
The basic assumption of flight mechanics is that the rate at
which the muscles have to do work in flight can be calculated
from the physics of supporting the weight of the body against
gravity, and of overcoming the drag of the body and wings.
This rate of doing work is the mechanical power. The rate at
which fuel energy is required (metabolic power) is determined
primarily by the mechanical power, but the connection is not
simple because the conversion of fuel energy into mechanical
work depends on physiological processes for which no
complete quantitative theory exists. Thus, to test a flight
mechanical theory, it is necessary to measure the mechanical
power directly (like the shaft power of an engine) as opposed
to measuring the rate of consumption of fuel energy.
Mechanical power was first measured directly by Biewener et
al. (1992) on a starling flying in a wind tunnel, and the same
method was used in a free-flight experiment on pigeons by Dial
and Biewener (1993). They measured the force exerted by the
pectoralis muscle during the downstroke by bonding a strain
gauge to the upper surface of the deltoid crest of the humerus,
in effect using distortion of the bone as a spring balance. The
distance shortened by the muscle was estimated from video
recordings and multiplied by the force to give the work done in
each contraction. Multiplying this by the wingbeat frequency
gave the power. ‘Force’ and ‘distance shortened’ are actually

not definable in the pectoralis of a bird because the motion
imparted to the humerus is rotary rather than linear, and
different fibres in the muscle shorten through very different
distances. Work estimates are, at best, proportional rather than
equal to the actual work done. The shape of the power curve
can be observed from proportional measurements (Biewener et
al., 1992; Dial et al., 1997), as can the shape and timing of
work loops (Biewener et al., 1998), but not the absolute value
of the power, as required for comparison with values predicted
from an aerodynamic model. In any case, insufficient
information about the morphology of the bird, and the
conditions of flight, was given in any of these projects to allow
such predictions to be attempted from the data as published.
Undesirable features of the technique are that surgery is
required to implant sensors, and trailing wires have to be
connected to the bird.

To measure the work done by the pectoralis muscle in
rotating the humerus, the moment exerted by the muscle (rather
than the force) has to be multiplied by the angle (rather than
the distance) through which the humerus rotates. In this paper,
we describe a new method for measuring those variables, and
for estimating mechanical power, which does not require
transducers to be implanted or wires to be connected to the
bird. The principle of our method is to observe the motion of
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A swallow flying in the Lund wind tunnel was observed
from the side and from behind, by two synchronised high-
speed video cameras. The side-view camera provided a
record of the vertical position of a white mark, applied to
the feathers behind and below the eye, from which the
vertical acceleration was obtained. The rear-view camera
provided measurements of the mean angle of the left and
right humeri above horizontal. From these data, the force
acting on the body, the moment applied by each pectoralis
muscle to the humerus and the rotation of the humerus
were estimated and used to analyse the time course of a
number of variables, including the work done by the

muscles in each wing beat. The average mechanical power
turned out to be more than that predicted on the basis of
current estimates of body drag coefficient and profile
power ratio, possibly because the bird was not flying
steadily in a minimum-drag configuration. We hope to
develop the method further by correlating the mechanical
measurements with observations of the vortex wake and to
apply it to birds that have been conditioned to hold a
constant position in the test section.

Key words: flight, mechanical power, wind tunnel, swallow, Hirundo
rustica.
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the body and wings as the bird flies in the wind tunnel and then
to apply Newton’s laws of motion to deduce what forces are
acting and how much work is being done. We compare the
estimated power at different speeds with the power predicted
from the theory of Pennycuick (1989a). This theory requires
values to be assigned to a number of variables, some of which
are difficult to measure and are poorly known. The discussion
takes the form of searching for combinations of variable values
that will give a satisfactory approximation to the observed
results, and then considering the physical implications of the
inferred values.

Materials and methods
Birds and wind tunnel

The experimental subject was one of two swallows (Hirundo
rustica) captured as adults near Vomb, Sweden, on 21 May
1999, and released on 15 June 1999. After a period of
habituation to captivity and handling, the swallows were
introduced into the Lund wind tunnel, where they quickly
learned to fly with minimal training. Full details of the layout
and construction of this wind tunnel were given by Pennycuick
et al. (1997), together with performance measurements. The
width of the test section (1.20 m) was just under four times the
wing span of the swallow (Table 1).

The swallow flew in the closed part of the test section,
approximately 50 cm downstream of a fine net placed across
the exit from the contraction. The thread diameter of the net
was 0.15 mm, with a mesh size of 29 mm×29 mm, i.e. thinner
threads and larger mesh than the net used in the performance
tests described by Pennycuick et al. (1997). The Reynolds
number of the threads would have been approximately 62 at
6 m s−1, rising to 114 at 11 m s−1. This is above the threshold
(Re=40) at which threads generate no turbulence, and we
therefore assume that the net introduced a small amount of
turbulence into the flow. Later, we note the possibility that this
could have had an effect on our results.

