
Swimming and flying animals generate fluid-dynamic forces
by flapping flexible appendages such as wings or fins. The
stresses generated by motions of these structures can be
resolved into vertical forces that support an animal’s weight
and horizontal forces that provide thrust for forward motion.
Both aerial and aquatic animals that propel themselves with
wing-like appendages generate these vertical and horizontal
forces. Aerial animals, which must support their weight,
generate a larger net upward force than aquatic animals, which
often generate vertical forces that cancel over a stroke. Despite
such differences, the principles governing fluid flow around a
flapping appendage remain the same. The key issues involve
understanding how the motion and shape of an appendage
determine the timing and magnitude of forces derived from the
various fluid stresses.

These structural and kinematic traits determine the
locomotor performance of flying and swimming animals.
Locomotor performance can have an enormous impact on an
animal’s survival by providing varying levels of speed,
maneuverability and endurance in escaping from predators,
capturing prey or foraging for food. The large variety of wing
morphologies and kinematics observed in flying animals (both
aerial and aquatic forms) suggests that no single ‘optimal’

combination of locomotor traits exists, but rather that different
performance requirements lead to different combinations of
these traits.

Attempts to explain the diversity of locomotor traits in flying
and swimming animals require an understanding of the
functional consequences of changes in morphology and
kinematics. Two features of wing morphology that are likely
to affect performance are planform wing shape and wing
flexion. Both may be altered by active muscular bending and
passive deformation of wings arising from inertial and fluid-
dynamic loads. These traits, along with the time-dependent
flow phenomena that result from the kinematics of flapping,
contribute to crucial details of the flow and, thus, to the
magnitude of instantaneous fluid-dynamic stresses on the wing.

Wing planform shape, in particular, has commonly been
associated with locomotor performance during steady flight
because of the higher induced drag associated with low-aspect-
ratio wings (aspect ratio=span2/area). Low-aspect-ratio wings
generally have blunter tips and, thus, may lose more circulation
in this region (manifest as tip vortices). This results in a
backward tilt to the force vector, or induced drag. Thus,
predictions derived from steady-state aerodynamics suggest
that long, thin wings (with a high aspect ratio and less induced
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Both kinematics and morphology are critical
determinants of performance in flapping flight. However,
the functional consequences of changes in these traits are
not yet well understood. Traditional aerodynamic studies
of planform wing shape have suggested that high-aspect-
ratio wings generate more force per area and perform
more efficiently than low-aspect-ratio wings, but these
analyses may neglect critical components of flapping flight
such as unsteady fluid dynamics and wing or fin flexion. In
this paper, we use an unsteady potential flow analysis that
incorporates wing flexion to test predictions of optimal
wing shape under varying degrees of unsteady motion and
wing flexion. We focus on forward flapping flight and
examine the effects of wing/fin morphology and movements
on thrust generation and efficiency. We test the model by
comparing our predictions with kinematic data derived

from the aquatic flight of the ratfish Hydrolagus colliei. Our
analyses show that aspect ratio and the proportion of area
in the outer one-fifth of the wing can characterize wing
shape in terms of aero- or hydrodynamic performance. By
comparing the performance of wings that vary in these two
parameters, we find that traditional predictions of optimal
wing shape are valid only under limited circumstances
(when flapping frequency is low, wings are stiff or wings
are tapered at the tips). This indicates a complex
relationship between locomotor traits and performance
and helps explain the diversity of wing kinematics and
morphologies observed in nature.
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drag) can produce more force per area and perform more
efficiently than low-aspect-ratio wings (for a review, see
Spedding, 1992).

These results are, at first glance, disconcerting in that they
seem to suggest that selection for locomotor performance
would drive wings, as well as fins that generate force by lift-
based mechanisms, to become more similar through time and
eliminate the morphological variation seen in nature. This view
is often countered with suggestions that low-aspect-ratio wings
have, generally, a lower wing loading and thus that the
mechanical stresses may be lower. Similarly, there is a notion
that exceedingly high-aspect-ratio wings are prohibited by the
mechanical limits of the wing and fin structures that support
the animal’s weight.

In addition, these steady-state predictions of optimal wing
shape may change when unsteady motions such as flapping
are considered. As flapping frequency increases, the
magnitude of bound circulation on the wing and the forces that
result from this circulation decrease (because circulation has
less time to develop before stroke reversal). Alternatively,
accelerational forces rise with increasing unsteadiness.
Finally, while not a focus here, novel unsteady mechanisms
such as clap-and-fling, leading-edge vortices, wake capture
and rotational circulation (e.g. Dickinson et al., 1999;
Ellington, 1995; Ellington et al., 1996) will further complicate
simple analyses of wing shape.

Moreover, it is important to realize that aspect ratio provides
a rather crude description of wing shape in that it reflects only
the average chord length (lavg) in wings of the same area.
Wings with the same average chord length and total area can
have that area distributed quite differently, and their
aerodynamic performance can vary widely in response to that
shape distribution (Ellington, 1984b).

The functional consequences of wing shape, wing flexion
and unsteady motion could most easily be understood by
examining changes in the pressure distribution over flapping
wings during flight. In the absence of appropriate technology,
however, one must resort to a variety of alternative
experimental approaches. Physical measurements of the forces
generated during animal flight generally either average the
forces over a wingbeat (e.g. wake analysis, Ellington, 1984c;
Rayner, 1979) or sum steady forces for each time step of a flap
(e.g. quasi-steady analysis, Blake, 1983a; Blake, 1983b; Blake,
1983c; Clark and Bemis, 1979; Ellington, 1984a; Pennycuick,
1972; Webb, 1973; Weis-Fogh, 1975). Other techniques such
as flow visualization and simulation via physical or robotic
models have been used to test theoretical analyses of flight and
to suggest novel mechanisms underlying the fluid dynamics of
swimming and flight (Dickinson, 1996; Dickinson et al., 1999;
Ellington et al., 1996), but have not yet been used in a broad,
comparative context.

