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Summary

Anguilliform swimming has been investigated by using a
computational model combining the dynamics of both the
creature’s movement and the two-dimensional fluid flow of

forward force has been shown to be approximately twice
that in the lateral force. The importance of allowing for
acceleration and deceleration of the creature’s body

the surrounding water. The model creature is self-
propelled; it follows a path determined by the forces acting
upon it, as generated by its prescribed changing shape. The
numerical solution has been obtained by applying
coordinate transformations and then using finite difference
methods. Results are presented showing the flow around
the creature as it accelerates from rest in an enclosed tank.
The kinematics and dynamics associated with the
creature’s centre of mass are also shown. For a particular
set of body shape parameters, the final mean swimming Key words: anguilliform swimming, hydrodynamics, two-
speed is found to be 0.77 times the speed of the backward- dimensional Navier-Stokes equations, computational fluid dynamics,
travelling wave. The corresponding movement amplitude body kinematics, body dynamics, fluid-body interactions,
envelope is shown. The magnitude of oscillation in the net transformation methods.

(rather than imposing a constant swimming speed) has
been demonstrated. The calculations of rotational
movement of the body and the associated moment of forces
about the centre of mass have also been included in the
model. The important role of viscous forces along and
around the creature’s body and in the growth and
dissolution of the vortex structures has been illustrated.

Introduction

It is well known that an anguilliform swimmer propels itself mathematical model of the fluid mechanics and associated
forward by propagating waves of curvature backwards alondynamics of a time-dependent moving boundary responding to
its body. As a consequence of the interaction between the bottyces generated by its own movement.
and the surrounding water, forces due to fluid pressure and toMost previous studies of the hydrodynamics of aquatic
drag act on the body of the creature. At any instant, alocomotion have relied upon the assumption that water is an
integration of these forces around the body will, in generainviscid fluid. The pioneering work of Lighthill (e.g. Lighthill,
give rise to either an acceleration or a deceleration of th&€960, 1969, 1970), the studies by Wu (e.g. Wu, 1971) and the
creature, not only in the forward direction but also laterally anavork of Weihs (1972), Webb (1975), Hess and Videler (1984)
in the rotational sense. After accelerating from a restingnd Chenget al. (1991) are testimony to this approach. More
position, in the absence of external forces, the creature wilkcently, others have considered it necessary to quantify the
tend towards an asymptotic state. In this state, the meascous effects in the water in order to specify more accurately
velocity in the forward direction, over a cycle of bodythe drag forces acting on the body of the fish. To do this
movement, will be constant whereas the mean lateral and meaquires the techniques of computational fluid dynamics, and
rotational velocities will be zero. Under these circumstancestudies by Carlingt al.(1994), Williamset al.(1995) and Liu
the mean force due to pressure will be equal to the mean drad. al. (1996, 1997) are now beginning to show how these
Underlying this, however, a cyclic variation in all variables,techniques can be used.
whether forces or velocities in forward, lateral or rotational In addition to the inviscid assumption, most studies make
directions, will remain an ever-present feature of the creaturethe further assumption that some point on the creature’s body,
behaviour. The aim of the present work is to investigate theay the nose, remains stationary whilst a uniform upstream
behaviour of this system by means of a two-dimensiondlow is prescribed. This could represent the behaviour of a fish
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in a flow tank or it might approximate swimming at constantonsidering the dynamical interaction between the body and
speed in an open domain. However, this assumption does rbe surrounding water.

allow the velocity to change in response to the cyclic variation For ease of computation, all the variables and constants in
in forward force that emerges from the hydrodynamicathe system have been converted to dimensionless quantities, by
calculation; for example, Hess and Videler (1984) state thatividing by characteristic values. All distances have been
‘the calculated thrust fluctuated during each half-periodlivided by a characteristic lengttly, which has been defined
between zero and approximately twice its average value’. Tas the amplitude of the travelling wave at the tail. Time has
be able to understand the biological significance of the fluibeen divided by a characteristic tinw which is the locomotor
dynamics it is necessary to take into account the cyclicycle duration. (A list of symbols and their definitions is
variation in both force and velocity. Even with viscous effectprovided at the end of Appendix B.)

taken into account, the imposition of a specified forward speed

may give rise to an asymptotic state in which the mean forward The shape and position of the body

force due to pressure, as computed by the model, cannot beA distinction is made between the shape of the creature’s
expected to balance the mean drag. Thus, in previous work liody and its position and orientation relative to the enclosure
two dimensions, both Williamst al. (1995) and Liuet al.  in which swimming takes place. Two coordinate systems are
(1996) have found the calculated mean thrust to be greater thased, as shown in Figs 1 and 2. One of thesg)(describes

the mean drag. The three-dimensional study by étital.  the body shape, independently of the enclosure. The second
(1997) also shows this effect, although the magnitude of theoordinate systemxf), fixed in the enclosure, enables the
net force is smaller than with their two-dimensional work. Theposition of the creature’s centre of mass to be defined as
appearance of net thrust in all these studies indicates that then,ym). The final link between these two systems is the angle
results presented, such as the creature’s position, the flow fiedgh, shown in Fig. 1B, which defines the orientation of xke
and the force distribution, could only come about byaxis relative to th&direction in the fixed coordinates. All three
restraining the creature’s movement by extraneous force. kuantities Xm, ym and6m, vary with time. The central feature
other words, those model creatures were not swimming freelp the present work is that, although the creature’s shgpe (

but were effectively tethered and being prevented fronis a prescribed function of time, its position is not
accelerating away from their specified positions. Any forcepredetermined. Instead, the creature’s positigiy) and its
calculated in these studies could differ markedly from theorientation, 6m, arise as part of the computation of the
forces developed by a freely swimming animal. dynamical system.