Primary observations

When any bird settles down in steady flapping flight in the
wind tunnel, its body can be seen to oscillate up and down with
each wing beat. We observed this motion, and also the wing
beat itself, using two synchronised high-speed digital video
cameras (Redlake Motionscope PCI 500) placed as shown in
Fig. 1 to give simultaneous pictures of the bird from the side
and from behind. The cameras were controlled by a Pentium
II 233 MHz computer with Windows NT, running Version 2.15
of the Motionscope PCI application software of Redlake. The
camera output was recorded initially in the form of two
animation (.AVI) files, one from each camera. The individual
frames were extracted from these in the form of sequences of
compressed (.JPG) monochrome picture files, measuring
480 pixels×420 pixels. The pixels were square (aspect ratio 1).

The side-view camera was positioned 75 cm from the centre
of the test section, and the zoom lens was adjusted so that the
width of the picture was sufficient to accommodate the tip of

the beak back to the posterior edge of the wing. The primary
measurement from this camera was the XY position in pixels
of a white spot made with typewriter correction fluid (Tippex)
behind and below the eye. The spot was placed as far back as
possible, without being momentarily hidden by the wing at
mid-downstroke, so as to minimise the possibility that the spot
might move vertically if the bird were to flex its neck at each
wingbeat. Actually, neither swallows nor any other species so
far observed in the Lund wind tunnel stabilised their heads,
except when looking at a perch or the floor, when about to land.
In steady flight, the head moved up and down with the body,
with no measurable flexing of the neck or rotation of the beak,
in all species including waders and ducks.

The rear-view camera was set up to accommodate the whole
wing span at mid-downstroke, with some space for lateral
movement. In each rear-view picture, the XY (pixel) positions
of four points were first recorded, marking the ends of two
straight lines, parallel to the left and right humeri. The angle
between each humerus and horizontal was determined from the
ends of the lines. The average value for the left and right
humeri was our estimate of the ‘humerus angle’ φ, measured
upwards from the horizontal position. The loading and
manipulation of sequences of images were automated by
writing an ARexx script to control the image processing
program ImageFX (Nova Design Inc.) on a Commodore
Amiga 3000 computer. This script also recorded the
coordinates of points selected with the mouse, directly to the
‘raw’ data file. Subsequent processing of the files was also
done on the Amiga, using programs written as required in
Hisoft Basic 2.
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Table 1. Body and wing measurements for the swallow

Mass of whole body (kg) 0.0190
Estimated mass of wingless body (kg) 0.0159
Wing span (m) 0.318
Wing area (m2) 0.0132
Estimated wing moment of inertia (kg m2) 2.74×10−6

Gliding moment arm (m) 0.0598

Wing moment of inertia was estimated from wing span according
to Kirkpatrick (1990).

Camera A

Net

Wind

Camera B

Fig. 1. The swallow flew in the closed part of the test section and
was observed from the side by camera A and from behind by camera
B. Full details of the wind tunnel were given by Pennycuick et al.
(1997).
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Frequency filtering of data files

The three unfiltered data files for each sequence contained
the following numbers for each frame: X, the distance in pixels
from the left edge of frame; Y, the distance in pixels from the
bottom edge of frame; and φ, the humerus angle in degrees
above horizontal (average of left and right).

Fig. 2 shows an example of unfiltered Y and φ files from
sequence ‘O’, which consisted of 365 frames, at intervals of
4 ms. The even-numbered frames were used to measure the
‘raw’ data points at intervals of 8 ms. The Y record shows a
marked oscillatory component at the wingbeat frequency,
superimposed on components at lower frequencies due to the
bird moving up from the bottom of the frame and then back
down again. The φ record shows some irregularities during the
upstroke caused by difficulty in discerning the humerus
position when the wing is strongly flexed.

In the subsequent processing, X and Y were converted into
x and y, the corresponding distances from the left and bottom
edges of the frame, respectively (in metres). The scale, which
varied slightly as the bird wandered towards or away from the
camera, was obtained by measuring the apparent distance (in
pixels) between the white spot behind and below the eye and
a second white mark near the tip of the bill. This was done for
every eighth frame, rejecting frames in which the distal spot
was out of the picture or in which the swallow had turned its
head to the side, so shortening the apparent distance between
the two spots. Such gaps were filled by linear interpolation or
by holding the scale constant if frames were missing at the
beginning or end of the sequence.

The power calculation required the first derivative of x
(horizontal velocity), the second derivative of y (upward
acceleration) and the value and first derivative of φ (angular
position and velocity respectively). Derivatives can be

obtained from a time series by comparing each measurement
with the previous one, but this process is very sensitive to small
irregularities caused by the limited resolution of measurement
(±1 pixel, in our case). Before extracting the derivatives, we
had to smooth the data. First, we applied a Fourier transform
to the original time series using the formulae given by
Chatfield (1996). This transforms the data from the ‘time
domain’ to the ‘frequency domain’, representing the original
time series as the sum of a series of sine waves of different
frequencies, each with its own amplitude and phase. When
added back together, these frequency components recreate the
original time series. If some frequency components are
omitted, a ‘filtered’ time series results. Fig. 3 shows an
example of filtered X and Y files from a picture sequence at an
equivalent air speed of 10 m s−1 (sequence ‘O’; see Table 2).
The filtered φ file from the same sequence is shown later (see
Fig. 9). Different filtering was used on the three files, as
follows.

