
Desert locusts obtain the majority of their thrust and weight
support from the downstroke of their hind wings (Jensen, 1956;
Cloupeau et al., 1979; Wootton et al., 2000). A particular
feature of the downstroke is the automatic development of
depression and camber by the promotion of the wing and the
resulting deployment of the anal fan (‘vannus’ of Snodgrass,
1935): the so-called umbrella effect (Wootton, 1995). This
serves to depress and hold the low-stiffness trailing edge,
almost certainly improving aerodynamic efficiency (Wootton,
1995). The umbrella effect is one of a number of mechanisms
that have been identified as controlling, either automatically or
semi-automatically, the instantaneous three-dimensional shape
of insect wings during flight (Wootton, 1992).

The muscles of the wing do not extend beyond the axillae,
and no control input is required to generate the desired effect
in the anal fan. The deformation is therefore encoded in the
wing design, and the fan, short of catastrophic failure, will
always adopt the same shape for a given angle of promotion.
Although the wing incorporates some of the features associated
with ‘smart’ structures, it is not truly a smart structure. Smart
structures and materials have obvious attractions for engineers
who wish to reduce the controlling component of small-scale
machines and deployment mechanisms. This level of
integration of design and function between and within
biological structures is often far greater than that achieved by
modern engineering.

Wootton (1995) has demonstrated that the process of
automatic depression that leads to camber generation, referred

to as the ‘umbrella effect’, is dependent on the wing’s
geometry: the progressively decreasing length of the
supporting veins postero-proximally from the remigium to the
inner margin, and the acute angle that each makes with the
perimeter. He derived an analytical model of the effect, which
is also relevant to other Orthoptera and to some Phasmida
(stick-insects) and Dictyoptera (cockroaches and mantises). He
showed that, for a given angle of deployment, the height of the
generated camber is inversely related both to the number of
vannal veins and to the size of the acute angle between the
veins and the perimeter. However, the model he used was
based on a number of simplifying assumptions: the profile was
described as part of a logarithmic (equi-angular) spiral; the
perimeter was modelled as a cord, stiff in tension; and the wing
membrane, cross-veins and intercalary veins were disregarded.
In addition, the supporting veins were assumed to be straight
and to radiate from a single point, and the flexural rigidity was
assumed to be constant along the length of each vein and
identical from vein to vein. In reality, the wing profile can only
approximately be described as a logarithmic spiral, and the
supporting veins radiate not from the same point but from a
cuticular bar. The veins are curved, taper from their origin at
the ano-jugal bar to their ends at the wing margin and,
therefore, have non-constant flexural rigidities along their
length. The limitations of the analytical model were discussed
by Wootton (1995). However, to explore in detail the influence
of these complicating effects, a more complex and realistic
model is needed.
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Finite element analysis is used to model the automatic
cambering of the locust hind wing during promotion: the
umbrella effect. It was found that the model required a
high degree of sophistication before replicating the
deformations found in vivo. The model has been validated
using experimental data and the deformations recorded
both in vivo and ex vivo. It predicts that even slight
modifications to the geometrical description used can lead
to significant changes in the deformations observed in the

anal fan. The model agrees with experimental data and
produces deformations very close to those seen in free-
flying locusts. The validated model may be used to
investigate the varying geometries found in orthopteran
anal fans and the stresses found throughout the wing when
loaded.
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In the present paper, a finite element model of part of the
desert locust wing is developed to explore numerically the
mechanisms that lead to the umbrella effect. The finite element
method was first introduced by Courant (1943) and developed
further by physicists and engineers (Argyris, 1965). The
impetus for development since has come from engineers who
wished to gain solutions to many problems of complex
continua in solid mechanics, fluid dynamics and shape
optimisation. The finite element approach involves dividing a
complex structure into simpler constituent elements that are
connected to one another at common points or nodes, a process
known as meshing. Specifically, it involves interpolating a
field quantity, e.g. stress, displacement or temperature, at the
nodes that are created when the model is meshed. By
connecting the elements at the nodes, the field quantity
becomes interpolated over the entire structure. Although the
solution obtained is, in general, approximate, the strength of
the approach lies in its versatility: structures can be of any
shape, have any support conditions and be subjected to
complex and multiple loads.

