These are subtle effects that become very
pronounced when taking derivatives of the position data. We
enforced periodicity in all position curves by using the value
at t/T=0 in place of the value obtained from t/T=1. Continuity
and smoothness in velocity and acceleration profiles was
obtained by applying Savitzky–Golay smoothing filters to the
position, velocity and acceleration curves (Press et al., 1989).
The amount of smoothing was carefully tested to have no
perceptible effect on landmark positions and yet still eliminate
the growth of spurious discontinuities near end points. We
calculated wing landmark velocities from second-order finite
differences of the smoothed position curves and accelerations
from second-order finite differences of the smoothed velocity
curves. Finally, we calculated the position, velocity and
acceleration of each wing segment from linear interpolation
between coplanar wing segments, as described in the previous
section.

Dynamics

From the curve fits of position data, we calculated the
magnitude, orientation and location of the gravitational,
inertial, added mass and aerodynamic forces acting on each
wing segment over the course of one wingbeat cycle. We then
solved for the internal force carried by wing structures within
a segment by invoking Newton’s second law of motion at
discrete instants of time. We summed the internal forces within
all wing segments to calculate the instantaneous global
acceleration of the bat shoulder. We corrected the magnitudes
of the segmental aerodynamic forces in order to enforce the
level-flight criterion (no net vertical acceleration of the body
over an entire wingbeat cycle). Finally, we calculated reaction
forces and moments at the humeral and radial midshafts by
assuming that each bone carries the entire internal load of all
more distal wing structures minus the load carried directly to
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Fig. 3. Representative illustration of the
complex kinematics of the bat wing after
curve-fitting raw data; this view depicts
the movements of the carpus (open
squares) and wingtip (filled circles) with
respect to the shoulder joint during both
a downstroke and an upstroke. The lines
connecting the shoulder (coordinates
0,0) and the carpus schematically
represent armwing length, and those
between the carpus and the wingtip,
handwing length. Time intervals
between data points are equal and show
that the wrist, in particular, moves far
more rapidly in midstroke than at other
times in the wingbeat cycle.
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the body by the plagiopatagium (see below, section on forces,
moments and stresses on the wing skeleton).

Gravitational force

The action of gravity on the wing of a large bat is typically
an order of magnitude smaller than the aerodynamic force
encountered in level flight because the former acts only on the
wing mass while the latter supports the entire body mass (e.g.
Thollesson and Norberg, 1991). Nevertheless, the segmental
gravitational force is given by:

Fg·p=−mpgj , (6)

where mp is the segmental mass and j is a unit vector of the
global y axis pointing in the direction opposite to gravitational
acceleration, g. The gravitational force acts at the center of
mass of each wing segment (see Table 2 for the chordwise
positions of the centers of mass relative to the positions of the
leading edge). We assumed that the center of mass lies at
midspan of each wing segment.

Near the wingtip, the trapezoidal and triangular shape of the
last few wing segments would cause the center of mass to be
located more proximal to the shoulder than the midline of the
wing segment. We did not include this effect because segment
widths and masses near the wingtip are sufficiently small that
the effect of any correction is negligible.

Inertial force

Inertial forces on the wing vary with wing motion and thus
can range in magnitude from zero during episodes of gliding
to values comparable with the large aerodynamic forces
exerted on the wing during flapping flight. By definition, the
inertial force also represents the net sum of all external forces
as well as the force carried by the wing structures for a given
wing segment. On the basis of segmental accelerations, the
inertial force on wing segment p at time q is given by:

Fi·pq=mpapq=mp[ax·pqi + (ay·pq+asy·q)j + (az·pq+asz·q)k] , (7)

where each component of a force is treated independently by
the model. The inertial force acts at the center of mass and in

the same vector direction as the acceleration of a wing segment.
The horizontal acceleration ssz.q and the vertical acceleration
ssy.q are the two components of the global acceleration at each
instant of time and must be solved for iteratively in the program.
We note that the Einstein summation convention is not implied
in this paper by the use of repeated subscripts.

Added mass force

The added mass force resists the acceleration of the wing
and is sometimes considered part of the inertial force since it
is proportional to the acceleration perpendicular to the plane of
a wing segment (DeLaurier, 1993b). The magnitude of this
acceleration is a·n and it is always aligned with the unit normal
vector n. We define the normal vector npq at any timeq to point
away from the dorsal face of wing segment p. The component
nz.pq of the normal vector npq is always zero given that we
assume, as a first approximation, that wing segments remain
parallel to the cranial–caudal axis of the body at all times. We
write the added mass force for wing segment p at time q as:

where wpq is the mean width of wing segment p at time q, ρ0

is the density of air, and the added mass coefficient, Cm=0.9,
is that of a thin plate of finite width entraining the volume V
of air contained within the cylinder whose width is that of the
wing segment and whose diameter is that of the segment chord,
V=(πwpqcp2)/4. The added mass force opposes wing segment
acceleration and acts through the center of a wing segment at
wpq/2 and cp/2. The magnitude of the added mass force on a
given wing segment is comparable with that of the inertial
force whenever mp≈(0.9πwpqcp2ρ0)/4 or mp≈0.6 g for P.
poliocephalus.

Aerodynamic force
The aerodynamic force consists of lift and thrust

(8)

Fm·pq= {[ ax·pqnx·pq+

(ay·pq+asy·q)ny·pq]nx·pqi +

[ax·pqnx·pq+ (ay·pq+asy·q)ny·pq]ny·pqj } ,









Cmπwpqcp2ρ0

4

Table 3.Coefficients mi of eighth-order least-squares polynomial curves fitted to the (x, y, z) coordinates of the carpus, third
metacarpophalangeal (MCP III) joint and wingtip landmarks relative to the right shoulder with wingbeat period T=0.33s

Carpus MCP III Wingtip

Coefficient xc yc zc xmp ymp zmp xt yt zt

m0 0.13471 0.072759 −0.09268 0.21825 0.021098−0.07569 0.23897 −0.11647 −0.04721
m1T 0.31943 0.29216 0.079774 0.70163 0.78646−0.00953 2.0003 0.93837 0.30125
m2T2 2.6721 −0.41251 2.0709 0.48889 2.0915 1.9933 1.0832 22.625 0.56812
m3T3 −35.576 −26.245 −21.375 −40.175 −59.600 −23.253 −82.368 −245.60 −16.924
m4T4 160.86 166.95 84.838 230.49 293.55 97.225 393.35 1051.1 61.923
m5T5 −368.59 −455.36 −174.36 −584.06 −706.20 −206.46 −841.44 −2392.4 −91.409
m6T6 450.01 624.43 196.57 744.49 901.97 240.92 916.71 2983.4 55.540
m7T7 −278.40 −419.21 −115.60 −466.44 −580.40 −146.98 −493.17 −1909.4 −5.7441
m8T8 68.706 109.56 27.780 114.50 147.80 36.562 103.83 489.29−4.2554

Subscripts c, mp and t denote the carpus, third MCP joint and wingtip, respectively.
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components that arise from the rates at which air is drawn up
ahead of the wing and pushed down behind the wing. In our
study species, the aerodynamic forces are the largest and most
significant forces experienced by the wing, although segmental
inertial forces during a flapping cycle can momentarily achieve
the magnitude of segmental aerodynamic forces (see Results).
Together, the aerodynamic and inertial forces account for most
of the external load exerted on wing structures. Skin friction
along the surface of the wings, form drag on the body and
induced drag from vortices in the wake provide the total drag
experienced during flight. We combined the total drag and the
animal’s weight to find the total aerodynamic force and
distributed this force over all the wing segments. In the absence
of detailed wing profiles in flight, we prescribed the
aerodynamic force generated by each wing segment through
an elliptical, spanwise distribution of circulation (Norberg,
1990) at the middle of the downstroke as a plausible
approximation for a bat wing in fast forward flight (Rayner et
al., 1986; Rayner, 1986; Spedding, 1987) (see also section on
aerodynamic force distribution and constant-circulation flight).
Variation in wing span is a fundamental method of generating
thrust under the constraint of constant circulation (Spedding
and DeLaurier, 1995); bats, including P. poliocephalus,
experience significant variations in tip-to-tip wing span during
steady flight which makes constant-circulation flight plausible
(see also Fig. 3). We also took care to ensure that the directions
of the segmental aerodynamic forces over one entire wingbeat
cycle were such that mean lift equaled weight and mean thrust
equaled total drag. We assume that the small radius of
curvature of the leading edge of the wing produces low
leading-edge suction efficiency (DeLaurier, 1993b); the
consequence of this assumption is that the aerodynamic force
must act almost normal to the wing instead of in a vertical
direction.

