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Summary

Microspectrophotometry was used to measure the visual in four species. In a single instance Hemilepidotus
pigments in the rods and cones of 22 species of marine fish hemilepidotu3 twin blue-sensitive, twin green-sensitive
larvae netted from the surface waters off Friday Harbor  and double blue/yellow-sensitive cones were recorded. Of
Laboratories, Washington, USA. 13 species had rods, 12 of particular interest was the finding that 18 of the species
which contained visual pigments with a wavelength of had ultraviolet- and/or violet-absorbing single cones.
maximum absorbance near 500nm, while one, the sand It has been suggested that short-wavelength
lance (Ammodytes hexapterds had its absorbance photosensitivity may be beneficial for planktivory by
maximum at 482nm. The 22 species of fish larvae extending the spectral range over which vision can occur.
possessed varied combinations of single, double and twin The high percentage (82 %) of ultraviolet and violet visual
cones, ranging in peak absorbance from 353nm to 584nm. pigments in Pacific northwest fish larvae supports the
Of these, green-sensitive single cones were present in 20 ofprediction that short-wavelength sensitivity may be
the 22 species, and were the dominant cone type. Double common in marine fish larvae.
and twin cones were present in 13 of the species. Most
common were identical green-sensitive (twin) cones (in 11 Key words: visual pigment, microspectrophotometry, ultraviolet
species). Greenlyellow-sensitive double cones occurred vision, fish larvae, planktivory.

Introduction

The stages from the egg through the larval period are Over the last decade, attention has been directed towards the
considered most crucial in the life history of marine fishespectral photosensitivity of planktivorous fishes. Several
(Hjort, 1926). Mortality in these stages is high, becauséehavioural investigations have shown that fish larvae are
starvation and/or predation are considered to be majarapable of using near-ultraviolet light to detect zooplankton
impediments to successful recruitment into juvenile/adul{Loew et al., 1993; Browman et al., 1994; Loew et al.,
populations (see Gerking, 1994). Successful passad®96). This capacity appears to reside in a class of cone
through the early larval stages is dependent on the detectigmotoreceptors containing a visual pigment absorbing
of plankton, which usually are distributed in patches. Givemimaximally in the ultraviolet and/or violet regions of the
the unpredictability of encountering these patches, angpectrum. The idea that the presence of ultraviolet-sensitive
adaptations that enhance awareness of their presengisual pigments could be a general adaptation for animals
and increase the likelihood of encountering food particle$oraging on zooplankton (see Bowmaker, 1991) is supported by
should be favored by selection. Since the vast majority oftudies showing that several adult planktivorous fishes possess
fish larvae are planktonic diurnal particulate visualultraviolet-sensitive cones (McFarland and Loew, 1994).
planktivores (Arthur, 1976; Hunter, 1981; Gerking, 1994),Ultraviolet-sensitive vision in fishes may be useful for other
adaptations that enhance visual particle detection are probalidghaviours, i.e. orientation, navigation, species recognition, etc.
present. The visual range over which zooplankton can b@ee review in Losey et al., 1999). The only current conclusive
detected by most fish larvae is at best one or two bodylengtiegperimental demonstrations, however, are in planktivory
(Wahl et al., 1993). Furthermore, because they are small, loBrowman et al., 1994; Loew et al., 1996) and in orientation
contrast targets (McFall-Ngai, 1990; Hamner, 1996; JohnsefiHawryshyn and Bolger, 1991; Hawryshyn, 1992).
and Widder, 1998), zooplankton present planktivorous fish, In this paper, evidence is presented that short-wavelength-
especially fish larvae, with a difficult visual task. sensitive visual pigments are common in marine fish larvae, at
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least, as demonstrated in fishes from a variety of familiesach curve was analyzed by first digitally filtering the data
common to the Pacific Northwest coast of North America. (‘smooft’; Press et al., 1987) and then fitting them to accepted
templates. For each class of photoreceptor cell in a preparation,
) the Amax values were averaged from the number of spectral
Materials and methods scans recorded to yield a final estimaté @1 s.0. Further
Collection and identification of species details of microspectrophotometry procedures can be found in
All of the specimens collected were identified to species andoew et al. (Loew et al., 1996).
life history stage based on the work of Matarese et al. Photoreceptor cell types were identified by their
(Matarese et al., 1989). 21 of the 22 species examined wemgrphological appearance on the microscope stage. Rod outer
collected using an underwater nightlight from the Fridaysegments were isolated from their inner segments and
Harbor Laboratory dock. Using a fine-mesh net, larvae werpossessed a bulbous swelling at their proximal end (site of
dipped from the surface, transferred to buckets, and theattachment to the inner segment). The morphology of single
maintained in large shallow aquaria (12068 cmx22cm)  cones varied in appearance from small cells to much larger
supplied with 9°C running sea water. Specimens were alsslongated cells. The outer segments of double cones appeared
collected by towing a 61cm diameter plankton net (BB3 as unequal pairs, each of which contained a different visual
mesh) within the immediate vicinity (<0.5km) of the Friday pigment. Twin cones were identifiable as morphologically
Harbor Laboratories. The net was deployed just beneath tlgual pairs, the outer segments of which contained the same
surface and towed at approximately 3krtor 15min.  visual pigment. In any instance where we were uncertain about
Larvae were maintained in the laboratory on a didkrtdmia  a photoreceptor cell type the results have been omitted.
franciscana (Argent Chemical Laboratories) supplemented
with freshly caught zooplankton.
Additionally, newly hatched walleye pollock larvae Results
(Theragra chalcogrammawere provided by Dr Janet Duffy- 21 of the 22 species examined fell within the definition of a
Anderson, from the NOAA/National Marine Fisheries larva, specific to each species, as described in Matarese et al.,
Service/Alaska Fisheries Science Center, in Seattle, WA, USA989 (Table 1). The first observation of rods and/or double
Some of the lingcod larvae used were provided by Dr Mikeones was also noted. The only exception, the wolf-eel,
Rust, from the NOAA/National Marine Fisheries Service/Anarrichthys oculofasciatushatches as a juvenile with fins
Northwest Fisheries Science Centers’ marine fish enhancemduntly developed, but with yolk reserves still present. During
program located at the Manchester Field Station irhis intermediate stage of development, the wolf-eel is

