
Drosophila melanogasterhas been a key model system for
the elucidation of mechanisms of thermotolerance and the
evolution of thermotolerance. The heat-shock response was
discovered in this model, a finding that eventually led to
the discovery of heat-shock proteins, their encoding genes
and molecular chaperones (Ritossa, 1996). In addition, the
prominence of Drosophila melanogaster as a model system
has encouraged numerous studies of its thermal biology and a
comprehensive characterization of its thermal limits (David
et al., 1983). Against this background, any exception is
remarkably distinctive. In the early 1970s, L. Tsacas (C.N.R.S.,
Gif-Sur-Yvette, France) obtained D. melanogasterfrom Fort-
Lamy (now N’Djamena), Chad, in the central semiarid tropical
(Sahel) zone of Africa (latitude 12°N) (J. R. David, personal
communication). The climate is seasonally warm, with
daytime temperatures averaging above 38 °C between March
and June. These flies were fertile in continuous culture at 30 °C
and were eventually shared with investigators in St Petersburg
and Moscow, Russia, where they were fertile in continuous
culture at 31–32 °C. Insofar as D. melanogasteris generally
acknowledged to be incapable of continuous culture above
30 °C (Parsons, 1973) and numerous attempts to breach this
limit through laboratory selection have failed, this finding is

remarkable and presents a rare opportunity to understand how
a species may evolve enhanced thermotolerance.

In D. melanogaster, typically cultured at 18–25 °C, survival
at high temperature is normally inversely related to the
duration and severity of heat shock, with 1 h heat shocks of
38–39 °C sufficient to cause 50 % mortality (David et al., 1983;
Feder and Krebs, 1997). Culture at higher temperatures, either
constantly at slightly elevated temperatures (e.g. 28 °C) or
cycling between typical and still higher temperatures, can
increase thermotolerance above these basal levels (Bettencourt
et al., 1999; Lansing et al., 2000). This enhanced
thermotolerance can ensue both within the lifetime of an
individual fly (i.e. phenotypic plasticity, thermal acclimation)
or via genetic change among generations (i.e. evolution).
Moreover, pretreatment with a mild heat shock (e.g. 1 h at
35–37 °C) can rapidly increase tolerance of a more severe heat
shock; this is termed ‘inducible thermotolerance’. Expression
of the heat-shock proteins is one of the primary mechanisms
underlying inducible thermotolerance in D. melanogaster. In
this species, one such inducible protein, Hsp70, is encoded by
five nearly identical genes at two chromosomal loci (87A7, two
genes; 87C1, three genes) (for a review, see Feder and
Hofmann, 1999). At least eight other members of the hsp70
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Drosophila melanogastercollected in sub-equatorial
Africa in the 1970s are remarkably tolerant of sustained
laboratory culture above 30 °C and of acute exposure to
much warmer temperatures. Inducible thermotolerance of
high temperatures, which in Drosophila melanogasteris due
in part to the inducible molecular chaperone Hsp70, is only
modest in this strain. Expression of Hsp70 protein and
hsp70mRNA is likewise reduced and has slower kinetics in
this strain (T) than in a standard wild-type strain (Oregon
R). These strains also differed in constitutive and heat-
inducible levels of other molecular chaperones. The lower
Hsp70 expression in the T strain apparently has no basis
in the activation of the heat-shock transcription factor

HSF, which is similar in T and Oregon R flies. Rather, the
reduced expression may stem from insertion of two
transposable elements, H.M.S. Beagle in the intergenic
region of the 87A7 hsp70gene cluster and Jockey in the
hsp70Bagene promoter. We hypothesize that the reduced
Hsp70 expression in a Drosophila melanogasterstrain living
chronically at intermediate temperatures may represent an
evolved suppression of the deleterious phenotypes of
Hsp70.

Key words: Drosophila melanogaster, evolutionary physiology,
heat-shock protein, Hsp70, molecular chaperone, transposable
element.
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gene superfamily, both inducible and constitutively expressed,
are present in the genome (Burmester et al., 2000; Easton et
al., 2000; Rubin et al., 1993). Hsp70 is the most abundant
heat-shock protein induced by heat, and manipulation of its
abundance (via antisense and engineering of hsp70 copy
number) is sufficient for large changes in inducible
thermotolerance (Feder et al., 1996; Solomon et al., 1991;
Welte et al., 1993). Activation of the heat-shock transcription
factor HSF via trimerization, phosphorylation and nuclear
localization is a key step in heat-shock protein expression. HSF
is negatively regulated through interaction with Ku
autoantigen, HSBP1 and Hsp70 family members (Cotto and
Morimoto, 1999; Lerman and Feder, 2001; Tuteja and Tuteja,
2000; Zatsepina et al., 2000). When activated, HSF can bind
heat-shock response elements (HSEs) in the hsp70promoter to
induce transcription; the number and arrangement of the HSEs
affect hsp70gene expression (Lis and Wu, 1994).