Efforts are increasingly focusing on computational methods
for solving the Navier–Stokes equations and calculating force
production (e.g. Liu et al., 1998, and the immersed elastic
boundary method of Peskin, 1995). While these approaches
can validate theories of flight and suggest novel mechanisms,

they are computationally intensive and thus may restrict the
range of variables one can explore. For this reason, a simpler
analytical model that accounts for important morphological
and kinematic features is a valuable tool that can be used to
identify critical features that warrant further examination.

In this paper, we investigate factors that may influence the
evolution of flapping wings and fins using an unsteady
potential flow analysis and measured kinematics to calculate
the forces produced by a flapping wing. This analysis predicts
the forces generated by pressure differences across the surface
of a wing resulting from acceleration- and circulation-based
phenomena. It accounts for unsteady effects such as added-
mass forces and the growth of bound circulation. Because the
analysis requires that fluid leave the wing smoothly at the
trailing edge (the Kutta condition), it does not predict forces
derived from separated flow, attached vortices or fast rotations
at stroke reversal. While the model assumes that fluid is
inviscid (and therefore does not apply to animals moving at
low Reynolds numbers), it is appropriate for a broad range of
aerial and aquatic animals in forward, flapping flight.

A critical feature of the analysis is its inclusion of chordwise
wing flexion, specified by a rearward traveling wave on the
wing. In a flexing wing or fin, the peak of this wave
corresponds to the highest point (maximum amplitude) in the
stroke, and wave speed represents the speed at which this peak
travels from the leading to the trailing edge as the wing bends
at stroke reversals. In a flexible wing with no active control,
wave speed will be low (because the wing bends considerably
at stroke reversals), while in a stiff wing, wave speed will be
high because the entire wing reaches the point of stroke
reversal at nearly the same time.

Defining flexion by a traveling wave, rather than by flexural
stiffness or a spring constant, allows the model to be applied
not only to animals whose wings or fins bend passively as a
result of inertial forces, but also to those that actively pass
waves rearward on their appendages (e.g. skates; see Daniel,
1987). A similar approach has been used by Tong et al. (Tong
et al., 1993) to analyze the performance of a variety of caudal
fin shapes; these are quite unlike the shapes of the wings and
lift-generating pectoral fins that constitute the focus of this
study.

We examine underwater flight in the spotted ratfish
(Hydrolagus colliei) to test the model. This animal relies
entirely on flapping its large, flexible pectoral fins for routine
locomotion. We chose the ratfish because it affords a number
of advantages. The relatively modest amplitude of fin motions
and low reduced frequency at which they operate suggest that
the Kutta condition is satisfied. In addition, the presence of a
measurable chordwise bending pattern on the fin permits us to
examine the consequences of wing deformation.

Fin flexion in the ratfish may be the result of passive and/or
active processes. The muscles controlling the pectoral fin do
not extend out into the fin rays, but the muscles at the fin base
may fire in temporal succession (Bestor, 1993), conferring
some degree of active control. Because the model we use
describes wing flexion by a physically observed wave speed,
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it is not necessary to unravel the contributions of active and
passive flexion to calculate hydrodynamic forces.

We ask three questions. (i) Can an unsteady potential flow
model that incorporates wing flexion reasonably predict
performance (measured in terms of power, thrust and
efficiency) in forward, flapping flight? (ii) What variables
can be used to classify wing shape in terms of locomotor
performance? (iii) What is the relative performance of wings
with different shapes under varying levels of unsteady motion
and wing flexion?

Although traditional aerodynamic analyses find that high-
aspect-ratio wings perform better, previous work with the
unsteady potential flow analysis has suggested that unsteady
effects and wing flexion may be important additional
factors that affect the performance of various wing shapes
(Daniel, 1987). A better understanding of how these factors
interact may provide insight into the functional consequences
of the diverse wing morphologies and kinematics seen in
nature.

Materials and methods
Calculation of fluid forces

The motion of a flexible, flapping wing can be approximated
by a three-dimensional harmonically oscillating surface
(Daniel, 1987; Wu, 1971). The motion of this surface is given
by the following equation for a wing centered on the origin
(for a movie of the motion simulated by Equation 1, see
http://faculty.washington.edu/danielt/Wingmovies.html):

h(x,z,t) = ξz {[ h0 + ε(x + 1)]exp{ iω[t − (x+1)/c]} − [γ(x + 1)] ,
(1)

where the function h(x,z,t) describes the instantaneous location
of all points on the wing. The wing coordinates in the spanwise
(x) and chordwise (z) directions are both dimensionless
(−1<x<1; 0<z<1); t is time. The amplitude of the leading-
edge oscillation at any given point along the span is described
by h0, and linear amplitude variation in the spanwise direction
is specified by ξ. The circular frequency of wing oscillation is
described by ω (ω=2πf, where f is the flapping frequency); i is
√−
––
1. A traveling wave of deformation moves rearward at speed

c, simulating the bending that results from flapping a flexible
structure such as a wing or fin. Linear amplitude variation in
the chordwise direction is given by ε, and the mean angle of
attack averaged over a stroke is specified by γ.

To compute the fluid forces generated by a flapping wing,
we divide the wing into chordwise strips and treat each strip
as a harmonically oscillating flexible plate with its motion
prescribed by Equation 1. We calculate the fluid forces
generated by this segment with a two-dimensional solution to
Euler’s equation (Daniel, 1987; Wu, 1971), and sum the strips
to determine the total fluid forces (Daniel, 1987).

The harmonic motion of flapping wings underlies an
important non-dimensional measure of unsteady motion,
the reduced frequency parameter (σ=ωl/U, where l is a
characteristic length, e.g. half chord length, and U is the

forward velocity); this parameter describes the amount of
vertical oscillation relative to forward steady motion. Because
the growth of circulation around the wing is time-dependent
(Dickinson, 1996; Dickinson et al., 1999; Ellington, 1995;
Fung, 1990), increases in the reduced frequency parameter lead
to a reduction in bound circulation and a temporal lag between
wing motion and force generation. At the same time, however,
this increased unsteadiness generates larger accelerations and
inertial forces. Thus, pressures across the wing are not related
to the reduced frequency parameter in any simple way.