Manchester, WA, USA. unpigmented and does not exhibit behavioural characteristics
_ _ typical of its later juvenile and adult stages (i.e. early juveniles
Visual pigments are pelagic, as opposed to the benthic habits of late juveniles

Spectral absorbance curves from rod and cone cells isolatadd adults). It was therefore included in this study.
from the retinae were obtained using a single-beam, computer-
controlled microspectrophotometer fitted with quartz optics. Visual pigments
Individual larvae were dark-adapted for at least 2h, For the 22 species examined, the visual pigments ranged
anesthetized with tricaine methanesulfonate (MS 222), kille6kom the UV-A to the longer-wave yellow regions of the
by severing the spinal cord at the base of the head amgpectrum (Table 2). Absorbance spectra for the cones of the
enucleated under infrared or dim red illumination. The entirelwarf wrymouth and the best-fitting photopigment template
retina was removed into buffered saline (Sigma, modifiedurves illustrate the estimation dhax (Fig. 1).
MEM, pH 7.6) onto a 22 maB0 mm coverslip and teased apart
using scalpel blades and needles. The preparation was covefReds
with a second 18 mri8 mm coverslip edged with silicone 13 species possessed rods. They were present in the pre-
grease. The preparation was placed on the stage of tliexion larvae of three species and in the post-flexion larvae of
microspectrophotometer and a spectral measurement tak&@ species (Table 1). 12 species had visual pigments\uith
through the medium adjacent to a photoreceptor. Wavelengthalues centered around 500 nm. The sand lance, in contrast,
were scanned in both directions from 750 nm to 350 nm, anplossessed a rod pigment located in the blue region of the
the resulting absorbance spectrum was stored in the compusgrectrum (482 nm).
as a baseline. A photoreceptor cell outer segment was then
moved over the measuring beam and another absorbane#gle cones
spectrum obtained. Absorbance was calculated as theWe have grouped these photoreceptors into five spectrally
logarithm of the ratio of the baseline over the sample data. Twgensitive classes by wavelength: ultraviolet (353-378 nm),
criteria were used to confirm that the measured absorbance waslet (398-432nm), blue (435-480nm), blue-green to green
due to a visual pigment: (i) that the outer segment was dichro{@97-529 nm) and yellow (541-584 nm). The ultraviolet, blue-
and (ii) that the pigment was photolabile. green and yellow classes clearly fall in distinct classes (Fig. 2).