In the present study, the model creature is not subject to Considering first the creature’s shape, the Cartesian
these constraints and simply finds its own path according to tlmmordinate systenx4ys) is set up locally to the body, whese
forces acting upon it. It is self-propelled. represents distance along the body measured from the nose. In

these coordinates, the lige=0 may be regarded as the axis of
generation of the body shape ayylas the ordinate of the
Materials and methods centre-line of the body at any poiat Thexs axis is shown in

The model creature described here has a predetermin&dy. 2, at various stages during a cycle of body movement. The
time-dependent body shape in the form of a backwardzoordinate pairxsys) is prescribed by first specifying as:
travelling wave with increasing amplitude from head to tail.

Both the position and movement of this body are calculate _ (dl+Db)
from the forces produced by its interaction with the water. It Ys= (1 +b)
is the computational equivalent of a clockwork fish in which

the mechanically driven changes in the body shape propel thehere | is the total length of the bodyy is an amplitude
creature through the water. parameter (see below), and all quantities are in dimensionless

The computational model may be considered partly as @anits, as described above. At the nose of the create®?, the
calculation to determine the motion of the creature’s centre afalue ofxsis always zero. At a given dimensionless titmen
mass and partly as a computation of the fluid dynamics. Thiacrement inxs at positions along the body is:
is related to the recoil correction in the work of Lighthill (1960,

1970), although the present approach extends that basic ide dxs = \/ (ds)2 - (dys)2 . )

In practice, the complete model is a single computatior

iterating to find a balance between an acceleration required Atnumerical integration of equation 2 using an incremest in
any instant to achieve a new position and the force on the body As can then be used to determixg thus completing the
that then arises from the surrounding water in response to tkpecification of the body centre-line coordinates.

new shape and position. In the following description of this Equation 1 gives an idealised description of the changing
system, the determination of the changing shape and positimody shape of an anguilliform swimmer (see also Hess, 1983).
of the creature’s body will be considered first and then th&he ordinate/s(s,t) represents a backward-travelling wave with
computation of the hydrodynamics. These two aspects of tremplitude increasing linearly froiw(1+b) at the nose to 1 at
creature’'s behaviour will then be brought together bythe tail, assincreases from zero fo This gives a wave that

sin[2r(gl - 1)], D
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Fig. 1. Anguilliform shape and

position, showing (A) a rectangular 16 ccveenn..
tank with thex,y global coordinates

and (B) body shape on an expanded

scale; © indicates the centre of

mass Xm,ym); the orientation angle J\/
Om, the angle between the axis of

generation Xs) and thex axis, is

also shown.

------- Mid-line

travels down the body once in each locomotor cycle; in othefFhe body shape and the body segments shown in Fig. 1B
words, the wavelength is 1bodylength. The paramieter  correspond to the parameter values given above. The segment
included to allow an amplitude other than zero at the nose @frea constraint conserves the total area of the creature’s body
the creature. The value used in the solution illustrated here & its shape changes with time, as required for the satisfactory
b=0.25, giving a maximum amplitude at the nose of 0.Zomputation of two-dimensional, incompressible fluid flow.
compared with the amplitude at the tail. The length of thé&ffectively, this conserves the creature’s mass for a two-
creature is 8cm (representing a small eel, as in Gray, 1933)imensional system in which the aggregate density of the body
and the amplitude of the travelling wave at the tail is 1 cmtissues is assumed to be constant.

Dimensionless length, is therefore 8. Having defined the creature’s shape, the position of the
Having prescribed the centre-line using equations 1 and 2entre of mass in the locaksfys) coordinate system is
the outline of the body is built up by constructing segmentsomputed. The local coordinates defining shape are then
along the body of lengths and widthws where the value for related to the global coordinates, which will eventually
As used here is 0.25, giving 32 segments along the body. Thietermine the creature’s position in its enclosure. The domain
width of each segment is given by: of computation has been chosen to be a rectangular tank

_ 25bodylengths by 4 bodylengths, as shown in Fig. 1A. The
Ws = Wo — (Wo — wa)(3 — 28)s%/1% . (3) global coordinatesx(y) are measured from the lower left-hand

Equation 3 gives a body outline which tapers from widglat  corner of the tank, as viewed from above, giving overall
the nose of the creature wq at the tail and is parallel to the dimensions ofx=200 andy=32, in dimensionless units. An
body centre-line at the nose and the tail. The values used in timpression of the position of the body of the fish can be seen
present study anep=0.64 andv1=0.16, giving a creature with in Fig. 1A in the centre of the tank at a point part-way through
a body width at the nose equal to 8% of body length taperintdpe overall journey of the creature. To arrive at this position,
to a tail width of 2 %. the animal starts from rest at a point approximately

Equations 1 and 3 characterise the body of the creature, withody lengths from the right-hand end of the tank, in the mid-
equation 1 defining the centre-line amg@ in equation 3 line. The travelling wave then begins to develop (described in
expressing body width perpendicular to this centre-linedetail below) and, in response, the creature propels itself
Starting with wp at the nose, the outline shape has beefforward, close to the mid-line, until it reaches the position
constructed by forming quadrilateral segments such that, fahown.
each incremenfAs along the centre-line, the area of each The coordinates of the centre of massm) are shown in
segment is constrained to be preciseifis, wherews is the  Fig. 1B. The remaining variable in Fig. 1B, the anlg,
width at the mid-segment position. In addition, within eachenables the relationship to be established between the global
segment, the areas on either side of the centre-line are equadordinatesxyy) and the local coordinatessfy/s) which define
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where the total derivative DiDs:

Mid-line
at timet D_a+ 6+ 3 .
or-a Uk Vg (©)
att+0.25 and the Laplacian operat@P is:
92 92
2=—+—. @)
X2  ay?
att+0.50 - L
The continuity equation is:
Jdu N ov 0 ®)
att+0.75 ox oy .

