
Neuropeptides are the most abundant chemical mediators in
the nervous system, both in vertebrates (Strand, 1999) and in
invertebrates (Nässel, 1993; Schoofs et al., 1997; Keller,
1992). In the 1970s, approximately 20 neuropeptides were
known in mammals, and it became clear that peptides produced
in the brain have a direct influence on neurones and effect
complex behaviours such as learning (De Wied, 1971). The
concept of neuropeptides was born, and research on
neuropeptides expanded dramatically (Hökfelt, 1991; Nässel,
1993; Strand, 1999). At the same time, the first invertebrate
neuropeptides were isolated: in crustaceans, red pigment-

concentrating hormone (RPCH) (Fernlund and Josefsson,
1972) and pigment-dispersing hormone (Fernlund, 1971;
Fernlund, 1976); in insects, proctolin (Brown and Starrat,
1975; Starrat and Brown, 1975) and adipokinetic hormone
(Stone et al., 1976); and in molluscs, FMRFamide (Price and
Greenberg, 1977). Since then, the number of neuropeptides
isolated has increased greatly. In insects, for example, more
than 100 neuropeptides have been isolated, including more
than 56 neuropeptides in the two locust species Locusta
migratoria and Schistocerca gregariaalone (Schoofs et al.,
1997). Most of the neuropeptides belong to peptide families
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The stomatogastric nervous system (STNS) controls the
movements of the foregut and the oesophagus of decapod
crustaceans and is a good example for demonstrating that
peptides are ubiquitously distributed chemical mediators
in the nervous system. The stomatogastric ganglion (STG),
one of the four ganglia of the STNS, contains the most
intensively investigated neuronal circuits. The other
ganglia, including the two commissural ganglia (CoGs)
and the oesophageal ganglion (OG), are thought to be
modulatory control centres. Peptides reach the STNS
either as neurohormones or are released as transmitters.
Peptide neurohormones can be released either from
neurohaemal organs or from local neurohaemal release
zones located on the surface of nerves and connectives.
There were thought to be no peptidergic neurones with cell
bodies in the STG itself. However, some have recently been
described in adults of four species, in addition to a transient
expression of peptides during development in two species.
None of these peptidergic neurones has been investigated
physiologically, in contrast to peptidergic neurones that
project to the STG and have cell bodies in either the CoGs
or the OG. It has been shown that neurones containing the
same peptide elicit different motor patterns, that the
peptide transmitter and the classical transmitter are not
necessarily co-released and that the effect of a peptidergic

neurone depends on its firing frequency and on which other
modulatory neurones are co-active. The activity of
modulatory projection neurones can be elicited by sensory
neurones, and their activity can depend on the firing
frequency of the sensory neurone. In addition to being
found within the neuropile of ganglia, peptides are present
in neuropile patches located within the nerves of the STNS,
suggesting that these nerves can integrate as well as
transfer information. Furthermore, sensory neurones and
muscles exhibit peptide-like immunoreactivity and are
modulated by peptides. Bath-applied peptides elicit
peptide-specific motor patterns within the STG by
targeting subsets of neurones. This divergence is contrasted
by a convergence at the level of currents: five different
peptides modulate a single current. Peptides not only
induce motor patterns but can also switch the alliance of
neurones from one network to another or are able to fuse
different networks. In general, peptides are the most
abundant group of modulators within the STNS; they are
ubiquitously present, indicating that they play multiple
roles in the plasticity of neural networks.
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while a few, such as proctolin, are orphan peptides that have
the same amino acid sequence in all species from which they
have been isolated. Most neuropeptides were isolated using
bioassays based on physiological effects such as light
adaptation, spontaneous contractions of the gut or changes in
heartbeat frequency. Immunocytochemistry also flourished in
the 1970s and was used to demonstrate that neuropeptides,
originally isolated as hormones, are present in the central
nervous system (CNS), suggesting additional functions as
neurotransmitters (Marder and Hooper, 1985; Nässel, 1993).

To study peptides as neurotransmitters, it was important to
study identified neurones containing neuropeptides or the
effects of particular peptides on identified neurones embedded
in small circuits of known function. Some invertebrate systems
fulfilled these needs and have contributed to our understanding
of peptide function. The mollusc Aplysia californica, for
example, has been used to increase our knowledge about
peptide co-transmission in studies of the actions of identified
motoneurones containing known peptides (Weiss et al., 1993;
Brezina and Weiss, 1997). Research on the mollusc Lymnaea
stagnalis has demonstrated that two alternative mRNA
transcripts of the gene coding for FMRFamide-related peptides
are expressed in the CNS in a mutually exclusive manner,
resulting in the differential distribution of distinct sets of
neuropeptides in single neurones (Santama and Benjamin,
2000). In the insect Manduca sexta, sequential motor patterns
were elicited by neuropetides released in a timed hierarchy
(Gammie and Truman, 1997).

This review describes research on neuropeptides performed
in another invertebrate system, the stomatogastric nervous

system (STNS) of decapod crustaceans. This research has
demonstrated that even small neural circuits are modulated by
a large number of neuropeptides and has provided insights into
mechanisms by which neuropeptides change motor patterns
(Harris-Warrick et al., 1992; Marder and Weimann, 1992;
Marder et al., 1994; Marder et al., 1997). The STNS is
therefore an excellent model system demonstrating that
peptides are strongly involved in the plasticity of neural
networks. The goal of this review is to summarise our
knowledge about the ubiquitous distribution of peptides within
the STNS and to reassess the role of peptidergic neurones in
the modulation of motor pattern generation in this model
system.