The non-linearity of biological systems, the structural and
physical diversity of biological materials, the problems
associated with their testing and the irregularity and
complexity of structural components all present major
problems for finite element modelling. The potential
applications in biology are nonetheless numerous. The method
has already been utilised extensively in biomedical physics,
particularly for bone, whose material properties are relatively
well understood (Huiskes and Chao, 1983; Prendergast and
Huiskes 1996a,b; Prendergast, 1997; Smith et al., 1997;
Hirschberg et al., 1999). The advent of accurate scanning
techniques such as computer tomography has allowed meshing
of complex and inhomogeneous three-dimensional structures
of the sort commonly encountered in biology to be accurately
modelled (Dalstra et al., 1995; Guldberg et al., 1998).

The finite element method has previously been used to
model the wings of dragonflies (Odonata) (Kesel et al., 1998;
Watanabe, 1995). These are perhaps the most complex of all
insect wings, with high, varying relief and a rich network of
multi-branched longitudinal veins and multiple cross-veins.
Because of this complexity, and since the material properties
of the cuticle and the actual spatial and temporal distribution
of aerodynamic forces on dragonfly wings are unknown, the
models have necessarily included simplifications. In both
cases, the Young’s modulus of all cuticle was taken from
published values for the locust tibia (Jensen and Weis-Fogh,
1962). The models of Kesel et al. (1998) introduced
complexity progressively, achieving increased realism in
computed deformations in response to notional aerodynamic
loads. However, many simplifications inevitably remained: the
irregular, variable-cross-section veins were modelled as
hollow cylinders, and the effect of the membrane was
approximated by adding a stress-stiffening component. The
sophisticated analysis of Watanabe (1995) incorporated
precisely measured relief and membrane thickness, and
subjected the modelled wings to computed inertial forces and

aerodynamic pressures based on real dragonfly kinematics. The
model was used to compare the stresses on the wings in which
attitude and spanwise torsion were actively as well as
aeroelastically controlled with those that would result when
these were controlled by wing elasticity alone. The geometry
of the veins was modelled as precisely as possible, but no
account was taken of flexion lines or flexible joints, which
probably contribute significantly to the deformations of the
wings.

The current analysis will combine accurate material and
geometric properties, obtained from direct measurement, to
produce a robust numerical model of the umbrella effect in the
hind wing anal fan of Schistocerca gregaria. It will ascertain
the importance of certain features (vein geometries and
position, wing shape) to the umbrella effect. The model will
be validated using experimental camber tests and by comparing
deformations with those observed in vivo.

Materials and methods
Vein geometry

The form of the cross sections of the longitudinal veins
replicated in the models (Fig. 1) was found by sectioning. The
veins were embedded in LR White, a two-part acrylic resin.
The nature of insect cuticle makes it exceptionally difficult to
achieve any real infiltration using embedding media. This
results in poor sectioning where the material is unsupported,
and distortions can occur if a microtome is used to cut thin
sections. To prevent this, thick sections were cut manually. A
metal guide was clamped either side of the sample, parallel to
the vein’s long axis, and the section was ground down until the
guide was reached. This produced a clean, flat section
perpendicular to the vein’s long axis.

Each section was positioned under an Olympus microscope,
fitted with a video-capture system. A small spirit level was
used to ensure that the section was perpendicular to the
objective. Images of the vein were captured, and the contrast
was digitally enhanced if necessary. The width and height of
the sample were measured. The use of perpendicular metal
guides when cutting the samples and the spirit level when
mounting the samples ensured that parallax errors were
negligible.

To simulate numerically the structural behaviour of the
locust wing in the finite element model, the flexural rigidity
to be used in the beam elements modelling the veins is needed.
The flexural rigidity of any beam is the product of its Young’s
modulus (E) and the second moment of area (I) of its cross
section about the neutral axis. The second moment of area is
the sum of the products of areas and the squares of their
perpendicular distances from the neutral axis (Fig. 2). The
neutral axis passes through the centroid of the section and is
an imaginary line along which tensile and compressive
stresses are zero when the beam is subjected to pure bending
(Fig. 2). The Young’s modulus is a uni-axial measure of
stiffness given by the ratio of stress to strain in a material.
Pictures taken from the sectioned veins were edited as bitmaps
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to isolate the vein material from the background and to
convert the images to monochrome (Fig. 3). A program was
designed that processes a shape image and calculates the
cross-sectional area and all required area moments. These are
Ixx and Iyy (the second moments of area of the section relative
to bending forces from two directions mutually at right angles)
and the torsional constant Ixy, an area moment that is a
function of the resistance of the beam to torsion. The
calculations were checked using regular shapes whose
area moments were calculated using standard formulae
(Young, 1989); the resulting error was 0.6 ± 0.3 % (mean ±
S.D.). Preserving the shape of the veins during sectioning was
of paramount importance, as any distortion would introduce
critical errors in these calculations.