These findings for typical D. melanogasterled us to
investigate basal and inducible thermotolerance in the ‘T’
(thermotolerant) strains descended from those D. melanogaster
collected in Chad and their patterns of Hsp70 protein
accumulation and its transcriptional regulation. Not only can
the T strain survive prolonged culture at temperatures above
30 °C, it tolerates several high-temperature treatments (36 °C
for 26 h; 38 °C for 4 h) better and low temperatures more poorly
than does Canton-S, a standard wild-type line (Tikhomirova
and Belyatskaya, 1980). When subjected to ionizing radiation
and heat shock in combination, the T strain is less prone to
mutagenesis and repairs radiation injuries more readily than
wild-type and Hsp-deficient strains (Tikhomirova, 1980;
Tikhomirova et al., 1993). In part, this resistance depends on
culture temperature because both adults and oocytes of T flies
reared at 25 °C (hereafter T25) show intermediate levels of
resistance compared with those reared at 32 °C (hereafter T32)
and Canton-S flies (Tikhomirova and Belyatskaya, 1980;
Tikhomirova and Belyatskaya, 1993). Here, we differentiate
between basal thermotolerance, which is presumably due to
mechanisms other than heat-shock proteins, and inducible
thermotolerance, which is due in part to heat-shock proteins,
in the T32, T25 and a wild-type strain, and relate these
differences to levels and varieties of heat-shock proteins and
the regulation of their expression. Although we initially
hypothesized that study of the T strain would disclose
molecular and evolutionary mechanisms of increased
thermotolerance, we report here several unique features of this
strain that are apparently associated with decreased inducible
thermotolerance.

Materials and methods
Drosophila melanogasterstrains and maintenance

The T strain flies (see Introduction), maintained at 31–32 °C
(T32) and 25 °C (T25) for many years (see Introduction), were
compared with Oregon R wild-type flies. In some cases T32
flies were reared from egg to adulthood at 25 °C before
analysis. For determinations of thermotolerance and for

Hsp70-specific enzyme-linked immunosorbent assay (ELISA),
T32 and T25 flies were transported to Chicago and maintained
at their normal temperatures for at least one generation before
use. These flies were compared with an Oregon R stock (A25)
maintained at 25 °C in discrete generations for more than 20
years (Bettencourt et al., 1999; Cavicchi et al., 1995; Cavicchi
et al., 1989). All other comparisons were with an Oregon R
stock maintained at 25 °C in Moscow for many years. All flies
were reared on a yeast, cornmeal, molasses and agar medium.

Thermotolerance

Eclosing individuals were sequestered daily and, when 4
days old, were transferred by aspiration to a fresh glass vial
containing 8 ml of medium. A circle of filter paper above the
medium allowed flies access to it but prevented them from
adhering to it. Each vial usually contained 16–20 animals, but
occasionally contained as few as 10. On the next day, vials
were capped with a moistened stopper above a cotton plug,
placed in a rack with vials evenly spaced and immersed in a
water bath at pretreatment and heat-shock temperatures. Some
flies underwent direct exposure to heat shock (37–41 °C)
for 30 min. Others underwent exposure to a pretreatment
temperature (36–38 °C) for 30 min followed by 25 °C for 1 h,
and then underwent heat shock. Thermotolerance was
measured as the proportion of flies in a vial that were able to
walk 24 h after heat shock.

Measurement of Hsp70 protein in entire flies

Flies were heat-shocked as above but for different durations
depending on the experimental design, immediately frozen in
liquid nitrogen and then stored at −80 °C until analysis. Pairs
of identically treated flies were lysed in 200–400µl of ice-cold
1× Complete Protease Inhibitor (Boehringer-Mannheim Corp)
in phosphate-buffered saline by grinding briefly with an ice-
cold disposable pestle. Lysates were centrifuged at 14 000g for
30 min at 4 °C, and the protein content of the supernatant was
determined (BCA Assay, Pierce Chemical Co., Rockford, IL,
USA). Supernatants prepared the same day were diluted to
20µg ml−1 protein in ice-cold coating buffer and used to coat
micro-well plates (Falcon no. 3915 ProBind) for determination
of Hsp70 content by ELISA (Feder et al., 1997; Feder et al.,
1996). Plates were left overnight at 4 °C to allow proteins to
adsorb. After extensive rinsing, bound Hsp70 was detected
using a 1:5000 dilution of the Drosophila Hsp70-specific
antibody 7FB (Velazquez et al., 1980; Velazquez et al., 1983)
coupled to alkaline phosphatase via a secondary antibody
(1:1000 rabbit anti-rat IgG; Cappel Organon Teknika) and a
tertiary antibody (1:1000 alkaline-phosphatase-conjugated
goat anti-rabbit IgG; Sigma). Plates were incubated at 37 °C
with the phosphatase substrate p-nitrophenyl phosphate
(1 mg ml−1) prepared according to the manufacturer’s
instructions (Sigma), and the colored reaction product was
measured at 405 nm in a micro-plate reader. For at least one
replicate of each sample or standard, the primary antibody was
omitted to allow correction for non-specific signal. The ELISA
signal is proportional to Hsp70 concentration in the lysates and
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is expressed as a percentage of a standard signal, that for a
lysate of D. melanogasterS2 cells in tissue culture that had
been exposed to 36.5 °C for 1 h and to 25 °C for 1 h before lysis.

Protein labeling, gel electrophoresis and immunoblotting

Ten salivary glands from third-instar larvae were labeled in
20µl of Schneider’s insect medium without methionine
(Sigma) after the addition of 1µl (1.85 MBq) of L-
[35S]methionine (Amersham) for 1 h at 25 °C after various
treatments. Two-dimensional gel electrophoresis and other
procedures applied were as described by O’Farrell et al.
(O’Farrell et al., 1977) and Ulmasov et al. (Ulmasov et al.,
1992). The position of major Hsps and actin was determined
both by autoradiography (see above) and by subsequent
staining of gels with silver (Creighton, 1990). Salivary glands
were also labeled with 14C-labeled amino acids, which yielded
essentially the same results (data not shown).