The stomatogastric nervous system
The STNS lies between the brain and the suboesophageal

ganglion and consists of four ganglia together with connecting
and motor nerves (Fig. 1). The ganglia are the paired
commissural ganglia (CoGs), the oesophageal ganglion (OG)
and the stomatogastric ganglion (STG). The STNS controls the
movements of the three regions of the decapod crustacean
stomach, the cardiac sac, the gastric mill and the pylorus, in
addition to controlling the movement of the oesophagus. The
circuits controlling the gastric mill and the pylorus are located
in the stomatogastric ganglion (STG). The neurones of the
STG can be individually identified and, because of their small
number (19–32 neurones depending on the species) and
accessibility, the synaptic connections among these neurons
have been characterised in the adult STG. The robust firing

P. SKIEBE2036

Cardiac
sac

Gastric
mill

Pylorus

Heart

Pericardial organBrain

Eyestalk

STG

SOG
CoG

poc
coc

OG

OG

STG

dvn

lvn

poc

son

ion
on

stn

SOG

Brain

CoG

coc

ivn

A

B

C

Oesophagus

Ophthalmic artery

Fig. 1. Schematic drawings showing the stomatogastric nervous system (STNS), stomach, heart and pericardial organs. (A) Location within
Cherax destructor. (B) Enlarged view: The STNS consists of four ganglia, the paired commissural ganglia (CoGs), the oesophageal ganglion
(OG) and the stomatogastric ganglion (STG), together with their connecting and motor nerves. The STNS is located between the brain and the
suboesophageal ganglion (SOG), which are connected by the circumoesophageal connective (coc) surrounding the oesophagus. The post-
oesophageal commissure (poc) links both cocs close to the SOG. The STG lies within the ophthalmic artery, which carries haemolymph
containing hormones released by the pericardial organs to the brain. Another important neurohaemal organ, the X-organ/sinus gland complex,
is located in the eystalks. (C) Schematic diagram of an isolated STNS and the location of nerves discussed in the review. dvn, dorsal ventricular
nerve; ion, inferior oesophageal nerve; ivn, inferior ventricular nerve; lvn, lateral ventricular nerve; on, oesophageal nerve; son, superior
oesophageal nerve; stn, stomatogastric nerve. Not drawn to scale (modified from Skiebe, 1999).



patterns under in vitro conditions allowed investigation of the
effects of peptides ranging from their effects on the general
motor pattern to the particular currents the peptide is
influencing.

The STG is connected with the rest of the STNS through a
single nerve, the stomatogastic nerve (stn, Fig. 1C), which
therefore carries all the information between the STG and the
other ganglia. Within the STNS, a large variety of neuroactive
substances have been identified in a number of species. Fig. 2A
compares the substances that are present within the STG of five
species. These substances include the classical transmitters
acetylcholine, glutamate (Marder, 1987) and γ-aminobutryric
acid (GABA) (Nusbaum et al., 1989), the biogenic amines
(Harris-Warrick et al., 1998a; Harris-Warrick et al., 1998b),
the gas nitric oxide (Scholz et al., 1996; Scholz et al., 1998)
and a variety of neuropeptides (Marder et al., 1994; Marder et
al., 1997). The investigation of peptides within the STNS
started in the 1980s (Hooper and Marder, 1984) and since then
peptides have become the largest group of chemical mediators
found in the STNS or in neurohaemal structures that can
influence the STNS.

Peptides in neurohaemal organs and neurohaemal release
zones

Peptides as neurohormones can be released by neurohaemal
organs and neurohaemal release zones. Neurohaemal organs in
decapod crustaceans include the X-organ/sinus gland complex
in the eyestalk, the pericardial organs and the postcommissural
organ, the latter being a neurohaemal organ associated with the
postoesophageal commissure (poc, Fig. 1B). The STG lies
within the ophthalmic artery, which transports haemolymph,
including the neuroactive substances released from the
pericardial organs, from the heart to the brain (Fig. 1). It has
therefore been assumed that hormones present in the
pericardial organs are important for the modulation of the STG
motor patterns (Fig. 2B, e.g. Cancer borealis, Christie et al.,
1995b; Cherax destructor, Skiebe, 1999; Skiebe et al., 1999).
Putative neurohaemal release zones close to the STNS were
found on the poc and on the circumoesophageal connectives
(cocs) of the crayfish Cherax destructor, exhibiting
allatostatin-like, proctolin-like and crustacean cardioactive
peptide (CCAP)-like immunoreactivity (Fig. 3; Skiebe, 1999;
Skiebe et al., 1999). In Cherax destructor, another putative
neurohaemal release zone is located in the sheath of various
nerves of the STNS and is marked by an antibody generated
against the vesicle protein synaptotagmin (Skiebe, 2000). At
the ultrastructural level, profiles packed with dense-core
vesicles were found in the perineural sheath of these areas (Fig.
3B; Skiebe and Ganeshina, 2000). Similar profiles have been
described in Panulirus interruptusand Homarus americanus
(Friend, 1976; Kilman and Marder, 1997). The content of these
vesicles is unknown. It is likely that hormones influence the
STG, since peptides not present in the STG, such as CCAP,
elicit a strong physiological response (Weimann et al., 1997;
Marder and Richards, 1999). Furthermore, muscles not known

to receive a peptidergic innervation are modulated by peptides
(see below).

Peptides in the stomatogastric ganglion
Ultrastructural investigation of the neuropile of the

stomatogastric ganglion

Most of the synaptic profiles within the STG containing
dense-core vesicles (Maynard, 1971; Kilman and Marder,
1996; Skiebe and Ganeshina, 2000) have synaptic
specialisations, suggesting that most peptides are released in
close proximity to synapses. These presynaptic profiles have
been subdivided into five types (types A–E) on the basis of the
distribution of clear and dense-core vesicles within them. With
the exception of the type E profile, found only in Cancer
borealis, all species investigated have the same profile types.
Other presynaptic profiles that could not be assigned to one of
the five types were also present, suggesting the existence of
additional types of presynaptic profiles. There are indications
that peptides are also released in a paracrine fashion. Possible
paracrine release sites have been reported within the STG at
the ultrastructural level for both Panulirus interruptus(Friend,
1976; King, 1976) and Cancer borealis(Kilman and Marder,
1996). In Homarus americanusand Cherax destructor, similar
profiles may be present but are not common (Maynard, 1971;
Skiebe and Ganeshina, 2000).