Wing geometry

A digitised wing profile was built up using drawings and
photographs (Fig. 1). The coordinates of the wing structures
were recorded and registered using a bitmap editor. Each vein
was excised, and the profile of the z axis was recorded (along
the vein, Fig. 4). The gross wing geometry was then entered
as a set of x, y and z coordinates.

Experimental tests

The torques required to induce a 1 cm depression in the anal
fan of the hind wings were measured using a torsion balance
(Fig. 5) modified from that used by Wootton (1993). An adult
locust (Schistocerca gregariaForskål) was killed, the fore
wings and legs were removed, and the flight muscles were
severed. A small hole was made through the wing membrane
behind the leading edge vein at a point that had previously been
hardened with a small droplet of cyanoacrylate glue to prevent
tearing. The hole was made 15 mm from the point of rotation
about the wing base, matching the length of the moment arm
on the torsion balance. The insect was mounted on a stage with
the axilla lying co-axially to a vertically suspended metal wire
of known length, diameter and torsional stiffness through
which torque was applied (Fig. 5).

The lower end of the metal wire was glued to a needle that
formed a vertical axle for an aluminium disc mounted on
effectively frictionless bearings. A rod and hook projected
from the underside of the disc, 15 mm from the centre point.
The disc carried a horizontal pointer that moved around a
horizontal circular protractor mounted co-axially with the wire,
the disc and the axilla. The upper end of the wire was attached
to a cork mounting, with a second pointer moving around a
second horizontal, circular, co-axially-mounted protractor.
Torque was applied manually by rotating the cork mounting,
so rotating the aluminium disc and extending the wing. The
torque applied to the wing was calculated by converting the
difference in rotation angle between the top and bottom
pointers into radians. This value was multiplied by the
torsional rigidity of the wire (in N m rad—1) to give the torque
in N m. The total force applied at 15 mm from the base could
then be calculated by dividing the calculated torque by
0.015 m.

Right and left hindwing pairs were tested 11 times each,
disregarding the first test. Desiccation of the wing was
minimised by maintaining a high ambient humidity with damp
tissues and by carrying out the tests in less than 2 min. Each
time torque was applied, the leading edge was promoted and
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the wing deployed, leading to depression in the trailing edge
(Fig. 6).

Finite element analysis
Model description

Five different finite element models of part of the vannus
(anal fan) shown in Fig. 1 were generated using the
commercial software package ANSYS 5.4.

Both the membrane and the dorsal longitudinal veins of the
region shown in Fig. 1 were modelled, but the ventral veins
and the small cross-veins were not included in the models.
The ventral veins, positioned at the base of the wing
corrugations, have much smaller cross-sectional areas and
second moments of area than the dorsal veins, and therefore
have much lower flexural rigidity. The purpose of the cross-
veins within the context of wing deployment is unclear but,
because their rigidity is very low, it was assumed that they
contribute little to the mechanism being studied. The locust
hind wing is always heavily corrugated at the leading edge,
an adaptation to increase rigidity, even when fully deployed.
This corrugation persists to produce some level of
corrugation at the trailing edge, but its structural significance
is much reduced. When the wing is deployed, the trailing-

edge corrugation is less apparent and appears more as a series
of ridges where the larger dorsal veins protrude from the
membrane. When the trailing edge is depressed and the
membrane is in tension, the corrugations flatten out
almost completely. No corrugations were modelled, as a
consequence of the omission of the ventral veins and because
the initial or resting state of each model represented the point
in deployment at which the membrane is taut and any
corrugations are minimal.