Drag

We modeled three distinct drag components that do not arise
from circulation about a wing segment: skin friction over the
surface of the wing, form drag of the body and induced drag
from wingtip vortices that exist because of the finite wing span.
The first two drag components are proportional to the square of
the flight speed, whereas the induced drag is inversely
proportional to the square of the flight speed; hence, the induced
drag is an order of magnitude larger than skin friction or form
drag on account of the relatively low flight speed. The
maximum segmental velocity can reach several times the
forward flight velocity, and this argues against using the
forward flight velocity in the model; however, we found that
the skin friction drag is negligible for this bat species at the
moderate flight speeds employed in this model and that a more
precise treatment is therefore unwarranted here. As suggested
by Norberg (Norberg, 1972a), we assume fully turbulent
boundary layer flow over the entire bat wing because of the
small leading edge radius and the presence of hair near the
leading edge of the wing. The turbulent drag coefficient CD,f of
a flat, rough plate is approximately:

(White, 1991), where the mean wing chord, c, is equal to
0.151 m and l, the approximate length of the hair on the bat
wing, is 4×10−5m. The drag coefficient is relatively insensitive
to the ratio c/l. We write the total skin friction on both sides
of both wings Df as:

where A is the mean area of a single wing. Skin friction acts
in the plane of each wing segment and opposes forward flight.
We use the mean wing area rather than the instantaneous wing
area because this drag component is too small in magnitude to
warrant an exact treatment. We also assumed that the flight
speed U was constant over a wingbeat cycle when evaluating
drag; we will show below that the global acceleration asz.q is
too small to cause significant changes in flight speed.

We approximated body shape as a sphere and assumed that
air flow around the body has a turbulent boundary layer and a
typical drag coefficient CD,b≈0.5 (White, 1991). In contrast to
the bodies of birds, those of bats are not streamlined, and can,
indeed, resemble a sphere to some extent because of the
proportions of the ribcage. Moreover, form drag is smaller than
the induced drag, which mitigates against searching for a
precise numerical value of the drag coefficient. Our results for
this species (see below) demonstrate that there is not much
evolutionary pressure to drive bat body streamlining from a
biomechanical perspective. It follows that the form drag Db is:

where W is the shoulder-to-shoulder width of the body, and
πW2/4 is the cross-sectional area of the sphere. Form drag acts
in the opposite direction to the direction of flight. Once again,
we assumed that the flight speed U is constant over a wingbeat
cycle.

Induced drag represents the continuous conversion of free-
stream momentum into the wasted angular momentum of
wingtip vortices. We assumed that a constant and uniform
induced drag exists across the entire wing span, including
behind the body. However, since we do not consider segmental
angles of attack in our model, we added induced drag explicitly
to each wing segment, rather than implicitly through a
downwash angle that alters the orientation of the aerodynamic
force (DeLaurier, 1993b). We calculated the induced drag on
the basis of the mean wing span and an assumed elliptical
distribution of lift along the wing span (Norberg, 1990). The
induced drag Di becomes:

where Mg is total weight, k=1.2 is a constant proposed by

(12)Di ≈ k =Dik ,
2k(Mg)2

πρ0U2S2

(11)Db≈ CD,b k =Dbk ,








ρ0U2

2









πW2

4

(10)Df ≈ 4CD,f Ak =Dfk ,
ρ0U2

2

(9)≈ 0.01 ,CD,f ≈ 1.89 + log10








c

l









−2.5

P. WATTS, E. J. MITCHELL AND S. M. SWARTZ



2881Computational model of bat flight

Pennycuick (Pennycuick, 1989) and S is the mean wing span.
Induced drag acts in the opposite direction to the direction of
flight. If the instantaneous wing span is defined as the shortest
distance from one wingtip to the other along the wing surface,
then one standard deviation in the wing span is 7.5 % of the
mean.

The total drag Dt on the bat in forward flight is the sum of
skin friction drag, body form drag and induced drag:

Dt ≡Df +Db+Di =Dtk , (13)

where Dt is the magnitude of the total drag. We have assumed
that the total drag is constant over time because it is an order
of magnitude smaller than the aerodynamic force. On the basis
of the data in Table 1, the ratio of mean total lift Mg to total
drag is Mg/Dt≈9 for this species. The magnitude of the
aerodynamic force is found by adding the squares of the lift
and drag components, thereby making the lift contribution
roughly 80 times more important than the drag contribution.

We assumed for all drag components that the forward flight
velocity U is constant over one wingbeat cycle. To evaluate
this approximation, we considered the deceleration caused by
the total drag over one-quarter of a wingbeat cycle. If the
deceleration is uniform and approximately equal to asz≈Dt/M
over a duration T/4, then we can write the fractional change in
flight velocity as approximately:

This value is approximately −1.4 % for Pteropus poliocephalus
and is 100 times smaller than U, justifying the approximation
of constant U.

Thrust

Bat wings must generate thrust from wing segment
circulation to counteract the drag, as described above. Thrust
can be achieved during part of a wingbeat cycle by temporarily
orienting a component of the aerodynamic force in the
direction of flight and always arises from an asymmetry in the
wingbeat cycle (Spedding and DeLaurier, 1995). Sustained
horizontal flight requires that the mean total thrust over one
wingbeat cycle equals the total drag. In the absence of more
specific information on thrust generation, we modeled the
variation in net thrust over one wingbeat cycle by making the
following plausible assumptions: the body does not generate
thrust, and the skin friction of a wing segment is overcome by
thrust from the same segment. Therefore, the mean thrust Tf.p

required over one wingbeat cycle to overcome skin friction on
both sides of a wing segment p is:

where the negative sign indicates a force in the cranial
direction and wp is the mean segmental width. Once again, we
note that the aerodynamic force is dominated by lift to the point

where detailed variations in drag and thrust are unimportant in
comparison. Consequently, we will define mean wing
parameters that will facilitate a simple and consistent
mathematical approximation of the thrust force. We define wp,
the mean width of a given segment p over the entire wingbeat,
and the mean wing segmental area Ap as:

to be consistent with the value of skin friction drag above. We
calculate that A=0.0633 m2 from the mean distances between
wing landmarks and the geometry of segmental chords
(Table 2). The difference between the measured wing area
(Table 1) and the value calculated here is approximately 10 %.

We also assumed that form drag and induced drag are each
counteracted by thrust generated uniformly over the mean length
of the two wings, 2B. We write the mean thrust needed to
overcome form drag and induced drag on a wing segment p as:

where both quantities are averaged over one wingbeat cycle.
We define mean wing length, B as:

to recover the values of the form drag and induced drag given
in the previous section. We calculated B=0.431 m from the
mean distances between wing landmarks. Since we distributed
these two components of thrust uniformly over the wing span,
whereas lift tapers near the wingtips, the relative importance
of net thrust to lift increases distally.

Passive aeroelastic wings supported by leading edge spars
tend to produce maximum thrust during the middle of the
downstroke as a result of wing twisting that rotates the
aerodynamic force towards the direction of flight (DeLaurier,
1993c). Therefore, we assumed sinusoidal variation in thrust
over the wingbeat cycle, with the maximum thrust occurring
during the middle of the downstroke. We calculated the
magnitude of the thrust explicitly to find the orientation of the
aerodynamic force. In the absence of specific thrust
observations, we verified a posteriori that sinusoidal thrust
variation does not strongly affect our simulation results.
Ideally, a more precise thrusting function is desirable,
particularly one that captures the 65 % downstroke versus35 %

(20)B≡ Wp ,^
14

p=1

(19)T i·p=−Di k =Ti·pk ,








wp

2B

(18)Tb·p=−Db k =Tb·pk ,








wp

2B

(17)Ap≡ wpcp ,^
14

p=1

(16)wp≡ wpq,
1

40 ^
40

q=1

(15)Tf·p=−2CD·f wpcpk =Tf·pk ,






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ρ0U2
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asz∆t

U



2882

upstroke cycle, but we did not feel that such an effort was
germane to this work at present. We write the magnitude of the
thrust at wing segment p and time q as:

Ft·pq= (Tf·p+Tb·p+Ti·p) + (Tf·p+Tb·p+Ti·p)cos(2πftq) , (21)

where f=1/T is the flapping frequency, the argument within the
cosine function is expressed in radians, and the time tq
associated with the integer q is written:

tq≡ ∆tq− tmid , (22)

where tmid is the time at the middle of the downstroke, and
∆t=T/40 is the time step. The maximum thrust 2(Tf.p+Tb.p+Ti.p)
occurs when ∆tq≈tmid, and thrust is equal to zero when
∆tq≈tmid+(T/2) during the upstroke. The mean thrust generated
by both wings over one wingbeat cycle is equal to the total
drag since the contribution from the cosine function averages
to zero.

Aerodynamic force distribution and constant-circulation flight

The magnitude of the total aerodynamic force Fa needed to
sustain forward flight is a combination of weight and total drag
components with a mean value over one wingbeat cycle of:

There are three constraints for all plausible spanwise
distributions of the total aerodynamic force. First, the increase in
circulation proximal to the wingtip is dictated by the
mathematical singularity of the wingtip vortex itself: all plausible
spanwise distributions of the aerodynamic force are similar near
the wingtip, with spanwise circulation becoming zero. Second,
flow visualization around a gliding model bat indicates that the
body and uropatagium are capable of producing lift (P. Watts,
unpublished data). As a result, we postulate the spanwise
distribution of aerodynamic force generated by the armwings and
the body to be a relatively constant plateau. Third, the constraint
that mean lift over one wingbeat cycle equals body weight
bounds the possible numerical values of a constant aerodynamic
force plateau. An elliptical distribution of the total aerodynamic
force over the wing span is a common and convenient choice for
engineers designing subsonic fixed-wing aircraft and even
ornithopters (DeLaurier, 1993b). It produces minimum induced
drag as well as a uniform downwash across the wing span; thus,
an elliptical distribution of aerodynamic force over the wing span
would be energetically favorable for flying mammals. Given the
three constraints mentioned above, an elliptical distribution of
aerodynamic force is an appropriate and plausible way of
connecting an aerodynamic force plateau to wingtip vortices. To
balance weight, any other plausible distribution that is less than
an elliptical distribution somewhere along the span must also be
greater than the elliptical distribution elsewhere along the span.
We expect errors incurred by actual deviations in the spanwise
distribution of aerodynamic force from the chosen elliptical form
to be small in magnitude compared with other approximations
made in the model.