The x file was ‘low-pass’ filtered to include only frequencies
from zero to 0.8 times the wingbeat frequency. The filtered file
was used to estimate any change in the bird’s air speed between
the beginning and end of the series, thus allowing for any
kinetic energy change when computing the average power. It
looks much the same as the unfiltered x file (not shown), except
that minor fluctuations at higher frequencies, which would
have caused spurious variations of speed, have been filtered
out.

In the case of the y file, we wanted to know the acceleration
that occurs within each wing beat, but not the slow changes as
the bird wanders up and down the frame. We used ‘band-pass’
filtration for this, retaining frequencies between 0.7 and 3.5
times the wingbeat frequency, but rejecting those above and

Fig. 2. Unfiltered data from sequence ‘O’. Upper graph: humerus
angle (φ), in degrees above horizontal, average for left and right
wings. Lower graph: height of the white spot on the bird’s head, in
pixels above the bottom of the frame. Frame numbers run from 0 to
364. The height of the graph (300 pixels) is equivalent to
approximately 80 mm vertically at the bird’s position.
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Fig. 3. Filtered data from sequence ‘O’. Upper graph: height in
pixels above the bottom of the frame, band-pass filtered from 4.10 to
21.9 Hz. Lower graph: distance in pixels from the left (upstream)
edge of the frame, low-pass filtered from 0 to 4.78 Hz. Vertical lines
mark the beginning and end of the measurement period. Point
numbers run from 1 to 183, being derived from the even-numbered
frames in Fig. 2. The height of the lower graph (160 pixels) is
equivalent to approximately 42 mm horizontally.
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below this band. The high-frequency cutoff smoothes the
curve, making extraction of the second derivative practicable,
while the low-frequency cutoff eliminates slow movements up
and down. The component at zero frequency is the baseline.
By removing it, the original record, which runs upwards from
zero, is changed into a record that oscillates above and below
a new zero line.

In the case of the humerus angle, we needed to know the
absolute value relative to the original zero line (horizontal). We
smoothed this series by low-pass filtration, retaining
frequencies from zero to 3.5 times the wing-beat frequency,
but removing the ‘wrinkles’ at higher frequencies.

The lowest frequency in the Fourier series is determined by
the length of the series, and the highest is half the sample
frequency. The Fourier transform does not identify the
wingbeat frequency. We did that in advance of the filtering
operation by noting the frame numbers at which the wing
passed upwards and downwards through the zero (horizontal)
position.

Estimating velocity and acceleration

We read the values from the filtered x, y and φ files
sequentially, and estimated derivatives from a moving group
of three successive values. Denoting the most recently read
value of y as y2, the previous value as y1 and the one before
that as y0, we estimated the upward velocity (vy) as the average
of the velocities in the intervals before and after the time of y1:

vy = [c(y2 − y0)]/(2∆t) , (1)

c being the scale factor for converting distances (pixels to
metres) and ∆t the interval between succcessive observations
of y (8 ms). This estimate refers to the time of the middle value
of the three, y1. The angular velocity of the humerus (ω) was
found in the same manner from three successive observations
of φ. The upward acceleration (ay) was found from the
difference in the velocities before and after the time of y1:

ay = c(y2 − 2y1 + y0)/∆t2 . (2)

The subsequent calculations refer to the time of y1 and
require data to have been read for at least one frame before and
one frame after y1. Data were read sequentially from the
beginning of the file, but calculations were only carried out
during a ‘measurement interval’, which covered a whole
number of wingbeat cycles, starting and ending at the frame
immediately following an upward transition of the humerus
angle through the horizontal position.

Upward force at the shoulders

To estimate the upward force applied by the wings to the
body from the acceleration, we used an empirical formula from
Kirkpatrick (1990) for the mass of one wing (mw) as a function
of the total body mass (m):

mw = (9.74×10−2)m1.10. (3a)

We inverted this to give the mass of the wingless body (mb), after
subtracting the estimated mass of both wings from the total mass:

mb = m − (0.195m1.1) . (3b)

Our estimate for mb was 15.9 g, or 84 % of the total body mass,
very close to a measured value of 85 % for a dead swallow
from the freezer. Kirkpatrick’s exponent of 1.1 expresses a
general scaling relationship whereby, at larger sizes, structure
mass is a higher fraction of the whole (Spedding and Lissaman,
1998).