All these effects are absorbed into four coefficients: the
coefficient of power (CP), which describes the rate at which
energy is expended to produce thrust and create vorticity in the
wake, the coefficient of energy (CE), which describes the rate
of energy loss to the wake, the coefficient of thrust (CT), which
is defined as the difference between the rates of energy
expenditure and energy loss (CP−CE), and an efficiency
parameter (η), defined as the ratio of useful work done (thrust
produced) to power expended (CT/CP) (Daniel, 1987; Wu,
1971; see Appendix 1).

From these dimensionless coefficients, the power expended
by a chordwise strip of the wing can be calculated:

Pstrip,i = SρCP,iU 3Si , (2)

where ρ is fluid density, Si is the area of strip i (Si=2l iwi, where
l i is the half-strip length and wi is the strip width). Similarly,
thrust can be calculated for each strip as:

Tstrip,i = SρCT,iU 2Si . (3)

These measures for each strip of the wing, with its unique
motions, chord length and area, can be summed and multiplied
by 2 (to account for both wings) to give the total power and
thrust generated:

where n is the number of strips in each wing.
The Froude efficiency of a strip (η) is defined as:

ηstrip,i = (Tstrip,iU)/Pstrip,i = CT,i/CP,i (6)

and the total efficiency of the wings is:

Ratfish kinematics and modeling

We collected spotted ratfish (Hydrolagus colliei; Lay and
Bennett, 1839) by trawling near the San Juan Islands in Puget
Sound, Washington, USA, and maintained the fish in a large,

^
n

i=1
^

n

i=1

(7)

ηtotal = (TtotalU)/Ptotal = 

(SρCT,iU 2Si)U/ (SρCP,iU 3Si) .

^
n

i=1

Ttotal = 2 (5)(SρCT,iU 2Si) ,

^
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Ptotal = 2 (4)(SρCP,iU 3Si) ,
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covered outdoor tank with a continuous flow of fresh sea
water. We filmed the animals swimming at constant velocity
in a continuous-flow flume with a working area of
97 cm×34 cm×36 cm. Two Hi-8 video cameras filming at
30 frames s−1 recorded simultaneously the lateral view and the
dorsal view, which was reflected by a mirror placed at 45 °
to the top of the flume. We filmed at flow speeds of
0.08–0.15 m s−1, speeds that induced the ratfish to swim but
allowed them to maintain position in the flume.

We analyzed the kinematics of two ratfish, a large female
and a juvenile, to represent the extremes in size of this species.
From the lateral view, we measured fin tip amplitude, flapping
frequency and wave speed (Fig. 1). We computed tip
amplitude (H) by averaging over 21 half-strokes in a
continuous sequence for the female and over six half-strokes
in two sequences for the juvenile. We measured the period (τ)
of a flap and calculated flapping frequency (f=1/τ) in the adult
female over 17 complete flaps in two sequences and in the
juvenile over 2.5 flaps in one sequence.

We determined wave speed (c) by recording the total time
required for a wave peak (bend) to travel from the leading edge
(near the fin base) to the trailing edge and dividing this time
by the length of the base. We measured wave speed only at the

end of the upstroke, as this is when the wave is most visible,
and calculated an average wave speed for each fish (over 17
upstrokes in two sequences for the female and four upstrokes
in two sequences for the juvenile).

We analyzed chordwise amplitude change (ε) in the two fish
by comparing the amplitude of the leading and trailing edges at
several different spanwise positions (measured in four frames
in the female and six frames in the juvenile). In addition, we
measured the amplitude of several points on the leading edge
and plotted amplitude against spanwise position to determine
whether there was any significant spanwise bending.

We measured span (z0), the total area of one pectoral fin (Sp)
and chord length distribution along the span (Fig. 2A) in dorsal
views of the female and juvenile. From these measurements,
we calculated the aspect ratio of each fish’s pectoral fins. We
also used span and tip amplitude to calculate the angle (Φ)
subtended by the flapping fin (Fig. 1C).

We calibrated the measurements made from video images
with a grid on the back wall of the flume, and scaled our results
in each frame by the distance of the fish from this wall (as
revealed by the dorsal view). To avoid edge effects, we did not
analyze sequences in which the ratfish was touching the sides
or bottom of the flume.

We used the measured parameters in the potential flow
model described above (with 10 chordwise strips) and
compared the calculated thrust with an estimate of drag on a
ratfish body and fins because drag should equal thrust when
an animal is swimming at constant velocity. We obtained
drag coefficients for a ratfish body (CD,body=2.54) and fin
(CD,fin=0.28) from Sullivan (Sullivan, 1979), who measured
forces on submerged ratfish bodies (with fins removed) towed
at a fixed velocity and drag on an isolated fin with force
transducers in a steady-flow flume.

We used these coefficients to calculate the total drag on the
body and both fins of swimming ratfish as:

Dbody = (GρCD,bodyU 2Scs) , (8)

Dfins = 2(GρCD,finU 2Sp) , (9)

where Scs is the maximum cross-sectional area of the fish’s
body.

We also calculated the forces produced by a flapping ratfish
fin with a wave speed of 100 m s−1 to simulate a stiff pectoral
fin. Comparing these results with the forces produced by a fin
with the measured wave speed demonstrates the effects of fin
flexion on calculated force production.

Generation of theoretical wing shapes

To compare the performance of wings with different
planform shapes, we generated a variety of theoretical wings
with mathematical equations (see Appendix 2). We divided the
wings into 30 chordwise strips and calculated fluid forces
generated by the wings when flapping with identical
kinematics. By conserving wing area throughout our
simulations, we were able to examine changes in performance
due purely to the redistribution of area.
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Fig. 1. (A) Two-dimensional strip oscillating with amplitude h0 and
moving forward at velocity U while a wave passes rearward at
velocity c. The amplitude changes from the leading to the trailing
edge by a factor ε, the ratio of ∆h to h0. The instantaneous location of
a point (x) on the strip is described by h(x,t), where t is time. (B) A
ratfish with a wave (highlighted) traveling backwards on its pectoral
fin at wave speed c. (C) Diagram of a ratfish illustrating the angle
(Φ) subtended by a flapping fin and tip amplitude (H).
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We fixed span (as well as area) to create sets of theoretical
wings that have the same aspect ratio, but vary in their chord
length distribution and in their apparent shape (Fig. 2B–F). By
using several different equations to generate the wings, we
were able to examine the effects of subtle differences in wing
shape on flight performance.

