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s,
Trabecular or cancellous bone is a major element in the
structural design of the vertebrate skeleton, but has
received little attention from the perspective of the biology
of scale. In this study, we investigated scaling patterns in
the discrete bony elements of cancellous bone. First, we
constructed two theoretical models, representative of the
two extremes of realistic patterns of trabecular size changes
associated with body size changes. In one, constant
trabecular size (CTS), increases in cancellous bone volume
with size arise through the addition of new elements of
constant size. In the other model, constant trabecular
geometry (CTG), the size of trabeculae increases
isometrically. These models produce fundamentally
different patterns of surface area and volume scaling. We
then compared the models with empirical observations of
scaling of trabecular dimensions in mammals ranging in
mass from 4 to 40×106g. Trabecular size showed little
dependence on body size, approaching one of our
theoretical models (CTS). This result suggests that some
elements of trabecular architecture may be driven by the
requirements of maintaining adequate surface area for

calcium homeostasis. Additionally, we found two key
consequences of this strongly negative allometry. First, the
connectivity among trabecular elements is qualitatively
different for small versuslarge animals; trabeculae connect
primarily to cortical bone in very small animals and
primarily to other trabeculae in larger animals. Second,
small animals have very few trabeculae and, as a
consequence, we were able to identify particular elements
with a consistent position across individuals and, for some
elements, across species. Finally, in order to infer the
possible influence of gross differences in mechanical
loading on trabecular size, we sampled trabecular
dimensions extensively within Chiroptera and compared
their trabecular dimensions with those of non-volant
mammals. We found no systematic differences in
trabecular size or scaling patterns related to locomotor
mode.

Key words: trabecular bone, allometry, scaling, mammal
biomechanics.
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‘Trabeculae are not merely embodiments of mathemat
abstractions; they have their own lives to lead’, J. D. Curr
The Mechanical Adaptations of Bones, 1984, p. 141.

Bones are complex structural entities consisting of tw
macroscopically distinctive tissue types: cortical or comp
bone and cancellous or trabecular bone. The histology 
basic biology of these bone types are similar, but they diffe
their gross morphology, anatomical distribution an
mechanical behavior. Cortical bone, comprising the shafts
the long bones and the outermost surfaces of all bones
relatively stiff (elastic modulus between 17 and 25 GPa), de
and contains no visible voids (Currey, 1984). Cancellous bo
occurring in the epiphyses and metaphyses of long bones
vertebral centra and the interior of many flat bones, consist
porous, three-dimensional networks of trabeculae, discr
plates and struts, separated by large interconnec
macroscopic spaces. The modulus of cancellous bone
considerably less than that of compact bone, varying betw
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0.04 and 10 GPa (Ku et al. 1987; Mente and Lewis, 1989;
Hodgskinson and Currey, 1992; Rho et al.1993), both because
of the mechanical characteristics of the individual trabecul
and because of the lower apparent density (mass of bone tis
per unit bulk volume of porous bone tissue; Parfitt, 1988).

Cancellous bone is critical to the mechanical behavior 
bones as organs. The intricate meshwork must transfer lo
to and from cortices without undue deformation or fractur
Because of its low elastic modulus and extensive plas
deformation before failure, cancellous bone is also believed
play a critical role in absorbing the energy transmitted to join
and in attenuating joint forces, particularly during impac
loading (Radin, 1982; Radin et al. 1970, 1973). This function
depends critically on the large volume of cancellous tissue
joints, given that elastic energy absorbed in impact is a volum
dependent function (Wainwright et al.1976). The large volume
of trabecular bone is particularly important given its relativel
low apparent density in comparison with compact bone, sin
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the energy absorbed by bone is proportional to apparent den
and since denser bone thus absorbs more energy per 
volume (Currey, 1984). Cancellous bone is not, howev
exclusively mechanical in nature. Bone also serves as 
organism’s primary mineral reservoir, and calcium is read
resorbed from and deposited onto the surfaces of trabec
during normal day-to-day activities and particularly durin
periods of calcium stress such as pregnancy and lacta
(Parfitt, 1983; Miller et al.1989). Indeed, it is the cells on bon
surfaces that are exposed directly to the osteoregulatory eff
of prostaglandins (Jee et al. 1985, 1990; Mori et al. 1990;
Lanyon, 1992a), suggesting that high-surface-area cancello
tissue could be particularly important in this regard.

For a given anatomical site, the spatial organization 
trabeculae is non-random and often highly stereotyped. B
structural patterning and trabecular density differ from site
site within the body. Moreover, at a given anatomical site, th
may be significant differences in patterns among taxa (e
Ward and Sussman, 1979). Variation in apparent density 
architecture is believed to reflect the direction and intensity
stresses developed in bones during normal behavior (Me
1867; Wolff, 1869; Lanyon, 1974; Hayes and Snyder, 198
Goldstein, 1987). The mechanical properties of cancello
bone depend strongly on apparent density (Carter and Ha
1977; Goldstein, 1987; Rice et al.1988; Keaveny and Hayes
1993) and thus vary among regions within bones. Moreov
recent experimental evidence documents the sensitivity
trabecular bone modulus and strength to test specimen size
geometry (Keaveny et al.1993); this suggests that the stiffnes
and strength of cancellous tissue in joints of diverse sizes m
vary for geometric reasons alone. Presumably, then, taxa
differing body size and locomotor mode possess cancell
bone that varies in mechanical properties in correlation w
body or joint size and with variation in trabecular architectu

Within a given volume of cancellous bone, the appare
density, mechanical properties and surface area available
physiological processes are likely to depend not only on 
density of trabeculae, defined in number of elements per 
volume, but also on the size of the individual elemen
Stresses within individual trabeculae, and at t
interconnection of trabeculae to each other and to the overly
compact bone, may also depend on the size of trabec
elements. The need to place the significance of trabec
architecture within its allometric context is particularly stron
given (1) that the trabecular bone of all mammals share
similar structural design at both gross and histological leve
(2) that joints vary in linear dimensions by over an order 
magnitude within an individual; and (3) that the body si
range of mammals is large (2 to 120×106g; Silva and
Downing, 1995). Scale effects in trabecular bone ha
however, yet to be investigated. Recognizing that trabecu
bone is modular in its construction, we ask how the ‘module
the individual trabeculae, scale with body size in mammals

In this context, we have approached questions of scale
trabeculae from three perspectives. First, we explored 
functional ramifications of two alternative, biologically
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plausible patterns by which trabecular elements might chan
form with changing body size: (1) constant trabecular si
(CTS), in which individual trabeculae remain uniform in siz
and shape over all joint/body sizes; and (2) constant trabec
geometry (CTG), in which trabecular element size sca
isometrically in relation to whole joint or bone size (Fig. 1
Using these two divergent patterns, we constructed theoret
models from which we derive simple predictions abo
changes in functional behavior of trabecular bone with sca
The differences between the CTS and CTG models provid
plausible range of variation of geometrically regular scaling 
trabecular bone.

Second, we conducted an empirical scaling analysis of 
dimensions of trabeculae in the limb joints of mamma
ranging in body mass over five orders of magnitude. W
interpret the results of this portion of the study within th
context of general principles of structural allometry. I
addition, these analyses tested whether trabeculae scale in
manner predicted by either the CTS or CTG models.

Third, we tested the possibility that the evolution of high
specialized limb loading regimes can lead to distinct patte
of trabecular size and scale. To do so, we separately comp
the absolute size and scaling patterns of trabeculae within b
with those in non-volant mammals. We chose to samp
extensively within the Chiroptera to test two specifi
hypotheses. First, we hypothesized that if, as proposed
previous authors, the architecture of trabecular bone is a di
reflection of the mechanical loads imposed on the tiss
(Wolff, 1869; Currey, 1984; Carter, 1987; Carter et al. 1987;
Whalen et al. 1988; Beaupré et al. 1990), then the structural
design of bat humeri should differ significantly from that of b
femora. These two joint regions experience fundamenta
different mechanical environments, although to date it 
impossible to specify in detail the differences in mechanic
loading between bat shoulder and hip joints. The humer
including the shoulder joint, experiences very large forces a
moments during both steady horizontal and turning flight, a
some considerable portion of these forces must be borne by
bones themselves (Swartz et al. 1992; P. Watts, personal
communication). In contrast, bats typically restrict the
hindlimb use to head-down suspension and clambering, w
some terrestrial bipedal or quadrupedal maneuveri
(Vaughan, 1959). These movements probably generate a
tension and a limited amount of compression and bending. T
most notable exceptions to this typical behavioral pattern 
the vampire bats (Microchiroptera; subfamily Desmodontina
genera Desmodus, Diaemusand Diphylla) (Altenbach, 1979).
These taxa move across the ground or up and down trees 
rapid, forceful jumps which, particularly in Desmodus, may
exert significant ground reaction forces (Schutt et al.1997).