Peptidergic cell bodies in the stomatogastric ganglion

The cell bodies of neurones that release peptides as
transmitters within the STG are found either within the STG
or projecting to the STG, mostly from the CoGs or the OG
(Coleman et al., 1992). Although numerous antibodies against
peptides have been used, evidence for peptidergic cell bodies
within the adult STG was found only for the FMRFamide
and allatostatin families (Fig. 2A: a; Table 1). Since only
FLRFamides and no FMRFamides have been isolated from
crustaceans (Trimmer et al., 1987; Mercier et al., 1993; Keller,
1992; Weimann et al., 1993), immunoreactivity detected using
an antibody against FMRFamide will be referred to as
FLRFamide-like immunoreactivity. The first peptidergic
neurones noted were three FLRFamide-like immunoreactive
cell bodies in the shrimp Palaemon serratus(Meyrand and
Marder, 1991), and these were thought to be an exception. In
Homarus americanus, 3–4 FLRFamide-like immunoreactive
cell bodies were found in half the animals investigated with
one antibody (Table 1; Kilman et al., 1999), which were
previously not found using a different antibody (Marder,
1987). Allatostatin-like immunoreactive neurones were found
in two crayfish species (Cherax destructorand Procambarus
clarkii; Skiebe, 1999). Over the course of development,
peptidergic cell bodies appear in the STG during some stages.
In two lobster species (Homarus americanusand Homarus
gammarus), FLRFamide- and proctolin-like immunoreactivity
is expressed transiently, although the time window differs even
in closely related species (Fig. 2: d; Table 1; Fénelon et al.,
1998; Fénelon et al., 1999; Kilman et al., 1999). The identity
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Fig. 2. Summary of the neuroactive mediators present in the neuropile of the stomatogastric ganglion (STG) and neurohaemal organs identified
either biochemically and/or by immunocytochemistry. (A) Neuroactive mediators in the STG of the crab Cancer borealis, the lobsters
Homarus americanusand Homarus gammarus, the spiny lobster Panulirus interruptusand the crayfish Cherax destructor. Large circles in the
drawing represent the STG somata. Mediators shown to be present are marked by a plus sign, those not present by a minus sign. The classical
transmitters of the STG neurones are acetylcholine and glutamate. Only in a few cell bodies were other mediators found in both adults (a) and
during development (d; see also Table 1). The source of the serotonin is the gastropyloric receptor cells (*). ACh, acetylcholine (Marder, 1987);
Glu, glutamate (Marder, 1987); GABA, γ-aminobutyric acid (Nusbaum et al., 1989; Cournil et al., 1990; Swensen et al., 2000); DA, dopamine
(Barker et al., 1979; Kushner and Barker, 1983; Marder, 1987; Cournil et al., 1994; Cournil et al., 1995); HA, histamine (Claiborne and
Selverston, 1984a; Mulloney and Hall, 1991); 5-HT, serotonin (Beltz et al., 1984; Katz et al., 1989; Kilman et al., 1999; P. Skiebe, unpublished
data); Oct, octopamine (Barker et al., 1979); NO, nitric oxide (Scholz et al., 1998); AST, allatostatin (Skiebe and Schneider, 1994; Kilman et



of none of these peptidergic neurones is known, either in the
adult or in the embryonic or larval STG.

Peptidergic interneurones projecting into the
stomatogastric ganglion

Most information about the role of peptidergic neurones in
modulating the networks of the STG stems from studies of
identified peptidergic neurones that project into the STG. Some
of them are sensory neurones, but the majority are
interneurones located in the CoGs, the OG, the inferior

ventricular nerve (ivn) or the junction of the superior
oesophageal nerve (son) and the stnwith the oesophageal nerve
(on, Table 1). That neurones containing the same peptide can
elicit a different motor pattern was shown by investigating
three pairs of proctolin-like immunoreactive neurones in
Cancer borealis(Fig. 4; Blitz et al., 1999): the modulatory
proctolin neurones (MPNs) with cell bodies located either in
the OG or in the on, and the modulatory commissural neurones
1 and 7 (MCN1 and MCN7) with cell bodies located in the
CoGs. Both MPN (showing proctolin- and GABA-like
immunoreactivity, Nusbaum and Marder, 1989a; Blitz et al.,
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al., 1999; Skiebe, 1999); ATR, allatotropin (A. E. Christie, unpublished data); β-PDH, β-pigment dispersing hormone (Mortin and Marder,
1991); Buc, buccalin (Christie et al., 1994); CabTRP, Cancer borealistachykinin-related peptide (Goldberg et al., 1988; Blitz et al., 1995;
Christie et al., 1997b; Fénelon et al., 1999); CCAP, crustacean cardioactive peptide (Christie et al., 1995b; Kilman, 1998; Skiebe et al., 1999);
CCK, cholecystokinin (Turrigiano and Selverston, 1991; Christie et al., 1995a; Meyrand et al., 2000; subscripts indicate different antibodies
against CCK); Cor, corazonin (Christie and Nusbaum, 1995); FLRF, FLRFamide-related peptides (only FLRFamides have been isolated from
crustaceans; Marder et al., 1987; Weimann et al., 1993; Fénelon et al., 1998; Kilman et al., 1999); Myo, myomodulin (Christie et al., 1994);
Proc, proctolin (Marder et al., 1986; Fénelon et al., 1998; Fénelon et al., 1999; Kilman et al., 1999; Skiebe et al., 1999); RPCH, red pigment-
concentrating hormone (Nusbaum and Marder, 1988; Dickinson and Marder, 1989; Fénelon et al., 1999). (B) Summary of the neuroactive
mediators present in the STG (excluding the classical transmitters ACh and Glu of STG neurones), in the pericardial organs (PO) and in the X-
organ/sinus gland complex (SG) of the crab Cancer borealisand on the post-oesophageal commissure (poc), the STG and the PO of the
crayfish Cherax destructor(Cancer borealis, Christie et al., 1995b; Cherax destructor, Skiebe, 1999; Skiebe et al., 1999; P. Skiebe,
unpublished data). Fig. 2A, left, is modified from Marder et al., 1994; Fig. 2B, left, is modified from Christie et al., 1995b. stn, stomatogastric
nerve; dvn, dorsal ventricular nerve.
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Fig. 3. Putative neurohaemal release zone on the surface of the circumoesophageal connective (coc) and the post-oesophageal commissure
(poc). (A) Drawing of allatostatin-like immunoreactivity on the surface of the cocs and the poc found only in Cherax destructor. Similar
staining was found with antibodies generated against crustacean cardioactive peptide and proctolin. Other stained structures, including axons in
the coc and cell bodies and neuropile in the commissural ganglia (CoGs) were not drawn. ion, inferior oesophageal nerve; son, superior
oesophageal nerve. (B) Transmission electron micrograph of a cross section through the poc showing a large profile in the perineural sheath
that contains dense-core vesicles (arrowheads) and electron-dense granules (arrows) close to a glial cell (g) process. The profile is separated
from the haemolymph space (h) only by a thin extracellular matrix (em) representing a basal lamina. m, mitochondrion. Scale bar, 0.5µm. A is
modified from Skiebe, 1999; B is modified from Skiebe et al., 1999.
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Table 1.Peptidergic neurones in the stomatogastric nervous system (not including unidentified neurones in the commissural
ganglia and oesophageal ganglion)