In equations 4-8, distance and time have been made
dimensionless by use of the characteristic lendghdnd the
characteristic timetd) respectively. Dimensionless velocities
(u, v) are defined by dividing by a characteristic velodi#fo.
Dimensionless pressurp, has been obtained by dividing by
p(do/to)2, where p is the density of water. The Reynolds
number,Re becomes:

Fig. 2. Change in body shape over a cycle of activity (cycle 15) from Re= &02
timetto t+1 in steps of 0.125, showing the centre of niasnd the Hto
axis of generatioxs. The ordinateys is perpendicular to thes axis

with the origin at the left-hand end of the axis line in each case. ~ Wherep is the dynamic viscosity of water. For the common

anguilliform fish, the Reynolds number based on the above

definition lies in the range 50-5000. Although the Reynolds
the body shape as given in equation 1. The line at #agle number is high, viscous effects cannot be ignored because in
shown in Fig. 1B passes through the centre of mass. This lic#l cases there will be regions of relative stagnation. For
is parallel to the axis of generation of the body shape, that isxample, these will occur at vortex centres, between vortices
the xs axis. Thexs axis itself, as indicated in Fig. 2, does notrotating in the same sense and in the far field. In addition, the
necessarily pass through the centre of mass. viscous driven flow around the body is of paramount

The motion of the creature’s body has now been specifigithportance in determining the drag forces as the creature

in terms of three unknown quantitigs, ym and6m, all three moves through the water.
of which are functions of time and must emerge as part of the The boundary condition for velocity at the body of the
computation of the dynamical system. Knowkag ym andém  creature is the so-called no-slip condition in which the fluid
at any instant and given the prescribed shape change enabletocity componentsu( v) at the boundary are set to the
a complete determination of velocity components around theelocity components of the body itself and are consistent with
outline of the creature’s body. This velocity distribution isthe current shape and position of the body as described above.
required in order to provide boundary conditions for theThe boundary conditions remote from the body assume the

: 9)

computation of the fluid dynamics. creature to be immersed in a fixed tank and so, at the
_ _ _ boundaries of the tanki=v=0.
Computation of the fluid dynamics Equations 4 and 5 must now be solved numerically, together

The differential equations governing the hydrodynamics, theith the continuity constraint (equation 8), to yield a velocity
well-known Navier-Stokes equations, are given below irfield (u, v) and a pressure field, On a rectangular grid, this
equations 4-8. The assumptions made are that the fluid d®lution process is relatively straightforward. Here, whatever
incompressible and isoviscous, and that the problem is timgrid is used for numerical solution, there must be some means
dependent and two-dimensional in the plane of swimming. Ifor tracking the changing shape and position of the creature as
the x,y coordinate system, the momentum equations (e.gt moves through the tank. There are advantages in choosing a

Eskinazi, 1967) are: grid which adapts to follow the motion of the creature. This
Du ap 1 enables pressure and velocity fields around the body to be
== "4 T D, (4) readily available for use in the calculation of the body
Dt 0x Re dynamics. Such a grid must be non-rectangular and must

change with time as the creature moves through its cycle and
E =— @ + i D2y (5) makes progress on its journey through the tank. An example
Dt dy Re ' of such a grid is shown in Fig. 3. On a non-rectangular grid,
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Fig. 3. A typical grid following the L
motion of the body. Only a small part of
the overall domain is shown, as can be
seen by comparison with the geometry in i
Fig. 1A.  RRRR HH—

the numerical solution becomes more involved and there where the transformed variables ¢, f, U, V), the operators
essentially a choice between the finite element method (séB/Df, 0% and the quantitieS;, &, & andSs are defined in
Zienkiewicz, 1977), the finite volume method (Patankar and\ppendix A (see equations A57 and A58). A brief explanation
Spalding, 1972) and a finite difference approach used iaf the numerical solution of equations 10 and 11 is also given
conjunction with an appropriate coordinate transformationin Appendix A. This is accompanied by results for a test case
Here, transformation methods are preferred; such methods which, for a representative geometry, comparison can be
work well when applied to rapidly moving boundary problemsmade with an analytical solution. For a grid comparable in
such as the present swimming problem. resolution to the coarsest part of the full grid shown in Fig. 3,
The governing equations 4, 5 and 8 are expressed in terms
of the global Cartesian coordinateg). These equations must
be transformed to new coordinategy), where these new A B
independent variables follow the grid. The time variable,
remains unchanged under the transformation and=to
Accordingly, a set of local transformations is established in ti
given moving curvilinear mesh, such as that shown in Fig.
The details of the transformation are given in Appendix A. Tt
grid is characterised by the angBendq, as shown in Fig. 4A,
where® and @ are defined in Appendix A. As can be seen il o
Figs 3 and 4, the grid used here has been chosen to
orthogonal. The reasons for making this choice are explain C

D
in detail in Appendix A. Briefly, such a choice gives
computational advantages by allowing the derivativedanfd
¢ to represent curvature in the computational domain.

¢

— V8

addition, new velocity componentd,(V) can be defined to be

locally perpendicular to one another and to lie in the logGa) (

directions, respectively. The computational variable

corresponding taJ, V and pressur@ are defined at discrete

points, as shown in Fig. 4B, and so for ce]j the

computational counterparts to the components of velocity auc

Uij andV;j, respectively, and the corresponding pressuypg.is Fig. 4. Coordinates and storage locations in the numerical
Arranging the computational variables in this way simplifiesmplementation. (A) Orthogonal = coordinatest,yj, with the
the computation. The procedure for satisfying the continuitinclination of thex andy axes shown a8 and@ respectively. The
constraint, together with calculating the pressure, can then Iangleg IS posmv_e ant"‘fIOCkW'se_frc.’m the globad'recuo.n’ an_cE 1S
established without computational complications. a function of X and f, where t is dimensionless time in the

. X . transformed coordinates. The anglés positive clockwise from the
After transformation to the new coordinates, equations 4 @lgiobal y direction, andg is a function ofy and f. Note that the

5 become: numerical value ofp for the particular case illustrated in A would
DU op 1 _ S therefore be negative by this_ definition. In general, away from the
=+ — W+ + — (10) local origin O, 8=6(x,f) and g=q(y,f), but for an orthogonal system
Dt 0x Re Re the constraintd(0,f)+®0,)=0 applies at originO, where x=y=0.