In addition, we hypothesized that the forces experienced
both bat forelimb and hindlimb joints differ from those of non
volant mammals. The magnitude of compressive forces
certainly far less in both sets of bat limb joints, although torsi
may be greater in bat humeri (Swartz et al.1992). Although it
is difficult to predict a priori how the details of trabecular
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architecture should differ under these distinctive loadi
regimes, we predict that if mechanical usage dictates struct
design then the trabecular bone of volant and non-vol
mammals should differ significantly in structure.

Materials and methods
Modeling changing geometries in regular trabecular array

Our models emphasize the modular nature of trabecular b
each organ of trabecular bone, or ‘joint’, contains elements
similar geometry interconnected to one another to form a reg
network of support elements. We model ‘joints’ as cub
volumes; in the constant trabecular size (CTS) model, each 
is composed of multiple repeating constituent cubic subun
while in the constant trabecular geometry (CTG) model, a sin
subunit varies in size (Fig. 1). In each model, the total size of
cube represents that of the abstracted joint or epiphyseal re
and is filled with trabecular structures. The empty space betw
trabeculae represents the marrow spaces. The total size of 
joint cube increases in successive iterations of the model, 
increasing joint size represents proportional increases in b
size. The dimensions of the trabecular elements of the sma
subunit in the CTG model and all trabeculae of the CTS mo
are based on realistic dimensions of mammalian trabeculae
determined in the empirical scaling portion of this study.

We selected simple cubic shapes to represent joint reg
rather than more anatomically realistic geometries because c
volumes (1) facilitate packing of regularly spaced trabecu
elements into each defined volumes, (2) allow modeling o
modular design comprising repeats of single, simple cu
volumes, (3) are readily modeled over a range of sizes, and
produce element packing which is a reasonable fi
approximation of the distribution of trabeculae in bone tiss
(Fig. 1). Moreover, although our model does not account for 
presence of plate-shaped trabeculae, actual rod-shaped trabe
Size factor = 1

Size factor = 2

CTS mo
m

C

strut

interconnection 
cube

Fig. 1. Schematic geometry of the constant trabecular
size (CTS) and constant trabecular geometry (CTG)
models. Each trabecular subunit is represented as a
rectangular column packed into a cubic array. At a size
factor of 1, the CTS and CTG models are identical and
are composed of a single unit. These trabeculae can be
envisioned as filling a cubic ‘joint’ of the same
external dimensions as the trabecular subunit. As size
increases in successive iterations of the model, the two
models diverge in architecture. At a size factor of 2,
size increase is accomplished in the CTS model via
addition of new subunit structures into a larger
multiunit (left). In the CTG model, the increase from
size factor 1 to size factor 2 occurs by a proportional
increase in size of all trabecular edge elements of the
subunit structure.
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elements are cylindrical in overall shape, approximately the sa
length within a given joint and linear rather than curved; they c
therefore be reasonably approximated as rectangular beam
uniform size. Moreover, within any joint subregion, trabecula
are packed at relatively uniform densities, although the appa
density of trabecular bone varies regionally within large a
complex joints (Whitehouse, 1974; Hayes and Snyder, 19
Goldstein, 1987; Keaveny and Hayes, 1993). Cubic volum
packed with mutually perpendicular trabeculae thus represe
realistic and tractable abstraction of the naturally occurri
architecture of cancellous bone tissue.

In both the CTS and CTG models, the trabecular architect
of the subunits is created by the assembly of repeats of 
geometric elements – rectangular prism-shaped struts, arrayed
along the mutually perpendicular edges of the cubic multi- a
subunit edges, and interconnection cubes, located at the corners
where struts intersect (Fig. 1). The role of the interconnect
cubes is to facilitate trabecular packing and to connect the str
Structurally, the interconnection cubes are continuous with 
struts and represent a portion of each strut to which they conn
rather than discrete entities. They are treated as elements dis
from the struts only to facilitate computation of surface area a
volume changes with overall size. The two models differ in ho
trabecular structure changes with increments of increasing 
or size factor (see below). The external dimensions of the c
enclosing the trabecular columns represent an estimate of
joint size. At a given size factor, the external cube or abstr
joint is identical in the CTS and the CTG models. From the tw
models, we calculated nine numerical surface area and volu
parameters for each iteration of the model (Table 1).

To increase the size of the theoretical joints of the CTS mo
in each successive iteration, n, struts and interconnection cube
are added to create new, larger networks of consistently arran
elements. The dimensions of the trabecular elements are
idealization based on the empirical data presented in 
Trabecular subunit
CTS and CTG models

del trabecular 
ultiunit

CTG model trabecular unit

CTG model: direct 
subunit

 size increase

TS model: subunits 
repeat

 multiple times

‘joint’
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Table 1.Parameters calculated in the CTS and CTG mod

Parameter

nt Total number of trabeculae

At Total trabecular surface area

Vt Total trabecular volume

Aj Total joint surface area

At/Vt
Total trabecular surface area

Total trabecular volume

Vj Total joint volume

Aj/Vj
Total joint surface area

Total joint volume

At/Aj
Total trabecular surface area

Total joint surface area

Vt/Vj
Total trabecular volume

Total joint volume

Each of these values was calculated for joints ranging in size f
a single subunit to a multiunit of 240 subunits × 240 subunits × 240
subunits, a 200-fold increase in size. 

The absolute size of the largest joint is 12.01 cm × 12.01 cm ×
12.01 cm, typical of a large joint such as the femoral head in a la
bodied mammal. 

Table 2.Linear, power or polynomial functions (y), used as
appropriate to fit curves describing changes in surface area
or volume parameters with size factor (x) for the CTS and

CTG models (Figs 3, 4)

Parameter CTG model CTS model

At y=2.16×106x2.00 y=1.15×106x2.93

y=1.00 y=0.38x+0.51

Vt y=5.60×107x3.00 y=3.07×107x2.94

y=0.26 Interpolated

y=8.86×10−2x−1.00 Interpolated

y=3.86 y=3.69x+0.15

y=0.96x+0.039

In all cases in which curves were fitted, Pearson product moment
correlations (r) were equal to 1.00 and P values were ø0.0001.
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allometric analysis portion of this study: mean trabecular len
is taken as 0.400mm and mean diameter as 0.100mm. Each
increase is implemented by the addition of enough trabec
elements to create additional cubic subunits rather tha
duplication of the original complete subunit; addition of enti
subunits stacked upon one another would create struts of do
thickness along the edges where two adjacent subunits co
one another. The newly packed subunits created by additio
trabecular elements with each iteration form the component
larger cubes, or multiunits (Fig. 1). All multiunits are cubic 
overall shape. Because complete subunits are not duplicate
the successive iterations by which the model grows in s
iterations do not represent integral increases in the length o
edge of the CTS multiunit or CTG unit, but instead are increa
by a size factor k (see below and Appendix).

In the CTG model, the trabecular elements of the sin
smallest subunit are the sole supports for the structure throug
increases in size. Trabecular element number and geometry
remain constant while the absolute size of the elements incre
progressively with each iteration of the model (Fig. 1). For a
iteration, the length and diameter of each trabecular element
the total length of the joint are increased at the same rate.
determined the proportional increase for each iteration 
calculating a size factor k. This size factor adjusts the growing
length and diameters of the CTG trabecular elements so that 
CTG unit size always equals total CTS multiunit size. With ea
successive model iteration n, we multiplied the length and
diameter of the CTG trabecular elements by k. For the second
iteration of the model, for example, k=1.83, resulting in slightly
less than a doubling of edge length. The formulae describink
and the model surface area and volume parameters for 
models are given in the Appendix. The multiunits range in s
gth
 size

ular

from a single cubic subunit to 240×240×240 subunits. Because
each subunit after the first in the CTS model is smaller than 
initial complete subunit, to avoid duplications of struts at edg
where new subunits are added (see above), the largest join
approximately 200 times the length of the smallest. Its absolu
size is 12.01cm×12.01cm×12.01cm, a reasonable estimate of th
size of a large joint such as the femoral head in a very larg
bodied mammal.