Location Identity Transmitter Number Species Stage References

STG ? FLRFamide-like 3 Palaemon serratus Adult Meyrand and Marder, 1991
1–3 Homarus gammarus E50 to LI Fénelon et al., 1998
0–3 Homarus americanus E50 to E100 Kilman et al., 1999
0–3 LI 
0–4 LII 
0–5 LIII 
3–5 LV 
0–4 Juvenile 
0–4 Adult Marder, 1987; Kilman et al., 1999

? Allatostatin-like 1 Cherax destructor Adult Skiebe, 1999
3–6 Procambarus clarkii Adult Skiebe, 1999

? Proctolin-like 1–2 Homarus gammarus LI to LIII Fénelon et al., 1998
0–2 Homarus americanus LII to juvenile Fénelon et al., 1999

CoG CG FLRFamide-like 1 pair Homarus gammarus Adult P. Meyrand, unpublished data
P GABA-like† 1 pair Homarus gammarus Nagy et al., 1994
MCN1 Proctolin-like 1 pair Cancer borealis Adult Blitz et al., 1999

CabTRP-like 
GABA-like

MCN7 Proctolin-like 1 pair Cancer borealis Adult Blitz et al., 1999
LVF CCK-like 1 pair Cancer borealis Adult Christie et al., 1997a

FLRFamide-like 
RPCH-like

OG CD1 (?) FLRFamide-like 1 Cherax destructor Adult Skiebe et al., 1999

on–stn–son MPN Proctolin-like 2 Cancer borealis Adult Nusbaum and Marder, 1989a; 
junction GABA-like Blitz et al., 1999

GN1/2 FLRFamide-like 2 Homarus americanus Adult Cournil et al., 1990; Meyrand et al., 
CCK-like 2000
GABA-like

? FLRFamide-like 2 Procambarus clarkii Adult Tierney et al., 1997
? FLRFamide-like 2 Cherax destructor Adult Skiebe et al., 1999; Skiebe, 1999

Allatostatin-like

ivn ivn-TF Histamine-like 2 Panulirus interruptus Adult Claiborne and Selverston, 1984a; 
FLRFamide-like Claiborne and Selverston, 

1984b; Kilman, 1998
PS Histamine-like 2 Homarus gammarus Adult Le Feuvre et al., 2000

FLRFamide-like
ivn-TF Histamine-like* 2 Homarus americanus Mulloney and Hall, 1991 

Pacifastacus leniusculus Mulloney and Hall, 1991
? FLRFamide-like 2 Procambarus clarkii Adult Tierney et al., 1997 

2 Cherax destructor Adult Skiebe et al., 1999
ivn-TF Histamine-like 2 Cancer borealis Adult Christie et al., 2000

FLRFamide-like

dvn AGR Allatostatin-like 1 Procambarus clarkii Adult Skiebe, 1999

lvn GPR Species specific 2–4 pairs 12 species E50 to adult For references, see text

†The P neurons were included since they might be homologous with the MCN1 neurone (Nagy et al., 1994; Meyrand et al., 2000).
*The ivn-TF neurones were included since they might be homologous with the FLRFamide-like neurones, which also have their cell bodies

in the ivn.
Abbreviations of locations are explained in Fig. 1; abbreviations of peptides are given in Fig. 2. Abbreviations of identified neurones: AGR,

anterior gastric receptor neurone; CD1, cardiac sac dilator neurone 1; CG, commissural gastric neurone; GN1/2, γ-aminobutyric acid-containing
neurones 1 and 2; GPR, gastropyloric receptor neurone;ivn-TF, inferior ventricular nerve through-fibres; LVF, large varicosity fibre; MCN1,
modulatory commissural neurone 1; MCN7, modulatory commissural neurone 7; MPN, modulatory proctolin neurone; P, pyloric modulatory
neurone; PS, pyloric suppressor neurone. E50, 50 % of embryonic development; LI to LV: larval stages 1 to 5.



1999) and MCN7 (showing proctolin-like immunoreactivity)
stimulation elicit distinct pyloric rhythms (Fig. 4; Blitz et al.,
1999). In contrast, MCN1 (showing proctolin-, GABA- and
tachykinin-like immunoreactivity) activates both the pyloric
and the gastric mill rhythms (Fig. 4; Coleman and Nusbaum,
1994; Bartos and Nusbaum, 1997). In Cancer borealis, two
tachykinin-related peptides were isolated, one of which was
present in the STG (Christie et al., 1997b). If the action of this
peptide is blocked by a tachykinin receptor antagonist, MCN1
stimulation no longer elicits a gastric mill rhythm, suggesting
that tachykinin initiates this rhythm (Wood et al., 2000).