Spedding (Spedding, 1987) used stereoscopy of small helium

bubbles in the wake of a kestrel, Falco tinnunculus, to reveal
that flapping flight need not be accompanied by the shedding
of spanwise vortices from the trailing edge of a wing. The
absence of vortex shedding implies a constant circulation about
each spanwise segment of the wing in fast forward flight.
Consequently, constant circulation implies that each spanwise
wing segment maintains an aerodynamic force that changes
orientation but not absolute magnitude during the wingbeat
cycle. It has been demonstrated that bats can use a constant-
circulation gait during fast forward flight and that bat wings
possess sufficient passive and active control to achieve
constant-circulation flight over an entire wingbeat cycle in fast
forward flight (Rayner et al., 1986). The approximately 6 m s−1

flights from which our data were collected may not fall strictly
within the fast flight category; Norberg and Rayner (Norberg
and Rayner, 1987) estimate that the maximum range and
minimum power flight speeds for flying foxes of this mass are
approximately 10 and 7.5 m s−1, respectively, on the basis of the
general relationship they estimated between body mass and
flight velocity. In any case, neither the constant-circulation
theory of flapping flight nor the flow visualization on which it
is based is capable of providing the spanwise distribution of the
aerodynamic force. Therefore, an elliptical aerodynamic force
distribution combined with the constant-circulation hypothesis
appears to be a reasonable starting point for modeling purposes.

In our model, we defined the magnitude of the aerodynamic
force on a wing segment p as:

Fa·p≡ ρ0UΓpqwpq, (24)

where Γpq is the circulation about the midline of the wing
segment and wpq is the instantaneous width of the wing segment.
We invoked the constant-circulation hypothesis when we made
the magnitude of the aerodynamic force Γpqwpq constant over
time for each wing segment. There are two possible
interpretations of constant circulation. The global constant-
circulation hypothesis requires that the sum of circulation along
the entire wing span remain constant during flapping flight. The

(23)Fa= (Mg)2+Dt2 .!
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local constant-circulation hypothesis requires that the sum of
circulation between two close material markers along the wing
span remains constant. The sum of circulation along the wing
span is directly proportional to the aerodynamic force. The global
hypothesis allows for a spanwise redistribution of circulation,
which would lead to visible vortex rings being shed from the
trailing edge. An absence of such vortex rings implies the
stronger local hypothesis, which we are using here. Because we
are using sums over wing segments instead of integrals along
wing span in this work, we make our material markers coincident
with the wing segment boundaries and enforce a constant
aerodynamic force over each wing segment. Because a bat wing
undergoes significant folding in flight, we have chosen the middle
of the downstroke as the most appropriate wing configuration at
which to distribute the aerodynamic force along the wing span.
Of the 40 time steps simulated by the model, mid-downstroke is
identified as the integer q=Q, where ∆tq≈tmid=00.38T or Q=15.

We approximated the smooth elliptical distribution
traversing each wing segment with the value of the circulation
at the segment midline, resulting in a spanwise distribution of
circulation that resembles a descending staircase over the entire
wing length from root to tip (Fig. 4). The circulation Γpq is
calculated according to thex axis position of the midline of
each wing segment relative to the center of the body at the
instant of the middle of the downstroke. Because the maximum
circulation exists midway between the shoulders, the
circulation about a wing segment p is given by:

(Norberg, 1990), where xpQ is the position of the midline of a
wing segment relative to the shoulder, Bmid is the instantaneous
wing length at tmid, Fa is the total aerodynamic force and C is
a multiplicative constant. This equation is strictly valid only
for straight wings with constant wing span. Since we have
made several approximations while distributing the
aerodynamic force along the wing span at one instant in time,
and since the wing moves and changes shape during a
wingbeat, circulation must be multiplied by an aerodynamic
constant C to ensure that the mean lift exactly balances body
weight over one wingbeat cycle. We solved for the
aerodynamic constant C by iteration. We approximated the
circulation about the body (from shoulder to shoulder) by:

the maximum circulation in the elliptical distribution at
x=−W/2. Substituting this value of the circulation into the
definition of the aerodynamic force generated by the body
yields:

where W is body width and Fa is the total aerodynamic force,
a simple function of total drag and body weight.

Net drag and lift

We defined net drag by adding the drag and thrust acting on
each wing segment. The net drag on wing segment p at time q
is given by:

Fd·pq=− (Tf·p+Tb·p+Ti·p) + cos(2πftq)k =Fd·pqk , (28)

and acts in the plane of the wing segment opposing the
direction of flight. We calculated the magnitude of the lift from
the mathematical relationship between the magnitude of the
aerodynamic force and the magnitude of its two orthogonal
components, lift and thrust. Hence, the lift on wing segment p
at time q is written:

where the lift component Fl.pq of the aerodynamic force acts
normal to the plane of a wing segment. We assumed that the
lift on each segment acts at a fixed proportion, Pc≈4, of the
chord, cp, behind the leading edge of a wing segment. This is
a typical location for the center of lift of a thin airfoil with a
significant parabolic camber and angles of attack between 5
and 15 ° (Katz and Plotkin, 1991).

Internal force

The internal force is the force carried by the wing structures
that enables the wing to undergo the observed accelerations
and to resist the external forces applied to the wing. We invoke
the common form of Newton’s second law of motion for wing
segment p at time q so that:

mpapq=Fi·pq=Fg·pq+Fm·pq+Fl·pq+Fd·pq+Fpq, (30)

where the internal force Fpq is not given any subscript. We did
not calculate the internal force explicitly in the model since we
were interested in the relative contribution of inertial and
external forces to bone stresses. Moreover, the inertial and
external forces act at different locations on a given wing
segment, requiring both a net internal force and a net internal
moment about the center of mass for each wing segment.
Instead, we relied on the definition of the internal force as the
inertial force minus the gravitational force, added mass force,
lift and net drag, and computed the contributions from these
forces separately. We also calculated the component of the
internal force associated with tension in the plagiopatagium
(see below, section on plagiopatagium tension).

Global acceleration

To calculate the body’s global acceleration, we employed
the estimate of total internal force transferred from the wings
to the body. We assumed that the position of the shoulder joint

(29)Fl·pq= (Fa·p−Ft·p)(nx·pqi +ny·pqj ) =Fl·pq(nx·pqi +ny·pqj ) ,!
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relative to the center of mass is fixed then, working from the
inertial reference frame of the global axes, approximated the
force transfer from the wings to the body by summing the
segmental internal forces from the wing root to the wingtip at
each instant of time. The components of the total internal force
transferred from both wings are:

where the x axis components from both wings are equal and
opposite, resulting in no acceleration of the center of mass
along the x axis at any time in forward flight. To complete the
force balance, we calculated the mass of the body minus the
wings mb as:

The vertical force balance on the body supported by both wings
at time q is:

mbasy·q=−Fy.0q−mbg+Fa.0, (34)

where asy.qis the vertical component of the global acceleration,
and Fa.0 is the aerodynamic force generated by the body. The
horizontal force balance provides at time q:

mbasz·q=−Fz.0q, (35)

where asz.q is the horizontal component of the global
acceleration. Form and induced drag of the body have already
been accounted for in the net drag of each wing segment. We
solved these two equations for the two components of the global
acceleration iteratively because the equations for Fy.pq and Fz.pq

contain the global acceleration components within inertial terms.

Level flight criterion

As mentioned above, we ensured that the mean lift was equal
to body weight over the wingbeat cycle by adjusting the
aerodynamic constant C. Without explicit knowledge of the
correct value of C, we adopted the following approach: we
made two initial estimates near unity, observed the resulting
trend in the mean vertical component of the global acceleration
and used these results to guide more accurate estimates of the
aerodynamic constant C. To do this, we averaged the equation
for the vertical component of the global acceleration over one
wingbeat cycle to obtain:

where the correct value of the aerodynamic constant C makes

the left side of this equation equal to zero. Under this condition,
lift from the wings and body balances body weight over
one wingbeat cycle. We used a Newton–Raphson iterative
convergence scheme to compute values for C until the left side
was less than 10−10 at each iteration. The Newton–Raphson
scheme converged in less than 60 iterations to final values of
C≈1.2 as well as final values of global accelerations. The
aerodynamic constant is greater than unity largely to
compensate for the significant wing folding that occurs at the
end of the downstroke.