Curve fitting

For each model, linear or power functions, as appropria
were used to fit curves describing changes in surface area
volume parameters in relation to overall joint/body size. I
most cases, it was possible to fit curves using Pearson prod
moment correlations of r=1.00 (equations are given in
Table 2). In cases where such curve fits were not possible, 
have not specified the curve of the closest fit since it does 
describe the algebra of the underlying relationship.

Allometric analysis sample

We measured the length and mid-element diameter of
number of trabeculae from humeral and femoral heads of
variety of small, medium-sized and large mammals, including
diversity of bats and of non-volant mammals (Table 3). W
sampled bat trabecular bone from taxa ranging in body mass fr
5 to 700g, drawn from both bat suborders (Microchiroptera a

els 
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Megachiroptera) and several families (Table 3). Samples w
either taken from freshly frozen material collected and ma
available to us by field workers sampling bats for other stud
or were prepared from alcohol-preserved material loaned fr
the collections of the American Museum of Natural History.

Our sample of non-volant mammals was collect
opportunistically from specimens readily available in o
laboratories and includes marsupials, insectivores, rode
primates, lagomorphs, carnivores, perissodactyls and cetace
This sample was constructed to sample as broad a range of 
sizes as possible. In all cases, animals were skeletally ma
as indicated by epiphyseal fusion, and in apparently go
health, with no signs of limb or skeletal deformities of any kin

We selected the proximal femur and humerus as the foc
our analysis. Analysis and discussion of trabecular bo
architecture has often centered on the femoral head and n
going back to the original formulation of Wolff’s Law (Wolff,
1869; Whitehouse and Dyson, 1974; Lanyon and Rubin, 19
Carter et al.1987). Our use of this anatomical region permitt
us to compare our results with those of previous work
interested in the dimensions of individual trabecul
(Whitehouse, 1974, 1975; Whitehouse and Dyson, 197
Furthermore, the organization of individual trabeculae in
Table 3.Species used for ana

Bats

Body mass, g
Species Family (NI, NT-H, NT-F)

Myotis lucifugus Vespertilionidae 4.6 (5,32, 26) S
Natalus tumidirostris Natalidae 7 (1,5,4) C
Rhinolophus stheno Rhinolophidae 7.9 (2, 8, –) R
Saccopteryx bilineata Emballonuridae 8 (2, –, 8) G
Peropteryx kappleri Emballonuridae 9.6 (1, 8, 3) T
Molossus molossus Molossidae 10.1 (2, 6, 4) S
Tadarida brasiliensis Vespertilionidae 12.5 (2, 3, 7) P
Miniopterus australis Vespertilionidae 13 (2, 7, –) O
Pteronotus parnellii Mormoopidae 15 (3, 16, 12) M
Carollia perspicillata Phyllostomidae 15 (1, 6, –) C
Vampyrops helleri Phyllostomidae 15.4 (1, 3, –) M
Macrotus waterhousii Phyllostomidae 16 (1, 6, –) H
Uroderma bilobatum Phyllostomidae 17 (1, 6, –) M
Lasiurus cinereus Vespertilionidae 18 (1, 6, –) C
Lasiurus borealis Vespertilionidae 18 (1, –, 4) H
Eptesicus fuscus Vespertilionidae 22 (4, 17, 25) E
Diphylla ecaudata Phyllostomidae 28 (3, 11, 5) M
Syconycteris australis Pteropodidae 30 (2, 10, 6)
Desmodus rotundus Phyllostomidae 33 (3, 12, 11)
Hipposideros diadema Hipposideridae 36.2 (3, 10,12)
Diaemus youngi Phyllostomidae 38 (3, 12, 8)
Cynopterus sphinx Pteropodidae 40.6 (2, 7, 7)
Artibeus jamaicensis Phyllostomidae 65.5 (1, 5, –)
Phyllostomus hastatus Phyllostomidae 75 (2, –, 12)
Pteropus poliocephalus Pteropodidae 700 (3, 16, 7)

For individuals without directly associated body mass data, sp
Downing, 1995). 

NI is the number of individuals sampled, NT-H is the number of hu
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tracts of highly oriented elements is very clear in the proxim
femur. We include the humeral head to compare forelimb a
hindlimb scaling patterns and to determine whether scali
patterns are uniform throughout the body.

To assess trabecular structure, we sectioned each bone
distal to the proximal epiphyseal trabeculae, and cleaned 
removed marrow and fat using a combination of incubation
antiformin solution (Green, 1934) and ultrasonication. We th
mounted our specimens with the intact joint surface embedd
in modeling clay, with the cut surface upwards (Fig. 2); whe
necessary, we used a small hand drill to remove cortical bo
remaining distal to the region of trabeculae. We us
macrophotography, photomicroscopy of whole mounts view
using a dissecting microscope (Leica WILD M420 dissectin
microscope with a PAC Hund Wetzlar attachment for a Ric
camera) or scanning electron microscopy (Hitachi S-2700)
capture standardized, scaled images of the distalm
trabeculae in each joint. Visual inspections of trabeculae fro
deeper regions of the joints show no regular patterns of cha
in trabecular size with depth. We consider the distalmo
trabeculae, readily accessible using this technique witho
causing damage to other portions of the trabecular network
be representative of those throughout the joint region. 
lysis of trabecular size and scaling

Non-volant mammals

Body mass, g
Species Order (NI, NT-H, NT-F)

orex cinereus Insectivora 4 (2, 3, 2)
ryptotis parva Insectivora 5.5 (1, 5, 3)
eithrodontomys megalotis Rodentia 14 (1, –, 2)
laucomys volans Rodentia 115 (1, 3, 4)
amiasciurus hudsonicus Rodentia 225 (1, 4, 3)
ciurus carolinensis Rodentia 600 (2, 7, 6)
otorous tridactylus Marsupialia 1000 (2, 6, 8)
ryctolagus cuniculus Lagomorpha 3500 (2, 7, –)
acropus eugenii Marsupialia 4000 (1, 4, 4)
ercopithecus sp. Primates 5100 (1, 4, 4)
acaca fascicularis Primates 5200 (2, 8, 8)
ylobates lar Primates 5900 (1, 5, 5)
acaca arctoides Primates 10 000 (1, 7, –)
anis familiaris Carnivora 23 000 (2, 6, 8)
omo sapiens Primates 65 000 (3, 15, 10)
quus caballus Perissodactyla 530 000 (2, –, 28)
egaptera novaeangliae Cetacea 40 000 000 (1, 19, –)

ecies mean values were taken from the literature (Nowak, 1991; Silva and

meral trabeculae and NT-F is the number of femoral trabeculae.
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Humerus, ventral view

Enlarged humeral head, 
inferior view

Section

Ventral

Dorsal

a
l

Fig. 3. Change in surface area and volume variables with size factor.
Values derived from the CTS model are indicated as open circles;
those derived from the CTG model are filled squares. The equations
describing these lines are given in Table 2.

Fig. 2. Sample preparation technique for empirical scaling studies.
Each humerus or femur was sectioned transversely just distal to the
joint region, then positioned to allow viewing of the interior of the
epiphysis. l, total length of trabecula; a, mid-element diameter of
trabecula.
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Size factor

D

sampling only from the planes closest to the plane of secti
we minimize parallax as a source of measurement error. Fr
enlargements of each photograph or photomicrograph, 
measured the total length l and mid-element diameter a from
all trabeculae that could be viewed in their entirety and we
parallel to the plane of the image (between three and 
elements from each specimen). In all, we sampled 4
trabeculae from 66 individuals of 42 species (see Table 3)

Statistical analyses

To improve normality of distribution and to facilitate
allometric analysis, all measurements were log-transform
before statistical analysis. We used ordinary least-squares lin
regression (OLS) to describe the relationships between trabec
dimensions and body mass. Body mass measurements wer
pre-mortemmasses of each individual whenever possible; wh
direct body mass measurements were not available, we u
species means from the literature (Nowak, 1991; Silva a
Downing, 1995). We used analysis of covariance (ANCOVA) 
compare regressions among groups or bones when regres
slopes for the two did not differ significantly; when slope
differed, we used Tsutakawa’s quick test for comparisons
elevations with differing slopes (Tsutakawa and Hewett, 197
In addition, we performed statistical analyses on species me
to compare with our results from the complete data set.

Results
Trabecular surface area and volume in CTS and CTG

models

Trabecular surface area (At) increases with increasing body
size in both the CTS and CTG models; At values are similar in
sion
s

 of
7).
ans

the two models at small sizes, but since At increases far more
rapidly in the CTS model, in proportion to (size factor)2.93, than
in the CTG model, in proportion to (size factor)2.00, the two
models rapidly diverge. The two models differ in surface ar
by an order of magnitude by size factor 30 (joint siz
approximately 18 mm edge length) (Fig. 3A; Table 2). At th
largest size modeled, trabecular surface area is approxima
80 times greater in the CTS than in the CTG model.