If the upward acceleration (ay) has been determined, then
the upward force Fb, applied by the wings to the body at the
shoulder joints, follows from Newton’s second law of motion:

Fb = mb(ay + g) , (4)

where g is the acceleration due to gravity. This force does
positive work as the body moves upwards and negative work
as it moves down, but this is not a direct measure of the work
done by the muscles. If integrated over a complete wingbeat
cycle, the work equates to the gain in potential energy (∆Ep)
during the cycle, thus:

∆Ep = mbg(y2 − y1) , (5)

where y1 and y2 are the y positions at the beginning and end of
the cycle, respectively. If the bird begins and ends the cycle at
the same height, the potential energy gain is zero. The potential
energy gain was calculated for each sequence as a correction
to the estimated work done by the flight muscles. This
correction could be either positive or negative, but was always
small because of the limited height of the field of view of the
camera at the position of the bird (approximately 11 cm).

Estimating the moment applied to the humerus

During the downstroke, the pectoralis muscle does work
by applying a downward moment to the humerus, and
shortening. We estimated the moment from the balance of
forces on one wing, shown at a point during the downstroke in
Fig. 4. The upward force (Fu), applied by one wing to the
shoulder joint, is half of the force found from the upward
acceleration in equation 4:

Fu = Fb/2 , (6)

and this has to be balanced by the vertical component of the
lift force (L), which acts perpendicularly to the surface of the
wing. The horizontal components of the lift forces on the left
and right wings balance one another and cancel. The lift force
on one wing is therefore:

L = Fu/cosφ, (7)

where φ is the humerus angle measured upwards from the
horizontal position. This force applies a moment (M) about the
shoulder joint, where

M = LA . (8)

The moment arm (A) was estimated as shown in Fig. 5, which
is a tracing of the swallow’s left wing with the joints fully
extended in the manner prescribed by Pennycuick (1999). The
wing outline was divided into 15 chordwise strips, each 10 mm
wide in the spanwise direction. The area of each strip was
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measured, and also its distance from the estimated position of
the shoulder joint. Denoting the area of strip i as Si, and its
moment arm as Ai, the force (Fi) developed on that strip
depends not only on the forward speed (V) but also on the
downward speed due to the flapping motion, which is ωAi,
where ω is the angular velocity of the wing about the shoulder
joint:

Fi = (ρCL/2)Si(V2 + Ai2ω2) , (9)

where CL is the lift coefficient and ρ is the air density. The
moment (Mi) exerted by the force on the strip about the
shoulder joint is found by multiplying the force by the moment
arm (Ai), measured for that strip:

Mi = (ρCL/2)SiAi(V2 + Ai2ω2) . (10)

The mean moment arm A for the wing as a whole is found by
dividing the total moment, obtained by summing all the strips,
by the total force:

A = ∑SiAi(V2 + Ai2ω2)/∑Si(V2 + Ai2ω2) . (11)

This method of finding the mean moment arm implies that the

lift coefficient is constant along the wing span, but does not
require its value to be known. On the contrary, since the lift
force (L) has been determined from the acceleration record, the
lift coefficient can be estimated by inverting equation 9 and
summing over all the strips:

CL = 2L/[ρ∑Si(V2 + Ai2ω2)] . (12)

Power and work

Having found the lift force from equation 7 and the moment
arm from equation 11, the moment applied by the pectoralis
muscle to the humerus (equation 8) can be estimated for each
frame. Multiplying this moment by the downward angular
velocity gives the instantaneous power. Multiplying this by the
time interval (∆t) between frames gives the increment of work
done (∆Q):

∆Q = LAω∆t . (13)

These increments were accumulated to find the total work done
during the downstroke (but not during the upstroke; see
below). The average power over several complete wingbeat
cycles was found by summing the work done by the muscles
of both sides during the downstrokes and dividing by the time
for the full cycle. The beginning and end points of each cycle
were defined by the transition from negative to positive
humerus angle (middle of the upstroke) so as to ensure that the
whole downstroke fell within one cycle.

Results
The data consisted of 10 picture sequences taken during a

single experimental session on 7 June 1999 at four values of
the equivalent air speed, 6, 8, 10 and 11 m s−1 (Table 2). The
air density was just below the standard sea level value of
1.23 kg m−3 (Table 3), meaning that the true air speed was
approximately 1 % faster than the equivalent air speed. The
distinction is insignificant for our results, but it would be
significant at certain points in the calculation (noted), in other
wind tunnels, situated at higher elevations. The principle is

Fig. 4. Relationship at a point during the downstroke between the
vertical force on one shoulder joint (Fu), the lift force on the wing (L)
and the humerus angle (φ). Fu is half the upward force on the body
(Fb), determined from the upward acceleration (equation 6). The
moment applied by the pectoralis muscle to the humerus is found by
multiplying the lift force by the moment arm (A).