For immunoblotting, after sodium dodecyl sulfate/
polyacrylamide electrophoresis (SDS–PAGE) of larval lysate
prepared as above, the proteins were transferred to a
nitrocellulose membrane (Hybond ECL; Amersham) according
the manufacturer’s protocol. Monoclonal antibodies specific to
the entire D. melanogasterHsp70 family (7.10.3) and to Hsp70
alone (7FB, see above) were obtained from Dr Susan Lindquist
(The University of Chicago). Immune complexes were detected
via chemoluminescence (ECL kit, Amersham) and 3,3′-
diaminobenzidine (DAB) (Sigma) with corresponding
peroxidase-conjugated anti-rat secondary antibodies.

Preparation of RNA and northern hybridization

RNA was prepared by the standard method using 4 mol l−1

guanidine isothiocyanate (Chomczynsky and Sacchi, 1987).
Blotting and northern hybridization with a ClaI-BamHI
fragment containing the Drosophila melanogaster hsp70gene
cloned into the BamHI site of pUC13 (McGarry and Lindquist,
1985) was performed (Sambrook and Fritsch, 1989) with slight
modifications. Hybridization was overnight at 42 °C in 50 %
formamide; this was followed by two 20 min washes in 2×SSC,
0.2 % SDS at 42 °C, two 20 min washes in 1×SSC, 0.2 % SDS
at 42 °C and one 20 min wash in 0.2×SSC, 0.2 % SDS at 68 °C.

Southern hybridization and restriction digests

Genomic DNA from the different D. melanogasterstrains
(adult flies) was prepared as described previously (Zelentsova
et al., 1986). Genomic DNA (20µg) was used for a typical
restriction enzyme digestion. Digests were prepared for
hybridization by electrophoresis on 1 % agarose gels,
denaturation and capillary-blotting onto nylon membranes
according to the manufacturer’s protocol. Fixation was by
ultraviolet cross-linking with a UV Stratalinker 2400
(Stratagene). Standard high-stringency hybridization and wash
conditions were used (Zelentsova et al., 1986). The probe was
the same as that used in northern blots.

Gel mobility-shift assay

Flies were frozen and pulverized in liquid nitrogen, and the

powder was suspended (1:5) in a buffer containing 20 mmol l−1

Hepes, pH 7.9, 25 % v/v glycerol, 0.42 mol l−1 NaCl,
1.5 mmol l−1 MgCl2, 0.2 mmol l−1 EDTA, 0.5 mmol l−1

phenymethylsulfonyl fluoride (PMSF) and 0.5 mmol l−1

dithiothreitol and centrifuged at 100 000g for 20 min. The
supernatants were frozen in liquid nitrogen and stored at
−70 °C. The protein concentration of the extracts was estimated
with a modified Lowry method (Ulmasov et al., 1992).

Consensus HSE probe (Wu et al., 1988) was prepared
by annealing partially complementary oligonucleotides
(ATCCGAGCGCGCCTCGAATGTTCTAGAA and CTC-
GCGCGGAGCTTACAAGATCTTTTCCA) in 10 mmol l−1

potassium phosphate buffer, pH 8.2, in the presence of
0.1 mmol l−1 NaCl. Single-stranded termini were filled with
Klenow polymerase and [32P]ATP (Sambrook and Fritsch,
1989). For the gel mobility-shift assay, extracts containing
50µg of protein were mixed with 0.5 ng of [32P]HSE in the
binding buffer (as described by Mosser et al., 1993). The
binding-reaction mixture was incubated at room temperature
(20 °C) for 20 min. Free probe was separated from HSE–HSF
complexes by electrophoresis through 5 % polyacrylamide gels
(Mosser et al., 1993). The gels were dried and exposed to X-
ray film (Kodak X-Omat) at −70 °C.

To identify bands corresponding to HSF or Ku autoantigen,
cell extracts of control or heat-shocked cells were preincubated
for 20 min either with anti-D. melanogasterKu antibodies (gift
of D. Rio) or with anti-D. melanogasterHSF serum (gift of C.
Wu, NIH) before incubation with the labeled HSE probe; the
samples were then subjected to electrophoresis.

Analyses of nucleotide sequences

Genomic DNA from 75 adults per strain was obtained by
standard phenol/chloroform extraction and was used as
templates for amplification products to be cloned and
sequenced. Single-fly DNA for polymorphism screens was
prepared from individual flies by homogenizing adults in 50µl
of buffer with 0.2µgµl−1 Proteinase K (Gloor et al., 1993).
Samples were incubated at 37 °C for 30 min, heated to 95 °C
to inactivate Proteinase K and stored at –20 °C.