(B) Grid celli,j showing storage locations fokj, Vij andpi;j, where
these are the computational counterparts to the components of

DV ap 1 _ S velocity U, V and the pressurg, respectively. (C) Coordinates

— — +— OV+S+ — | (11) centred onUij. (D) Coordinates centred oj. In B, C and D.@

Dt dy Re Re indicates the local origin ir(y).

and
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A Segment

Fig. 5. Body segmerit of massa(i), showing

(A) polar coordinatesr(i),q(i)) relative to the

centre of mass®) and (B) an expanded view

with forces acting on the segment due to fluid
pressurefo(i), and to dragfa(i). In A, the B
anglea(i) is defined asi(i)=Bm+q@(i), where

Om is the orientation of the body coordinate
axes (see Fig. 1B). In B, the total force acting
on the centre of mass is also shown, expressed Fi(t) 0
asF(t), Fi(t) and momenM(t) in the forward, f P
lateral and rotational directions, respectively. M(t) Segmeni of massa(i)

fa(i)

the degree of agreement between the numerical and analytieaicurate. The degree of accuracy which might be expected in
solutions is good. a typical part of the full computation is demonstrated in the test
case in Appendix A.

Computation of the interactions between fluid and body ~ Having found the local forces acting on each body segment,

Each segment of the body is subjected to forces due to flutlese may be resolved in the glokalndy directions and then
pressure and to drag. Fig. 5 shows these forces for a segmsnotmmed over all body segments to give the total force. This
i along the body. The position of segmei#t defined by polar may be regarded as acting on the centre of mass. These
coordinatesr(i),q(i)), where these are expressed relative to theomponents are shown lagt) andF(t) in Fig. 5B, expressing,
centre of mass and the current inclination ofxhaxis. This  respectively, the instantaneous force in the forward direction
axis is shown in Fig. 2 and its inclinatioB, is indicated in  propelling the creature along and the lateral force that arises as
Fig. 1B. So, in Fig. 5A it can be seen that the angi¢ is  a consequence of the cyclic movement of the body in the water.
defined as: To complete the specification of the forces about the centre of

a(i) =0m+ (i) . (12) mass, the total momeni(t), of all the local forces must also
be calculated. Again, this is straightforward gifigi) andfq(i)
and knowing the geometry.

From Newton’s laws, the force acting on the body has to
known function, calculated from the given body shape[ehqrgil tr? fhrate (:f Chél nl?e (.)f momentum of ”t].e bpd}{/has Itt rgovis
(equation 1), gh the water. Following common practice in the study o

. . dynamical systems (e.g. Feynmemnal. 1963), the body can

Fig. 5B shows the total force and moment acting on th% idered .

e considered as a set of interconnected segments. The forces

centre of mass anql also the local forces acting on a segmegn.d moment about the centre of mass can then be related to the
The local forcefp(i) due to pressure acts normal to the

segment—fluid interface in the direction pfof the local behaviour of then body segments by the following

coordinate transformation. The drag forcl(i) acts summations:

tangentially, in the direction of. Local forces due to pressure e

and drag are taken into account at the nose and the tail of tl Fi(t) = - dt a(x() . (13)
creature as well as along both sides. Both local pressure ai... i=1

local drag forces are readily available from the computation o n

the fluid mechanics. Their determination is straightforward Fi(t) :E Z a(iy() (14)
given the dependent variableandU associated with the fluid dt —

cell adjacent to each segment interface. For example, knowingr;1d

the velocityU in thex direction along the interface allows the a n

velocity gradient normal to the interfac@JU/dy, to be d N o
determined. This velocity gradient is then used to calculate th M( = ot Z a(ir(iy’a() ,
local drag. The grid resolution around the body in the i=1
transformed domain has been chosen to ensure that thdnerea(i) is the mass of segment (X(i),y(i)) is its rate of
calculation of local pressure force and drag is sufficientlichange of position in the global coordinate directiaif), is

In equation 12fm is a function of time only, whereagi) is
a function of both time and position along the body.
Furthermore,Bm is an unknown function whereagi) is a

n

(15)
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the rate of change afi(i) with respect to time and other During this part of the computation, it is important to keep the
variables are defined above. The negative sign in equation t8wly established positions of the body segments, i.e. the
arises because, by definition, the creature is moving forward positions at time and the new position of the centre of mass,
the direction of decreasing Introducing the subscript o, for constrained such that equations 19 and 20 are satisfied
exampleXo(i), to represent variables at a previous time step iprecisely throughout the iteration. In order to do this, the new
the numerical procedure, the right-hand sides of equatioremgular position of th&s axis, Om(t), is required. Analysis of

13-15 can be replaced by the finite difference forms: the rotation must therefore be taken further.
n For the angular momentum, the quantiy) in equation 18
Ff(t):—Za(i)[i((i)—ko(i)]/At, (16) can be dealt with by using equation 12. This effectively
1 partitions the angular behaviour into a rotation of the axis

generating the body shagg;, and a further rotationyi), that

n

_ Nt r v g takes account of the changing body shape. From equation 12
R = Z aIy() ~ Yoy At (17) it follows that:

o - (i) = Om + 9(1) (24)

n and equation 18 becomes:

M(t) = Z a(i)[r(i)a (i) - ro(i)’ao(i)l/at,  (18) M(t) = [1Bm(t) — 1oBm(t — At))/At
i=1
n

whereAt is the time step size; it should be noted #{gtdoes I S NPy S
not change with time, only with segment position, as discusse * Z a(Ir()(1) = o) ge(DVAL,  (25)
above. =1