The ratio of At to the total surface area of the joint (Aj) gives
a measure of the amount of trabecular surface available 
metabolic processes relative to a rough estimate of the weig
bearing capacity of the joint. In the CTS model, At/Aj increases
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linearly with increasing size (Fig. 3B; Table 2). In the CTG
model, where increase in size is achieved by an increase
trabecular dimensions in proportion to the changing total jo
size, At/Aj is 1.00 and does not change as size factor increa
(Fig. 3B; Table 2). This ratio will be constant for any CTG
model and is equal to 1.0 because of the specific dimensi
assigned here to the trabeculae relative to the joint.

In contrast to the pattern for surface areas, the volume
trabecular bone, Vt, increases more rapidly with joint size in
the CTG model than in the CTS model (Fig. 3C; Table 2). B
a size factor of 5, equivalent to a cube with a 3.1 mm edge, 
trabecular volume in the CTG model is double that of the C
model. Although the two models continue to diverge, they 
so slowly such that, when size factor reaches 200, the t
differ by a factor of approximately 2.5. In the CTS model, th
ratio of Vt (trabecular volume) to Vj (total joint volume)
decreases steeply at small sizes, and then levels 
asymptotically with increasing size factor (Fig. 3D; Table 2
The Vt/Vj ratio of the CTG model, however, remains constan

The surface area to volume ratio of trabecular bone, At/Vt,
is nearly constant in the CTS model (Table 2) because e
new trabecular volume increment arises through the addit
of new trabeculae of constant surface area (Fig. 4A). In 
CTG model, however, At/Vt decreases rapidly, as new volum
and surface area increments are added via size increases of the
original 12 trabeculae; this change in surface area relative
volume approaches that of the entire joint (Fig. 4A). The tw
models are identical at a size factor of 1, differ by an order
0
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Fig. 4. Change in trabecular surface area/volume ratio (A) and
ratios of surface area/volume of the two models relative to one ano
and to the joint (B). (A) CTS model, open circles; CTG model, fil
squares; total joint, open triangles. (B) CTS model/total joint, o
circles; CTG model/total joint, filled squares; CTS/CTG, op
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magnitude at a size factor of 13 (edge length 6.6 mm) and di
almost 200-fold at a size factor of 200.

The CTS model At/Vt increases rapidly relative to the surfac
area/volume ratio for the joint; it is 10 times greater than Aj/Vj

at a size factor of 3 (edge length 1.6 mm), 100 times greate
a size factor of 28 (edge length 16.6 mm) and 750 times gre
than Aj/Vj at a size factor of 200 (Fig. 4B; Table 2). At thes
same sizes, At/Vt is, respectively, 2.6, 27 and 191 times great
for the CTS model than for the CTG model. The rate of At/Vt

decrease for the CTG model is the same as the rate of sur
area/volume decrease for the joint as a whole, although 
absolute ratio is 3.86 times higher for the trabecular geome
than for a solid cube (Fig. 4B; Table 2).

Trabecular dimension scaling: empirical results

Within each joint of each individual, trabeculae var
somewhat in length and diameter (Fig. 5; Table 4). Th
variation within each individual has an important influence o
our scaling analyses, resulting in considerable scatter in 
data at all body sizes. This scatter reflects the natural varia
in trabecular size within any joint rather than measureme
error, so we have elected to retain this variation in o
subsequent analyses. We also separately analyze the m
values of trabecular dimensions for each species.
 the
ther

led
pen
en

Body mass (g)

10

102

1 10 102 103 104 105 106

10

102

103

104

1 102 104 106 108

T
ra

be
cu

la
r 

le
ng

th
 o

r 
di

am
et

er
 (

µm
)

B
Humerus

Fig. 5. Double-logarithmic plot of trabecular length or diameter with
respect to body mass for bats and non-volant mammals for the femur
(A) and humerus (B). Multiple trabeculae from each individual are
plotted to indicate the range of within-individual variation in
trabecular dimensions; each symbol represents a single trabecula.
Lengths are represented by open symbols, diameters by filled
symbols; bats are represented by triangles, and non-volant mammals
by circles. Continuations of regression lines for bats are indicated as
dotted lines. Regression statistics for these data are given in Table 5.
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S. M. SWARTZ, A. PARKER AND C. HUO
Scaling coefficients for double-logarithmic regressions 
trabecular dimensions versusbody mass for all mammalian
taxa examined together were all lower than 0.17, and m
were below 0.10 (Table 5); values of 0.33 would indica
isometric scaling. For both trabecular length and diameter, 
negative allometry is also indicated by the broadly overlapp
range of values for the very smallest and very largest taxa
our sample (see Table 4): there is little difference in absol
trabecular size even when the extremes of the body size ra
sampled are compared (Fig. 5). Our results also indic
negative allometric scaling among non-volant mammals, w
coefficients ranging between 0.044 and 0.186. Scaling patte
calculated from the entire sample did not differ significan
from those calculated from species mean values (Table 5)

The scaling relationships for trabeculae from bats differ
from the overall mammalian pattern. The scaling coefficien
were generally higher and approached isometry; they va
from 0.202 to 0.326 (Table 5). Indeed, when species me
were used in the statistical analyses, we found isometry
define the scaling relationship for trabecular length in both 
humerus and the femur, and for trabecular diameter in 
femur. When the variation of all the data points was retain
isometry was found only in the trabecular length in t
humerus.
Table 4.Within-species variation in trabe

Humerus

Mean
NI, NT-H length CV d

Interspecific comparisons
Bats

Myotis lucifugus 5, 32 567.7 0.62
Natalus tumidirostris 1, 5 593.6 0.48
Rhinolophus stheno 2, 8 485.6 0.46
Saccopteryx bilineata 2, 0
Peropteryx kappleri 1, 8 517.8 0.52
Molossus molossus 2, 6 421.7 0.52
Tadarida brasiliensis 2, 3 887.2 0.33
Miniopterus australis 2, 7 577.3 0.45
Pteronotus parnellii 3, 16 482.4 0.57
Carollia perspicillata 1, 6 502.7 0.40
Vampyrops helleri 1, 3 675.0 0.56
Macrotus waterhousii 1, 6 526.4 0.62
Uroderma bilobatum 1, 6 499.7 0.24
Lasiurus cinereus 1, 6 701.0 0.56
Lasiurus borealis 1, 0 613.2 0.69
Eptesicus fuscus 4, 17 567.7 0.72
Diphylla ecaudata 3, 11 810.9 0.45
Syconycteris australis 2, 10 501.0 0.45
Desmodus rotundus 3, 12 719.9 0.27
Hipposideros diadema 3, 10 865.3 0.60
Diaemus youngi 3, 12 667.3 0.35
Cynopterus sphinx 2, 7 617.0 0.45
Artibeus jamaicensis 1, 5 1065.9 0.09
Phyllostomus hastatus 2, 0
Pteropus poliocephalus 3, 16 1628.4 0.35
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Within bats (Fig. 6), and within non-volant mammals
regression slopes did not differ significantly between t
humerus and the femur, despite the prediction that extre
differences in mechanical loading of the hip and shoulder joi
would lead to differences in trabecular structure in ba
Moreover, vampire bats were statistically indistinguishab
from the remaining bat taxa, with no evidence of any trabecu
hypertrophy correlated with significantly increased loading 
the hindlimbs in comparison with their relatives.