Polymerase chain reaction (PCR) of single-fly preparations
was performed by adding 2µl of template DNA to buffer
(10 mmol l−1 Tris-HCl, pH 9.0, 50 mmol l−1 KCl, 0.1 % Triton
X-100) with 1.5–3.0 mmol l−1 MgCl2, 0.2 mmol l−1 each dNTP,
5 pmol of each primer and 1.25 units of Taq DNA polymerase
(Promega) per 25µl reaction mixture. For PCR amplification
of fragments to be cloned and sequenced, 1µl of template DNA
from mass preparations was added to buffer (50 mmol l−1 KCl,
50 mmol l−1 Tris-HCl, pH 8.3) with 1.5 mmol l−1 MgCl2,
0.2 mmol l−1 each dNTP, 5 pmol of each primer and 2.5 units
of MasterAmp TAQurate DNA polymerase mix (Epicentre
Technologies) per 100µl reaction. Reaction conditions for all
PCRs were 30 cycles of 1 min at 92 °C, 1 min at 54 °C and
1.5 min at 72 °C. To amplify a portion of the 87A7 locus,
primers were: upper, 5′CATCCCAAAAATCTGTAAAGC3′;
lower, 5′ACTGTGTTTCTGGGGTTCAT3′. These flank both
an H.M.S. Beagleelement insertion site and an approximately
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140 base pair (bp) insertion characteristic
of 56H8-type alleles (Bettencourt, 2001),
if present. To amplify the hsp70Ba
promoter, primers were: upper, 5′GCA-
AGCAATCATCATCCAAT3′; lower,
5′ACTGTGTTTCTGGGGTTCAT3′ .
These flank a Jockeyelement insertion
site. Fig. 8A displays the sizes of the
resultant amplification products, which
were resolved via agarose gel
electrophoresis. To screen individual
flies for the Jockey element, primers
were the foregoing hsp70Baprimers plus
a Jockey-specific internal primer (lower,
5′AAGAAGACTCAAGCGACACC3′).

For cloning and sequencing, PCR
products were amplified from bulk DNA
template, gel-purified and/or cleaned
with Qiagen spin columns, suspended
in water and cloned into the pGEM-T
Easy vector (Promega) according to
the manufacturer’s recommendations.
Individual plasmid clones were prepared
with Qiagen Miniprep spin columns,
suspended in water and sequenced.
Sequencing reactions were performed
with ABI Prism cycle sequencing kits
(Perkin Elmer) according to the
manufacturer’s instructions. Sequencing
was conducted on ABI 377 sequencers.
All samples were sequenced using primers based on vector
sequence. Internal sequencing primers (sequences available on
request) were used to provide double-stranded coverage.
Sequences were assembled manually and aligned using
CLUSTAL X (Jeanmougin et al., 1998). Relevant sequence
information has been deposited in GenBank and/or is available
on request.

Results
Quantitative differences in thermotolerance and Hsp70

The basal thermotolerance of T32 adults exceeded that of
T25 adults, which in turn exceeded that of OR25 adults
(Fig. 1A). The corresponding LT50 values for 30 min heat
shock, estimated by linear interpolation, are as follows: OR25,
39.5 °C; T25, 39.8 °C; T32, 40.3 °C. Of the T32 adults, 80 %
survived a 40 °C heat shock, which killed 75 % of T25 adults
and 100 % of OR25 adults.

In contrast, the inducible thermotolerance (quantified as the
change in percentage survival with and without pretreatment)
of T32 flies was equal to or less than that of T25 and OR25
flies (Fig. 1B–D). At the minimum temperature for 100 %
mortality without pretreatment (40 °C for OR25, 40.5 °C for
T25, 41 °C for T32), a 36 °C pretreatment improved survival
by 50 % in OR25 flies, by 25 % in T25 flies and by less than
10 % in T32 flies. Inducible thermotolerance was not entirely

absent in T32 flies; 37 °C and 38 °C pretreatments both
improved survival at 40.5 °C (from 25 to 75 %) in the T32
strain.

Hsp70 levels after pretreatment and heat shock were
likewise lower in the T32 strain than in the other strains
(Fig. 2). In OR25 flies, Hsp70 levels increased during exposure
to high temperature, continued to increase for 1–3 h afterwards,
depending on temperature, and then decreased. In the T32
strain, the peak Hsp70 level was only 30–50 % of the level in
OR25 flies. T25 flies were intermediate in this respect.
Immunoblots of Hsp70 corroborate this finding (Fig. 3).
Similarly, amounts of hsp70mRNA, determined 1 h after a
30 min exposure to 35 °C and 37.5 °C, were also greatest in
OR25, intermediate in T25 and lowest in T32 (Fig. 4). After
39 °C heat shock, in contrast, hsp70mRNA levels in T32 were
intermediate to those in the other strains (Fig. 4), and Hsp70
was detectable only in the T strains (Fig. 3). As with Hsp70
levels, hsp70 mRNA abundance was least after the most
intense heat shock in all strains. According to ELISA, the
kinetics of Hsp70 variation were similar in the three strains,
and the T32 strain did not accumulate more Hsp70 than the
other strains at the highest temperature examined (Fig. 2,
inset). Rearing eggs of the T32 strain to adulthood at 25 °C
increased Hsp70 levels above those in both the T32 strain
reared at 32 °C and the T25 strain (Fig. 2, arrow in inset).

Immunoblots with antibody 7.10, which detects all D.
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melanogasterHsp70 family members, suggest that amounts of
Hsp70 family members in non-heat-shocked flies are no
greater in the T strains than in OR25 (Fig. 3). Although the
aggregate Hsp70 family signal increases after heat shock, the
increased level is less in the T strains than in OR25.

The T32 flies reared at 25 °C expressed much more hsp70
mRNA after 35 °C heat shock than the T32 flies reared at
31–32 °C. This difference was absent or much less evident
after 37.5 °C and 39 °C heat shock (Fig. 4).