Wing shape parameters and relative performance of
theoretical wings

Before comparing the performance of theoretical wings, we
asked whether wings could be classified by general shape
parameters. We focused on two shape parameters: aspect ratio
and the proportion of area in the outer part of the wing. Aspect
ratio provides a useful description of how long and skinny
wings are on average (in wings of the same area, aspect ratio
essentially describes the average chord length of the wing, lavg;
average chord length increases as aspect ratio decreases), but
aspect ratio does not contain any information about how area
is distributed within the wing. The proportion of area in the
outer part of the wing is a simple measure of how area is

distributed, but may provide valuable information; in flapping
wings where the stroke amplitude increases spanwise, the outer
part of the wing undergoes greater accelerations and, thus, may
contribute more to unsteady force production.

To determine whether the proportion of area in the outer part
of the wing is a useful shape parameter, we examined the
relationship between performance (thrust and efficiency) and
the amount of area in the outer part of the wing in a variety of
wings with fixed area and aspect ratio. We also compared the
performance of wings that have similar values of both shape
parameters, but slightly different chord length distributions
(because they were generated by different equations). If the
two shape parameters are sufficient to describe wing shape in
terms of aerodynamic performance, these wings should
perform similarly. We examined the effects of aspect ratio on
performance by changing aspect ratio while the proportion of
area in the outer part of the wing remained fixed, and varied
flapping frequency and wave speed to determine the effects of
unsteady flow and wing flexion on the relative performance of
wings with different planform shapes.

Results
Ratfish performance and verification of the fluid model

Both ratfish swam at the same forward velocity, and the
aspect ratio and wave speed of their pectoral fins are similar
(Table 1). The adult ratfish has a larger pectoral fin and flaps
with a larger tip amplitude, but the angle subtended by the
pectoral fins of the two fish is nearly identical. The juvenile
flaps its fins at a higher frequency than the adult, as predicted
by mass/frequency scaling relationships noted in aerial
animals. The amplitude of the leading edge increases linearly
with spanwise position in both the female and the juvenile
(r2>0.98), indicating no significant spanwise bending. The
amplitude of the trailing edge of the wing was the same as that
of the leading edge at several positions spanwise, so chordwise
amplitude change was taken to be zero. Because the movement
of the leading edge and chordwise bending of the wing are
symmetrical on the up- and downstrokes, the mean angle of
attack over the stroke is also zero, so the ratfish do not generate
any net vertical force.

The potential flow model indicates that both fish swim with
approximately the same locomotor efficiency, but that the adult
generates more total thrust (Table 2). This increased thrust may
be due to the larger area of the adult’s pectoral fins and to the
fact that the thrust coefficient for its fins is larger (1.63 in the
adult versus1.18 in the juvenile). The thrust calculated using
the model is comparable with predicted drag when the
measured wave speeds are used, but the thrust calculated for
stiff pectoral fins (c=100 m s−1) is considerably higher
(Table 2). While the coefficient used to estimate fin drag was
measured in steady flow (and thus may not accurately represent
the drag on a flapping, bending fin), fin drag accounted for only
approximately 10 % of total drag. Thus, even a doubling or
tripling of this coefficient will not influence the total drag
significantly.
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Fig. 2. Chord length distributions of theoretical wings and a ratfish
pectoral fin. (A) Chord length distribution of the pectoral fin of the
adult ratfish. Total area 0.0069 m2; aspect ratio 2.2. (B) Sample chord
length distributions generated with a first-degree polynomial. (C)
Chord length distributions generated with a second-degree
polynomial. (D) Chord length distributons generated with a third-
degree polynomial. (E) Chord length distributions generated with a
beta distribution. (F) Chord length distributions generated with an
exponential function. Chord length distributions in B–F represent
wings of the same aspect ratio (2.5) and area (0.0069 m2). See
Appendix 2 for the mathematical equations used to generate the
theoretical wings.
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Wing shape parameters

For all wing shapes tested, flapping wings generate more
thrust but are less efficient as the proportion of area in the outer
part of the wing increases (Fig. 3). This relationship is
strongest when performance is plotted against the proportion
of area in the outer one-fifth of the wing. The relationship is
similar for all four average chord lengths tested, although
thrust and efficiency have different asymptotes for each aspect
ratio (Fig. 3).

Wings with different shapes but the same amount of area
in the outer one-fifth of the wing generate the same amount
of thrust and perform with nearly identical efficiency over a
range of different average chord lengths (Fig. 4). Thus,
aspect ratio and the proportion of area in the outer one-fifth
of a wing are sufficient to describe a wing in terms of
aerodynamic performance, regardless of the specific details
of wing shape.

It should be noted that only wings in which the maximum
chord length occurs within the inner one-third of the wing span
converge onto the curves in Fig. 3. The performance of wings
that continue to increase in chord length past this point
diverges from these curves. For the present analyses, we used
only wings with the maximum chord located within the inner
one-third of the wing.

Relative performance of theoretical wings

High-aspect-ratio wings generate more thrust and are
generally more efficient than low-aspect-ratio wings
(Fig. 3A,B). Wings with more area distributed to the outer
portion of the wing also generate more thrust, but are less
efficient than wings with less area in the outer portion
(Fig. 3A,B).

As flapping frequency rises, thrust production increases and
efficiency generally decreases (Fig. 5), although at higher
frequencies and in wings with more area at the tip, efficiency
rises and falls with increasing average chord length (Fig. 5D,F).
As a result, low-aspect-ratio wings can perform more efficiently
than some higher-aspect-ratio wings (in this case, increasing
their efficiency by several per cent). In addition, low-aspect-
ratio wings flapping at higher frequencies not only can produce
more thrust but can also sometimes perform more efficiently
than if they were flapping at lower frequencies.