L
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Table 2. Summary of data 

Number 
Frames of Measurement 

EAS at 4 ms wingbeat interval Frequency
Sequence (m s−1) intervals cycles (s) (Hz)

I 11.0 0–234 5 0.752 6.65
J 11.0 0–372 10 1.42 7.06
K 11.0 0–300 8 1.14 7.04
L 8.0 0–600 15 2.16 6.94
M 8.0 0–820 23 3.08 7.47
N 10.0 0–466 11 1.54 7.16
O 10.0 0–364 8 1.26 6.33
P 10.0 0–250 6 0.880 6.82
Q 6.0 0–408 9 1.10 8.15
R 6.0 0–304 5 0.680 7.35

EAS, equivalent air speed.

Si
Ai

Fig. 5. Strip analysis for calculating the moment arm. Si is the area of
strip i, and Ai is its moment arm about the shoulder joint (cross).
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explained in aeronautical textbooks, and practical formulae are
given by Pennycuick (1999).

Wing kinematics

At all speeds, the wing was extended fully during the
downstroke. It was shortened by flexing the elbow and wrist
joints during the upstroke, to a greater extent at higher speeds.
As the humerus started to rise from the bottom of the
downstroke, the lift force collapsed and the primary feathers
lost their upward curvature. Flexure of the carpal joint caused
the hand-wing to continue apparently rotating downwards (as
seen by the rear-view camera) as the humerus started to rise.
The wing folded to its minimum span as it came up towards
the level position. At the higher speeds, there was often a
perceptible pause just before the level position, visible in
several cycles of Fig. 2. This ‘upstroke pause’ was seen at 10
and 11 m s−1, but not at 6 or 8 m s−1. From this point, the wing
was progressively extended until it reached the fully up
position, when extension was completed, and the primary
feathers re-developed their upward curvature.

In the case of variables that could be estimated separately in
each wingbeat cycle, a mean value could be found for the
whole sequence, together with a standard deviation. The
longest mean wingbeat period (i.e. lowest mean frequency)
was not seen at low speeds, as reported in two other species
by Pennycuick et al. (1996), but at around 10 m s−1 (Fig. 6).
The decrease of wingbeat frequency at higher speeds (10 and
11 m s−1) appears to be due to the ‘upstroke pause’ seen in the
graphs of humerus angle in Figs 2 and 9, which was not seen
at speeds below 10 m s−1. The downstroke fraction, i.e. the time
for the downstroke expressed as a fraction of the total wingbeat
period, decreased with speed (Fig. 6). The magnitude of the
(negative) angular velocity during the downstroke increased
progressively throughout the speed range (Fig. 7), as did the
top-to-bottom angular swing of the humerus (Fig. 7).

Span ratio and force ratio

In Fig. 8, the average upward acceleration during the
downstroke, and also during the upstroke, is plotted for the 10
sequences against equivalent air speed. As above, zero
acceleration means that the bird feels normal gravity, while an
acceleration of −1g means that it is in free fall, with no upward
force applied by the wings to the body. The average
acceleration can be related to wing kinematics. It was noted
above that the wing span was reduced during the upstroke, at
all speeds, by flexure of the elbow and wrist joints, and this

can be expressed as the ‘span ratio’. The apparent distance (in
pixels) between the left and right wing tips was measured in
rear-view pictures, on each frame where the humerus passed
downwards through the wings-level position, and again on the
next frame in which the humerus passed upwards through the
level position. The span ratio was estimated from each pair of
frames as the ratio of the span in the upstroke to that in the
downstroke. This ratio is plotted, with standard deviation bars,
in Fig. 8. It declined from a value near 0.5 at 6 m s−1 to
approximately 0.3 at 10 and 11 m s−1. According to the notion
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Table 3.Air conditions measured during the experimental
session

Barometric pressure (hPa) 1015–1017
Air temperature (°C) 18.9–21.2
Air density (kg m−3) 1.19–1.21
√σ 0.987–0.991

σ is the ratio of air density to the sea level value, and √σ is the
conversion factor between true and equivalent air speed.

Fig. 6. Upper graph: wingbeat period in the 10 sequences I–R,
plotted against equivalent air speed. Lower graph: downstroke time
as a fraction of total wingbeat period. The points and error bars
represent the means and standard deviations of estimates from the
individual wing beats within each sequence. Points at the same speed
have been offset to show the error bars. The fitted curves are second-
degree polynomials, but these have no formal significance.