Qualitative differences in the heat-shock proteins and genes
of the T strains and OR

Two-dimensional gel electrophoresis detected numerous
differences between the protein patterns of OR25 and T flies,
both in identifiable heat-shock proteins and in other proteins
(Fig. 5, Fig. 6). A 45 kDa protein labeled conspicuously after
heat shock in T but not in OR25 (Fig. 5, arrow c). Several small
(22–27 kDa) heat-inducible proteins, presumably members of
the D. melanogastersmall Hsp family (Michaud et al., 1997),
also differ in mobility between T and OR25 (Fig. 5, arrows
27,b,d,e). The Hsp70 family clearly differed between T and

OR25 strains. Both strains expressed Hsp68 (Fig. 6), but this
expression was more rapid in OR25 (Fig. 6C) than in T
(Fig. 6E). Also, a third (i.e. in addition to Hsp68 and Hsp70)
heat-inducible family member was evident in T but not in OR
(low MW in Fig. 6E). This protein co-migrates with Hsp70 in
the isoelectric focusing dimension and has a slightly lower
molecular mass than Hsp68. It is also detected by antibody
7FB, which recognizes D. melanogasterHsp70 but not other
D. melanogasterHsp70 family members (Palter et al., 1986)
(data not shown).

Genomic Southern blots (Fig. 7), PCR and restriction digest
of PCR products (Fig. 8) detected several presumptive
polymorphisms at both the 87A7 and 87C1 hsp70loci in both
strains. The nucleotide sequence at both loci reveals several
noteworthy polymorphisms (Fig. 8). The 87A7 locus is
polymorphic in natural populations; an approximately 140 bp
insertion, presumably derived from a transposition event, is
upstream of the coding sequence of the hsp70Abgene in the
‘56H8’ morph but absent from the ‘122’ morph (Goldschmidt-
Clermont, 1980). In both the T25 and T32 strains, 391 bp
upstream of this insertion is an additional 265 bp insertion 98 %
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Fig. 3. Immunoblots of Hsp70 (detected with antibody 7FB) and all Hsp70 family members (detected with antibody 7.10) in salivary glands of
third-instar larvae of the Oregon R (OR25), T25 and T32 strains of Drosophila melanogasterundergoing various temperature treatments. The
blots were stripped and reprobed for actin as a standard for loading. DAB, detection by 3,3′-diaminobenzidine; ECL, detection by
chemiluminescence.
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identical to the long terminal repeat (LTR) of a full-length
H.M.S. Beagletransposable element (Snyder et al., 1982). In
each T strain, 36 individual flies were homozygous for the
H.M.S. Beagleelement. At the 87C1 locus, a 1.4 kilobase (kb)
fragment of a Jockeyelement (Mizrokhi et al., 1985; Priimagi
et al., 1988) disrupts the promoter of the hsp70Bagene in some
T strain flies. The first two HSEs (HSEs 1 and 2) are intact,
but the Jockeyelement intervenes between these HSEs and
HSEs 3 and 4. Jockeywas fixed in 36 T25 flies sampled (all

homozygous) and occurred at an allelic frequency of 0.611 in
36 T32 flies sampled.

HSF activation in the T strains and OR

In electrophoretic mobility-shift assays, three HSE
complexes (A–C) are evident and differ in their characteristics
(Fig. 9). These complexes are no longer detectable when
lysates are incubated with a 200-fold molar excess of unlabeled
HSE probe (Fig. 9A, lane 5). Corresponding supershifts after
incubation with anti-HSF antibody (Fig. 9A, lane 3) and anti-
Ku autoantigen antibody (lane 4) suggest that A is an HSE
complex that includes HSF and that B is an HSE complex that
includes Ku autoantigen. Neither antibody affected the
mobility of complex C. Complexes B and C are constitutively
present, except immediately after 40 °C heat shock (neither
detectable) and 1 h after 40 °C heat shock (complex B not
detectable) in the T strain. In both the OR25 and T strains, the
HSF–HSE complex (complex A) is either not detectable or
detectable only at low concentrations at 25 °C, and occurs at
much higher concentrations after both 35 °C and 37 °C heat
shock, corresponding to heat shocks at which Hsp70 level was
maximally elevated. No qualitative differences between T and
OR25 in complex A are evident that might be correlated with
the lower levels of Hsp70 in the T strains. Although the T and
OR25 strains differ in complex A after a 40 °C heat shock, this
is a heat shock that is lethal to some (T) or all (OR25) flies
(Fig. 1) and so may represent severe damage rather than a
regulatory response.

Discussion
The investigation of ecological and geographical variation

in heat-shock protein expression, begun by Evgenev and
colleagues (Evgenev et al., 1978; Evgenev et al., 1987;
Lyashko et al., 1994; Ulmasov et al., 1993; Ulmasov et al.,
1988; Zatsepina et al., 2000) and now widespread (Feder and
Hofmann, 1999), clearly establishes that the magnitude,
kinetics, threshold and molecular diversity of Hsp expression
are correlated with the prevailing levels of stress that species,
populations and developmental stages naturally undergo
(Feder, 1999b; Feder and Hofmann, 1999). In addition, the
work of Evgenev and colleagues suggests that species from
high-temperature climates have higher constitutive levels of
Hsp70 family members than related species from more
moderate climates. At least two major questions are still
unresolved: how do natural selection and other evolutionary
processes create and maintain this covariation between the
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Fig. 5. Proteins synthesized in control conditions and during the hour
after a 20 min 39 °C heat shock in salivary glands of OR25 and T25
strain larvae, as indicated by L-[35S]methionine labeling, two-
dimensional gel electrophoresis and autoradiography. Arrows indicate
the positions of actin (a) and of identified or presumptive heat-shock
proteins of interest. 27, Hsp27; 68, Hsp68; 70, Hsp70; 83, Hsp83;
‘70’ indicates the position on the gel where Hsp70 should be detected.
b, d, e, presumptive small Hsps; c, unknown presumptive Hsp.
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                               Strain       OR   T25   T32  T32   OR  T25  T32   T32   OR  T25   T32   T32
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                  hsp70 mRNA 
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39°C for 30 min
25°C for 60 min