Comparisons of bats and non-volant mammals

We found some distinct differences between locomot
groups in trabecular size (Fig. 5). ANCOVA showed th
regression slopes differed significantly between groups 
both femoral trabecular length and diameter (P<0.05), with
regression slopes uniformly steeper for bats than for the n
volant mammals. When species means were used, however
regression slopes of bats and non-volant mammals diffe
only for femur trabecular diameter. Because group slop
differed statistically, conventional ANCOVA was no
appropriate for comparisons of elevations. Tsutakawa’s qu
test showed that elevations were not significantly differe
between bats and non-volant mammals for the femur (leng
χ2=0.1116, P=0.7383, d.f.=1; diameter, χ2=0.6523, P=0.4193,
cular dimensions for the humerus and femur

Femur

Mean Mean Mean
iameter CV NT-F length CV diameter CV

77.7 0.40 26 388.8 0.41 86.3 0.69
80.5 0.52 4 315.9 0.15 55.5 0.38
91.0 0.28 0

8 223.2 0.61 67.4 0.27
120.0 0.34 3 260.7 0.14 116.5 0.11
112.4 0.34 4 200.4 0.18 75.8 0.23
108.3 0.21 7 361.1 0.58 81.8 0.42
101.0 0.25 0

77.7 0.40 12 483.5 0.45 95.1 0.55
124.4 0.28 0
153.8 0.65 0
172.3 0.28 0
102.9 0.44 0
106.9 0.20 0
108.9 0.25 4 445.2 0.10 116.5 0.11
112.5 0.25 25 338.6 0.50 85.0 0.44
113.3 0.32 5 723.0 0.30 130.3 0.21
72.4 0.33 6 289.2 0.32 104.0 0.23

132.7 0.20 11 502.1 0.24 84.9 0.24
154.2 0.25 12 425.8 0.28 75.8 0.65
126.1 0.31 8 824.7 0.18 123.3 0.23
112.3 0.14 7 905.8 0.23 75.8 0.31
158.5 0.09 0

12 556.5 0.41 146.8 0.40
200.4 0.49 7
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d.f.=1); for the humerus, bats showed significantly long
trabeculae (Tsutakawa’s quick test, length, χ2=4.816,
P=0.0282, d.f.=1; diameter, χ2=0.9050, P=0.3415, d.f.=1). To
test the possibility that differences in trabecular scali
between groups were related to differences in whole-bone 
at comparable body sizes, we also carried out ANCOVAs
trabecular dimensions in relation to midshaft bone diamet
and bone lengths. These results were identical to those der
from the body mass data.

For non-volant mammals, the slope of trabecular leng
versus trabecular diameter did not differ significantly from
1.00 (Table 6; Fig. 7); the shape of individual trabeculae is,
average, invariant in relation to body mass. In contrast, 
aspect ratio of trabeculae in bats did vary with body mass, w
the slope of the trabecular length versustrabecular diameter
Table 4.C

Humerus

Mean
NI, NT-H length CV d

Interspecific comparisons
Non-volant mammals

Sorex cinereus 2, 3 243.6 0.19
Cryptotis parva 1, 5 192.9 0.41
Reithrodontomys megalotis 1, 0
Glaucomys volans 1, 3 421.7 0.36
Tamiasciurus hudsonicus 1, 4 1019.0 0.63
Sciurus carolinensis 2, 7 452.1 0.60
Potorous tridactylus 2, 6 1010.0 0.19
Oryctolagus cuniculus 2, 7 1783.9 0.65
Macropus eugenii 1, 4 1163.6 0.57
Cercopithecus sp. 1, 4 3446.3 0.43
Macaca fascicularis 2, 8 1526.6 0.44
Hylobates lar 1, 5 1641.2 0.20
Macaca arctoides 1, 7 1230.1 0.30
Canis familiaris 2, 6 1500.3 0.28
Homo sapiens 3, 15 765.2 0.38
Equus caballus 2, 0
Megaptera novaeangliae 1, 19 894.0 0.15

Intraspecific comparisons
Eptesicus fuscus 626.0 0.87

511.5 0.76
568.4 0.71
565.2 0.56

Myotis lucifugus 432.8 0.61
456.2 0.50
309.2 0.37
654.8 0.55
484.4 0.47

Coefficients of variation (CV) are calculated as standard devia
For some taxa, data are available for the humerus or femur on
All measurements are in µm. 
Species are listed in order of increasing body mass and for ba
NI is the number of individuals sampled in each species, NT-H is the nu
Species average values are followed by individual means and
er

ng
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ers
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regressions being significantly less than 1.00 for both t
femoral and humeral heads. Thus, larger bats have absolu
shorter trabeculae for a given diameter than comparably si
non-volant mammals and relatively shorter trabeculae 
relation to diameter than small bats. Within bats, the asp
ratios of vampire bat trabeculae were not statistica
distinguishable from those of bat species that do not ad
extreme jumping and climbing behaviors (Fig. 7).

Discussion
Scaling of surface area and volume

The relationship between surface area and volume 
fundamental to function, development and, indeed, almost 
aspects of the design of organisms and their constituent org
ontinued

Femur

Mean Mean Mean
iameter CV NT-F length CV diameter CV

51.7 0.18 2 329.6 0.03 98.0 0.16
49.0 0.09 3 419.5 0.11 75.9 0.03

2 299.9 0.08 65.2 0.26
86.0 0.24 4 643.0 0.29 140.0 0.31
51.7 0.18 3 320.4 0.24 61.3 0.13

109.3 0.24 6 916.4 0.55 175.7 0.44
162.8 0.29 8 1183.4 0.52 131.8 0.26
182.8 0.37 0
153.2 0.23 4 535.4 0.45 105.2 0.35
289.0 0.11 4 2486.0 0.35 245.7 0.33
219.0 0.14 8 1974.0 0.41 347.8 0.36
196.0 0.18 5 2554.0 0.14 239.2 0.36
222.6 0.37 0
238.1 0.29 8 1313.9 0.18 234.5 0.18
117.7 0.28 10 612.4 0.30 125.0 0.28

28 1137.4 0.33 140.1 0.16
176.5 0.26 0

105.8 0.29 292.3 0.51 107.6 0.42
112.5 0.29 400.8 0.44 69.2 0.34
111.8 0.21 325.8 0.50 82.4 0.40
120.3 0.20 340.5 0.56 68.2 0.20

72.7 0.33 451.9 0.23 107.4 0.91
81.5 0.49 340.5 0.55 62.0 0.37
50.8 0.15 356.9 0.49 69.4 0.49
76.4 0.24 395.4 0.35 80.5 0.55
93.3 0.44 379.9 0.48 93.0 0.44

tion/mean. 
ly. 

ts and non-volant mammals separately. 
mber of humeral trabeculae and NT-F is the number of femoral trabeculae. 

 coefficients of variation for several individuals of two representative species.
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Fig. 6. Double-logarithmic plot of trabecular
length and diameter with respect to body
mass for the femur and the humerus of bats.
Each point represents a separate trabecula.
Solid lines indicate regression lines for the
femur, dashed lines for the humerus. There
were no statistically significant differences
in the slopes for the trabeculae from the two
bones.
tissues, cells and organelles. Processes through w
structures relate to their external surroundings are function
surface areas, while many internal processes and functio
capabilities depend primarily on mass, volume or volum
related parameters. In the absence of size-dependent s
changes, surface areas increase in proportion to the squa
a structure’s linear dimensions while volumes are proportio
to cube of the linear dimensions. Hence, reorganization
structural geometry is required to maintain constant surfa
area to volume ratios over a significant size range. In contr
the more common relationship in the biological world 
changes in surface area to volume relationships in concert 
changes in organismal size and scale change; for example
surface areas increase in proportion to (body mass)0.85–0.90

(Muir and Hughes, 1969).

Effect of alternative scaling regimes: modeling results

Whole bones, viewed as beam-like structures, ha
Table 5.Results of regression analysis of l

Total samplea

Slope

Complete data set
Femur Length 0.151±0.013

(N=256a, 95b, 161c) Diameter 0.098±0.010

Humerus Length 0.076±0.009
(N=315a, 103b, 212c) Diameter 0.058±0.006

Species averages
Femur Length 0.166±0.030

(N=30a, 14b, 16c) Diameter 0.106±0.023 

Humerus Length 0.118±0.025
(N=38a, 15b, 23c) Diameter 0.116±0.045

Slopes are reported ±S.E.M.; all are significant at P≤0.0001. All slo
less than 0.33 are indicated with an asterisk. In no cases do the 
hich
s of
nal
e-
hape
re of
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 of
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, gill

ve

mechanical capabilities that vary with size (e.g. Alexander et
al. 1979; Prange et al.1979; Biewener, 1983; Economos, 1983
Steudel and Beattie, 1994). The structural design of trabecu
bone has not previously been viewed from a scalin
perspective, but the results of both the CTS and CTG mod
emphasize the importance of size to our understanding of t
biology of cancellous tissue. Both models entail strong siz
dependence of some functionally important features 
cancellous bone. This implies that the mechanical an
physiological capacities of trabecular bone vary with body siz
and, indeed, joint size whether CTS, CTG or som
intermediate alternative best describes the size-related patt
of cancellous architecture.