To relate these forces to the kinematics of the creature, it g¢here the moment of inertiachanges with time and is defined
necessary to introduce velocities representing the motion of ti&s:

centre of mass. In the linear directions, these are defined as n
n | = Z a(i)r(i)?. (26)
vi(t) = - Z a(i)x(i)/A (19) —
i=1 This leads to the definition of a rotational velocity about the
and centre of mass as:
n n
vi(t) = Z a(i)y(i)/A, (20) Vr(t) = Om(t) + Z ai)r(i)Ze(i)/ 27
i=1 i=1
wherevi andv are velocity components in the directiongef and a depiction of the angular momentum from equation 25 as:
Zg_th respectively, and is the total mass of the body defined M) = [Ive(t) = Towi(t — AOJ/A . (28)
n Equation 28 is now the rotational counterpart to equations 22
A= z a(i) . (21) and 23, thus completing the specification of the dynamics of
= the body.

The right-hand sides of equations 19 and 20 are equal 10 tgyaining equilibrium between fluid and body: performing the
rate of change in the position of the centre of mass. Hence, the numerical iteration

forwa_rd velomty_can also be written @s—xm, and the lateral The physical basis for the interaction between the body and
velocity, vi, asvi=ym. : : .
the surrounding water has been set out above, in essence in

Combining equations 19 and 20 with 16 and 17 now glVese'quations 22, 23 and 28. Within each time step, an iteration

Fi(t) = A[vi(t) — vi(t — At))/At (22) has to take place in order to satisfy these equations. Controlling
and this iteration is the key to obtaining satisfactory computational
Fi(t) = Alvi(t) — wi(t — At)J/At . (23) results. The numerical procedure must be stable and has to

produce results of an acceptable accuracy in a reasonable
Equations 22 and 23 are seen now to govern the dynamics mfimber of iterative steps. The main obstacle to achieving this
the creature’s body in the forward and lateral directionss that a small departure from the correct position of the
expressed as time-dependent variables associated solely witteature’s body, as may well occur during any iterative
the movement of the creature’s centre of mass. During thgrocess, produces a relatively large corrective force arising
iterative process used to solve these equations, taking equativom the fluid dynamics. Without due care, this process can
22 as an example, a small changd-ift) is fed back to the easily become numerically unstable.
kinematics by means of a single, corresponding change in theAppendix B gives details of the numerical procedure used
velocity vi(t). This is explained in more detail in Appendix B. here to update the position of the creature’s centre of mass. In
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essence, each velocity componenmt), vi(t) andw(t), needs At the start of the computation, the creature is positioned
to be corrected cautiously at each iterative step. The firstith its nose at the point&=155.5,y=16.0 and lies with the
approximation to the velocities then determines a new positiocentre-line of its body along the mid-line of the tank (see
of the centre of mass and a new orientation of the creatureFsg. 1A for tank dimensions). The body curvature and
body. At this position, new forces are computed arising fronbbackward-travelling wave are then allowed to build during the
the fluid dynamics. These forces produce new acceleratioffisst cycle of activity as described above. At the end of the first
which in turn give rise to adjusted velocities. The formation otycle, the creature’s body shape and its change with time are
new velocity approximations, each by a small incrementdully established. This established pattern of changing body
change from the previous value, then allows the next iteratioghape then continues for a further 19 cycles of activity, as the
to begin. This continues until all three components of forcegreature accelerates and swims through the tank. In the
Fs(t), Fi(t) andM(t), have converged. The forces must be usedomputation, each cycle is subdivided into 32 time steps, to
to test convergence because it is the forces, related to tpeovide sufficient resolution for the rapidly changing forces
second derivative of positions, that are varying most rapidlyhich act on the body.

during the iteration. The mathematical detail of the iterative The results are presented as follows. Figs 6—-9 show the

process is described in Appendix B. structure of the fluid flow at various stages of the creature’s
_ - journey. The kinematics and dynamics of the creature’s centre
Starting conditions of mass are shown in Figs 10-13. Fig. 14 shows the amplitude

In the numerical calculation, it is necessary to specify thenvelope and the nose and tail trajectories that result from the
initial conditions, the simplest being a creature at rest in stikalculations.
water. From this state, some form of starting manoeuvre must
be used to develop the travelling wave on the body. Two Stream function contours
possibilities come to mind, which resemble the commonly Streamlines (contours of the instantaneous stream function)
observed forms of behaviour during fast starts (Webb, 197@an be a useful way of representing a two-dimensional velocity
1978). The first is to increase the speed of the travelling waveld. In the present study, the stream function distribution has
gradually from zero to its final value. This produces a start frorbeen recovered from the velocity field, after the computation
an initial ‘'S-shape’. The second is to scale the amplitude of thhas been completed, by a process of integration. Fig. 6A shows
body shapeys, again increasing gradually from zero to thethe streamline pattern at the end of cycle 5 of the creature’s
distribution defined in equation 1. This second manoeuvre is theurney. The general direction of the flow ahead and to the side
one used here. The combined effect of the increasing amplitudé the nose of the creature is indicated by the arrows. Red
and the travelling wave produces an appar€rdhape’. streamlines represent flow circulating in a clockwise direction,
The precise mathematical form for this starting manoeuvrand green streamlines represent anticlockwise flow. At the end
is to scale the amplitudsgs, over the first cycle of the creature’s of cycle 5, the nose of the creature has reached a position
activity by a factof3 to give: at which x=138.0 representing a total journey of
2.19bodylengths from the starting point. Fig. 6 shows the

Js= Bys (29) progress of the creature at intervals of three cycles. In Fig. 6B,
whereys is given in equation 1 and the scaling facfyris: at the end of cycle 8, the nose isxafl21.3, representing a
further overall progress of 2.09bodylengths during the three
0 1 - cosf) les f | le 8. | ing f le 8 |
g O<t<1 cycles from cycle 5 to cycle 8. In moving from cycle 8 to cycle
B=0 2 (30) 11 and then to cycle 14 (Fig. 6B-D), the nose of the creature
O 1 (=1 makes progress in two approximately equal steps of
ol, :