The modulus of the membrane has been shown to range in
the anal fan from 11.3 to 0.3 GPa (Smith et al., 2000). Although
there was no clear pattern in the distribution of modulus, values
closer to the margin were generally lower than those closer to
the base of the wing. The membrane was divided into three
bands (Fig. 6); the elements of the most proximal area were
given a modulus of 5.1 GPa, those of the mid area 3.75 GPa
and those of the most distal area 2.4 GPa, representing an
average modulus within the three areas. The membrane
material properties were assumed to be isotropic and to behave
linear-elastically. The membrane was assumed to be of a
constant 1.7µm thickness (mean anal fan thickness in Smith et
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Fig. 3. (A) Original photograph of a section perpendicular to the long
axis of an anal vein and the segmented vein walls. Scale bar, 0.1 mm.
(B) The same image after editing to isolate the vein material from the
background and conversion of the image to monochrome.
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Fig. 4. The coordinate systems used to digitise the wing and vein
profiles.
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al., 2000) and was meshed with two-dimensional thin-shell
elements.

The modulus of the vein material has not been directly
measured, but published values for insect cuticle range from
very stiff sclerotised cuticle at 9 GPa (Jensen and Weis-Fogh,
1962) in the locust tibia, which may represent the upper limit
of stiffness in cuticle, to as low as 2×10−4GPa in the softened
cuticle of female locusts (Vincent, 1990). A modulus of 6 GPa
was chosen for the vein material as representing an average
value for published data concerning sclerotised cuticle. The
vein material was assumed to be isotropic and to behave linear-
elastically. The veins were meshed using three-dimensional
elastic beam elements.

The details of the five models are as follows.
(i) The ‘comprehensive’ model. This is the most realistic

model constructed. The model is based on the accurate
digitised three-dimensional geometries (x, y and zcoordinates)
for the outline and vein placement, as shown in planform view
in Fig. 7A. The model includes the pre-camber out-of-plane
curvature of the vannus, and the tapered veins were
approximated using a ‘stepped beam’ approach with a total of
six uniform segments for each vein; values of second moments
of area (Ixx, Iyy and Ixy) used for each segment were as obtained
from the experimental measurements.

(ii) The ‘no-camber’ model (Fig. 7B). This model is based
on the comprehensive model and is identical in all respects
except that the initial curvature or camber of the wing is
neglected, all the points on the wing are assumed to lie in the
xyplane. In other words, the anal fan is assumed to be flat prior
to applying the load.

(iii) The ‘straight-veined’ model (Fig. 7C). This model is
again based on the comprehensive model, but now the
curvature of the veins in the plane of the wing is neglected.
The out-of plane curvature or initial pre-camber of the anal fan
is, however, modelled.

(iv) The ‘identical-vein’ model (Fig. 7D). This model is
identical to the comprehensive model except that the tapering
of the veins is not modelled. Each vein is assumed to have
values of the second moment of area that are constant along
its length and equal to the values measured at the basal
point of the leading edge vein (i.e. Iyy=1.29×10−4mm4,
Ixx=0.26×10−4mm4, Ixy=1.54×10−4mm4).

(v) The ‘mock-geometry’ model (Fig. 7E). This model is
constructed using geometry for the wing outline and vein
placement approximated from the real wing. The purpose of
this model is to show the effects of crudely approximating the
shape of the wing and the arrangement of the veins. The veins
are placed approximately the same distance apart from one
another as in the real wing, but are joined at the top, the ano-
jugal bar, by a straight line, rather than a curved structure as
seen in the real wing. The curve of every vein is similar, and
the membrane margin is simply a straight line between the tips
of each vein. All veins are constructed using the second
moments of area measured from the corresponding positions
in the real wing. The model incorporates all measured material
properties of the veins and membrane, but has a modified
geometry.

Mesh generation

All five models were meshed using parabolic order elements
because they include mid-side nodes that allow for elements
with curved edges and a more accurate fit to the underlying
geometry. A convergence test was performed by refining the
mesh until further refinement resulted in no substantial change
(<10 %) in the computed displacements of the anal fan under
loading. For the ‘comprehensive’ model, a mesh consisting of
1669 elements (220 beam and 1449 membrane elements,
Fig. 8) was found to give satisfactory results.

Boundary conditions

The veins were constrained at their base with only one
rotational degree of freedom about the x axis. In reality, the
veins are capable of rotating in all three directions via
movements of the axillary muscles. As the axilla was not
included in this model and the wing muscles were cut in the
camber experiment, the degrees of freedom at the base of the
model veins were reduced to one. The boundary conditions
of the models assume that the veins cannot translate forwards
or backwards relative to the body. Although the whole of the
ano-jugal bar can be moved to some degree in vivo, this only
occurs beyond the extension needed to generate camber.