The CTS and CTG models of trabecular scaling produc
fundamentally different patterns of available surface area a
volume as body or joint size changes. Although the two mode
differ little for small joints, particularly those smaller than
1 cm3, geometric changes alone produce increasingly differe
og(trabecular dimensions) versuslog(body mass)

Non-volant mammalsb Batsc

r2 Slope r2 Slope r2

0.411 0.075±0.026 0.116 0.243±0.041 0.215
0.328 0.044±0.019 0.074 0.257±0.031 0.352

0.207 0.050±0.015 0.205 0.292±0.048* 0.161
0.290 0.048±0.010 0.288 0.202±0.028 0.215

0.545 0.136±0.047 0.437 0.326±0.084* 0.539
0.456 0.087±0.035 0.357 0.309±0.050* 0.747

0.536 0.186±0.042 0.630 0.326±0.083* 0.435
0.503 0.090±0.028 0.546 0.163±0.046 0.387

pes are significantly greater than zero. Slopes that are not significantly
slopes for the humerus versus femur differ significantly.
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Table 6.Results of regression analysis of trabecular length versus diameter

Total samplea Non-volant mammalsb Batsc

Slope r2 Slope r2 Slope r2

Femur 0.972±0.069 0.509 1.080±0.102 0.635 0.596±0.092* 0.248
(N=256a, 95b, 161c)

Humerus 0.903±0.070 0.385 0.984±0.123 0.507 0.682±0.090* 0.230
(N=315a, 103b, 212c)

Slopes significantly different from 1.00 are indicated with an asterisk. 
All P<0.0001 for all regressions.
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Fig. 7. Double-logarithmic plot of trabecular length in relation to
trabecular diameter for bats and non-volant mammals with least-
squares regression lines. Each point represents a separate trabecula.
Bats are indicated as triangles and non-volant mammals as circles;
highly terrestrial vampire bats are indicated as filled squares for
comparison with other taxa. Solid lines indicate regression lines for
bats, dashed lines for non-volant mammals.
surface area and volume relationships for the two scal
alternatives. With increasing size, trabecular surface a
increases far more rapidly in the CTS than in the CTG mod
In a joint the size of a typical human femoral or humeral he
the CTS model would give a trabecular surface area of cl
to 0.5 m2; for the largest joints modeled here, approximate
the size of the femoral head of a large horse, the trabec
surface area within the joint is over 6 m2. In contrast, trabecular
volumes increase disproportionately with size in the CT
model. While the divergence in trabecular volumes of the t
models is less drastic than that of trabecular surface areas
difference at large body sizes still has the potential to 
functionally significant. In comparison with CTS scaling, 
CTG scaling were the rule, a large joint in a large-bodi
mammal would have 2.5 times the cancellous bone tissue
build and maintain or, viewed somewhat differently, 2.5 tim
the tissue available for distributing joint forces.

In trabecular bone, quite distinct phenomena are dictated
available surface area versusvolume or mass. For example
total body mineral homeostasis requires the release of calc
from bone surfaces and its deposition onto those same surfa
Surface areas may need to keep pace with the mass of ti
maintained metabolically; basic physiological processes m
require large animals or joints to have a disproportionat
large free trabecular surface area. The large surface a
available within the cancellous tissue suggest that this i
critical locus of metabolic calcium mobilization (Kaplan et al.
1994). In one estimate, it has been hypothesized that trabec
bone is responsible for approximately 70 % of the total calciu
turnover per day (Parfitt, 1983); this estimate, however, do
not account for the differences in design among animals
joints of different sizes. If creation of surface areas is a drivi
force in the design of cancellous bone, then CTS-type sca
would be favored. CTS scaling provides a far greater incre
in surface area with body size than does CTG scali
increasing as (size factor)2.93 (Table 2); size factor is a linear
dimension; hence, this is equivalent to scaling in proportion
volume or mass0.97, or nearly in direct proportion to body
mass. Metabolic rates, however, do not increase in dir
proportion to body mass, but rather to (body mass)0.75(Kleiber,
1932; Schmidt-Nielsen, 1975; Calder, 1984). Exact CT
scaling would therefore not directly match the scaling 
metabolic rate, but could accommodate the metabolic dema
ing
rea
el.

ad,
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, the
be
if
ed
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of increased size. With CTG scaling, trabecular surface a
increases only in proportion to (size factor)2.00 (Table 2) or
(body mass)0.67. It is possible, however, that metabolic
requirements could drive the architecture of cancellous bo
tissue even in the absence of a close match of scal
coefficients for trabecular surface area and metabolic ra
calcium metabolism may not scale in direct proportion 
overall metabolic rate, and the proportion of trabecular surfa
active in remodeling may not be the same at all sizes. This is
clearly requires further study. Moreover, while availabl
surface area is clearly an important determinant of bo
remodeling, Haversian remodeling occurs deep within bo
tissue, away from free surfaces. This remodeling can occur 
only within compact cortical bone, but also in large
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vascularized trabeculae (Sato et al.1986; Luzopone and Favia,
1990).

The relationship between the mechanical properties 
cancellous bone and the surface area or volume of tissue 
be more complex. The mechanical properties of synthe
Fig. 8. Homology of
trabecular elements within
and between Eptesicus
fuscus and Myotis
lucifugus, members of
distinct genera of
vespertilionid bats. Each
image represents a single
standardized view of the
cut inferior surface of the
humeral head, looking
proximally towards the
joint surface along the bone
shaft, towards the distal-
most trabeculae. Scanning
electron micrographs of
three representative
specimens appear in the
left-hand column of both A
and B. In the center
column, outline tracings of
individual trabeculae are
superimposed on these
images; homologous
elements are coded with the
same shading patterns and
homologies appear to
extend both within and
between species. The right-
hand column presents the
outline drawings only of
the cortical shell and
homologous trabeculae
of
may
tic,

engineered cellular materials are dictated by their relati
density, ρ*/ρs, where ρ* is the density of the cellular material
or foam and ρs is the density of the material of which it is made
(Gibson and Ashby, 1988). The volume fraction of supportin
material, in this case the bony trabeculae, is the critic
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determinant of the strength and stiffness of cellular solids
general. Trabecular bone fits this model extremely well (Ca
and Hayes, 1977; Gibson, 1985; Rice et al. 1988), with
strength increasing approximately in proportion to the squ
of apparent density. However, if trabeculae scal
isometrically, as in the CTG model, trabecular bone dens
(trabecular bone volume/joint volume; Fig. 3D) would rema
constant and relatively high with respect to CTS scaling. Th
the tissue modulus would remain constant with increasing s
and weight-bearing, as would tissue strength, in contrast 
typical cellular material. This suggests that CTG scaling wo
be mechanically advantageous. Density values in the 
models are identical at the smallest size, but decre
precipitously for joints between 1.1 and 10 mm edge length
CTS scaling, rapidly declining to approximately 2.5 times le
than the density of tissue under CTG scaling. If a low modu
is important for energy absorption in trabecular bone, th
perhaps there could be some compensating benefit o
decreased modulus with increasing size for large body siz

Strength and modulus may, however, decrease with increa
surface area to volume ratio; Choi et al.(1990) and Martin (1991)
have demonstrated that the modulus of cortical bone specim
decreases with increasing surface area to volume ratio and a
that high surface area to volume ratio may increase the likelih
of surface defects and their relative importance in determin
mechanical failure. In the CTS model, the surface area to volu
ratio is almost constant, while in the CTG model, this ra
decreases in direct proportion to animal size. As a conseque
at the largest size in our model, the surface area to volume 
is 95 times greater for CTS scaling. Surface area to volume ra
are higher for CTS scaling at all sizes (Fig. 4A), and the ratio
CTS to CTG surface area to volume increases linearly with 
(Fig. 4B). Thus, the frequency of surface defects is likely to 
higher for the CTS model, and this disadvantage increase
severity with body size.

CTG scaling might also confer mechanical benefits direc
from the increased volume of trabecular bone tiss
irrespective of the effects of density or surface area to volu
ratio. The amount of tissue available for the distribution 
loads as well as the greater cross-sectional area of 
trabecular elements would be likely to reduce tissue stress 
hence, the accumulation of fatigue damage (Burr et al.1985).
Although the high surface area to volume ratios of CTS sca
provide surface area for the remodeling and repair of dama
tissues, it seems unlikely that this advantage could fu
counter the mechanical disadvantages of CTS scaling.