2.16 body lengths. This suggests that after an initial acceleration
fover the first eight cycles an asymptotic state is being
proached. The mean velocity of the creature in this state,
sed on the movement of the nose, is 0.60 body lerdths s
In each panel in Fig. 6, the leading or outer streamlines
correspond to a stream function value of +1.5 for anticlockwise
flow and-1.5 for clockwise. Since the stream function is zero
Results along the side walls of the tank, this means that the volume
Using the computational model described above, results aflow of water returning past the creature between each outer
presented here for a creature 8 cm long, swimming with a cycltreamline and the corresponding side wall is the same in all
time to of 1.2s. The travelling wave has an amplitude at thehe plots. From the outer streamline working inwards, the
tail do of 1 cm and a wavelength of 1 body length. These valuemcrement in stream function from contour to contour is 1.0 in
approximate the young eel in the work of Gray (1933). Otheall plots, indicating equal increments in volume flow between
geometric parameters defining the body shape are as descritztjacent streamlines. It follows, therefore, that the closer the
above. The Reynolds number baseddgnas characteristic streamlines are to one another the faster will be the local fluid
length anddo/to as characteristic speedR&e=83. velocity. Interpreting Fig. 6 using this information enables an

Mathematically, the important feature of the given variation i
Bis that it ensures a continuity in both body shape and the r a®
of change of shape as the creature settles into its rhyth
behaviour at=1.
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Regions of self-contained circulation can be seen in Fig. 6.
To depict these regions more clearly, Fig. 7 shows the
(' ‘separating’ streamlines for the contour plots at cycles 8, 11
and 14. These are superimposed for comparison and
\ correspond to Fig. 6B,C,D, respectively. Separating
streamlines are drawn by first identifying the stream function
T T T T T values corresponding to saddle points on the stream function
surface. These saddle points represent instantaneous stagnation
points in the fluid flow, which occur between vortex structures
rotating in the same direction. This gives rise to flows locally
which are in opposite directions. Viscous interaction between
these flows then gives rise to a point between the flows at
which the fluid velocity vector is zero. These stagnation points
appear in Fig. 7 as small open circles, three in each of the three
plots. The cyclic repetition of the flow structure in the
neighbourhood of the body is apparent (compare b, ¢ and d in
Fig. 7). Although the physical positions of these separate
structures are similar, the strength of circulation within
corresponding parts need not necessarily be the same.

Figs 8 and 9 show the progress of the creature through cycle
15. Fig. 8 shows the full streamline pattern, continuing from
Fig. 6D, with Fig. 8B showing streamlines and body shape
half-way through the cycle. The flow structure can be seen to
be an approximate reflection in the mid-line of that in Fig. 8A.
Fig. 8C then depicts the completion of the body shape cycle
for cycle 15. Fig. 9 shows the cyclic behaviour in more detail,
on an expanded scale and including more time steps during
cycle 15. The stream function increment used to produce the
plots in Fig. 9 has been reduced to 0.5, half that in Fig. 8, in
order to highlight the local flow. The major circulating flow
structures developing around the body can be seen. Following
their formation, these structures are first displaced backwards
slightly, dictated by the backward-travelling wave, and then
tend to remain stationary for a short time as the creature travels
forwards. Shortly after this, the effect of viscosity tends to
Fig. 6. Contours of instantaneous stream function at the end of cyctsreak down the rotating structure and the fluid becomes part
5 (A), cycle 8 (B), cycle 11 (C) and cycle 14 (D) of the creature’spf the larger-scale circulation behind the body (see Figs 8A,B,
journey through thg tank. Red streamlines rgpresent clogkvyise ﬂovg,A_E)_ In general, the panels in Fig. 9 show three circulating
and green ;treamllnes repres.ent ar)tlclo.ckwse flow, as indicated lﬂind structures near the body, which were depicted explicitly
the arrows in A. The creature is outlined in black. See text for furthelli1 Fig. 7. The first circulation, on one side of the body near the
details. . . — .

nose (on the right side, e.g. in Fig. 9A), is seen to grow and

gain strength, enhanced by the viscous boundary layer along
overall impression to be gained of the two-dimensional watethe side of the body. There is a second circulation on the
flow in an enclosed tank through which an anguilliformopposite side of the body at approximately the mid-length. A
creature is accelerating. third circulation, near the tail, is seen on the same side of the

Fig. 7. Separating streamlines, indicating regions of self-
contained circulation. The plots are shown superimposed at
cycle 8 (b), cycle 11 (c) and cycle 14 (d) corresponding to
Fig. 6B, C and D, respectively. The streamlines are in blue;
the outline of the animal is in black. For further details see 80
text. X
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body as the first. The growth and dissolution of these structurese +1.5). From the physical distance separating these
in cyclic repetition is the key to understanding the behavioustreamlines, it is therefore possible to estimate the mean
of the flow. The growth is caused by the motion of the bodyelocity in the wake following behind the creature. Over
and the viscous effects between the body and the water. Thgcle 15, this wake velocity is in the range
circulation within these structures is maintained as the creatufe25-0.5 body lengthskin the direction of forward motion.
passes by. Finally, the local circulation is diminished bySince the mean forward speed of the creature is
viscous dissipation as the creature moves away.

In all the stream function plots, but most clearly in Fig. 9,
a region behind the body can be seen in which no streamlines
are plotted. The demarcation of this region can be seen to be
the outer streamlines. The volume flow between these
streamlines is therefore 3.0 (since the stream function values

T T T T T
80 100 120 140 160

X

Fig. 8. Streamlines during cycle 15: at the start (A), mid-way through
(B) and at the end (C) of the cycle. Other details are as in Fig. 6.