Fig. 4. Effects of strain, culture temperature
and heat shock on hsp70mRNA levels.
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heat-shock response and environment, and which
genetic elements (e.g. cis- and trans-regulatory
elements, gene copy number, coding sequence)
does evolution manipulate to achieve this
covariation? The answers to these questions may
be most evident from intraspecific variation
because variation among conspecifics is
presumably the raw material upon which selection
acts. To this end, we compared the T strain of D.
melanogasterwith another strain of the same
species and found many noteworthy differences.
Indeed, differences between the T strains and the
Oregon R wild-type strain are much greater in
some respects (e.g. in protein patterns revealed by
two-dimensional electrophoresis, Fig. 5) than
between different species of Drosophila(Sinibaldi
and Storti, 1982).

At the outset, the extraordinary thermotolerance
of the T strain was evident from its ability to thrive
above temperatures previously considered to be the
limit for continuous culture of this species
(Parsons, 1973). This exceptional ability clearly
extends to tolerance of acute high-temperature
exposure (i.e. basal thermotolerance), in which the
T strain in the present study outperforms other
Drosophila melanogasterstrains and compares
favorably with many cactophilic Drosophila
species (Krebs, 1999; Krebs and Loeschcke,
1995a; Krebs and Loeschcke, 1995b; Parsons,
1979; Stratman and Markow, 1998). In other
strains and species, mechanisms of basal
thermotolerance may include enhanced stability of
cellular proteins through modification of primary
structure and synthesis of thermoprotective
osmolytes such as trehalose and
sorbitol, constitutively expressed
molecular chaperones, homeoviscous
adaptation (i.e. adjustment in the lipid
constituents of cells) and regulated
depression of cellular function to
moderate energy requirements.
Although only semi-quantitative, the
various determinations of
constitutively expressed molecular
chaperones reveal no obvious
differences between T and OR25 flies
(Fig. 3, Fig. 5, Fig. 6); if anything,
levels are lower in T flies than in
OR25 flies. Investigation of the other
mechanisms of basal tolerance in the T
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Fig. 6. Proteins present in control conditions and 1 and 3 h after a 30 min 37.5 °C
heat shock in salivary glands of OR25 larvae and of T32 strain larvae acclimated
for 3 days at 25 °C, as detected by silver staining and immunoblotting of two-
dimensional electrophoresis gels. (A,B) Silver staining of the Hsp70 region in
OR25 and T32 strains, respectively. 70c, Hsp70 cognates. (C,E) Hsp70 family
members, as detected by antibody 7.10, in OR25 and T32 strains, respectively.
Note the difference in Hsp68 (68) accumulation in the two strains and in the
protein positioned immediately underneath the major Hsp70 spot (low MW).
(D,F) Actin, as detected by silver staining, in OR25 and T32 strains, respectively.
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Fig. 7. Restriction digests of genomic
DNA of the OR25, T25 and T32 strains of
Drosophila melanogasterprobed with the
ClaI–BamHI fragment of hsp70. Note the
differences among strains.



1876

strain, in which they are presently unknown, may well be
fruitful.

In contrast, in terms of inducible thermotolerance, the T
strain is unremarkable if not comparatively poor. Heat-shock
protein expression is a principal mechanism of inducible

thermotolerance in D. melanogaster(Feder et al., 1996;
Solomon et al., 1991; Welte et al., 1993). Correspondingly, the
T strain exhibits both lower amounts of most Hsps after heat
shock and slower kinetics of Hsp70 and Hsp68 expression than
the OR25 strain. The only obvious exceptions to this
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conclusion are an apparent low-molecular-mass Hsp70 and
several putative small Hsps (Fig. 5), the latter identified
exclusively by electrophoretic mobility and heat inducibility.
Small Hsps, related to α-crystallins, clearly protect against
stress (including high temperature) in other species, and their
encoding genes have evolved in response to environmental
temperature in D. melanogaster(Frydenberg et al., 1999).
Their role in thermotolerance has not been confirmed in D.
melanogaster, however. In any event, decreased inducible
thermotolerance and increased expression of small Hsps would
seemingly be inconsistent. The low-molecular-mass Hsp70
(Fig. 6) is detected both by an antibody specific for all Hsp70
family members (7.10) and by one specific for D. melanogaster
Hsp70 (7FB), and its electrophoretic mobility resembles that
of Protein 38 in fig. 2B of Buzin and Petersen (Buzin and
Petersen, 1982). Indeed, Buzin and Peterson detected isoforms
of Hsp70 considerably more numerous than the Hsp70-
encoding genes, and they hypothesized that this was due to
alternative post-translational modifications. In the T strain,
however, this particular Hsp70 is far more abundant than in
other strains (Buzin and Petersen, 1982; Palter et al., 1986).
Whether this Hsp70 is functional and the basis for its low
molecular mass are presently unknown.