The functional characteristics of trabecular bone must cha
with changing body size unless trabecular geometry or ot
phenomena are significantly altered with changing size. T
ability of trabecular bone to meet simultaneously the need
regulate calcium levels and repair damaged tissue, on the
hand, and to maintain mechanical strength and stiffness, on
other, will change as surface area to volume ratio changes.
a plausible hypothesis that trabeculae could maintain ei
constant size or isometric scaling and constant geometry
some intermediate alternative. However, the two extrem
 in
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produce dramatically different structural designs, particularly
large body sizes. The contrasts between the results of th
distinct models suggest that the relative importance of surf
area and volume in the functional performance of trabecu
bone may exert a strong influence on the way in whi
trabecular dimensions scale. The negative allometry 
trabecular dimensions inherent in the CTS model will produ
disproportionately increasing surface area with increasing s
Isometry of trabecular dimensions, an intrinsic element of t
CTG model, produces increasing volume of trabecular tiss
with increasing size. The ratio of trabecular surface area
volume is also favored at large sizes by the scaling of the C
model. Comparison of empirical allometric data with the
contrasting models may be able to provide some suggest
for the critical design constraints on trabecular bone.

Predicting the allometry of trabecular dimensions

Design principles based on geometric scaling predict t
forces experienced by the skeleton scale approximately
proportion to (body mass)1.00, while the ability of structural
elements to withstand axial forces depends on their cro
sectional area, proportional to (body mass)0.67 (Alexander, 1971;
Biewener, 1982; Calder, 1984; LaBarbera, 1989). With
mammals, whole bones appear to scale isometrically, show
little change in shape with increasing size [linear dimensio
scale in close proportionality to (body mass)0.33] (e.g. Alexander
et al.1979; Maloiy et al.1979; Biewener, 1982; Jungers, 1985
Biknevicius, 1993; Steudel and Beattie, 1994). One reasona
null hypothesis for trabecular scaling is that trabeculae will sc
isometrically as do whole bones. Alternatively, if trabeculae ca
out their mechanical function by serving as a network of bea
loaded primarily in axial tension or compression (Roesler, 19
Currey, 1984; Lanyon, 1992b), structural design considerations
predict that their cross-sectional areas should scale in a ma
appropriate for accommodating joint forces. If joint loads sca
in proportion to muscle forces, that is as (body mass)0.74

(Biewener, 1989), then the cross-sectional area of trabeculae
bear those loads should also scale in proportion to (bo
mass)0.74, and trabecular diameter should scale in proportion
mass>0.37 if the number of elements is constant. If joint force
scale in direct proportion to body mass, as has also been prop
(McMahon, 1977; Cavagna et al. 1977), the corresponding
expectation for trabecular diameter would be scaling 
proportion to mass>0.50. However, the relevant cross-sectiona
area could be provided either by a small number of large elem
or by a large number of small elements, if the area over wh
the force is distributed is adequate. The scaling relationship
trabecular diameters could, therefore, be influenced by allome
shape changes in the elements. If trabeculae function as be
loaded in bending rather than axially (Gibson, 1985; Michelet
al. 1993), then the stress developed within the element can
estimated from the standard equation for bending stress i
beam: σ=My/I, where σ is bending stress, M is the applied
bending moment (the product of the body-mass-related load 
the moment arm at which the bending force is applied, maxima
the length of the trabecula), y is the distance from the beam’s
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S. M. SWARTZ, A. PARKER AND C. HUO
neutral axis to its outermost surface (typically half the diamet
and I is the second moment of area of the beam’s cross sec
proportional to the fourth power of the diameter. To produ
constant stress in trabeculae under bending with increasing b
mass, assuming that the length of trabeculae scales isometri
and that applied force scales in proportion to mass, trabec
diameter would have to scale in proportion to mass0.44.

If, however, trabecular bone functions as a cellular so
(sensuGibson and Ashby, 1988), then it is the trabecu
volume fraction that should scale in proportion to applied loa
and specific predictions for diameter scaling will depe
strongly on the length and number of trabeculae making u
given volume of tissue. Thus, it is important to note that t
length and diameter scaling of individual trabeculae interfa
with the scaling of trabecular volume and density ultimately
produce tissue architecture. This implies that there may b
variety of ways for trabeculae to interconnect to one anot
such that varying numbers of trabeculae of the same size
be packed into the same total volume, depending on the na
and number of trabecula-to-trabecula and trabecula-to-cort
bone connections. In our theoretical models, we have impo
a regular geometry that only permits trabecula-to-trabec
connections at the corners of each cubic subunit; real trabec
architecture is more complex.

The total volume of trabecular bone in femoral and hume
heads, assessed by quantitative radiography, has been fou
scale in direct proportion to body mass (Rafferty, 1996). To
trabecular tissue volume, Vt, is therefore proportional to ld2nt,
where l is mean trabecular element length, d is mean element
diameter, and nt is the number of trabeculae. It follows that

and, if trabecular length and diameter scale isometricallynt

will be constant and:

where m is body mass.
However, trabeculae are not whole bones and appear no

have the same kind of individual identity as whole bones
other major organs. As nearly microscopic entities, one mi
predict that they should scale like other sub-organ-le
structures. For example, red blood cells and the cross sect
of skeletal muscle fibers are largely scale-independent (Mun
1969; Altman and Dittmer, 1972). Trabecular length a
diameter may also be scale-independent (proportional to m0);
if so, adequate function over a large range of body sizes co
be achieved through changes in the density or number
trabeculae. In this scenario, 

with nt increasing in direct proportion to body mass.

(3)
m1.00

m0.00(m0.00)2 =  m1.00,nt ~

(2)
m1.00

m0.33(m0.33)2 =  m0 ,nt ~

(1)
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Scaling of trabeculae: relationship between empirical result
and models

Although trabeculae are macroscopic structures comprisi
many bone cells and their associated extracellular matr
scaling of trabecular dimensions shows little size-dependen
Instead, humeral and femoral trabecular lengths and diame
scale negatively, unlike the whole bones of which they are
part (Table 5; Fig. 5). The negative allometry of trabecula
dimensions we describe here, a pattern approaching the C
model, implies that both the absolute and relative surface a
of trabecular tissue are smaller in small than in large anima
This result is, to some extent, consistent with expectatio
based on the need to increase trabecular surface area in rela
to metabolic rate, although the scaling of the CTS model do
not match metabolic scaling precisely.

Although the relative size of trabeculae in small animals 
much greater than in large ones, the mechanical consequen
of such differences are unclear. The volume fraction an
apparent density are the primary determinants of th
mechanical properties of trabecular bone (Carter and Hay
1977; Gibson, 1985; Rice et al. 1988). Trabecular bone can
vary in apparent density even within a single large joint, an
large and small mammals show no systematic differences
trabecular apparent density. Trabecular volume fraction h
been found to scale in proportion to (body mass)1.00 in
primates over a body size range of 3–90 kg (Rafferty, 1996
If this relationship holds for all mammals, one might infer tha
there are no systematic scale-related differences in t
strength and stiffness of cancellous bone. This result 
consistent with findings that locomotor loads are mitigate
through postural and behavioral mechanisms in larg
mammals to maintain constant locomotor stresses (Biewen
1989). If the tissue that comprises trabecular bone h
relatively uniform mechanical properties over a large bod
size range, and if networks of cancellous bone are able
withstand load in proportion to trabecular volume fractio
rather than cross-sectional area, then the isometric scaling
trabecular volume fraction suggests that trabecular bone m
modulate mechanical function by varying geometry and hen
volume; this, in turn, would vary with varying body mass
However, it is not yet clear whether trabecular and compa
material are mechanically similar (e.g. Hodgskinson an
Currey, 1992; Rho et al. 1993), let alone whether there is
regional or interspecific variation in the mechanical propertie
of trabecular material. Moreover, experimental wor
documents that the mechanical behavior of trabecular bone
strongly influenced by specimen size and geomet
irrespective of mechanical properties of bone materi
(Keaveny et al. 1993). These size- and shape-depende
aspects of mechanical behavior could certainly influence t
mechanics of trabecular bone in situ as well as in a testing
apparatus.