Fig. 7. Upper graph: top-to-bottom swing of humerus angle φ within
each wing beat in the 10 sequences I–R. Lower graph: peak angular
velocity ω during the downstroke (ω is negative because the wing is
rotating downwards). The fitted lines are reduced major axis lines,
but they have no formal significance. Values are means ±S.D.
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of a ‘constant-circulation wake’, which was first observed by
Spedding (1987) in a kestrel, the creation of transverse
vortices in the wake can be avoided by shortening the wings
during the upstroke by an amount sufficient to keep the lift
per unit span constant. In a bird that is creating such a wake,
the lift ratio (upstroke:downstroke) would be the same as the
span ratio (Pennycuick 1989b). We were not able to measure
the lift during the upstroke because of the varying moment
arm, but the average upward acceleration gave us an estimate
of the upward force on the shoulder joints from equations 4
and 6, and this is related to the lift by equation 7. The curve
of upstroke:downstroke ‘force ratio’ so calculated looks very
similar that of span ratio, but is lower down the graph
(Fig. 8). In the simplest possible scenario, this would mean
that, to maintain a constant circulation, the bird would have
to shorten its wings during the upstroke even more than it
does. However, the similarity of the two curves suggests that
the difference may be due to the somewhat rudimentary
nature of the analysis and that, with more information about
the vortex wake, it might turn out that the circulation is
indeed constant. The strong sweepback of the hand-wing, and
consequent very long effective chord when the wing is flexed,
may possibly make the wing behave as though it were shorter
than it actually is.

Lift coefficient

The highest lift coefficient observed, approximately 1.5 at
6 m s−1, may not be the maximum of which the swallow’s wing
is capable, but may be compared with a maximum value of 1.6
measured for a gliding pigeon by Pennycuick (1968). If the lift
coefficient is near its maximum at 6 m s−1, the swallow could
presumably decrease its speed further, by increasing the
angular velocity and humerus angle swing, towards the higher
values seen at the high-speed end of the range (Fig. 8). Indeed,
video sequences were obtained at speeds down to 3.5 m s−1,
although they were not long enough or steady enough to be
used for the above type of analysis.

Mechanical events within a sequence

The top graph in Fig. 9 is the smoothed recording of
humerus angle (φ) for sequence ‘O’ derived from the unfiltered
file shown in Fig. 2. The frame numbers represent the data
points in the filtered time series at intervals of 8 ms. They run
from 1 to 183, instead of 0 to 364 as in Fig. 2, because only
the even-numbered frames from the original sequence were
used as data points for the Fourier transform. Eight wingbeat
cycles were used for the subsequent analysis, the beginning of
each cycle being defined as the first point after the humerus
angle changed from negative to positive. These points are
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marked by vertical lines, so that events in the three lower
graphs can be correlated with the wing beat.

The second graph in Fig. 9 shows the upward acceleration
in ‘g units’, meaning that the acceleration in m s−2 has been
normalised by dividing it by the acceleration due to gravity (g),
taken to be 9.81 m s−2. The acceleration which the bird ‘feels’
is 1 unit more than that shown in Fig. 9, because it feels the
acceleration due to gravity in addition to the upward
acceleration (equation 4). When the upward acceleration is
zero, the bird feels +1g, as when standing on the ground, while
an acceleration of −1g represents the weightless condition or
‘free fall’. The peak upward acceleration during each
downstroke was approximately +2g, which the bird would feel
as +3g. This is approximately the acceleration experienced by

the pilot of an aircraft in a steady, steep turn with 70 ° of bank.
The graph indicates that the bird feels the acceleration
oscillating over a range of more than 2.5g approximately seven
times per second – quite a rough ride! The acceleration does
not go down as far as −1g during the upstroke (or only
momentarily), meaning that the air exerts a net upward force
on the wings, throughout the cycle.

The third graph in Fig. 9 is the moment exerted by the
pectoralis muscle on the humerus. The moment is negative
throughout the cycle, meaning that the pectoralis is pulling
downwards. The downward moment during each downstroke,
when multiplied by the angular velocity of the wing, gives the
instantaneous power output of the muscle. This is plotted (for
both sides) in the bottom graph. When this power is multiplied
by the interval between frames, it gives the work done in each
8 ms interval. The graph shows a small amount of negative
work being done during the upstroke, but the amount shown is
based on the same value of the moment arm used during the
downstroke. In fact, the wing is drastically shortened during
the upstroke, as noted above, and the negative work done
would be much smaller than shown. When accumulating the
work done in each cycle, we ignored the upstroke and
accumulated the work only if the wing was rotating downwards
(ω<0). The work done in a given downstroke, when divided
by the time for that wingbeat cycle, gives an estimate for the
average power output of the muscles in that cycle. Eight such
estimates were obtained from sequence ‘O’, and their mean
and standard deviation serve as the average power for the
sequence and its standard deviation. Likewise, means and
standard deviations for other variables, which could be
estimated for each cycle, were the basis of the points and error
bars in Fig. 10, in which air speed is the abscissa.