To establish the wavelength of peak absorbance\dag  The separation between the violet and blue classes is arbitrary,
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Fig. 1. Spectral absorbance curves
from the four single-cone
photoreceptor cell types found in g 10 10
the dwarf wrymouth,Lyconectes S
aleutensis Each absorbance curve2 0.81 0.8 1
was normalized to th&max of the §
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other species examined. Wavelemgth (nm) Wavelergth (nm)

but defined to emphasize visual pigments that are sensitive
short wavelengths. Visual pigments in these five classe
however, were not present in a single species. The presence
three pigments was most common (13 species). In lingcol
dwarf wrymouth, red Irish lord and the silver-spotted sculpin
four visual pigments were present, ranging from the
ultraviolet/violet to the vyellow regions of the spectrum.
Ultraviolet- and violet-absorbing single cones were found ir
18 of the 22 species, and in most of the species the out
segments, when viewed on the microscope stage, appeal
square to rectangular and large (e.g. in the red Irish lord; leng
15um, base and distal tip 4um).

Blue—green- and green-sensitive classes of single con
were present in all but two species. In several instances, close
apposed single cones each containing the same green vis
pigment were recorded from the same preparation indicatin
the likely initial formation of twin cones.

Frequency

Double and twin cones
These cones were present in 13 of the species. Most comm

were morphologically identical green-sensitive (twin) cones (1rig. 2. Frequency distribution for all of the single-cone
species). In the red Irish lord, in addition to twin green-photoreceptohmax values sampled from all 22 species. Five classes
absorbing cones, twin blue-absorbing cones were also preseof single-cone photoreceptors were categorized based upon the
Greenlyellow-absorbing double cones occurred in four specieobserved frequency distribution.

Wavelergth (nm)
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Discussion cones is, however, obscure. In 13 of the 22 species, including

The Amax values of the visual pigments of the 22 specieghe two greenlings, double and/or twin cones were present in
examined spanned a wavelength range from the ultraviolet fpst-flexion larvae. In most of the 22 species examined,
the yellow region of the spectrum. However, only six speciefhotopic vision in the pre-flexion stages appears to depend on
had a compliment of visual pigments spanning this entiréhe presence of single cones.
range. A|th0ugh our Samp“ng technique included The hlgh percentage of ultraviolet and/or violet visual
photoreceptor cells from the entire retina, it was difficult toPigment-containing cones emphasizes that ‘seeing’ in the
obtain more than 40-50 recordings from a single larva. It ishort-wavelength regions of the spectrum must, in some
likely that in some species the number of photoreceptor cefhanner, benefit larval survival. Most of the larvae we
classes present was underestimated. However, with tfxamined are distributed during the day near the surface of the
exception of the cabezon, all species possessed greaater column where they forage on zooplankton. The
absorbing cones. Their dominance over other cone types m@minance of green-sensitive cones must benefit visual
optimize each larva’'s photosensitivity to the middlebehaviours in these larvae, including foraging, particularly
wavebands of the spectrum and correlates with the chromafénce blue-green to green are the most abundant photons in the
characteristics of many inshore waters of the Pacific northwegturface waters where they occur (Novales Flamarique and