Moreover, the mechanical behavior of trabecular bone is n
determined solely by the volume fraction. Both the orientatio
of trabeculae relative to the direction of applied forces and t
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number and orientations of interconnections among trabec
elements affect trabecular bone mechanics (Goldstein, 19
Parfitt et al.1987; Mosekilde, 1990; Parfitt, 1992; Keaveny an
Hayes, 1993). The observed negative allometry indicates 
trabeculae of larger animals have an increased surface a
This surface area patterning consequence may relate
differences among animals of varying size in patterns 
interconnection among trabecular elements. Our res
confirm that, in at least one respect, these patterns cha
fundamentally with body size. In large animals, the va
majority of trabeculae connect directly to one another, wh
only a very small proportion of elements connect to t
compact bone shell supporting the overlying articular cartila
In contrast, in small animals, most or all trabeculae span 
entire epiphysis and connect directly to subchondral a
epiphyseal compact bone, with relatively few interconnectio
among trabeculae (Fig. 8). Future studies may uncover 
differences in the functionality of joint mechanics arising fro
these structural variations. Given that bone in small animal
often used to model the human skeleton, and that both
earliest known and the vast majority of extant and extin
mammals are less than 1 kg in mass, it is critical to pursu
better understanding of the ramifications of this pattern 
structural design.

The comparative biology of trabecular architecture: do
flying and non-flying taxa differ?

The trabecular morphology of bats does not differ from th
of their non-volant relatives in a systematic fashion that
readily interpretable with respect to their distinct manner
limb usage (Figs 5, 6). In the femoral head, although 
slope of the bat trabecular dimension regressions is 
steeper than that of the remainder of the sample, 
elevations of the two regressions do not differ, i.e. t
trabeculae of bats are within the size range of non-vol
mammals. For the humerus, trabecular dimensions among
two locomotor groups are, again, broadly overlapping w
steeper slopes in bats and with some tendency for 
trabeculae to be somewhat longer but not wider than thos
quadrupeds and bipeds. The length of the entire humeru
also significantly greater in bats than in non-volant mamma
However, this increased bone length does not account for
increased trabecular length; when we recalculate regress
of trabecular length with respect to humerus length rat
than body mass, bat humeral trabeculae remain significa
longer.

The slope differences among bats and non-volant mamm
could lead to considerable divergence in trabecular dimens
at large body sizes. However, the 700 g bats at the extr
range of our bat sample (Pteropus poliocephalus) approach the
maximum body mass for bats (Pteropus giganteus,
approximately 1500 g; Silva and Downing, 1995). The ste
slope of the bat regression line may therefore be a reflectio
a pattern that is discernible within the non-volant sample
well: the relationships between log(trabecular dimensions) 
ular
87;
d

that
rea.
 to
of

ults
nge
st
ile
he
ge.
the
nd
ns
key
m
s is
 the
ct
e a
of

at
 is
 of
the
far
the
he
ant
 the
ith
bat
e of
s is
ls.

 the
ions
her
ntly

als
ions
eme

ep
n of
 as
and

log(body mass) are reasonably well fitted by a line
regression, but there is some curvilinearity in the relationsh
as well, with a tendency for moderately sized animals 
possess somewhat larger trabeculae than either their large
smaller relatives.

The similarity in trabecular dimensions of the bat humer
and femur occurs despite the gross differences in jo
loading that must be experienced by the fore- versus
hindlimbs in bats. Bat forelimbs accommodate the larg
forces generated during powered flight, and althoug
shoulder-joint reaction forces or epiphyseal strains ha
never been measured directly, there are indications that 
stresses in the bat shoulder during both the down- a
upstroke are considerable (Rayner, 1987; P. Watts, perso
communication). The hindlimbs, despite their anatomic
connection to the wing membrane, probably experience o
very small forces during flight and little force during roostin
or climbing behaviors. The most likely exceptions to th
patterns are the vampire bats, characterized by vigoro
terrestrial and/or arboreal jumping and climbing (Altenbac
1979). These three species experience considerably lar
hindlimb forces than do their relatives, probably many time
larger in most cases. Yet, the morphology of the trabecu
bone of both the femoral and humeral head of vampire b
is indistinguishable from that of the other bats. Thus, we fi
no support for the hypothesis that differences in limb loadin
either in intensity or in frequency, can produce differences
structure of individual trabeculae. Although it is possible th
differences between femora and humeri or between vampi
and their non-terrestrial relatives remain to be found in mo
detailed study of trabecular density or orientation, visu
inspection of our specimens provides no indication that th
is likely.

Topology and homology of trabeculae in small mammals

The total number of trabeculae in a joint, nt, is not
necessarily constant, but scales in proportion to Vt/ld2. We
found that trabecular number is size-dependent, scaling
proportion to m0.62–0.87, depending on whether one consider
the femur or humerus and the entire sample or non-vola
mammals alone, assuming that volume scales in proportion
mass. A key consequence of this pattern is that small anim
have extremely reduced trabecular complexity, with few
than 20 trabeculae in a given joint, compared with thousan
or millions in the larger joints of large mammals. Th
simplified trabecular architecture of small mammals allows 
to make, for the first time, direct comparisons of eleme
topology among individuals of a given species. We found th
particular trabeculae can be directly homologized amo
different individuals of a given species (Fig. 8). Although 
given trabecula varies among individuals in details o
morphology and absolute position, it can be repeatably a
reliably identified as a topologically distinct entity in eac
specimen. Furthermore, these homologies can extend am
species (Fig. 8).

The presence of topological homology suggests that th
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may be fundamental constraints on the construction 
trabecular tissue. This unexpected similarity in positioning
individual elements both within and among species could a
by at least two alternative mechanisms. First, gene
information may directly specify the development of ea
element, as it does, to a certain extent, the ontogeny of wh
bones. As in whole-bone maturation, the mechani
environment imposed on the growing trabecular tissue m
then secondarily influence the ultimate size, shape and de
of placement of each element, but only within a limited ran
of plasticity. Alternatively, the architecture of trabecula
tissue, including element number and placement, may 
largely epigenetic (e.g. Fyhrie and Carter, 1986; Whalen et al.
1988; Wong and Carter, 1990; Carter et al. 1991). Basic
Appendix 1.Formulae for param

n is the case or iteration number and indicates the number of s
The trabecular framework in each cube consists of struts and i
l is strut length, and a is the diameter of the strut and the length 

Constant trabecular size

nt Total number of trabeculae

At Total trabecular surface area

Aj Total joint surface area

At

Aj

Total trabecular surface area
Total joint surface area

Vt Total trabecular volume

Vj Total joint volume

Vt

Vj

Total trabecular volume
Total joint volume

At

Vt

Total trabecular surface area
Total trabecular volume

Constant trabecular geome

k Adjusted size factor

At Total trabecular surface area

Aj Total joint surface area

At

Aj

Total trabecular surface area
Total joint surface area

Vt Total trabecular volume

Vj Total joint volume

Vt

Vj

Total trabecular volume
Total joint volume

At

Vt

Total trabecular surface area
Total trabecular volume
of
 of
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tic

ch
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r
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genetic information might encode only that a given region w
form trabecular tissue. The details of the structural pattern
in the tissue would, from this perspective, arise in response
some function of the magnitude, direction and/or frequency
applied loads. The similarities observed here intra- a
interspecifically would then be interpretable as arising fro
similarity in the mechanical signals received by th
phenotypically plastic tissue. In this framework, considerab
similarity in limb usage patterns among individuals withi
species must exist to account for the within-speci
homologies observed in this study. Distinguishing amo
these different hypotheses is not a trivial problem, and, to d
there are insufficient data to reject or to support strongly eit
view.
eters of the CTS and CTG models

ubunits along one edge for the CTS model. 
nterconnetion cubes. 
of each edge of the interconnection cubes (see Fig. 1). 

: (CTS) model

3n(n +1)2

3n(n +1)2(4la) + 24a2+ 24a2(n −1) + 6a2(n − 1)2

6(nl + na + a)2

3n(n +1)2(4la) + 24a2+ 24a2(n −1) + 6a2(n − 1)2

6(nl + na + a)2

3n(n +1)2( la2) + a3(n +1)3

(nl + na + a)3

3n(n +1)2( la2) + a3(n +1)3

(nl + na + a)3

3n(n +1)2(4la) + 24a2 + 24a2(n −1) + 6a2(n − 1)2

3n(n +1)2( la2) + a3(n +1)3

try: (CTG) model

(nl + a(n +1))

(2a + l)

24a(2l + a)
nl + na + a

2a + l
 
 

 
 

2

6(nl + na + a)2

24a(2l + a)
nl + na + a

2a + l
 
 

 
 

2

6(nl + na + a)2

4a2(3l + 2a)
nl + na + a

2a + l
 
 

 
 

3

(nl + na + a)3

4a2(3l + 2a)
nl + na + a

2a + l
 
 

 
 

3

(nl + na + a)3

24a(2 l + a)
nl + na + a

2a + l
 
 

 
 

2

4a2(3l + 2a)
nl + na + a

2a + l
 
 

 
 

3
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