Wings with high wave speeds (e.g. stiffer wings) generate
more thrust (Fig. 6A), but are less efficient than those with
lower wave speeds (Fig. 6B). In wings with lower wave
speeds, efficiency rises and falls by several per cent with
increasing average chord length, again showing that low-
aspect-ratio wings can be more efficient than high-aspect-ratio
wings. The locations of the efficiency peaks (e.g. the locally
optimal average chord length) vary with wave speed.

Discussion
Ratfish performance and shape parameters

The potential flow analysis applied to ratfish swimming
provides a good estimate of thrust and demonstrates the
importance of considering wing and fin flexion in models of
animal flight and swimming (because thrust production is
overestimated when the fin is assumed to be stiff). Our analyses
based on theoretical wing shapes show that aspect ratio and the
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Table 2.Model results and calculated drag of ratfish

Female Juvenile

Flexible fin (measured wave speeds)
Power (W) 0.05 0.01
Efficiency 0.77 0.78
Thrust (N) 0.26 0.06
Dragbody+fins(N)* 0.18 0.05

Stiff fin (c=100 m s−1)
Power (W) 0.12 0.03
Efficiency 0.58 0.60
Thrust (N) 0.47 0.11
Dragbody+fins(N)* 0.18 0.05

The results of the fluid-dynamic model for power output, thrust
and efficiency of the female and juvenile ratfish are shown together
with the results when a wave speed of 100 m s−1 is used. 

*For comparison, the calculated drag (based on measured
coefficients and kinematic variables) for the body plus fins is
displayed.

Table 1.Kinematic and morphological parameters of ratfish

Adult Juvenile

Forward velocity, U (m s−1) 0.15 0.15
Tip amplitude, H (m) 0.058 0.033
Flapping frequency, f (s−1) 1.1 1.6
Wave speed, c (m s−1) 0.302 0.306
Chordwise amplitude change, ε 0 0
Mean angle of attack, γ (degrees) 0 0
Span, z0 (m) 0.124 0.068
Angle subtended by fin, Φ (degrees) 27.1 28.1
Fin area, Sp (m2) 0.0069 0.0022
Aspect ratio, AR(z02/Sp) 2.2 2.1
Body cross-sectional area, Scs (m2) 0.00551 0.00157

Kinematic variables measured from the lateral view of a
swimming ratfish include the forward velocity (U), tip amplitude
(H), flapping frequency (f) and wave speed (c) (see Fig. 1). 

Chordwise amplitude change (ε) was measured by comparing the
amplitudes of the leading and trailing edges at several points
spanwise. 

The mean angle of attack (γ) was taken to be zero because the
kinematics and bending of the fin are symmetrical when averaged
over a stroke. 

Span (z0) and the area of one fin (Sp) were measured from the
dorsal view of the ratfish and were used to calculate aspect ratio AR. 

Span and tip amplitude were used to calculate the angle subtended
by the fin (Φ). 

The cross section of the body at its widest point was assumed to be
an oval, and the cross-sectional area (Scs) was calculated from
measurements of maximum body width (from the dorsal view) and
depth (from the lateral view).
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proportion of area distributed to the outer one-fifth of the wing
are sufficient to characterize wing shape in terms of
performance in forward, flapping flight. Thus, aero- and
hydrodynamic force generation in forward flight appear to be
relatively insensitive to subtle differences in planform wing
shape.

While the analyses provide insight into the effects of wing
shape on flight performance, the two-dimensional assumption
of the fluid-dynamic model places limitations on some of the
results. Because the model is essentially a summation of two-
dimensional force calculations on strips running from the
leading to the trailing edge, spanwise flow is not included.

Without this three-dimensional flow, the model cannot predict
the effects of tip vortices, which contribute induced drag and
influence overall force production. In addition, strong spanwise
flow, which may occur at high flapping frequencies, would
alter both the overall direction and magnitude of forces and the
direction of traveling waves on the wings. 

Low-aspect-ratio wings are expected to have larger tip
vortices and stronger spanwise flow, so the two-dimensional
assumption may become more problematic as average chord
length increases (aspect ratio declines). Higher induced drag
on these wings will decrease both thrust and efficiency.
Including induced drag would affect the values calculated by
the model, but will not change the result that multiple peaks in
efficiency arise from the interaction between planform shape,
unsteady motion and wing or fin flexion.

Interestingly, the impact of induced drag will depend on the
reduced frequency parameter. As the reduced frequency
parameter increases, bound circulation is expected to decrease
because there is not enough time for bound circulation to
develop fully before stroke reversal. Thus, induced drag, which
is caused by the shedding of bound circulation, will have less
of an effect on performance.

Similarly, the predicted values of thrust and efficiency will
change when wings are flapped with a non-zero angle of attack
(as in aerial flyers that need to support their weight). However,
flapping flight with a non-zero mean angle of attack still
produces multiple peaks in both efficiency and the thrust
coefficient (see Daniel, 1987), although the locations of these
peaks may be different from those shown in the figures.