However, the pyloric rhythm is still elicited, and although it
becomes more like the rhythm resulting from MPN
stimulation, it remains different. This suggests that either
unknown transmitters other than GABA and proctolin, or some
other mechanisms, are responsible for these differences in
network output. During gastric mill rhythm excitation, the
lateral gastric (LG) neurone presynaptically inhibits MCN1,
selectively reducing its transmitter-mediated excitation while
enabling an increase in its electrically mediated excitation.
This is thought to switch the predominantly chemical synapse
to a purely electrical one (Coleman et al., 1995). The rhythmic
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Fig. 4. Schematic drawing of the interactions between identified interneurones,
sensory neurones and motor networks of the stomatogastric ganglion (STG). (Left)
In the crab Cancer borealis, three pairs of proctolin (Proc)-like immunoreactive
neurones are present (coloured in different shades of grey), which each elicit a
different motor pattern. The two modulatory proctolin neurones (MPN) are located
in the oesophageal ganglion (OG) or the oesophageal nerve and elicit a pyloric
motor pattern (pyloric patterns coloured in different shades of orange) via
excitatory synapses (symbolised by triangles). MPN inhibits, via the release of γ-
aminobutyric acid (GABA; inhibitory synapses symbolised by small circles), two pairs of modulatory neurones located in the commissural
ganglia, which are called commissural projection neurones 2 (CPN2) and modulatory commissural neurones 1 (MCN1), thereby preventing a
gastric mill rhythm, which the latter neurones normally initiate. Stimulating MCN1 (containing proctolin, Cancer borealistachykinin-related
peptide, CabTRP, and GABA) alone elicits a gastropyloric motor pattern (gastric mill motor patterns are coloured in different shades of green,
gastropyloric motor patterns are drawn in stripes of orange and green). After blocking the action of CabTRP, MCN1 does not elicit a gastric
mill rhythm and the pyloric rhythm it initiates is more similar but still not identical to that elicited by MPN. Co-stimulation of the MCN1 and
CPN2 elicits a different type of gastropyloric pattern. MCN1 receives rhythmic inhibition from the lateral gastric neurone (LG) in the STG.
This does not influence the MCN1 synapses in the commissural ganglia (CoGs), demonstrating that activity of synapses can vary with the
output region. Modulatory commissural neurones 7 (MCN7) also elicit a pyloric motor pattern that differs from that elicited by the MPNs.
(Right) In the lobster Homarus gammarus, the anterior gastric receptor (AGR) excites two pairs of modulatory interneurones in the CoGs: the
commissural gastric (CG) neurones and the gastric inhibitor (GI) neurones. AGR, which is a mechanoreceptor activated by the movements of
the gastric mill muscle 1 (gm1), has its soma in the dorsal ventricular nerve (dvn) and projects through the STG without any arborization to
innervate the CoGs. When AGR fires weakly, one gastric mill pattern is elicited. When AGR fires strongly, a second gastric mill pattern is
elicited, demonstrating that the activity of a feedback loop is able to select different motor patterns (modified from Blitz et al., 1999; Blitz and
Nusbaum, 1997; Coleman and Nusbaum, 1994; Coleman et al., 1995; Combes et al., 1999a; Combes et al., 1999b).
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inhibition in the STG does not influence the activity of MCN1
in the CoG, where MCN1 has aborizations, demonstrating that
the activity of synapses can vary according to the output region
(Coleman and Nusbaum, 1994).

Investigation of MPN also showed that motor pattern
selection occurs not only through direct modulation of the
network but also via the inhibition of a competing pathway
(Fig. 4; Blitz and Nusbaum, 1997). MPN inhibits the gastric
mill rhythm not by influencing the circuits of the STG itself
but by inhibiting other modulatory projection neurones (MCN1
and commissural projection neurone 2, CPN2) with cell bodies
located in the CoGs. For this inhibition, MPN uses only
GABA, indicating that proctolin and GABA have distinct
functions in mediating motor pattern selection and suggesting
that they are not necessarily co-released.

One way to activate modulatory neurones with cell bodies
in the CoG is by sensory input. In Homarus gammarus, the
commissural gastric neurone (CG), which shows FLRFamide-
like immunoreactivity (P. Meyrand, unpublished data), and the
gastric inhibitor neurone (GI) are excited by the anterior gastric
receptor (AGR, Fig. 4; Combes et al., 1999a; Combes et al.,
1999b). AGR is a primary mechanoreceptor measuring the
tension of a gastric mill muscle. It does not have ramifications
in the STG but it projects through the STG to arborize in the
CoGs. Depending on the firing frequency of AGR, one of two
gastric mill motor patterns is elicited as a result of the different
postsynaptic sensitivities of CG and GI to AGR. When AGR
fires weakly, one gastric mill pattern is elicited. When AGR
fires strongly, the second gastric mill pattern is elicited,
demonstrating that feedback from a single mechanoreceptor is
able to select different motor patterns (Combes et al., 1999b).
This also demonstrates that different modulatory neurones can
be co-activated and that pattern selection is dependent on the
ensemble of modulatory neurones that are active. A second
example of this is MCN1, which elicits a different gastric mill
motor pattern when co-activated with CPN2 (Fig. 4; Blitz and
Nusbaum, 1997).