Part of the distinctive thermal phenotype of the T strain is
due to its thermal history while in laboratory culture. The T25
strain is intermediate to OR25 and T32 in basal
thermotolerance, in inducible thermotolerance, in Hsp70
expression (present study) and in several other aspects of
resistance to heat and ionizing radiation (Tikhomirova, 1980;
Tikhomirova and Belyatskaya, 1993; Tikhomirova et al.,
1993). Laboratory evolution at the respective culture
temperatures of the T25 and T32 strains is clearly sufficient to
generate such differences in thermal phenotype and the heat-
shock response (Bettencourt et al., 1999; Gilchrist and Huey,
1999; McColl et al., 1996; McKechnie et al., 1998; Sorensen
et al., 1999), and the two strains differ in hsp70Baallele
frequency. Within a generation, culture at different
temperatures (i.e. thermal acclimation) can also affect diverse

traits in D. melanogaster, and these effects can persist for
multiple generations (Crill et al., 1996; Hercus and Hoffmann,
2000). Thermal acclimation can affect the threshold
temperature for induction of a heat-shock response (for a
review, see Lerman and Feder, 2001), but several attempts to
demonstrate a large effect in D. melanogaster(Bettencourt et
al., 1999; Lerman and Feder, 2001) have failed.

This work adds to a growing list of Drosophila studies
suggesting that, under certain conditions, evolution at high
temperatures leads to decreased expression of Hsp70, a
seemingly paradoxical outcome given the role of Hsp70 in
thermotolerance in Drosophila. D. melanogasterundergoing
laboratory natural selection at 28 °C (henceforth ‘Cavicchi
28 °C lines’) and D. buzzatii(a cactophilic species) reared for
6 h each day at 38.2 °C both express less Hsp70 than 25 °C
controls (Bettencourt et al., 1999; Sorensen et al., 1999).
Similarly, subtropical D. buzzatiicollected from a low (i.e.
warm) elevation express less Hsp70 than conspecifics collected
from a high (i.e. cool) elevation (Sorensen et al., 2001). We
suggest, as have others (Bettencourt et al., 1999; Krebs and
Feder, 1997a; Krebs and Feder, 1997b; Krebs and Feder,
1998b; Krebs et al., 1998; Lansing et al., 2000; Sorensen et al.,
2001; Sorensen et al., 1999), that this pattern is due (i) to the
low levels of Hsp70 present in wild-type D. melanogaster
transiently exposed to temperatures that these high-
temperature lines chronically experience, (ii) to deleterious
consequences of these low Hsp70 levels and (iii) to natural
selection to reduce these low Hsp70 levels, which reduces
Hsp70 levels at all temperatures as a correlated response to
selection (Fig. 10).

Hsp70 is normally undetectable in D. melanogastercells
and whole D. melanogastercultured at 25 °C and below
(Velazquez et al., 1980; Velazquez et al., 1983), which are
typical temperatures for D. melanogastermaintenance in the
laboratory. Exposure to slightly higher temperatures (e.g.
28 °C) results in HSF activation (Lerman and Feder, 2001) and
low, but non-zero, concentrations of Hsp70 (Lindquist, 1980).
The constitutive presence of Hsp70 can be harmful in at least
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Fig. 9. Analysis of heat-shock element (HSE) binding activity in OR25 and T32 flies reared at 25 °C. The latter strain yielded the same results
as for T25 and T32 flies reared at 32 °C; data not shown. (A) Effect of heat shock and identification of specific HSE complexes (A–C) in the
OR25 strain. Lane 1, control (25 °C); lane 2, after a 30 min 37.5 °C heat shock; lane 3, a 30 min 37.5 °C heat shock plus anti-heat-shock-factor
(HSF) antibody, with supershift implicating HSF as a component of complex 1; lane 4, a 30 min 37.5 °C heat shock plus anti-Ku autoantigen
antibody, with supershift implicating Ku autoantigen as a component of complex 2; lane 5, a 30 min 37.5 °C heat shock plus 200-fold molar
excess of unlabeled HSE. This image is a composite of several gels. (B) Effect of heat-shock intensity and recovery time on HSE complexes in
the two strains.
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three ways: by acting as a sink for substrate and cellular
machinery that could be devoted to the synthesis of other
proteins (Krebs and Feder, 1998a), as an impediment to normal
processing and/or degradation of non-native proteins (Dorner
et al., 1988; Dorner et al., 1992; Johnston et al., 1998; Newnam
et al., 1999) and as an inappropriately regulated extra- and
intracellular participant in diverse signaling pathways
involving cell growth and death (Jaattela, 1999a; Jaattela,
1999b; Xie et al., 1999). Indeed, constitutive expression or
overexpression of Hsp70 in D. melanogasterreduces growth,
development and, potentially, fitness (Feder et al., 1992; Krebs
and Feder, 1997a; Krebs and Feder, 1998b; Krebs and
Loeschcke, 1994; Roberts and Feder, 2000), except in the
context of inducible thermotolerance, where it clearly enhances
fitness (Feder, 1999a; Roberts and Feder, 1999; Roberts and
Feder, 2000). Strains evolving at moderately high but constant
temperatures realize only the deleterious consequences of
Hsp70, but none of the benefits, because these strains never
encounter the extremely high temperatures against which
Hsp70 is protective. In response, natural selection may have
acted to reduce the entire Hsp70 versustemperature norm of
reaction (Fig. 10), which results in decreased Hsp70 levels
after exposure to temperatures commonly used in heat-shock

studies. Interestingly, soil arthropods populating soils
contaminated with high levels of heavy metals (another inducer
of Hsp70) also evolve decreased Hsp70 expression (Kohler et
al., 2000). Whether natural selection can result in an Hsp70
versus temperature norm of reaction that includes both
suppression of Hsp70 expression at moderately high
temperatures and increased Hsp70 expression at typical heat-
shock temperatures or whether the levels of Hsp70 at
moderately high and heat-shock temperatures are inextricably
linked by a constraint of the Hsp70 autoregulatory apparatus
(Lindquist, 1993) remains to be determined.