Fig. 9. Expanded view of streamlines in the neighbourhood of the
body during cycle 15. Force vectors are also shown on the right. A
corresponds to the full streamline plot in Fig. 8A, E corresponds to
Fig. 8B and | corresponds to Fig. 8C. The intermediate plots B, C
and D represent equal time increments of 0.125 through the first half-
cycle of activity; F, G and H represent equal 0.125 time increments
through the second half-cycle. The body positions in A—l correspond
to those in Fig. 2 at timesto t+1. The vectors to the right of the
streamline plots indicate the relative magnitude and direction of the
net force on the creature, or the acceleration of the creature’s centre
of mass, at all 32 steps during cycle 15. The vectors with filled
circles attached correspond to panels A-l of the streamline plots.
Other details are as in Fig. 6.
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0.60body lengths3d, the relative velocity of the wake, as travelling wave. From the mean value of the forward velocity
seen by the creature, is in the range€.35 to trace, an initial phase of rapid acceleration can be seen. During
-0.1body lengths¥, depending on the point in the cycle. approximately one cycle of activity from a point approximately
Thus, a recession of the wake is apparent to the creature. Thalf-way through the first cycle, the mean forward velocity
relative speed would be expected to change, howevencreases from near zero to half its asymptotic value. After a
depending on the dimensions of the tank, particularly théurther three cycles of body movement, the mean velocity has

distance of the side walls from the creature. attained 90 % of its final value. Finally, at around cycle 9, the
_ _ _ asymptotic state appears to have been reached. Here, the
Kinematics and dynamics amplitude of the oscillations in forward velocity represents a

Fig. 10A shows the trajectory of the centre of mass of theeparture of £9 % from the mean. The creature then continues,
creature during cycle 15; the forward and lateral componentargely undisturbed, until approximately cycle 15. From this
of the progression are shown in Fig. 10B. A cyclic lateratime onwards, a slight deceleration is apparent, and by cycle
movement can be clearly seen as the creature travels from point
a to point i. There is also a small cyclic change in the rate c* A
forward progression, which appears as a barely discernib , Velocity of backward-travelling wave
variation in the gradient of the upper curve of Fig. 10B. The 0.8 - i e e e
second derivative of each curve in Fig. 10B, which gives thi
respective component of acceleration, varies far mor
noticeably over a cycle of body movement. This can be see
from the force (acceleration) vectors in Fig. 9.

Fig. 11A shows the velocity components associated with th
movement of the centre of mass in the forward and later:
directions over 20 cycles of body movement. The full-cycle T T Tt o
running mean velocity is also shown in each case. For ea
cycle of body movement, two cycles of oscillation in forward

Forward velocity

Lateral velocity

Velocity of centre of
mass (body lengths'$
o
N
1

velocity occur, one for each leading edge of the backwarc §
(8]
S >
A =
E o
Mid-line of tank s
o
................................. LL
. T T T T T T T T T T T T T T T T T 1
T Trajectory of centre of mass T 0O 2 4 6 8 10 12 14 16 18 20
| a C
B % o 02 Lateral pressure forc&e Lateral dra
0.8 - - =3 %
s2 0
o <
= O .
0.6 - - §° 02
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0 2 4 6 8 10 12 14 16 18 20
- Cycle number

Forward o=~ i

Fig. 11. Kinematics and dynamics of the centre of mass during 20
cycles of activity. (A) Forward and lateral velocities, with solid lines

Progression from point a
to point i (body lengths)
o
SN
1

] Lateral representing the cyclic variation together with the full-cycle running
0 H-0-0-0-0-0-0-0-0-0-0-0—0-0-0-0-0-0=0=0=0—0-0=0=0"0~0=0-0-0-0 - mean in each case. The backward-travelling wave speed (dotted line
, ' : at 0.78bodylengths®) and the asymptotic mean velocity (dotted
14.00 14.25 14.50 14.75 15.00 line at 0.60bodylengthsy are shown. (B) Forward force on the
Time (cycles) body due to pressure (positive in the direction of motion) and to drag

(in the opposing direction). The dashed line rising to a maximum of
Fig. 10. The trajectory and progression of the creature’s centre .26 after 1.4 cycles indicates the full-cycle running mean of the
mass during cycle 15. (A) Trajectory with point a corresponding tcforward pressure force, which tends to balance the drag in the
the start of the cycle (Figs 8A, 9A and timen Fig. 2) and point i  asymptotic state. (C) Lateral force, positive in the glgtditection,
corresponding to the end of the cycle (Figs 8C, 91 and tiriein and lateral drag. Each trace consists of 640 time steps. In both B and
Fig. 2). (B) Forward and lateral progression of the centre of mass iC, force is made dimensionless ey, whereFo=pdo(ldo/to)2, wherel
body lengths, starting at point a, against cycle time. The distands the dimensionless body lengthijs the density of watedp is the
between points a and i is 0.72bodylengths. The 32 time stefamplitude of the travelling wave at the tail aads the locomotor
between a and i correspond to the times at which force (ccycle duration. All forces are per common unit of length
acceleration) vectors are shown in Fig. 9. perpendicular to the plane of swimming.



3154 J. &RLING, T. L. WiLLiams aND G. BowTELL

20 a reduction in the mean velocity of approximately 3% ha
occurred.