Plagiopatagium tension

Lift acting on the armwing causes the plagiopatagium to
billow and thereby increases the tension of the skin. Because
of this coupling between lift and skin tension, we replaced total
armwing forces with skin internal forces; skin force represents
the sum of skin tension integrated along the chordwise
direction and does not include the frictional drag, which is
accounted for separately through the net drag. We therefore
developed a simple model of passive plagiopatagium
deflection due to quasi-steady lift to determine the internal
forces of the skin that are transferred directly to, and indirectly
through, the humerus and radius.

To calculate the magnitude and location of this force, we
assumed that the skin of the plagiopatagium is linearly elastic
and orthotropic, that skin thickness remains constant during the
wingbeat cycle, that shear stresses in the skin may be neglected
and that the intrinsic musculature of the membrane,
particularly the mm. plagiopatagiales, does not affect skin
tension near the fifth digit during the wingbeat. This final
assumption comes from our hypothesis that the muscles will
only have a localized effect on membrane tension, perhaps by
influencing local camber for aerodynamic purposes or by
damping oscillations in the wing membrane via modulating
skin stiffness. These localized effects will probably have little
influence on skin tension measured elsewhere in the wing. The
nature of elastic problems is such that a local perturbation of
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Fig. 5. Schematic diagram of the rectangular idealization of the
armwing membrane. The x and z coordinate axes used to describe
membrane deflection mathematically are indicated; the y axis is
perpendicular to the plane of the membrane. Fs indicates the point of
application and approximate orientation of the skin internal force, ca

is the mean armwing chord and ba is the instantaneous shoulder-to-
carpus distance.
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the global solution is rapidly smoothed out of existence. This
local versusglobal dichotomy is a consequence of the elastic
partial differential equation being elliptical: the stress at every
point on the wing membrane is in some way an average of the
stresses surrounding that point. Therefore, elastic materials
quickly erase any evidence of local perturbations.

We characterized the plagiopatagium as a rectangular sheet
coplanar with the plane connecting the shoulder, elbow and
carpus if the wing membrane was not deformed by lift (Fig. 5).
The long axis of this rectangular membrane is parallel to the
line connecting the shoulder to the carpus. The rectangle’s
chordwise dimension is the mean armwing chord ca and its
spanwise dimension is the instantaneous shoulder-to-carpus
distance ba. For this analysis, we used a coordinate system with
its origin at the carpus, its x axis parallel with the long edge of
the rectangle and positive proximally, and its z axis parallel
with the fifth digit and positive caudally (Fig. 5). The location
and orientation of the total skin internal force Fs justifies the
approximation of the plagiopatagium as a rectangle since the
line of force action passes distal of the armwing bones (see
below). Newton’s third law requires that the plagiopatagium
induce a force normal to the armwing that is equal to the lift
that it is replacing. Part of the lift is accommodated by the angle
tan−1s that the force Fs makes with the plane of the fifth digit
and the body, and we distributed the remainder of the lift
evenly along the armwing bones acting normal to the armwing.

We estimated the spanwise (Exx) and chordwise (Ezz) elastic
moduli of P. poliocephalusplagiopatagia from published mean
values of moduli of plagiopatagia of other bats, yielding Exx

=3 MPa and Exzz=37 MPa; these values correspond closely to
the elastic moduli found for the plagiopatagia of A.
jamaicensis, the only large fruit-eating bat from which these
data have been collected (Swartz et al., 1996). However,
because this species is an order of magnitude smaller in body
mass than P. poliocephalus, we also explored the effects of
lower moduli on force transfer. We further assumed the
Poisson’s ratio νzx=1 as a typical value for skin composed of
crossed fiber sheaths (Frolich et al., 1994). Symmetry of the
skin stress tensor associated with mechanical equilibrium
requires that νxz=(Exxνzx)/Ezz=0.8, where νxz is Poisson’s ratio
of the plagiopatagium due to loading along the x axis.

Although inertial forces exerted on the skin can probably
approach the magnitude of aerodynamic forces near the carpus
during periodic rapid wing acceleration, we modeled only the
skin deformation induced by the instantaneous lift acting on
the plagiopatagium. We divided total armwing lift by the
instantaneous plagiopatagium area baca to find mean pressure
differences ∆P (proportional to the wing loading), assumed to
act uniformly at each instant of time over the plagiopatagium
as the source of membrane deflection. We adopted a quasi-
steady model of membrane deflection out of the plane by
neglecting the retarding effect of membrane inertia on changes
in plagiopatagium deflection over time. We computed the
linear solution of the partial differential equation governing
membrane deflection Y using the method of separation of
variables by assuming uniform values of the skin tensions Tx

and Tz in the spanwise and chordwise directions respectively.
To capture the most important contribution to deflection (and
hence skin tension) and yet maintain a tractable analytical
solution, we approximated the complete linear solution of the
partial differential equation by the first eigenmode solution
corresponding to the boundary conditions that there is no
membrane deflection along the distal, cranial and proximal
edges, and that the slope of the membrane deflection be zero
along the caudal edge of the rectangle. The linearized partial
differential equation applies whenever lateral membrane
deflections are small enough to be considered remaining in the
undeflected plane, which is an assumption that must be verified
a posteriori. We find the approximate solution for membrane
deflection out of the plane:

where the skin tensions Tx and Tz are functions of Y through
the orthotropic constitutive relationships:

Tx ≈ tsExx(εxx +νzxεzz)εxx , (38)
and

Tz≈ tsEzz(νxzεxx +εzz)εxx , (39)

where we assumed uniform plane stress across the membrane
thickness ts=0.2 mm. We evaluated the spanwise (εxx) and
chordwise (εzz) skin strains by assuming that, when under no
tension, the membrane had a chordwise length ca and a
spanwise length bmin, the minimum value of ba. It follows from
the definition of an arc length that the strain εxx is:

and that membrane deflection out of the plane both determines
and is determined by skin tension. We do not provide a sign
convention for ∆P or Y because the square of the derivative
∂Y/∂x makes these quantities positive. We did not calculate the
strain εzz since we were interested in the tension Tx along the
edge x=0, where the strain εzz is identical to zero and Tz=Tx

from the definitions of the Poisson’s ratios.
We calculated the skin tension Tx at 20 discrete locations

along the distal edge of the plagiopatagium using a
Newton–Raphson convergence scheme at each location to
solve iteratively the balance between deflection and tension.
We found uniform skin tensions along the fifth digit except for
a brief period during the upstroke at which time the skin
tension approached zero and also became non-uniform. To
calculate a particular Tx, we transformed the integral for εzz

into a complete elliptical integral of the second kind, E(m,π/2):

where m≡s2/(1+s) and s is the value of the derivative ∂Y/∂x
evaluated at x=0. We estimated E(m,π/2) from a fifth-order
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polynomial curve fit that had a standard deviation of 0.12 %
about the exact integral values over 0<m<1 (Abramowitz and
Stegun, 1965). We found that m≈0.01 and E(0.01,π/2)≈1.57 for
most of the wingbeat, and therefore employed a linear solution
since tan−1≈5 ° is the angle that the membrane makes with the
undeflected plane along the edge x=0. The total skin internal
force Fs pulling proximally on the fifth digit is the integral of
the tension Tx along the z axis from z=0 to x=ca and can be
approximated by Fs=Txca over most of a wingbeat (Fig. 5).
Since the fifth digit is free to rotate about the carpus, we also
calculated the total moment Ms induced by the skin force Fs.
The correct point of action of the total skin internal force is
found from z=(Ms/Fs)≈0.5ca in this special coordinate system.

Forces, moments and stresses on the wing skeleton

To analyze the effect of flight-related forces on the skeleton,
we designated the point at which an inertial or external or skin
membrane force vector Ff acts on a given wing segment as (xf,

yf, zf) and the point on the skeleton about which we seek the
moment M0 as (x0, y0, z0). By varying the location of the point
for which the analysis is carried out, we may then analyze the
skeletal loading and bending at any location on the wing skeleton
of the armwing that is biologically significant and through which
a known fraction (usually taken as 100%) of the remaining
internal force is transmitted. Although the analysis applies
generally to any location along the armwing, we focused here on
the moments about the humeral and the radial midshafts, to carry
out comparisons of model estimates with empirically measured
values (Swartz et al., 1992). We defined three moment arms:

lx ≡xf −x0 , (42)

ly ≡yf −y0 , (43)

lz≡zf −z0 , (44)

that relate the distance between the applied force and the
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Fig. 6. Schematic diagram of coordinate systems employed in the model. The origin of the global, inertial coordinate system is located at the
mean vertical position of the shoulder joint and travels forward at constant mean velocity (see also Fig. 2); its path is indicated by the
horizontal dotted line, and its location at mid-upstroke is given in the center of the figure. The origin of the global, non-inertial coordinate
system is located at the shoulder joint and accelerates vertically and horizontally with the bat. It is shown at three points in the wingbeat cycle:
late downstroke (left), mid-upstroke (center) and late upstroke (right). For both these coordinate systems, the x axis is directed perpendicular to
the plane of the page, directly to the bat’s right. At mid-upstroke and mid-downstroke, the global inertial and non-inertial axes coincide
(center). The true flight path of the shoulder is indicated by the dashed line. Local x, y, z coordinate systems can be centered at any anatomical
point of interest, such as the shoulder, the midshaft of the humerus or radius or the carpus. In this illustration, the axes of a local (x, y, z)
coordinate system with its origin at the humeral midshaft are shown by gray heavy dashed lines; once again, the x axis is directed perpendicular
to the plane of the page. Local primed (x′, y′, z′) coordinate systems are employed for computations of local stresses, etc; they are centered at
the origin of a corresponding (x, y, z) coordinate system, but are rotated such that the x axis is directed along the length of the humerus (or
radius) and the y axis is directed perpendicular to the local wing surface. The local (x′, y′, z′) coordinate system at the humeral midshaft is
illustrated here, with axes depicted by barred black lines. Late in the upstroke (rightmost illustration), from a lateral view as depicted here, the
undersurface of the wing would be interposed between the observer and the x′ and y′ axes; this is depicted schematically by gray shading.
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location of the moment. We calculated the moment M0 about
the point (x0, y0, z0) induced by the force Ff at (xf, yf, zf) as:

M0x= ly Ffz − lzFfy , (45)

M0y= lzFfx − lx Ffz , (46)

M0z= lx Ffy − ly Ffx , (47)

(Meriam and Kraige, 1987). To calculate the total force and
moment vectors at bone midshafts, we summed the inertial and
external forces Fpq and their respective moments M0.pqover all
wing segments and fractions thereof that are distal to the bone
midshaft using the appropriate locations (xf, yf, zf) for all five
forces within a given wing segment. We then subtracted the
internal force and moment about the bone midshaft associated
with the skin force since it is transmitted directly to the body.
We note that our calculations implicitly contain close
approximations of the moments of inertia of the wing through
the summation of segmental inertial forces, although we
neglected the small moments of inertia induced by the finite
width of the wing segments (Thollesson and Norberg, 1991).

From the total force and moment vectors at a bone midshaft,
we calculated stresses at dorsal and ventral sites on a bone’s
circumference treating the bone as a beam of circular cross
section (Popov, 1978). We considered the center of the bone
cross section as the origin of a local coordinate system parallel
to the global coordinate system (Fig. 2, Fig. 6). We converted
total force and moment components written in the local x, y, z
coordinate system into a primed x′, y′, z′ coordinate system
oriented to the bone long axes. This primed system shares the
origin of the local coordinate system, but possess an x′ axis
oriented parallel to the bones’ long axes (positive distally), a
z′ axis in the plane of the wing (positive caudally) and a y′ axis
normal to the wing plane (positive dorsally) (Fig. 6). We
defined the angle λ as the angle between the armwing and the
horizontal x axis. The angle λ defines a new y′ axis normal to
the armwing. We also defined ψ as the angle by which we
rotate the y′ axis to align the x′ axis with the long axis of the
humerus or radius. The coordinate transformations from the
local axes to the primed axes are:

x′ = cosλcosψx+ sinλcosψy+ sinψz, (48)

y′ =−sinλ + cosyλ , (49)

z′ = cosλsinψx−sinλsinψy+ cosψz. (50)

The same transformation is used to relate the primed
components Fx′, Fy′, Fz′ and Mx′, My′, Mz′ to their respective
unprimed components; we reapplied the transformation at
each instant of time since the angles λ and ψ change
throughout the wingbeat cycle. To calculate the angle ψ, we
applied the law of cosines to the triangle formed by humeral
length Lh, radial length Lr and the instantaneous distance from
the shoulder to the carpus. This yielded the angles interior to
this triangle, which then provided the position of the elbow
joint and the angle ψ for either the humerus or the radius.

We assumed that the humerus and radius are straight circular
cylinders of inner radius Ri, outer radius Ro and length L, and
that the medullary cavity has no capacity to resist bending or
torsion. We also assumed that the neutral axis intersects the
centroid of the cylinder’s cross section. To calculate stresses,
we balanced the total force and moment vectors at midshaft
with longitudinal normal stresses σL and shear stresses τ1,2

distributed within the bone at the surface of a perpendicular
midshaft cut. When integrated over the proximal surface of the
cut, the normal and shear stress distributions represent three
force and three moment components that are equal in
magnitude but opposite in sign to the total force and moment
components. We considered tensile normal stresses and left-
handed (or clockwise) shear stresses as positive (Fig. 7). We
also assumed that the resulting stresses can be superimposed
linearly given that superposition of stresses is quite accurate
up to approximately 1 % strain; we note that the peak humeral
and radial strains in P. poliocephalusrarely exceed 0.3 %
(3000µε) (Swartz et al., 1992).

Assuming that a bending moment induces a linear increase
in normal stress σL with increasing distance from the neutral
axis, we calculated the magnitude of the normal stress induced
by My′ as:

where J, the polar second moment of area of the bone cross
section, is π(Ro4−Ri4), and we are free to choose Ri<z′<Ro.
For positive My′, the cranial face of the bone is in tension
while the caudal face is in compression, as indicated by the
sign of σL. The magnitude of the normal stress induced by
Mz′ is:

where positive Mz′ indicates tension along the bone’s dorsal
surface. Assuming that stress increases linearly from the x′ axis
in the radial direction, the magnitude of the shear stress
induced by the torsional moment Mx′ is:

(52)σL =− ,
4Mz′y′

J

(51)σL =− ,
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J

σT σT
τ1,2
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Fig. 7. Definitions of the orientations and signs of longitudinal and
shear stresses with respect to midshaft cross sections of the humerus
and radius. τ1,2, shear stress; σL, longitudinal stress; σT, transverse
stress.
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where Ri<R<Ro. This shear stress is uniform around the bone
circumference, and the maximum values of both the normal
and shear stresses occur at the bone outer radius R=Ro.

The normal stress induced by the force Fx was calculated by
assuming that the force is distributed evenly over the cross
section, giving rise to a normal stress:

where Ac is the bone’s cross-sectional area. Forces acting
perpendicular to the long axis of the bone give rise to shear
stresses that are not distributed evenly along the bone cross
section (Beer and Johnston, 1981). The magnitude of the shear
stress at y′=0, z′=±Ro due to the internal force Fy′ is:

where, for positive Fy′, shear stress is positive on the cranial
(leading) and negative on the caudal (trailing) surface of the
bone. The magnitude of the shear stress due to the internal
force Fz′ at z′=0, y′=±Ro is:

where, for positive Fz′, shear stress is positive on the dorsal
and negative on the ventral surface of the bone. The two
magnitudes of τ1,2 given here apply to only two points, each
along the outer perimeter of the bone.

Swartz et al. (Swartz et al., 1992) assumed that compact
cortical bone is a transversely orthotropic material and used
published values for compact bone moduli and Poisson’s ratio
(Carter, 1978) to convert empirical measured strains into
estimated stresses. They used a value of E11≈15Gpa, where E11

is the compressional longitudinal elastic modulus of bone, a
typical value for mammalian compact cortical bone (Currey,
1984). Since there are no obvious sources of transverse stress σT

applied to the humerus or radius, we assumed that applied σT=0.
Hence, the longitudinal strain is simply ε1=σ1/E11and transverse
strains ε2=−0.46ε1 exist due to Poisson’s ratio effects alone, even
in the absence of externally applied transverse forces.

Results
Model predictions

Humeral and radial stresses

We used the model described here to estimate stresses at the
mid-dorsal and mid-ventral locations on both the humerus and
the radius, and at the cranial (leading edge) and caudal (trailing
edge) midshaft of the humerus; we did not calculate cranial and
caudal stresses on the radius because we did not have empirical
data with which we could compare the model results.

During the portions of the wingbeat cycle in which the wing

is extended, the wing membrane is placed under significant
tension. This tension exerts forces on the humerus and radius
that tend to bend them in the plane of the wing in a cranially
convex manner, placing the cranial bone surfaces in tension
and the caudal surfaces in compression. Values of model
predictions for stresses on the cranial and caudal surfaces of
the bones are therefore strongly affected by input values of skin
moduli (Fig. 8A; see also sensitivity analysis, below). Because
this bending is largely restricted to the plane of the membrane,
skin modulus input has little effect on estimates of shear and
longitudinal dorsal and ventral normal stresses (Fig. 8B,C).

To date, no studies of the mechanical properties of bat wing
membranes have included large megachiropterans (Studier,
1972; Swartz et al., 1996). Therefore, we began our analyses
using values for mean spanwise and chordwise skin moduli
measured from bats an order of magnitude smaller in body
mass than our model species. On the basis of a physical
inspection of the wing membranes of many bat species, we
expected these values to be considerably higher than the true
moduli of P. poliocephaluswing membrane skin, and carried
out analyses using lower values for moduli as well,
maintaining the empirically measured ratio of spanwise to
chordwise modulus (Fig. 8). When the model employs a
spanwise modulus of 0.5 MPa, one-sixth of the mean spanwise
stiffness of the wing membranes of smaller bats (Swartz et al.,
1996), the magnitudes of estimated bone stresses on the cranial
and caudal bone surfaces are most similar to those on the dorsal
and ventral surfaces, so we conducted all further analyses with
this lower value for the skin moduli; this is reflected in the
results for the cranial and caudal surfaces of the humerus.