Loads were applied to the most anterior vein of the anal fan
as a uniformly distributed beam load. Although in the actual
wing the load is applied at the base as a torque on the leading
vein, this load would be transferred through the membrane to
each vein, resulting in a distributed load on the leading vein of

Fig. 6. The behaviour of a locust hind wing when deployed. As the
leading edge is deployed, depression and camber generation occur in
the wing, the greatest depression occurring in the posterior region of
the anal fan. The division of the membrane into the three bands used
in the model is indicated, as are the veins used in the model.

Force

Depression

Depression
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the anal fan. As the model deformed, the load was always
applied normal to the vein (follower force).

Model solution

Quasi-static loading was assumed (aerodynamic loads and
inertial forces were ignored), and the model was solved
allowing for large, non-linear deformations. Each model was
subjected to sequential, distributed beam loads, from
0.002 N m, in increments of 0.002 N m, deploying the wing
until, where possible, a total depression (and/or elevation) of
between 0.9 and 1.1 cm was produced in the vannus. This was
measured as the maximal point of translation in the z axis, and
the computed torque required was compared with the torque
measured in the camber test experiments.

Results
Vein structure and area moments

The changes along the veins from tip to base in the second
moments of area about the neutral planes shown in Fig. 2 and
the polar moment of area are shown in Fig. 9. In all the
longitudinal veins examined, Ixx and Iyy decreased non-linearly
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Fig. 8. The final mesh for the ‘comprehensive’ model consisting of
220 beam (red) and 1449 membrane (blue) elements.
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Fig. 7. The geometry, boundary and load conditions of the five finite element analyses. (A) The ‘comprehensive’ model; (B) the ‘no-camber’
model; (C) the ‘straight-veined’ model; (D) the ‘identical-vein’ model and (E) the ‘mock-geometry’ model. The tapering of the veins and the
change in thickness between veins is indicated, except for the ‘identical-vein’ model whose veins all have identical cross sections. The lines
dividing the membrane into three bands, each with a different modulus value, are also shown. The line below indicates the profile of each
model, through points x–y. All models were restricted to zero translation at the base of the first vein, indicated by a single triangle, and pin
joints at the base of all other veins, indicated by double triangles. The arrows indicate the direction of the distributed beam load.
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as the veins tapered from the base to the tip. Iyy for each vein
section was consistently higher than Ixx, and the maximum Iyy

value was nearly five times the maximum Ixx value. The

torsional or polar moment of area is related to both Iyy and Ixx

and, consequently, followed a similar pattern and extent.

Experimental tests

A mean torque of 9.4×10−4±1.3×10−4N m (mean ±S.D.) was
required to deploy the locust hind wing fully. Previously
conducted tests, using similar equipment, required opening
torques of 9×10−4N m to deploy complete hind wings from the
closed position (Pitts, 1996; K. Pitts, personal communication).
These results are very similar to our own, suggesting that the
technique is robust.

The experimental torque required to depress the trailing edge
by 1cm when deploying the whole wing was 6.3×10−5±0.7×10−5

Nm. This decreased to 3.5×10−6±0.6×10−6Nm when just the
anal fan was isolated and deployed. In both the complete wing
and the isolated vannus, depression and camber were generated
long before the wing was fully extended. Crucially, while the
whole outer margin was to some extent lowered, the greatest
depression took place in the inner, postero-proximal part of the
wing’s trailing edge. Thus, as an in-plane force was applied to
the leading edge of the wing or isolated vannus and the wing
deployed, the umbrella effect caused depression in the anal fan.
The area displaying the most depression was the very posterior
portion of the vannus (Fig. 6). A plot of torque against
deployment angle for a wing obtained with the same apparatus
appears in Fig. 7 of Wootton et al. (2000).

Finite element models

The torques required to induce a 1 cm depression as
computed using the five different finite element models of the
anal fan are given in Table 1.

The closest value to the average experimentally measured
torque of 3.5×10−6±0.6×10−6Nm was obtained using the
comprehensive finite element model (1.7×10−6Nm). The torque
computed for the mock-geometry model was also reasonably
close (1.2×10−6Nm). For both the identical-vein and the
straight-veined models, computed torques (4.8×10−5Nm and
4.4×10−5Nm respectively) were an order of magnitude higher
than the experimentally measured torque. The no-camber model
failed to generate any depression under loading.