Fig. 3. Performance of theoretical wings generated with the five
shape equations versusthe proportion of area in the outer one-fifth of
the wing. Each point represents the performance of one theoretical
wing shape. The area of each wing tested is 0.0069 m2 (multiplied by
2 to give the total performance of an animal). U=0.15 m s−1,
c=0.3 m s−1, H=0.058 m and f=2.27 s−1. Wing area was fixed, and
span was adjusted to create wings with the four specified aspect
ratios (AR). (A) Thrust versusthe proportion of area in the outer one-
fifth of the wing. (B) Efficiency versusthe proportion of area in the
outer one-fifth of the wing. U, velocity; c, wave speed; H, fin tip
amplitude; f, flapping frequency; lavg, average chord length.
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Fig. 4. Thrust and efficiency versus average chord length for
theoretical wings with different shape, but the same proportion of
area in the outer one-fifth of the wing. Wings were generated with
three different shape equations: a beta distribution, a first-degree
polynomial and a third-degree polynomial. All wings have 9 % of
area in the outer one-fifth of the wing. Chord length distributions are
also shown. Sp=0.0069 m2, U=0.15 m s−1, c=0.3 m s−1, H=0.058 m
and f=2.27 s−1. Sp, total area of one pectoral fin; U, velocity; c, wave
speed; H, fin tip amplitude; f, flapping frequency.
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Because the model includes the Kutta condition (in which
flow must leave the wing smoothly at the trailing edge), the
performance of wings or fins that move with extremely high
angles of attack, large amplitudes, high reduced frequency
parameters or fast rotations at stroke reversal (motions causing
separated flow) cannot be predicted.

Relative performance of wings
We find that thrust and efficiency generally increase in

wings with lower average chord lengths (higher aspect ratios),
similar to what has been predicted by traditional aerodynamics.
However, when flapping frequency is higher and more area is
distributed to the outer portion of the wing, efficiency rises and
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Fig. 5. Performance of theoretical wings at varying flapping frequencies with Sp=0.0069 m2, U=0.15 m s−1, c=0.3 m s−1 and H=0.058 m. All wings
were generated with first-degree polynomials. (A,B) Thrust and efficiency versusaverage chord length for triangular wings that have 4 % of the
wing area in the outer one-fifth of the wing. (C,D) Thrust and efficiency versusaverage chord length for wings that have 12 % of the wing area in
the outer one-fifth of the wing. (E,F) Thrust and efficiency versusaverage chord length for rectangular wings that have 20 % of the wing area in
the outer one-fifth of the wing. Sp, total area of one pectoral fin; U, velocity; c, wave speed; H, fin tip amplitude; f, flapping frequency.
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falls with increasing average chord length, causing these
predictions to break down and suggesting that local
performance optima exist.

Both higher flapping frequencies and more area in the outer
one-fifth of the wing lead to an increase in the reduced
frequency parameter (σ=ωl/U) in the outer portion of
the wing, a region that contributes strongly to unsteady
force production. The effects of this change on thrust
production and efficiency can most easily be understood
by examining the non-dimensional power and thrust
produced by an oscillating strip. As strip length increases
(increasing σ), the non-dimensional power and thrust
increase initially and then fall into a decaying oscillation
(Fig. 7A). Efficiency shows a similar, but complementary,

pattern (Fig. 7B), demonstrating a trade-off between thrust
and efficiency.

These oscillatory behaviors can be explained by the
unsteady fluid dynamics inherent in forward, flapping flight.
As wing motion becomes more unsteady (for example, as
flapping frequency or chord length increases), forces arising
from the inertial components of fluid motion increase, causing
a rise in inertial thrust production. However, as the reduced
frequency parameter increases, the time available for bound
circulation to develop decreases, and at some point bound
circulation will begin to fall below its full value, causing a
decline in total thrust production. As the reduced frequency
continues to rise, multiple waves form on the wing and further
complicate force production.

While the performance of non-dimensional strips indicates
a trade-off between thrust and efficiency, this relationship
changes when the strips of a wing are given a finite area and
summed. In even the simplest case of rectangular wings (with
all strips of equal chord length), the relationship between thrust
production and average chord length is not the same as the
relationship between non-dimensional thrust production and
strip length. While non-dimensional thrust initially rises with
increasing chord length and then oscillates as chord length
increases further (Fig. 7A), total thrust production by
rectangular wings falls continuously as average chord length
is increased (Fig. 7C).

This decrease in thrust production can be explained by the
fact that, as the average chord length of the wings increases
(aspect ratio decreases) with area held constant, more of the
wing area is distributed near the base of the wing (because span
is decreased). Parts of the wing that are closer to the base
undergo smaller accelerations and produce relatively less
unsteady, inertial force. Distributing more wing area close to
the base (as in low-aspect-ratio wings) therefore results in
lower total force production and outweighs the non-
dimensional predictions of optimal chord length. In contrast,
whole-wing efficiency retains the oscillatory behavior seen in
individual strips because efficiency is the ratio of thrust to
power; the area terms in the power and thrust equations cancel,
and efficiency is determined by the ratio of coefficients, as in
the non-dimensional case (Fig. 7D).

The reversal of the relationship between non-dimensional
thrust production and strip length when performance is
summed over the whole wing changes the non-dimensional
prediction of a trade-off between thrust and efficiency into the
familiar result that high-aspect-ratio wings generate more
thrust and are more efficient than low-aspect-ratio wings. This
relationship proves to be more complex, however, in several
cases. When the reduced frequency parameter is raised by
increasing flapping frequency, oscillations in efficiency
become more apparent, and wings with high average chord
lengths (low-aspect-ratio wings) can perform more efficiently
than those with lower average chord lengths. Distributing more
area to the outer portion of the wing (even when average chord
length remains the same) produces the same effect. In addition,
flapping low-aspect-ratio wings at higher frequencies can

Fig. 6. Performance of theoretical rectangular wings with varying
wave speeds. Wings were generated with a first-degree polynomial
(20 % of the wing area in the outer one-fifth). Sp=0.0069 m2,
U=0.15 m s−1, H=0.058 m and f=2.27 s−1. (A) Thrust versusaverage
chord length. (B) Efficiency versusaverage chord length. Sp, total
area of one pectoral fin; U, velocity; c, wave speed; H, fin tip
amplitude; f, flapping frequency.
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actually increase both thrust production and efficiency in some
cases.

As wave speed decreases, efficiency again rises and falls
with increasing average chord length. The overriding effect of
decreases in wave speed (e.g. more flexible fins) is to increase
efficiency and decrease thrust. But, at lower wave speeds, the
local optima in efficiency become more significant, giving
some low-aspect-ratio wings a selective advantage over
higher-aspect-ratio wings. In addition, the locations of these
optima (the average chord lengths that perform best) depend
on the wave speed, providing a landscape of evolutionary
pressures that could influence various morphological and
kinematic features.