Predicted stresses at all bone sites except the cranial
humerus share an overall pattern of change with respect to the
wingbeat cycle: stresses reach a peak just after the initiation of
downstroke and another peak of similar, slightly greater or
slightly lower magnitude at the middle of downstroke; stresses
then decrease to their lowest values shortly after the initiation
of upstroke (Fig. 9). On the cranial aspect of the humerus,
the longitudinal stress peaks just after the beginning of
downstroke, exhibits a plateau throughout most of the
remainder of the downstroke and then decreases steeply at the
initiation of upstroke in concert with the stress minima of the
other sites. Longitudinal stresses at all sites are higher than
shear stresses throughout the greater part of the wingbeat cycle
with the exception of the downstroke–upstroke transition, at
which time longitudinal stress values approach zero.

The underlying basis of the similarity in the stress profiles
at all anatomical locations modeled becomes clear when total
stress is partitioned into components due to gravitational,
inertial, added mass, net drag, handwing lift and armwing
membrane (plagiopatagium) tension stresses (Fig. 10, Fig. 11).
The inertial stresses display the pattern of timing observed for
net stresses at all sites other than the cranial humerus,
displaying peaks just after the initiation of downstroke and at
mid-downstroke, and minima at the downstroke–upstroke
transition. Although the general shape of the inertial stress
curve for the cranial humerus is similar in overall form to that
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of the dorsal and ventral bone surfaces, the magnitude of
inertial stress (+5 to −10 MPa) is far smaller here than stress
due to tension in the plagiopatagium, so plagiopatagium
stresses dominate. Skeletal stresses due to gravity, added mass

and drag are virtually always very low, typically below 4 MPa
and often close to 1 MPa. The only exception to this pattern is
in the longitudinal stress at the cranial mid-humerus; in this
case, the thrust engendered at mid-downstroke is large enough
to generate significant bending in the plane of the wing,
decreasing tension on the cranial surface by up to
approximately 7 MPa or 20 % of total stress at this location.

Stress due to plagiopatagium tension is also relatively small,
generally around 2–5 MPa but reaching contributions as high
as 10 MPa to the total longitudinal stress on the dorsal and
ventral surfaces of the humerus. The contribution of
plagiopatagium stress to the total stress at the cranial edge of
the humerus is much greater, as high as 40 MPa, for the
geometric reason noted above. If the model used a higher value
for spanwise membrane modulus, this contribution would be
even higher. Stresses in the humerus and radius due to the lift
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generated by the handwing are significant (5–20 MPa) and
show a consistent plateau with little variation in magnitude
throughout the downstroke.

Global body motion

The model predicts that the bat’s center of mass has a
positive (upward) vertical acceleration through the greater part
of the downstroke, downward acceleration through the end of
the downstroke and beginning of the upstroke and upward
acceleration once more during the second half of the upstroke
(Fig. 12). Downward acceleration reaches a maximum of
nearly 13 N; given that this animal’s mass is approximately
800 g, this acceleration is close to 2g. This large acceleration
occurs because the wing is folded such that some aerodynamic
force acts downwards near the top of the upstroke. In addition,
the upward wing acceleration near the end of the downstroke
causes further downward acceleration of the body.

During the middle half of the downstroke, the body is
accelerating forward, but it loses its forward acceleration and
gradually decelerates during the end of the downstroke and first
half of the upstroke (Fig. 12). Near the upstroke–downstroke
transition, there is a brief forward acceleration followed by a
brief deceleration before the acceleratory phase of the
downstroke begins. The magnitude of the fore–aft component
of the acceleration of the center of mass (±2 N) is small
compared with the vertical acceleration. As a consequence,
forward flight speed varies little during single wingbeats in
level flapping flight.

Model validation: comparisons with empirical data

Humeral and radial stresses

To determine the degree to which our model accurately
estimates bone stresses, we compared midshaft longitudinal
and shear stresses calculated from the model with values
computed from directly measured in vivowing bone strains of
bats from the same study population. In this earlier study
(Swartz et al., 1992), maximum and minimum principal strain
magnitudes and orientations throughout the wingbeat cycle
were computed from data obtained from rosette strain gauges
surgically implanted around the midshaft circumference of the
humerus and radius; post-operative recordings, synchronized
with video recordings, were made as bats flew the length of a
30 m flight cage at moderate speed.

We found that the model can predict effectively not only the
general shape of the stress curve, but also the timing of both
major and secondary stress peaks in relation to the wingbeat
cycle (Fig. 13). Moreover, stress magnitude estimates
correspond quite closely to empirically measured values, with
predicted values deviating from recorded values by
approximately 5–30 % for longitudinal and shear stress peaks.
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Deviations between the predicted and recorded values are
sometimes greater during the lower-stress portions of the
loading cycle and occasionally differed by as much as a factor
of 2–3. These deviations arise partly from an ‘offset’ that
appears in some of our results: predicted and measured stress
plots are very closely matched in shape but offset by
20–25 MPa. This phenomenon is particularly striking at the
cranial surface of the humerus (Fig. 13).

Empirically recorded bone strains indicated relatively large
transverse stresses at the humeral and radial midshafts (Swartz

et al., 1992). The constitutive model for bone presented by
Carter (Carter, 1978) is almost volume-conserving and predicts
ε2=0.46ε1 from the Poisson’s ratio alone in the absence of
externally applied transverse stress. It is therefore possible that
transverse stresses observed in bat bones are largely due to
Poisson’s ratio effects. We computed transverse stresses from
the model as σT=0.46σL, where σT is transverse and σL is
longitudinal midshaft bone stress, and then compared these
with transverse stress values calculated from the rosette strain
gauge data (Fig. 14). Correspondence between the predictions
and measured values is excellent and detailed in some cases,
but only moderate in others.

Global body motion

Because the model predicts the net vertical force exerted on
the bat’s center of mass during the wingbeat, a comparison of
the vertical changes in position of the bat’s center of mass
calculated from the model with those measured directly from
film provides a strong test of model accuracy. Body
oscillations are slightly greater in the wind-tunnel flight than
in the simulation but, overall, oscillations computed from the
simulation and measured directly from film show a high degree
of correspondence (Fig. 15).

Sensitivity analysis

The model’s output values for bone stresses and global body
motion descriptors are sensitive to various inputs and model
assumptions to greatly varying degrees. To assess the
importance of these effects, we carried out a sensitivity analysis
in which we varied each of 10 model inputs by ±5 % and
computed the resulting changes in 24 model outputs (Table 4).

As noted above, the elastic modulus of the wing membrane
skin in the spanwise direction has a significant effect on estimates
of skeletal stress; a 10% change in modulus can produce a nearly
equal change in bone stress (Table 4; see minimum longitudinal
stress, cranial and caudal radius). The sensitivity analysis
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indicates that this effect arises from the influence of skin modulus
on skin tension. Bone shear stresses are also rather sensitive to
aerodynamic parameters, e.g. the timing of peak thrust within the
downstroke, the timing of mid-downstroke within the entire
downstroke, the location of the center of aerodynamic pressure
and the added mass coefficient. The humerus and radius are not,
however, affected equally; humeral shear stress is more than an
order of magnitude more sensitive than radial shear stress.
Longitudinal stresses are influenced by the same parameters, but
generally to a lower degree. The cranial and caudal maximum
longitudinal stresses, however, are moderately sensitive to the
location of the center of pressure (Table 4).

In contrast, the model results are quite robust to variation

in many model input parameters. Whole-body outputs
(accelerations, velocities and displacements of the animal’s
center of mass) are virtually unaffected by changes in model
inputs (Table 4). Longitudinal bone stresses are not influenced
by changes in values of skin Poisson’s ratio, skin friction or
form drag and are only minimally affected by variation in the
added mass coefficient.