In Figs 10–14, the deformations of the five wing models
under loading are plotted. Interestingly, only the
comprehensive model produces deformations that are similar
to those observed in vivo (Figs 10, 15). For all other models,
qualitatively different deformations are produced under
loading. For the mock-geometry model, the region with the
largest depression is not the posterior, but the central portion
of the wing margin (Fig. 11). For the straight-veined model
(Fig. 12), the deformation is principally in the positive z axis
(elevation), in contrast to the real wing (depression). The
identical-vein model (Fig. 14) produces incorrect
deformations, the mode of which alters according to the total
applied load. At lower load levels (Fig. 14A), the point of
maximum translation is towards the centre of the wing margin,
but at higher loads (Fig. 14B), the leading edge becomes the
maximum translation point. The no-camber model produces no
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Table 1.The loads and torques applied to each of the five models to produce approximately 1 cm of camber

Load applied Leading 
to leading edge edge length Total load Mean torque 

Model (N m) (m) (N) (N m)

(i) Comprehensive 0.0060 0.022 0.00015 1.7×10−6

(ii) No camber − − − −
(iii) Straight veined 0.1800 0.022 0.00400 4.4×10−5

(iv) Identical vein 0.2000 0.022 0.00440 4.8×10−5

(v) Mock geometry 0.0025 0.025 0.00005 1.2×10−6

The no-camber model failed to produce any camber.

Fig. 10. The ‘comprehensive’ model subjected to a load of 0.006 N m. (A) Dorsal view and (B) latero-dorsal view; the colour represents
translation in the z axis, either positive (elevation) or negative (depression) in metres. The black lines illustrate the undeformed shape of the
wing.

Fig. 11. The ‘mock-geometry’ model subjected to a load of 0.02 N m. (A) Dorsal view; (B) latero-dorsal view. The black lines illustrate the
undeformed shape of the wing. The colours represent translation in the z axis in metres. Positive values indicate elevation; negative values
indicate depression.
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depression or elevation, and increases in applied force simply
lead to a larger translation in the plane of the wing (Fig. 13).

In Fig. 15, the observed deformations of a locust wing in
flight (Fig. 15A) are shown next to the numerically computed
deformations of the comprehensive model (Fig. 15B). The
camber is generated at similar angle in the trailing edge of the
complete model as occurs in an actively flying locust.

Discussion
The observed tapering of the veins in the hind wing of the

desert locust is, at least in part, a natural adaptation to structural
loading. Indeed, the bending moments due to aerodynamic

Fig. 12. The ‘straight-veined’ model subjected to a load of 0.0025 N m. (A) Dorsal view, (B) latero-dorsal view, (C) distal view. The black lines
illustrate the undeformed shape of the wing. The colours represent translation in the z axis in metres. Positive values indicate elevation;
negative values indicate depression.

Fig. 14. The ‘identical-vein’ model subjected to a load of 0.065 N m
(A) and 0.1 N m (B). The black lines illustrate the undeformed shape
of the wing. The colours represent translation in the z axis in metres.
Positive values indicate elevation; negative values indicate
depression.

A

B

Fig. 13. The ‘no-camber’ model subjected to a load of 0.002 N m (A)
and 5 N m (B). The black lines illustrate the undeformed shape of the
wing. No translation in the zaxis occurred.
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loading of the wing will decrease from the ano-jugal bar to the
wing margin, and the tapering of the veins will tend to
minimise mass and moments of inertia for appropriate rigidity,
which is important in oscillating structures and particularly so
in a migratory species, where energy conservation is necessary.
However, the form of the taper is highly non-linear and must
also have a significant influence on the precise form of the
camber generated by deployment.

The cross sections indicate that the veins are optimised for
resisting bending moments about the neutral x axis, which is
to be expected, because this will be the principal direction of
loading. Fig. 3 clearly shows the asymmetry in the veins
between the medio-lateral and dorso-ventral planes, which
leads to the difference between Ixx and Iyy. The higher flexural
rigidity about the neutral x axis is due to the elliptical hollow
cross-sectional shape of the veins in which material is
concentrated away from the neutral axis, thereby providing a

high stiffness to mass ratio. It is not until close to the wing tip
that the veins adopt a circular cross section, and the Ixx and Iyy

values are equal. At this point, too, the differences in cross-
sectional area and in moments of area between different veins
are minimal. In the real wing, the cross-veins and the
membrane prevent flexion of the veins about the neutral y axis.