Regardless of its ultimate significance (sensuMayr), the
lower levels of Hsp70 expression in the T strains must have a
mechanistic basis. Features determining the concentration of
Hsp70 in D. melanogastercells include hsp70copy number
(Feder et al., 1996; Solomon et al., 1991; Welte et al., 1993),
chromatin structure (Wu, 1980), transcription (Li et al., 1996;
Mason and Lis, 1997; Morimoto et al., 1994), RNA processing
(Lindquist, 1993; Yost et al., 1990), message stability
(Petersen and Lindquist, 1989) and translation (Hess and
Duncan, 1996; Zapata et al., 1991) and the sequestration and
degradation of protein (Feder et al., 1992). As in prior studies
(Bettencourt et al., 1999), we find no unequivocal evidence for
genes other than the typical five hsp70genes in the T strain
(data not shown). At the level of transcriptional activation, the
T strain exhibits the same temperature-sensitivity of HSF–HSE
interaction as the OR25 strain (Fig. 9). As in other organisms
(Zatsepina et al., 2000), HSF constitutively forms additional
complexes, one with Ku autoantigen and one of unknown
composition, but both complexes are similarly abundant in
both the T and OR25 strains. Presumably, therefore, the lower
Hsp70 concentrations in the T strain have their basis
downstream of HSF activation and binding to HSEs; indeed,
the sizes of restriction fragments and PCR products indicate
polymorphism in the hsp70loci, both in the strains examined
here and worldwide (Bettencourt, 2001). One discrete
candidate mechanism is disruption of the hsp70promoters by
transposable elements, leading to altered transcription. It has
been shown that both H.M.S. Beagleand Jockeyelements may
affect the expression of other genes whose promoters they
disrupt (Kimbrell et al., 1988; Kimbrell et al., 1989; White and
Jacobson, 1996a; White and Jacobson, 1996b). When present
in the hsp70Bapromoter of the T strain, the Jockeyelement
intervenes between the proximal and distal pairs of HSEs.
Although the two proximal HSEs constitute the minimal
Hsp70 promoter, the distal HSEs contribute to heat-inducible
hsp70 transcription (Lee et al., 1992; Topol et al., 1985). The
H.M.S. Beagleelement is in a region of the 87A7 locus whose
impact on hsp70 transcription is unclear. Nonetheless, the
H.M.S. Beagle sequence includes putative enhancer-like
elements that may affect transcriptional regulation at some
distance from the promoter (Kimbrell et al., 1988; Kimbrell
et al., 1989). Transposable elements may be a significant
evolutionary force in D. melanogaster viatheir alteration of
the pre-existing genome, and it is tempting to conclude that
these elements reduce Hsp70 levels in the T strain, which
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Fig. 10. Hypothesized effects of evolution at moderately high
temperatures on the Hsp70 versustemperature norm of reaction. The
solid line represents an idealized norm of reaction for wild-type
Drosophila melanogasterreared at typical culture temperatures, 25 °C
or below, and approximates diverse data for Hsp70 expression and
heat-shock factor (HSF) activation in this species (Bettencourt et al.,
1999; Dahlgaard et al., 1998; Feder et al., 1997; Lerman and Feder,
2001; Lindquist, 1980). Given this norm of reaction, D. melanogaster
cultured at a constant 28 °C (Cavicchi 28 °C lines; Bettencourt et al.,
1999) or 31–32 °C (T strain; T32) would constitutively undergo low
levels of Hsp70 expression, incurring the deleterious consequences of
Hsp70 (see Discussion) but none of the benefits realized only at
higher temperatures. It is suggested that evolution at these moderately
high temperatures acts to modify the norm of reaction (broken line) so
that heat shocks at temperatures above 35 °C result in lower
concentrations of Hsp70 than in the wild type.
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natural selection has then favored in the native environment of
the strain. Whether disruption of one or two hsp70genes out
of five would be sufficient to reduce the overall transcription
of hsp70 mRNA is not known, however, and whether the
H.M.S. Beagle and Jockey elements actually disrupt
transcription as hypothesized requires further study.

The heat-shock genes and the proteins they encode are
among the most ancient and highly conserved known, so much
so that they have been considered useful in defining the
phylogeny of major species groups in Drosophila(Bettencourt
and Feder, 2001; Drosopoulou et al., 1996; Molto et al., 1994;
Sinibaldi and Storti, 1982) and even phyla and kingdoms
(Feder and Hofmann, 1999). Against this background, the
variation among populations of a single species (i.e. T versus
Oregon R) is remarkable. Evidently, adaptation via natural
selection is sufficiently strong to overcome even the immense
phylogenetic inertia of the heat-shock response.
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