Discussion
Model validation

The flapping flight of vertebrates and the aerodynamics and
mechanics underlying this mode of locomotion are extremely

P. WATTS, E. J. MITCHELL AND S. M. SWARTZ

Table 4.Per cent change in model outputs for a 10 % change (−5 % to +5 %) in model input parameters (top row)

Model inputs

Skin Skin Center of Added 
elastic Poisson’s Skin Thrust Downstroke Form aerodynamic mass Elliptical Pennycuick 

Model outputs modulus ratio friction phase step drag pressure coefficient modifier constant

Skin tension
Maximum 9.942 −0.014 <0.001 −0.002 <0.001 <0.001 <0.001 −0.001 0.004 0.001
Minimum 3.407 −0.808 0.010 0.041 0.010 0.012 <0.001 −0.088 0.475 0.255

Humeral stress
Dorsal and ventral

Max. longitudinal −0.137 0.173 −0.055 −0.776 2.194 −0.074 −0.405 0.959 2.686 −1.609
Min. longitudinal −0.107 0.121 −0.004 1.017 0.613 −0.002 −0.456 −0.517 1.518 −0.041
Max. shear −2.128 −0.035 0.096 19.291 10.174 0.196 19.693 9.029 21.230 4.257
Min. shear −0.292 −0.047 0.014 −1.043 2.480 0.036 2.297 −0.139 2.201 0.781

Cranial and caudal
Max. longitudinal −1.865 0.479 −0.098 −1.149 2.430 −0.095 6.756 0.545 1.682 −2.066
Min. longitudinal −7.603 0.018 −0.002 3.685 0.649 −0.001 0.511 −0.015 0.107 −0.031
Max. shear −0.439 −0.019 0.095 17.406 8.953 0.182 17.312 7.857 18.676 3.952
Min. shear −0.003 −0.045 0.014 −1.041 2.577 0.036 2.396 −0.142 2.275 0.794

Radial stress
Dorsal and ventral

Max. longitudinal −0.024 −0.173 0.159 6.329 −0.587 0.234 4.797 0.292 1.564 5.089
Min. longitudinal −0.230 0.020 −0.002 −0.523 3.147 0.003 2.846 −0.467 2.009 0.072
Max. shear 0.194 −0.326 0.006 −1.781 −0.314 0.006 1.435 0.630 −1.674 0.125
Min. shear 0.301 −0.370 0.036 0.319 −3.551 0.044 0.117 −1.417 −4.493 0.969

Cranial and caudal
Max. longitudinal −3.917 0.784 −0.032 −0.059 3.653 −0.017 11.934 0.076 0.407 −0.380
Min. longitudinal −9.025 0.016 −0.001 2.465 0.694 −0.001 0.607 0.025 −0.007 −0.021
Max. shear 0.003 −0.328 0.007 −1.813 −0.321 0.006 1.433 0.639 −1.695 0.128
Min. shear 0.258 −0.362 0.036 0.320 −3.508 0.045 0.116 −1.425 −4.500 0.973

Acceleration
Max. upward <0.001 <0.001 0.014 −0.681 −0.222 0.017 <0.001 0.594 −0.608 0.376
Max. downward <0.001 <0.001 0.007 0.082 0.020 0.008 <0.001 −0.227 0.483 0.169

Velocity
Max. forward <0.001 <0.001 0.007 0.029 <0.001 0.006 <0.001 <0.001 <0.001 0.120
Min. forward <0.001 <0.001 −0.006 0.183 <0.001 −0.005 <0.001 <0.001 <0.001 −0.112

Displacement
Max. vertical <0.001 <0.001 −0.008 −0.590 −0.174 −0.010 <0.001 0.267 −0.700 −0.213
Min. vertical <0.001 <0.001 0.004 1.113 0.257 0.004 <0.001 −0.280 0.816 0.084

Changes >1.0 % are in italics; those >5.0 % are in bold italics.
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complex phenomena. The supporting structures of the
vertebrate wing are made from composite materials whose
internal architecture far outstrips most engineered materials in
complexity of design. Many of these materials, particularly
muscles, tendons, skin and, in the case of birds, feathers, are
not linearly elastic and possess mechanical properties that can
change dynamically through the wingbeat cycle via
modulation of tensions in any of a large number of wing
muscles. Wing surfaces move through space in a manner that
is rarely spatially simple and that varies a great deal along an
axis from shoulder to wingtip. The forces experienced by the
wing also vary among anatomical regions and throughout the
wingbeat cycle and comprise more numerous and less easily
estimated components than limb forces in typical modes
of terrestrial locomotion. Together, these and other
considerations suggest that computer modeling may be an
especially productive approach to gaining greater insight into
how vertebrates in general, and bats in particular, fly.

The greatest strength of computer modeling approaches –

their ability to simplify intractably complicated problems and
to allow investigators to vary parametrically single constituent
elements that cannot be teased apart experimentally – is
counterbalanced, however, by their greatest weakness. If the
phenomena we model are those whose complexity defies ready
empirical study, how are we to assess the validity of our
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models? Here, we present a model that facilitates analysis of
some of the tremendous complexity of bat flight dynamics
while retaining a strong link to empirical studies. This model
is sufficiently detailed to predict both the net motion of a flying
animal’s center of mass and the stresses developed in the bones
of the wing throughout the wingbeat cycle. As a consequence,
we are able to assess the validity of our model with a degree
of rigor unusual for computer models of animal flight.

We find that the model described here is able to make
excellent estimates of aspects of wing and whole-body
mechanics from kinematics and structurally important aspects
of wing form and mass distribution. Indeed, a comparison of
model results with empirically measured strains and of model-
predicted vertical oscillations of the center of mass with those
measured indicates that the model is surprisingly realistic
(Fig. 13, Fig. 15). The model is able to predict the overall
pattern of bone stress change during the wingbeat, the proper
modes of stress (tension, compression, shear), some of the
small-scale changes in stress during a wingbeat and, with
varying precision, the magnitude of the wing bone stresses.
Hence, it is reasonable to conclude that the model captures
many of the features of horizontal constant-velocity flight that
are important to flight performance. The unverified assumptions
built into the model are therefore either likely to be confirmed
by future direct measurements or are of relatively little
importance to the mechanical behavior of the wing in flight.

In addition to longitudinal stresses, the model is also able to
estimate the stresses oriented perpendicular to the long axes of
the humerus and radius from a reasonable estimate of the
Poisson’s ratio of compact cortical bone (Fig. 14). The
relatively large transverse stresses observed in the armwing
bones of P. poliocephalusare, as a consequence, best
understood as arising from this aspect of bone’s mechanical
properties rather than from an off-axis pull by the wing
musculature or tension within the wing membrane, as
previously suggested (Swartz et al., 1992). Indeed,
decomposition of total force exerted on the wing into its
constituents demonstrated that the longitudinal stresses in the
humerus and radius due to plagiopatagium tension are quite
low, typically less than 5 MPa, and transverse forces should
have roughly similar values. At some points in the wingbeat
cycle for some bones, however, model-based predictions of
transverse stresses are considerably lower than recorded
values. These discrepancies may well indicate instances where
local muscle pull strongly influences recorded strains, and they
may be employed in the future to develop specific hypotheses
concerning the activity of particular wing muscles.

Similarly, the model predictions of vertical movements of
the bat’s center of mass are closely, although not perfectly,
matched by empirical measurements (Fig. 15). The vertical
oscillations measured from the film records also display a
significant amount of variation. This variation and the lack of
precise matching of the two curves is probably due in part to
the derivation of the empirical values from the mean of a
number of wingbeats whose amplitude and frequency were not
identical. Although, to date, there have been no studies of

variation in kinematics and/or body motion in bats in relation
to wing kinematics, flight velocity, etc. at the level of detail
needed to assess such features as wingbeat amplitudes on this
scale, we believe that in the future it may be possible to relate
kinematics to variation in aspects of flight performance such
as the lift generation reflected in the motion of the center of
mass.

Sensitivity analysis

A notable feature of the sensitivity analyses presented here
is the dependence of stresses on the cranial and caudal aspects
of the bones and the skin tension on the values for skin moduli
entered into the model (Fig. 8). Although relatively little is
known to date about the mechanical properties of wing
membrane skin (Studier, 1972; Swartz et al., 1996), our
analyses indicate that they may play an important role in flight
mechanics and aerodynamics. Although some previous work
has characterized wing membrane mechanical properties
across taxa and among wing regions (Swartz et al., 1996), these
comparisons were based solely on the linear region of a
complex, J-shaped stress–strain curve. The analyses presented
here suggest that wing membranes may not reach these
relatively high stiffness values during level flight at moderate
speed and may operate primarily in the toe region of the curve.
Further work will be needed to characterize more accurately
this non-linear region of the wing membrane stress–strain
curve and to determine the stiffness of the wing membrane
during natural flight behaviors.

Beyond this effect of skin modulus, the overall model
results are quite robust to variation in a number of input
parameters (timing of peak thrust and mid-downstroke, etc.)
and extremely robust to a number of inputs (skin Poisson’s
ratio, coefficient of friction of the skin, form drag) (Table 4).
Within this overall pattern, it is striking that the humerus is
approximately an order of magnitude more sensitive than the
radius to the timing of the mid-downstroke within the
wingbeat and the shear stresses due to the location of the
center of mass. It is likely that this is a function of a
combination of the cross-sectional geometry of the bone and
the position of the bone within the wing which, in turn,
influence the typical mode of loading of each of the bones.
The aerodynamic forces applied to the wing induce both
torsion and bending in the skeleton, but the torsion is greater
for the humerus because it is oriented such that forces at the
center of pressure have a large torsional moment about the
humerus (Swartz et al., 1992). Alteration in the model input
parameters can act effectively to shift the position of this
center of pressure relative to the humerus, producing the
observed sensitivity. The midshaft of the radius, in contrast,
is positioned closer to the center of pressure, and small
changes in its location have a smaller effect on computed
radial stresses.