Concluding remarks

Our analysis points to several important issues that should
be considered in aerodynamic models of flapping flight. First,
it reinforces the growing understanding that unsteady effects
must be incorporated into models of swimming and flight.
Traditional aerodynamic predictions concerning the relative
performance of different wing shapes were upheld in this
analysis only when the flapping frequency was low or the wing

had a relatively tapered tip (a small proportion of area in the
outer one-fifth of the wing).

Second, the analysis demonstrates the importance of
considering wing flexion in models of flight. While there may
be cases where wing flexion is less important (e.g. at lower
Reynolds numbers), we find that the thrust generated by a
wide range of wings with differing aspect ratios and area
distributions will be overestimated and the efficiency
underestimated if wings are assumed to be rigid. Furthermore,
unsteady effects combined with wing flexion clearly
complicate efficiency calculations for flapping wings.

Most importantly, the results point to one possible source of
the diversity of wing morphologies and kinematics that exist
in nature. The repeated rising and falling of efficiency with
increasing chord length suggests that multiple local
performance optima exist that may exert subtle selective
pressures on the kinematics and morphology of flying and
swimming animals. While the predicted changes in efficiency
may seem small (Fig. 5D,F, Fig. 6B), an increase in efficiency
of a few per cent could, in fact, be critical for animals in many
different situations. For example, animals with low energy
reserves or those that regularly travel long distances could gain
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a large selective advantage if an increase in efficiency allowed
them to travel slightly further or decrease their weight by using
less fuel than their competitors. In addition, the magnitude of
these local optima will vary with different combinations of
morphological and kinematic parameters. 

The interactions between flight variables (such as wing
shape, reduced frequency parameter and wing flexion) show
that animals can change many different aspects of kinematics
or morphology to reach local peaks in performance. Of course,
these selective pressures will interact with many others, such
as physical constraints on wing morphology and the interaction
between appendage size and maneuverability in complex
habitats, to influence the suite of characters that any given
animal will display.

The potential importance of wing flexion raises the question
of how animals control the bending of their wings and fins
during flight. Many vertebrate flyers and swimmers control the
bending and flexing of their wings or fins at least partially by
muscular activity; the control of these subtle movements on the
timescale of a single flap must involve a complex system of
feedback and neural control.

Animals with little or no muscular control of wing or fin
flexion, such as insects, present an equally interesting
challenge. How do these animals control the pattern and timing
of the wing deformations that affect flight performance? In
animals with little muscular control of wing bending, the
evolution of wing shape and the passive flexibility of wings
may be linked, and this evolution may be related to the flight
style and kinematics of each animal.

Although our analyses focus on planform shape as a
determinant of flight performance, the results illustrate that no
single feature of flight kinematics or morphology can be
studied in isolation. Planform shape, unsteady fluid effects and
wing flexion interact in a complex way during flapping flight.
In addition, we have not yet explored the effects of unsteady
flight mechanisms involving separated flow on the evolution
of wing design. However, this study suggests that there are
other general patterns in the functional consequences of wing
shape that may clarify the relationship between wing
morphology, kinematics and flight performance.

Appendix 1 (from Daniel, 1987)
Each segment of the wing is treated as a harmonically

oscillating flexible plate centered at the origin. Its motion is
prescribed by Equation 1A. The solution of Wu (Wu, 1971) to
Euler’s equation requires a Fourier representation of the
position and velocity of all points on the wing:

where

and

where

β represents the Fourier coefficients for wing position, b
represents the Fourier coefficients for wing velocity, θ is a
variable in the Fourier representation and V(x,t) is the vertical
velocity at all points on the surface of the wing, which is
given by the material derivative of the instantaneous wing
position:

V(x,t) = (∂/∂t + U∂/∂x)h(x,t) , (A5)

where U is the forward velocity. From these Fourier
representations, Wu (Wu, 1971) provides equations for the
time-averaged thrust, energy and power coefficients, here
defined as:

CP = Pavg/(SρπU 3l) = 
Re(−iσ/U)(b0 + b1)[(β0* − β1*)Θ(σ) + β1*] , (A6)

where the asterisk denotes the complex conjugate of the
parameter. Pavg is the mean power expenditure, Θ(σ) is
Theodorsen’s function (defined below), Re indicates the real
part of the enclosed function and ρ is the density of the fluid.
CP is a dimensionless coefficient that represents the total rate
at which energy is expended to produce thrust and create
vorticity in the wake behind the wing. This latter form of
energy dissipation arises from the existence of a jump in the
tangential velocity of flow at the trailing edge of the wing. The
coefficient for the rate of energy loss by this mechanism is
given by:

CE = Eavg/(SρπU 3l) = B(σ)(b0 + b1)(b0* + b1*)/U 2 , (A7)

where Eavg is the mean energy expended in the wake and
B(σ) is a modified Theodorsen’s function. Two functions in
Equations A6 and A7 depend on the degree of unsteadiness
in the motion. This unsteadiness is given by the parameter σ,
called the reduced frequency parameter, which is a measure
of the amount of vertical oscillation relative to forward steady
motion:

σ = ωl/U . (A8)

The two functions of this parameter, B(σ) and Θ(σ), set the
time lag in the growth of circulation around the wing. The latter
is called Theodorsen’s function and is a complex combination
of Bessel functions. The former represents portions of
Theodorsen’s function:

Θ(σ) = F + iG = K1(iσ)/[K0(iσ) + K1(iσ)] (A9)
and

B(σ) = F − (F 2 + G2) , (A10)

where F is the real part of Theodorsen’s function, G is the

(A4)bn = 2/π
⌠

⌡

π

0
V(x,t)cos(nθ)dθ .

^
∞

n=1

(A3)V(x,t) = b0/2 + βncos(nθ) ,

(A2)βn = 2/π
⌠

⌡

π

0
h(x,t)cos(nθ)dθ

^
∞

n=1

(A1)h(x,t) = β0/2 + βncos(nθ) ,
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imaginary part of Theodorsen’s function, i is equal to the
square root of −1, and K0 and K1 are modified Bessel functions.
The function Θ(σ) declines asymptotically from a value of 1
at σ=0 to a value of 0.5 as σ tends to infinity (see Lighthill,
1975). Finally, a coefficient of thrust may be defined by the
difference in the coefficients for total power expended and
energy lost:

CT = CP − CE, (A11)

with an efficiency parameter defined as the rate of useful work
done to total power expended:

η = CT/CP. (A12)

Following the appropriate manipulations of the above
equations, we arrive at expressions for the coefficients in terms
of various Bessel functions. Below are simplified versions of
the resultant equations:

CE = 4β(σ)(φ12 + φ22)/U 2 , (A13)

CP = 4ω(ψ1φ2 + φ1ψ2)/U 2 , (A14)

where
φ1 = UεJ0(α) + (1 − U/c)ωJ1(α)(h0 + 2ε) , (A15)

φ2 = −UεJ1(α) + (1 − U/c)ω[(h0 + ε)J0(α) + µ] , (A16)

ζ1 = (h0 + ε)J0(α) − µ , (A17)

ζ2 = −J1(α)h0 , (A18)

ψ1 = ζ1F − ζ2G + µ , (A19)

ψ2 = ζ1G + ζ2F + (h0 + ε)J1(α) , (A20)

µ = ε[J0(α) − J2(α)]/2 , (A21)

α = ωl/c , (A22)

and where Jn is a Bessel function of order n. The central point
of these equations is that the performance of this two-
dimensional strip, as defined by the coefficients in Equations
A11, A13 and A14, depends in a complex manner upon Bessel
functions of the parameter α. This parameter is a measure of
the number of propulsive waves present on the wing at any
instant in time.

Appendix 2
Wings generated with a polynomial distribution were

created using equations from Ellington (1984b):

ĉ = a0 + a1r̂ + a2r̂ 2 + a3r̂ 3 , (A23)

where ĉ is the non-dimensional chord length at any position r̂
along the non-dimensional span. The coefficients a0–a3 are
found by solving the set of simultaneous equations:

r̂ kk = a0/(k + 1) + a1/(k + 2) + a2/(k + 3) + a3/(k + 4) ,
(A24)

with k=0, 1, 2 and 3 and where r̂ k is the radius of the kth
moment of area. The first moment of area was taken to be 0.4
(as measured on the ratfish fins) and the second and third

moments of area were found from the equations (Ellington,
1984b): 

r̂ 2 = 0.929(r̂ 1)0.732, (A25)

r̂ 3 = 0.900(r̂ 1)0.581. (A26)

Wings generated with a beta distribution were also created with
equations from Ellington (1984b). The beta distribution is
defined for x from 0 to 1 as:

f(B) = xp−1(1 − x)q−1/B(p,q) , (A27)

where the beta function B(p,q) is:

B(p,q) = ∫xp−1(1 − x)q−1dx , (A28)

integrated from 0 to 1. Ellington (1984b) equated f to ĉ, the
non-dimensional chord length, and x to r̂ , the non-dimensional
span. He then defined the parameters p and q as:

p = r̂ 1{[ r̂ 1(1 − r̂ 1)/(r̂ 22 − r̂ 12)] − 1} , (A29)

q = (1 − r̂ 1){[ r̂ 1(1 − r̂ 1)/(r̂ 22 − r̂ 12)] − 1} , (A30)

where r̂ 1 is the radius of the first moment of area and r̂ 2 is the
radius of the second moment of area (found using equation
A25, as above).

The last series of wings was created with an exponential
equation of the form (Daniel, 1987):

l(z) = l0[1 − (z/z0)a] , (A31)

where l0 is the half chord length at the base, z0 is the span of
the wing and l(z) describes the half chord length at various
local positions along the span. The exponent a was varied from
0.01 to 4 to change the shape of the wing.

List of symbols
a exponent of wing shape in Equation A31
a0–a2 polynomial coefficients
AR aspect ratio
b0, b1,...bn Fourier coefficients for wing velocity
B(p,q) beta function
B(σ) modified Theodorsen’s function
c wave speed
ĉ non-dimensional chord length
CD,body coefficient of drag for the body
CD,fin coefficient of drag for one pectoral fin
CE coefficient of energy
CP coefficient of power
CT coefficient of thrust
Dbody total drag on the body
Dfins total drag on both pectoral fins
Eavg mean energy expended in the wake
f flapping frequency
f(B) beta distribution
F real part of Theodorsen’s function
G imaginary part of Theodorsen’s function
h0 leading edge amplitude
h(x,z,t) local wing position
H fin tip amplitude
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i √−1
Jn Bessel function of order n
K0, K1 modified Bessel functions
l half chord length
lavg average chord length
l(z) half chord length at various positions along the 

span
l0 half chord length at wing base
n number of strips
Pavg mean power expenditure
Pstrip power expenditure of a chordwise strip of the 

wing
Ptotal total power generated by both wings
r̂ non-dimensional span
r̂ k radius of kth moment of area
Re real part of the enclosed function
Si surface area of the ith wing strip
Scs maximal cross-sectional area of the body
Sp total area of one pectoral fin
t time
Tstrip thrust calculated for a chordwise strip of the 

wing
Ttotal total thrust generated by both wings
U forward velocity
V(x,t) vertical velocity at all points on the wing 

surface
w strip width
x spatial coordinate (spanwise direction)
z spatial coordinate (chordwise direction)
z0 span
α reduced wave frequency parameter
β0, β1,...βn Fourier coefficients for wing position
ε chordwise amplitude variation parameter
Φ flapping angle 
γ mean angle of attack
η efficiency 
ηstrip efficiency of a wing strip
ηtotal efficiency of both wings
θ variable in the Fourier representation
ρ fluid density
Θ(σ) Theodorsen’s function
σ reduced frequency parameter
τ flapping period
ω circular frequency (2πf)
ξ spanwise amplitude variation parameter
* indicates the complex conjugate of a variable
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