In seven species, a pair of neurones with cell bodies in the
ivn was found that had axons projecting to the STG (Table 1).
These neurons are likely to contain histamine and/or
FLRFamide-like peptides (Claiborne and Selverston, 1984a;
Mulloney and Hall, 1991; Tierney et al., 1997; Kilman, 1998;
Skiebe et al., 1999; Le Feuvre et al., 2000; Christie et al.,
2000) and are referred to as ivn-through fibres (ivn-TF;
Claiborne and Selverston, 1984a; Claiborne and Selverston,
1984b) or pyloric suppressor (PS) neurones (Cazalets et al.,
1987; Cazalets et al., 1990). Both the ivn-TF in Panulirus
interruptusand the PS neurones in Homarus gammaruselicit
inhibitory effects on the pyloric rhythm of the STG. The
inhibitory effect of the ivn-TF is frequency-dependent such
that, at low frequencies, an excitatory action dominates, but
this gives way to an inhibitory action at higher frequencies
(Sigvardt and Mulloney, 1982; Claiborne and Selverston,
1984a; Claiborne and Selverston, 1984b), demonstrating that
the effects of modulatory projection neurones can be
frequency-dependent.

Peptides present within the nerves of the stomatogastric
nervous system

In addition to peptidergic varicosities in ganglia,
immunocytochemical studies have demonstrated peptidergic
varicosities within patches in nerves of the STNS (Marder et
al., 1986; Marder et al., 1987; Kilman et al., 1999; Goldberg
et al., 1988; Mortin and Marder, 1991; Coleman et al., 1992;
Fénelon et al., 1998; Fénelon et al., 1999; Skiebe, 1999; Skiebe
and Ganeshina, 2000). In Cherax destructor, ultrastructural
studies of the stn–sonjunction and the stn, where peptidergic
varicosities occur, demonstrated the presence of neuropile and
all four types of synaptic profiles observed in the STG (Skiebe
and Ganeshina, 2000). Similarly, neuropile was found in the
stn of Cancer borealis (Kilman and Marder, 1997). By
combining peptide antibodies with an antibody against the
vesicle protein synapsin, it was confirmed that proctolin-,
allatostatin- and FLRFamide-like immunoreactivity is present
in the same patches in Cherax destructor. Studies of different
species suggest that neurones from all ganglia of the STNS
project into the neuropile of the stn–sonjunction (Orlov, 1928;
Dickinson et al., 1981; Skiebe and Ganeshina, 2000) and
peptides locally applied to the stn–son junction produced
changes in the pyloric rhythm generated by the networks of the
STG (Kilman, 1998; Christie and Nusbaum, 1999; P. Skiebe,
unpublished data).

Peptides and sensory neurones
The most investigated sensory neurones in the STNS are the

gastropyloric receptor (GPR) neurones. The GPR neurones are
peripheral stretch receptors with arborizations within the STG
(Table 1; for reviews, see Katz and Harris-Warrick, 1990; Katz
and Tazaki, 1992). Recently, the GPR neurones have been
described in additional species (Tierney et al., 1999; Skiebe,
1999) and it was shown that the transmitters of GPR neurones
in Homarus americanusand Homarus gammarus(allatostatin-,
CCK-, FLRFamide-like peptides and serotonin) are acquired
sequentially during development (Kilman et al., 1999). In the
crab Cancer borealis, the GPR neurones not only contain
acetylcholine, serotonin and allatostatin (Katz et al., 1989;
Skiebe and Schneider, 1994), but preliminary data suggest that
at least one pair of GPR neurones is also influenced by bath
application of serotonin and allatostatin (Birmingham et al.,
1998). Another peptidergic influence on a mechanoreceptor was
demonstrated in Homarus gammarus, in which bath application
of an FLRFamide-related peptide to the dendritic membrane of
AGR, but not to its cell body or axon, switches its firing pattern
from a tonic to a bursting one (Fig. 4; Combes et al., 1997).

Peptides and stomach muscles
The stomach of decapod crustaceans has more than 40

striated muscles (Maynard and Dando, 1974). In general, the
extrinsic muscles receive cholinergic innervation whereas the
intrinsic muscles receive glutamatergic innervation (Marder,
1976; Marder, 1987; Lingle, 1980). With a few exceptions, the
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muscles do not seem to receive direct peptidergic innervation.
In the shrimp Palaemon serratus, the dilator muscles of the
pylorus exhibited FLRFamide-like immunoreactivity, but the
motoneurones innervating the muscles did not (Meyrand and
Marder, 1991), and the neuron that is the source of this peptide
remained undetermined. In Cherax destructor, an FLRFamide-
immunoreactive neurone with its cell body in the OG
innervates cardiac sac dilator muscles (Fig. 5; Skiebe et al.,
1999) and is likely to be the cardiac dilator neurone 1 (CD1).
A similar neurone was present in Procambarus clarkii(Tierney
et al., 1997). At the ultrastructural level, Patel and Govind
(Patel and Govind, 1997) described the presence of dense-core
vesicles on muscles of the crab Callinectes sapidus.

Although most motoneurones do not contain peptides, the
interaction between motoneurones and muscles is strongly
modulated by peptides (Jorge-Rivera and Marder, 1996; Jorge-
Rivera and Marder, 1997; Weimann et al., 1997; Jorge-Rivera
et al., 1998). The absence of direct innervation and the
threshold of some effects suggest a neurohaemal delivery.
Most peptides (CCAP, FLRFamide-related peptides, proctolin,
RPCH) increase the amplitude of nerve-evoked contractions,
whereas allatostatin reduces this amplitude (Jorge-Rivera and
Marder, 1996; Jorge-Rivera and Marder, 1997; Jorge-Rivera et
al., 1998). The effects of peptides are frequency-dependent and
differ depending on the muscle. A particular muscle can
also respond to a variety of modulators. FLRFamide-related
peptides can also induce myogenic activity (Meyrand and
Marder, 1991; Jorge-Rivera and Marder, 1996).