Extensions and limitations of the model

There are a number of important limitations to the model in
its present form. It applies strictly only to level, constant-
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velocity flight of moderate speed and to a single species,
Pteropus poliocephalus. With modifications, this framework
can be extended to a greater range of flight behaviors and to a
variety of taxa. However, this will require additional data and
analysis, particularly the detailed documentation of kinematic
variation in relation to activity, body size, wing form, etc., and
the detailed analysis of structural design of the wings of other
species. Moreover, as the model is extended and employed in
novel ways, it will not be possible to validate it via the bone
strain analysis of level flight in P. poliocephalus. In vivobone
strain measurement is not feasible for very small bones and so
is unlikely to serve as an effective tool to assess flight
mechanics in bat species much smaller than grey-headed flying
foxes, i.e. most of the nearly 1000 species of bat. It is
conceivable that in vivo strain gauge measurement could be
used, however, to obtain data that could serve to validate
models of higher speed or of accelerating or turning flight. It
will be critical, though, to seek additional means of external
validation. With rigorous validation of model accuracy for
simple flight behaviors, however, it is possible to retain a
degree of confidence in the model even for behaviors or taxa
for which such detailed validation is impossible.

Finally, we note that this model is not restricted to predicting
bone stresses and motions of the animal’s center of mass. In
future studies, we will use the model to estimate joint forces
and moments and flight energetics, as well as extending the
model to behaviors including vertical and horizontal
acceleration and turning flight. Because the required model
inputs, detailed flight kinematics and specific measurements of
wing structure and mass distribution are simple in comparison
with direct measurement of skeletal stresses, membrane and
joint forces, etc., we will be able to extend the model to other
taxa. We believe that this kind of model can be employed to
provide new insights into flight mechanics that will improve
our understanding of wing morphology, kinematics and
dynamics. It is a powerful tool for the generation of new
hypotheses concerning the mechanics and aerodynamics of bat
flight and, by identifying aspects of structural design and flight
mechanics that could constrain behavior and influence
organismal performance, it may help define and focus future
field and morphological studies.

List of symbols
A area of a single wing
Ac cross-sectional area of bone
Ap area of a single wing segment p
a global acceleration of the shoulder with respect to the 

non-inertial origin
apq acceleration on wing segment p at time q
as global acceleration of the shoulder relative to the 

inertial reference frame
ax.pq component of acceleration in the x direction of wing 

segment p at time q
ay.pq component of acceleration in the y direction of wing 

segment p at time q

segment p at time q
az.pq component of acceleration in the z direction of wing 

segment p at time q
asy.q vertical acceleration component of the global 

acceleration at time q
azy.q horizontal acceleration component of the global 

acceleration at time q
B mean wing length
Bmid wing length at the middle of the downstroke
ba instantaneous armwing length from shoulder to 

carpus
bmin minimum value of ba

C aerodynamic constant
CD,b form drag coefficient of body
CD,f frictional drag coefficient of wing surface
Cm added mass coefficient of wing segments
c mean wing chord
ca mean armwing chord
cp wing segment chord
Db body form drag vector
Db magnitude of body form drag
Df skin friction drag vector
Df magnitude of skin friction drag on both sides of both 

wings
Di mean induced drag vector
Di magnitude of the mean induced drag
Dt total drag vector
Dt magnitude of the total drag 
dp wing segment center of mass position at the middle 

of downstroke
E complete elliptic integral of the second kind
E11 compressional Young’s modulus of bone
Exx spanwise plagiopatagium elastic modulus
Ezz chordwise plagiopatagium elastic modulus
ep wing segment leading edge position at middle of 

downstroke
Fpq internal force vector on wing segment p at time q
F magnitude of internal force
Fa magnitude of aerodynamic force
Fa.pq aerodynamic force vector on wing segment p at time 

q
Fd.pq net drag vector on wing segment p at time q
Fd magnitude of net drag 
Ff total force vector acting on skeleton
Ff.pq total force vector acting on skeleton due to wing 

segment p at time q
Ffx magnitude of x component of total force vector Ff

Ffy magnitude of y component of total force vector Ff

Ffz magnitude of z component of total force vector Ff

Fg magnitude of gravitational force
Fg.pq gravitational force vector on wing segment p at time 

q
Fi.pq inertial force vector on wing segment p at time q
Fi magnitude of inertial force
Fl.pq lift vector on wing segment p at time q
Fl magnitude of lift 
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Fm.pq added mass force on wing segment p at time q
Fm magnitude of added mass force
Fpq internal force
Fs.pq total skin internal force on wing segment p at time q
Fs magnitude of total skin internal force on wing 

segment p at time q
Fsy.q vertical component of the global force at time q
Ft.pq thrust on wing segment p at time q
Ft magnitude of thrust 
Fx magnitude of x component of total force vector Ff in 

global inertial coordinate system
Fy magnitude of y component of total force vector Ff in 

global inertial coordinate system
Fz magnitude of z component of total force vector Ff in 

global inertial coordinate system
Fx′ magnitude of x component of total force vector Ff in 

primed coordinate system
Fy′ magnitude of y component of total force vector Ff in 

primed coordinate system
Fz′ magnitude of z component of total force vector Ff in 

primed coordinate system
f flapping frequency, T−1

g gravitational acceleration, 9.81 m s−2

i unit vector of the x axis
J polar second moment of area
j unit vector of the y axis
k unit vector of the z axis
k coefficient of induced drag
L bone length
Lh humerus length
Lr radius length
l length of wing hairs
lx x component of moment arm of Ff at (xf, yf, zf) about 

(x0, y0, z0)
ly y component of moment arm of Ff at (xf, yf, zf) about 

(x0, y0, z0)
lz z component of moment arm of Ff at (xf, yf, zf) about 

(x0, y0, z0)
M total mass
M0 moment vector about the point (x0, y0, z0)
M0.pq moment vector about (x0, y0, z0) due to forces on wing 

segment p at time q
M0x x component of moment of Ff about (x0, y0, z0)
M0y y component of moment of Ff about (x0, y0, z0)
M0z z component of moment of Ff about (x0, y0, z0)
Mx′ x component of moment of Ff about (x0, y0, z0) in 

primed coordinate system
My′ y component of moment of Ff about (x0, y0, z0) in 

primed coordinate system
Mz′ z component of moment of Ff about (x0, y0, z0) in 

primed coordinate system
Ms magnitude of moment of total skin internal force 

about carpus
m parameter of the complete elliptic integral of the 

second kind
mb mass of the body alone

mi curve fit coefficient of a wing landmark, i=0–8
mp wing segment mass
n unit vector pointing normal to dorsal face of wing
npq unit vector pointing normal to dorsal face of wing 

segment p at time q
nx.pq component of normal unit vector of wing segment p

at time q along x axis
ny.pq component of normal unit vector of wing segment p

at time q along y axis
nz.pq component of normal unit vector of wing segment p

at time q along z axis
P air pressure
Pc proportional location of segmental center of lift 

relative to chord length
p integer value of wing segment
Q integer time step corresponding to tmid

q integer value of time step, <40
R radius of bone
Ri inner radius of bone
Rih inner radius of humerus
Rir inner radius of radius
Ro outer radius of bone
Roh outer radius of humerus
Ror outer radius of radius
S mean wing span
s out-of-wing-plane slope of the plagiopatagium at the 

fifth digit
T wingbeat period
Tb magnitude of mean thrust to overcome body form 

drag
Tb.p vector of mean thrust to overcome body form drag on 

wing segment p
Tf magnitude of mean thrust to overcome skin friction 

drag
Tf.p vector of mean thrust to overcome skin friction drag 

on both sides of wing segment p
Ti magnitude of the mean thrust to overcome induced drag
T i.p magnitude of the mean thrust to overcome induced 

drag on wing segment p
Tx spanwise plagiopatagium tension
Tz chordwise plagiopatagium tension
t time, 0<t<T
tmid time at the middle of the downstroke
Tq time corresponding to the time step integer q
Ts plagiopatagium skin thickness
U flight speed
V volume
W shoulder-to-shoulder width of body
wp mean width of a wing segment 
wpq width of wing segmentp at time q
x relative coordinate with origin at shoulder, carpus or 

bone midshaft
xc x coordinate of the position of the carpus
xf x coordinate of inertial, external or skin membrane 

force Ff acting on wing
x0 x coordinate of bone location about which moments 
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of Ff act
x′ relative coordinate in primed system oriented to bone 

axes
Y plagiopatagium deflection out of the armwing plane
y relative coordinate with origin at shoulder, carpus or 

bone midshaft
yf ycoordinate of inertial, external or skin membrane 

force Ff acting on wing
y0 y coordinate of bone location about which moments 

of Ff act
y′ relative coordinate in primed system oriented to bone 

axes
z relative coordinate with origin at shoulder, carpus or 

bone midshaft
zf z coordinate of inertial, external or skin membrane 

force Ff acting on wing
z0 z coordinate of bone location about which moments 

of Ff act
z′ relative coordinate in primed system oriented to bone 

axes
ε1 longitudinal or normal strain
ε2 transverse or hoop strain
εxx spanwise plagiopatagium strain
εzz chordwise plagiopatagium strain
Γpq instantaneous circulation about a wing segment p at 

time q
λ angle between armwing and horizontal x axis
νzx Poisson’s ratio of plagiopatagium due to loading 

along thex axis
νxz Poisson’s ratio of plagiopatagium due to loading 

along thez axis
ρ0 density of air (1.29 kg m−3)
σL longitudinal or normal stress
σT transverse or hoop stress
ν1,2 shear stress
ψ angle between one armwing bone and x′ axis
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