Correction for energy changes

The mean power estimate for each sequence was corrected
by subtracting any kinetic energy and potential energy gained
during the sequence from the total work done by the muscles.
The potential energy correction was always small (see above)
but, because of the short duration of the sequences, the gain or
loss of kinetic energy could be an appreciable fraction of the
measured work done by the muscles. If the speed of the bird
is V1 at the beginning of the sequence and V2 at the end, then
the gain in kinetic energy during the sequence is:

∆Ek = m(V22 − V12)/2 , (14)

but what speed, exactly, is V? At first sight, it appears that a
bird flying steadily in the wind tunnel has zero kinetic energy
because its ground speed is zero, which is true if we want to
estimate the energy that would be dissipated in a collision with
the tunnel structure. However, the useful kinetic energy
available to the bird is based on its air speed, not its ground
speed, and specifically on its true air speed. If we imagine a
gull standing on a post with its wings folded, in a wind of, say,
10 m s−1, its kinetic energy is not zero, but is based on the
square of the wind speed. This energy is real and is available
to the bird for immediate conversion into potential energy. If
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the gull opens its wings, it can climb without doing any
muscular work. Its ground speed (backwards) increases if it
does this, but its kinetic energy decreases as it climbs because
it is losing air speed. If a bird in a wind tunnel increases its
speed by muscular exertion, it does so by developing a thrust
force against air that is streaming past at the wind speed. The
higher the wind speed, the more work must be done for a given
gain of speed. Our measurements of muscular work include
any work that may be done in increasing the air speed, so we
have to measure any gain of kinetic energy, and substract it, to
obtain a corrected estimate of the work that would have been
needed to maintain a steady speed.

The smoothed value of x for sequence ‘O’ (Fig. 3) starts at
zero at the left-hand edge of the frame. At the beginning of the
measurement period (first vertical line), the line slopes
downwards, indicating that the bird has a positive ground
speed and that its air speed exceeds the wind speed; at the end
of the period, the line slopes upwards, indicating that the bird
has lost some speed. The true air speed was 10.3 m s−1 at the
beginning of the sequence and 9.9 m s−1 at the end. These are
V2 and V1 in equation 14. The decrease in air speed means that
some of the kinetic energy, built up by muscular exertion
before the sequence started, was lost during the sequence. We
took account of this energy by estimating it from equation 14
and adding it to the observed work done during the sequence.
The correction amounted to approximately 30 % of the
muscular work in this particular sequence, although it did not
exceed 10 % in any other sequence. It may be noted that we do
not need to account separately for the work associated with
kinetic energy changes at each wingbeat, because the work
done is already included in our estimate of the work done by
the muscles, in the same way as the inertial work for
accelerating the wings (below).

No correction needed for inertial work

Muscular work is also done to accelerate the wing at the
beginning of each downstroke and to put the upward bend in
the primary feathers (Pennycuick and Lock, 1976). This work
originates from the downward moment applied by the
pectoralis muscle to the humerus, multiplied by the downward
rotation of the humerus, and is included in the measured work
shown in Fig. 9: but what happens to the inertial work at the
end of the downstroke? The rotational kinetic energy of the
wing (Ekw) during the downstroke is given by:

Ekw = (Iω2)/2 , (15)

where I is the moment of inertia of the fully extended wing and
ω is the angular velocity. The moment of inertia is
proportional, to a first approximation, to the square of the
semispan. This, as noted above, decreases by a factor of more
than 3 at the higher speeds, when the wing folds at the end of
the downstroke. Therefore I, and the kinetic energy with it,
would decrease by an order of magnitude when the wing folds
at the end of the downstroke, even if ω were to be maintained
at its peak value. We do not know exactly what happens to this
energy, but the most likely possibility, which we hope to
investigate in the future by simultaneous observations of the
vortex wake, is that most or all of it is added to the kinetic
energy of the air stream in a way that augments the lift or thrust
developed by the wing. There is currently no basis for making
an allowance for the wing kinetic energy in the power
calculation, because we do not have any reason to assume that
any substantial fraction of it is lost.

Mechanical power curve

We can now plot our estimates for the mean power in each
sequence, corrected for gains or losses of potential and kinetic
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energy, with error bars representing the standard deviation of
the power estimates for each wing beat (Fig. 10). Curve ‘a’ is
a power curve from Program 1A of Pennycuick (1989a), using
values of CDb=0.1 for the body drag coefficient, and X1=1.11
for the profile power ratio. The uncertainty boundaries represent
±1 standard deviation, estimated by the physicists’ method, by
considering the contributions made by each of the variables
involved in the calculation to the final power estimate. The body
drag coefficient and induced power factor are both assumed to
be subject to 20 % uncertainty. On these assumptions, the
experimental points are far above the supposed upper limit.
Curve ‘b’, which fits reasonably well through the points, was
obtained by increasing CDb to 0.26 and X1 to 2.25.