Peptides and network function
Since 1984, peptides have been applied to the STG to

investigate how circuit dynamics relevant for behaviour

depend on peptide modulation (Hooper and Marder, 1984).
From studies made on a number of different species, it is
known that many effects of peptides can be species-dependent,
but truly comparative data are lacking (Table 2 therefore lists
these effects without regard to species). Peptides initiate
rhythms from silent preparations and change the phase
relationship between the neurones within a cycle period, and
their effects depend on the frequency of the ongoing rhythm.
Peptides also induce plateau potentials and increase or
decrease the number of spikes per burst produced by particular
neurones. Each of the peptides elicits peptide-specific motor
patterns in the adult and probably also in the larva (Marder and
Weimann, 1992; Marder and Richards, 1999). In the adult,
only particular STG neurones respond to a given peptide
(Hooper and Marder, 1987; Heinzel and Selverston, 1988;
Skiebe et al., 2000; Swenson and Marder, 2000a), and each
neurone responds to overlapping subsets of peptides (Swenson
and Marder, 2000b). Peptide-specific motor patterns are,
therefore, partly a result of the specific distribution and number
of receptors for each peptide. Swenson and Marder (Swenson
and Marder, 2000a) showed that five different peptides
modulate the same ionic current, a current first described as
being modulated by proctolin (Golowasch and Marder, 1992).
This finding does not exclude modulation of other membrane
currents, but it contrasts with the effects of dopamine and
serotonin, each of which modulates several currents in STG
neurones (Kiehn and Harris-Warrick, 1992a; Kiehn and
Harris-Warrick, 1992b; Harris-Warrick et al., 1995a; Harris-
Warrick et al., 1995b; Zhang and Harris-Warrick, 1995;
Kloppenburg et al., 1999). This convergence of peptides onto
one current could contribute to network stability by limiting
the number of possible network configurations (Swensen and
Marder, 2000a).
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Fig. 5. Example of peptidergic innervation of muscles in Cherax destructor. (A) Schematic diagram of the branching pattern of the neurone
labelled with an FMRFamide antibody in the oesophageal ganglion (OG), presumably the cardiac dilator neurone 1 (CD1). (B) Schematic
diagram of the distribution of FLRFamide-like immunoreactivity on the muscles: regions of the muscles that show FLRFamide-like
immunoreactivity are coloured orange; the regions without immunoreactivity are shown in white. (C) An example of the actual FLRFamide-
like immunoreactivity on the c5a muscle, which is covered with strongly stained varicosities (montage of two confocal micrographs).
Unstained muscles are also present (asterisks). acdn, anterior cardiac dilator nerve; c1 to c5, cardiac sac muscles; cv1, cardiac valve muscle;
vcdn, ventral cardiac dilator nerve (for other abbreviations see Fig. 1). Scale bar, 200µm (modified from Skiebe et al., 1999). Arrows denote
the main axon; the double-headed arrow marks axon collaterals.



P. SK
IE

B
E

2044
Table 2.Effects of peptides on networks of the stomatogastric nervous system and on muscles of the crustacean stomach obtained from various species*

Activation  of
Dependence Changes a voltage-

Concentration Changes on Initiation in dependent Effects 
range Effects on the rhythms Target in phase control of plateau synaptic inward on muscle 

Peptide (mol l−1) of the STNS neurones relationship frequency potentials strength current contraction References

AST-related 10−8 to 10−6 Inhibition of the pyloric and gastric mill PY + + 0 − 0 − Dircksen et al., 1999; Jorge-Rivera and 
peptides rhythms Marder, 1997; Skiebe and Schneider, 

1994; Skiebe et al., 2000

CCAP 10−10 to 10−4† Activation of pyloric rhythms in silent AB, LP, + + 0 0 + + Jorge-Rivera et al., 1998; Marder 
preparation in adults, embryos and IC and Richards, 1999; Skiebe and 
larva, reduction in pyloric frequency Marder, 1994; Richards and Marder,
when rhythm is strongly active only 2000; Swensen, 2000; Swensen and 
in the adult, activation of gastric rhythm Marder, 2000a; Weimann et al., 1997 

CCK 10−6 to 10−4 Activation of pyloric neurones, initiation 0 + 0 0 0 0 0 Turrigiano and Selverston, 1989; 
of gastric mill rhythms in vivoand in Turrigiano and Selverston, 1990; 
vitro, reduction in gastric mill cycle Turrigiano et al., 1994 
period when rhythm is strongly active 

FLRFamide- 10−10 to 10−4† Activation of pyloric and gastric mill AB, LP, + + + 0 + +‡ Jorge-Rivera and Marder, 1996; Jorge-
related rhythms PY, IC, Rivera et al., 1998; Marder and 
peptides VD, DG Richards, 1999; Tierney et al., 1997; 

Swensen, 2000; Swensen and Marder, 
2000a; Weimann et al., 1993

Proctolin 10−10 to 10−4† Activation of pyloric, gastric mill and AB, PD, + + + + + + Dickinson and Marder, 1989; 
cardiac sac rhythms in vitro and LP, some Dickinson et al., 1997; Golowasch 
activation of gastric mill rhythms in PY, IC, and Marder, 1992; Heinzel, 1988; 
vivo, effect on cardiac sac rhythm VD, LG, Heinzel and Selverston, 1988; 
enhanced when RPCH had been DG Hooper and Marder, 1984; Hooper 
applied previously and Marder, 1987; Jorge-Rivera et al., 

1998; Marder et al., 1986; Marder 
and Richards, 1999; Nusbaum and 
Marder, 1989b; Swensen, 2000; 
Swensen and Marder, 2000a 

RPCH 5×10−9 to 10−4† Activation of pyloric, gastric mill and AB, LP + 0 + + + + Dickinson and Marder, 1989; 
cardiac sac rhythms, effects dependent Dickinson et al., 1990; Dickinson et 
on the site of peptide application, al., 1993; Dickinson et al., 1997; 
changing the network alliance of one Jorge-Rivera et al., 1998; Marder and 
neurone, fusing two networks Richards, 1999; Nusbaum and 

Marder, 1988; Swensen, 2000; 
Swensen and Marder, 2000a

CabTRP 10−6 to 10−4† Activation of pyloric and gastric mill AB, PD, + + 0 0 + 0 Blitz et al., 1995, Christie et al., 1997b;
rhythms LP, LPG, Marder and Richards, 1999; Swensen, 

IC, VD 2000; Swensen and Marder, 2000a

*Some effects are species-dependent, but comparative data are lacking. Effects are therefore listed without regard to species.
†Some of the higher concentrations were pressure-injections of peptides, +, positive effect; –, negative effect; 0, not tested; ‡ induces myogenic activity.
Abbreviations for peptides are given in Fig. 2. AB, anterior burster neurone; LP, lateral pyloric neurone; PD, pyloric dilator neurone; PY, pyloric neurone; LPG, lateral posterior

gastric neurone; IC, inferior cardiac neurone; VD, ventricular dilator neurone; DG, dorsal gastric neurone; LG, lateral gastric neurone. Neurones are not in alphabetical order, but are
listed according to the network to which they belong. STNS, stomatogastric nervous system.