The results obtained from the numerical simulation of
deployment using the five finite element models were very
different. Only the ‘comprehensive’ model produced
deformations that matched both the experimental data on real
wings under similar loading and the shape that wings assume
in actual flight (Fig. 15). The other four models all failed to
reproduce similar deformations to those of the actual wing
despite having many similar characteristics. The torque
required to produce a 1 cm depression in the trailing edge of
the ‘comprehensive’ model was approximately half that
obtained experimentally. This difference may be due the extra
resistance of the cuticle of the axillae, to which the wing is still
attached and which the model does not include.

The ‘straight-veined’ model produced two areas of high
transition, both a depressed region and an elevated region. By
forming straight lines between the point of origin of the veins
and the wing margin, the relationship between the angle of the
plane of vein cambering and the angle at which the margin
exerts its force on the vein tips is increased. The curve of the
veins in the real wing and the complete model enables the
margin to exert a force that is more parallel with the plane of
cambering. So, when a distributed load is applied through the
wing margin, it is initiating Euler buckling more effectively by
bending the vein closer to the plane in which camber already
exists. In effect, by straightening the vein, some advantage of
pre-cambering is lost. This effect is also likely to be occurring
in the ‘mock-geometry’ model, in which the relative placement
of the veins and the shape of the wing margin are altered.

The ‘identical-vein’ model produces a load-dependent
deformation. The area of maximum translation moves round
the wing margin anteriorly as the load is increased. As each
vein in the model has identical stiffness, there is no reduction
in overall stiffness from anterior to posterior veins. This has
the effect of causing the anterior veins to buckle before the
posterior ones. The most anterior vein may be prevented from
buckling initially by the distributed load, but as the load is
increased this vein also buckles, producing the final
deformation.

The ‘no-camber’ model produces no depression in the
trailing edge upon loading. The pre-cambering of the veins in
the real wing (which was included in all other models) enables
Euler buckling to occur smoothly along the length of the veins.
Because the camber of the veins is in the same direction as the
desired depression, a smooth transition from an unloaded to a
loaded depressed state can be achieved. For the model without
pre-cambering, the out-of-plane buckling behaviour will not
occur smoothly. A cardboard model consisting of radiating flat
spokes, restrained at their tips by cord, illustrates this well.
When the force is applied carefully, the model will tend to snap
to either an elevated or a depressed state as the model passes

R. C. HERBERT AND OTHERS

Fig. 15. (A) Schistocerca gregariain free flight, illustrating the angle
and amount of camber generated in the trailing edge. Traced from a
photograph from Dalton (1975), with permission. (B) For
comparison, the loaded ‘comprehensive’ model displaying a similar
mode of deformation in the trailing edge (TE), with the leading edge
(LE) at a similar angle.

LE

TE

A

B
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through a singularity. Once the spokes have been buckled, the
depression or elevation will continue smoothly.

These results suggest that the wing shape, as well as the
properties of the veins and membrane, is structurally very
significant. The range of deformations produced by subtly
altered models emphasises the degree of design integration that
one finds in biological structures. If man-made structures are
eventually to emulate automated, passive biological structures,
an integrated design philosophy may well be essential.

The finite element method was born of engineering
principles and is still used mainly in engineering. The materials
used and the loading patterns encountered are generally much
better appreciated in the analysis of human-engineered
structures. It is common practise to create an optimised simple
model and only include limited complexities, and these models
often provide sufficient information.

The range of structural responses to loading obtained using
the approximate numerical models presented here clearly
demonstrates how much more complexity is required in this
biological case to achieve accurate results. The vein shape,
vein size, vein position and wing shape interact intimately with
one another to produce the observed deformation, and over-
simplifying any of these caused the model to fail even at the
basic level of qualitatively reproducing observed deformations.
Not only was a surprisingly sophisticated model required to
give reasonably accurate results, but also the response of the
model was very sensitive to minor simplifications. These
results serve to highlight the need to validate every
simplification of a model before it can be accepted.

Only a small portion of the hind wing was included in the
model. Increasing the scope of the model to include the whole
wing, its corrugations and some of the axillae would enable
more accurate load and boundary conditions to be applied.
Sensitivity analysis should be applied to the model to gauge
the sensitivity of the deformation to the parameters of material
stiffness and the shape of the veins and to evaluate the relative
importance of the features discussed here.

This research was carried out with the assistance of BBSRC
Special Studentship 3178 and BBSRC grant SO7722.
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