Discussion
Anomalously high power estimates

Our power estimates imply that the body and/or wing drag
exceeded the values calculated from our assumed values for
the body drag coefficient and the profile power ratio. The value
of the body drag coefficient (0.26) that generated curve ‘b’ in
Fig. 10 is actually at the lower end of the range used for the
original defaults in Program 1A, as published by Pennycuick
(1989a). These defaults were revised downwards following the
observation by Pennycuick et al. (1996) that the minimum
power speeds of two birds, a teal (Anas crecca) and a thrush
nightingale (Luscinia luscinia), were clearly well above the
values predicted if CDb was assumed to lie in the original
default range 0.25–0.4. However, if a value of CDb=0.1 is
substituted, as suggested, and used to calculate curve ‘a’ for
the swallow, the predicted value for the minimum power speed,
Vmp (6.68 m s−1), is clearly too high. Curve ‘b’, using
CDb=0.26, has a minimum at 5.26 m s−1, which agrees better
with the trend of the experimental points. The profile power
also had to be doubled, to raise curve ‘b’ to the level of the
points. The distinction is that profile power is assumed to be
speed-independent, whereas an increase in CDb increases the
parasite power, which is assumed to vary with the cube of the
speed. An increase in profile power raises the whole curve
without affecting the slope or the value of Vmp, whereas an
increase in CDb raises the right-hand end of the curve more than
the rest and moves Vmp to a lower speed. While it is possible
that the swallow has a high body drag coefficient, because of
the length and area of its tail, the high value of profile power
would imply an unexpectedly ‘draggy’ wing.

We could say that, to make the predicted curve fit the
experimental points, we had to add a large amount of drag into
the calculation, some of it speed-dependent and some speed-
independent, without too explicitly identifying these
components with parasite and profile drag. Before too hastily
concluding that the values for drag coefficients, measured on
frozen bodies by Pennycuick et al. (1988), were right after all,
and that our estimate of profile power was far too low, we
should consider whether this particular swallow could have
been generating extra drag for some reason connected with its
behaviour or with the wind tunnel environment. As shown in

Table 2, although each of our picture sequences contained
hundreds of frames, the measurement intervals were short,
ranging from 0.75 to 3.1 s. The bird was not flying steadily,
even for these short periods, but was moving its tail and its
head, as swallows typically do in manoeuvring flight. In
several of the sequences, the tail can be seen to be partially
spread, and raised, lowered or twisted, and the bird also often
turned its head to one side or the other, sometimes through a
large angle. Turning the head would certainly cause additional
body drag, whereas use of the tail for manoeuvring would
cause additional vortex drag. This is known as ‘trim drag’
when caused by deflection of the control surfaces in an aircraft
and can make a substantial contribution to the total drag.
Similarly, spreading and deflection of a bird’s tail can have a
substantial effect on the total drag in either direction (Thomas,
1996). We might get lower power measurements with birds
such as the teal and the thrush nightingale, both of which
would fly steadily in one spot for longer periods, without
spreading their tails, manoeuvring or moving their heads
about.

It is also possible that the minimal amount of turbulence
from the net, across the upstream end of the test section,
might have modified the flow over the swallow’s wings in
some way. It may seem unlikely that this would cause a
substantial amount of extra drag, but the possibility is
interesting because nothing is currently known about the
effect of small amounts of turbulence in the air stream on the
flow over feathered wings. An experimental approach to this
will require a bird that flies sufficiently steadily to be tested
with and without an upstream net, under otherwise identical
conditions.

Metabolic power

To calculate the rate of consumption of fuel energy from our
measurements of mechanical power, some assumptions have
to be made about the conversion of fuel energy into mechanical
work. This was done in Program 1 of Pennycuick (1989a), but
lack of quantitative information in this area means that several
of the assumptions are little better than guesswork. In contrast
to flight mechanics, there is no coherent body of theory to
predict the details of energy conversion. Some gaps that need
to be filled were pointed out by Pennycuick (1998b).
Notwithstanding this, the stepwise method of calculating
performance in long flights, used by Pennycuick (1998a) and
based on the same assumptions as Program 1, gives good
agreement with observations of the performance of great knots
(Calidris tenuirostris) migrating approximately 5400 km non-
stop from Australia to China, reported by Battley et al. (2000),
assuming CDb=0.1 and the profile power ratio X1=8.4/r, where
r is the aspect ratio. These birds would not get even half way
to China, under the assumptions underlying curve ‘b’ of
Fig. 10. The default values appear to be realistic for birds that
may be presumed to have been flying in an optimal manner
because they were observed on long-distance migratory flights.
The most likely explanation for the additional drag that we
observed here is that the swallow’s flight behaviour in the wind
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tunnel was less than optimal in respect of drag, rather than that
swallows are inherently less efficient than great knots.

Concluding remarks

Our new method for measuring mechanical power is
somewhat laborious, and there is scope for improvement in the
extraction of kinematic information from the video pictures.
However, the reasoning is simple and direct, and the results are
internally consistent and credible. The next step is to apply the
method to a range of species, and to birds that have been
conditioned to fly more steadily, to determine the reasons for the
present discrepancy between observed and predicted power.
This should provide a much improved basis for determining how
the requirement for fuel energy is related to the mechanical
power. A future development of the method will be to correlate
the analysis of individual wing beats, outlined in Fig. 9, with
similarly detailed simultaneous observations of the vortex wake.
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