The embryonic network in the STG of the lobster Homarus
gammarusgenerates a single embryonic rhythm, which later
splits into different functional adult rhythms (Casasnovas and
Meyrand, 1995). This embryonic network is able to generate
an adult-like motor pattern if the descending modulatory inputs
are all removed and only a single muscarinic agonist is applied,
indicating that descending information is responsible for the
embryonic pattern (Le Feurve et al., 1999). This suggests that
adult networks do not necessarily derive from progressive
ontogenetic changes in the networks, a view that is not
unchallenged (Richards et al., 1999).

It is not possible to discuss the effects of all peptides on the
networks of the STG within the scope of this review (for
reviews, see Harris-Warrick et al., 1992; Marder and
Weimann, 1992; Marder et al., 2001). I will illustrate this
research using studies of red pigment-concentrating hormone
(RPCH). The presence of RPCH was demonstrated
immunohistochemically in all four ganglia of the STNS
(Nusbaum and Marder, 1988; Dickinson and Marder, 1989).
Bath application of RPCH either to the CoGs and OG or to the
STG activates a previously silent cardiac sac rhythm, but the
rhythms differ with the site of application, demonstrating that
a pattern-generating network can be modulated at more than
one site and that the resultant modulations depend on the site
of release of the modulator (Dickinson and Marder, 1989;
Dickinson et al., 1993). RPCH is also able to fuse two pattern-
generating networks as a result of enhancing the synaptic
strength of the synapses between the two networks (Dickinson
et al., 1990). That the modulatory ‘history’ matters was shown
by applying the two peptides sequentially. The likelihood that
proctolin would initiate a cardiac sac rhythm was greatly
enhanced if application of proctolin was preceded by an
application of RPCH (Dickinson et al., 1997).

Conclusions and future directions
The studies presented here demonstrate that peptides are

ubiquitously present within the STNS of decapod crustaceans
and suggest that each peptide or each peptidergic neurone
elicits unique motor patterns, but many fundamental questions
remain to be answered. Why are so many peptides present?
How does the effect of a peptide depend on the presence of
other transmitters? Why do neurones change their peptide
transmitters during development? Is there is a time window for
particular actions of peptides? Why do orphan peptides and
peptide families exist and do the members of a peptide family
have different roles? Compared with excitatory peptides, far
less is known about inhibitory peptides in the STNS, which
include at present only the allatostatins and myosuppressin.

To answer questions concerning cotransmission, either
pharmacological separation of cotransmitter actions (Wood et
al., 2000) or the effect of applying mixtures will have to be
studied. For allatostatin and serotonin, the early data show that
co-application causes a stronger reduction in the pyloric cycle
frequency than either modulator alone (Marder et al., 1994).
However, this might be different for co-localised peptides. In

the example of proctolin and Cancer borealistachykinin,
which are co-localized in MCN1 (Blitz et al., 1999), both
peptides competitively activate the same current (Swensen and
Marder, 2000a). As this case suggests, to understand how a
particular neurone elicits a unique motor pattern, not only will
the postsynaptic neurons and currents have to be identified, but
also co-application experiments will have to be compared with
experiments using various stimulation patterns of the identified
neurone.

To understand more about the role of peptides during
development, it is necessary to determine the effects of bath-
applied peptides, as has been started in Homarus americanus
(Marder and Richards, 1999), to identify target neurones and
individual peptidergic neurones and to study their effects from
the cellular to the network level, as has been done in the adult.
There is already evidence that embryonic neurones do not
possess the same capacity to initiate large regenerative
depolarisations as adult neurones (Casasnovas and Meyrand,
1995). It would be beneficial to include additional species (so
far only Homarus americanusand Homarus gammarushave
been investigated), since much can be learned by comparing
species. The neurones of the crab Cancer borealis, for
example, are much more flexible with respect to their
membership in a particular motor pattern (Weimann et al.,
1991) than those of lobsters.

Most of our knowledge concerning the peptide content of
neurones is based on immunocytochemistry. In the case
peptides such as proctolin and crustacean cardioactive peptide,
which have the same amino acid sequence in all arthropod
species investigated (Dircksen, 1994), immunocytochemistry
provides strong evidence for the presence of the peptide. In the
case of peptide families, immunocytochemistry can only be the
first step since a given antibody might recognise all or only a
subset of the members of a peptide family. Peptides must
therefore be identified unambiguously at the level of a single
neurone, as has been pioneered in molluscs (for reviews, see
Jiménez and Burlingame, 1998; Li et al., 2000).

As a result of the abundant knowledge about the networks
of the STG accumulated over the last 40 years and the ability
to study identified peptidergic neurones, including sensory
neurones, motoneurones and interneurones, both in the adult
and during development, research on the STNS of decapod
crustaceans will continue to increase our understanding of the
role of peptides in the nervous system.

I thank Dr Brian J. Corrette for discussing the manuscript
and polishing the English and Dr Pierre Meyrand for
commenting on an early draft. This research was supported by
the Deutsche Forschungsgemeinschaft (Grant SFB 515, C1 to
P.S.).
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