where greenish light predominates (Novales Flamarique ardawryshyn, 1993). Short-wavelength single cones are also
Hawryshyn, 1993). prevalent in the retinae and some fish larvae can orient to

plankton and feed in ultraviolet-light alone (Loew et al., 1993;
Rods Loew et al., 1996), which implies that these cones extend the
It has been assumed that early stage fish larvae possess dgigctral range over which foraging can occur.
cone photoreceptor cells, rods being excluded from the retina Due to the increased scatter of short-wavelength light by
until later stages (Powers and Raymond, 1990; Blaxter, 199Water molecules, a short-wavelength visual system, especially
Fernald, 1993; Shand, 1993; Higgs and Fuiman, 1996; Polirgn ultraviolet-sensitive visual system, is limited to short optical
and Fuiman, 1997). In the red drurBciaenops ocellata distances (Loew and McFarland, 1990; Losey et al., 1999).
Fuiman and Delbos (Fuiman and Delbos, 1998) demonstratétbwever, because fish larvae can only detect targets over short
that the scotopic sensitivity increased 5000-fold as the rod3ptical paths (1-2 body lengths), the effect of short-wavelength
proliferated in the late post-flexion stage. However, rods igcatter on the visibility of targets is decreased. Because most
three of the species we examined (kelp greenling, lingcod arpoplankton, in spite of their transparency, are as or more
cabezon), although few in number, were present in pre-flexiorgflective to short-wavelength light than to longer-wavelength
larvae. 10 of the 13 species in which we identified rods werkght, short-wavelength photosensitivity may be adaptive to
only analyzed at a post-flexion stage, but this does not preclugéanktivory (E. R. Loew and W. N. McFarland, personal
the possibility that rods are present at earlier stages in thesbservations). We do not imply that short-wavelength-
species. Given the presence of rods in some preflexion larveggnsitive vision is necessarily critical to larval survival, but that
the function they serve, if any, remains to be demonstrated.it may serve to extend vision into a spectral range where
The rodAmax values were centered around 500 nm excepzooplankton are still reflective.
in sand lance larvae, which possessed a more blue-sensitiveObservations that short-wavelength light can contribute
pigment. The functional explanation for this lowefax (if enough photons in near-surface waters to excite an ultraviolet
any) is not obvious, but this species is often active during thé@sual system (see Novales Flamarique and Hawryshyn, 1993)
dusk-twilight periods until it burrows into the substratebolster the prediction that short-wavelength-photosensitivity is
before emerging again during the dawn-twilight periodswidespread in larval fishes (Loew et al., 1996). The number of
(Hobson, 1986). The reduction in yellow-orange light duringmarine species is estimated to be near 14,000 (Bond, 1996).
these periods of the day tends to shift the underwatefhe larvae of virtually all of these marine fish species pass
spectrum toward the blue, which might improve scotopidhrough a diurnal planktivorous stage suggesting, in our view,
photosensitivity during twilight (Munz and McFarland, that short-wavelength photosensitivity due to violet- and/or
1973). ultraviolet-sensitive visual pigments should be the norm. It
remains to be determined by expanded sampling of a variety
Cones of fish larvae precisely how ubiquitous short-wavelength
In two of the 22 species examined (kelp greenling and whitgphotosensitivity is in fishes.
spotted greenling), double cones were observed in preflexion
larvae. In the white-spotted greenling, twin cones were also We would like to extend our thanks to the staff and
observed. However, at hatch the hexagrammid family, whichesearchers at the University of Washington, Friday Harbor
includes the greenlings and lingcod, possess several precocidwahoratories, without whose help this study would not have
characteristics (e.g. large pigmented eye, established pigmedrgen possible. We also thank Dr Janet Duffy-Anderson for
pattern, large open mouth, limited yolk reserves, etc.providing the walleye pollock larvae used in this study,
compared to many of the other species examined. Th&hannon Tribble for contributing her sand lance visual pigment
relevance of this early development of double and/or twirdata, the Northwest Fisheries Science Center/Manchester Field
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