For the oscillations in forward velocity after cycle 15, it
can be seen that the two peaks per cycle become unequ
This behaviour arises because, although the specifie
changing body shape exhibits left-right symmetry, the
creature is not swimming precisely along the mid-line of the
tank (see Fig. 10A). This is because the starting manoeuv
produces an initial trajectory of the centre of mass in the forr
of a spiral, ending with a sideways displacement as shown
Fig. 10A. All starting manoeuvres are necessarily
asymmetric and so some displacement of the asymptot
trajectory is to be expected. The surrounding fluid domain i
therefore not symmetrical and this gives rise to asymmetri
forces. The mathematical creature, as defined here, has
mechanism for countering this asymmetry by corrective
action. Furthermore, it is probable that the tendency awa
from symmetry becomes more pronounced as the creatu ]
approaches the end wall of the enclosure. At the end of cyc ' ———T T T T T T T
20, the position of the creature’s centre of mass i 0 2 4 6 8 10 12 14 16
approximately 7 body lengths from the end wall, well within Cycle number

the domain of influence in which such effects might be_ . .
expected. Fig. 12. Angular kinematics and total moment of forces about the

. . f ing 2 I f activity. (A) Angul iti
The asymptotic mean velocity of the centre of ma centre of mass during 20 cycles of activity. (A) Angular position of

SS, . . . .
. ’ . . . the body axis,bm. (B) Total angular velocityy, as defined in
indicated in Fig. 11A, is 0.60 bOdylengthé'STh's forward equation 27. Note that the trace in B is not the time derivative of the

speed  corresponds to a  stride  length  Olrace in A. (C) Moment about the centre of mass, made
0.72bodylengthscycté. The velocity of the backward- dimensionless bfodo, whereFo is defined in Fig. 11 ando is the
travelling wave is also indicated in Fig. 11A. The ratio ofamplitude of the travelling wave at the tail.
asymptotic mean forward velocity to backward-travelling
wave velocity is 0.77 for this case.
The lateral velocity trace is also shown in Fig. 11A. In thisexpected when the creature is swimming in a domain without
case, only one cycle of oscillation in velocity occurs for eaclprecise lateral symmetry.
cycle of body movement. The amplitude of the oscillations in The lateral forces are shown in Fig. 11C. Overall, there is
lateral velocity is £10% of the asymptotic mean forwardone cycle of oscillation in the lateral pressure force per cycle
velocity. The running mean lateral velocity is close to zero, budf body movement, although near to each maximum a small
swings from slightly negative to slightly positive values duringsecondary peak occurs. A similar behaviour can be seen around
the overall journey. the minimum. The maximum excursion in the lateral pressure
The propulsive forward force and the drag on the body oforce is approximately 0.55 times that for the forward pressure
the animal, which give rise to its velocity, are shown inforce (Fig. 11B).
Fig. 11B. After 1.5 cycles from the start, the drag reaches a Fig. 12A shows the angular position of the body a8is,
maximum and thereafter tends to decrease as the animal guidtted against time. In the asymptotic state, the amplitude of
the fluid flow develop a cyclic pattern. The dashed linghe oscillations irbm is approximately +0.1rad. The effect of
indicates the full-cycle running mean in the forward pressuréhe cyclic variation irBm can be seen in Fig. 2, which shows
force. It can be seen that when the mean velocity is at or nelaow the orientation of thes axis varies during cycle 15. The
its asymptotic value the mean pressure force tends to balantal angular velocityyr, is shown in Fig. 12B, whene from
the drag over a cycle of activity. Fig. 11B shows that after thequation 27 includes both a contribution due to the rate of
creature has settled into its asymptotic state the maximuchange irBm and also that due to changing body shape. This
excursion of the forward pressure force is approximately eighibtal angular velocity arises from the moment about the centre
times the mean drag. The acceleration and deceleratiai mass (Fig. 12C).
corresponding to these positive and negative net forces areExamining more closely the variation of the forces in the
reflected in the corresponding increase and decrease in forwasymptotic state, Fig. 13A,B shows the forward and lateral
velocity in Fig. 11A. A change in the pattern of the forwardcomponents of the net force during cycle 15. Points a—i in
pressure force can be seen clearly from cycle 17 onwards. TRéy. 13A indicate the forces acting on the creature at times in
two peaks in pressure force that occur per cycle beconibe cycle corresponding to the body positions shown in
unequal, corresponding to the behaviour in the forwardrig. 9A—I, respectively. The force vectors in Fig. 9 correspond
velocity. As argued above, such asymmetric forces are to lie the components of force shown in Fig. 13A,B. During the

Q1 11T 1T 1+ 7T 71T+ 7 77T 71
0O 2 4 6 8 10 12 14 16 18 20

Angular position of
body axis (rad)

Total angular
velocity (rad s!)

Moment about
centre of mass

18 20
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w Fig. 14. Amplitude of lateral displacement of the body centre-line,
and trajectories of the nose and the tail. Distances are in body lengths
(x1, y/) relative to the mean position of the nose in a frame of
reference moving at the creature’s mean forward speed. Note that the
C ratio of axis scales is 2:1. Dotted lines represent the prescribed linear
envelope as given in equation 1. Filled circles indicate the non-linear
i OOO\%‘ ﬁ envelope that results from the dynamical model, which takes account
of lateral and rotational velocities and forces. Open circles represent
w the tail trajectory, with the filled triangle indicating the direction of
) travel. The nose trajectory is indicated by the solid line, with the
l | | | | corresponding direction of travel marked (open triangle). The mean
14.00 1425 1450 14.75 15.00 position of the centre of mass is shownCaswith the vertical bar
showing the extent of its trajectory. Note that the linear envelope is
an approximation, since the linearity is with resped/ltovheres is
Fig. 13. Expanded view of net forces during cycle 15. (A) Netthe distance along the body from the nose, rather xhatut the
forward force. (B) Net lateral force. (C) Moment of forces aboutdiscrepancy is slight.
centre of mass. Filled circles in A, B and C (labelled a—i in A)
correspond to Fig. 9A-I, respectively. Forces in A and B are
dimensionless as described in Fig. 11, and moment in C igmplitude envelope and the trajectories of the nose and the tail.
dimensionless as described in Fig. 12. This shows both the prescribed linear envelope of the
backward-travelling wave and the resulting non-linear
envelope found in the computed behaviour. The difference
second half of the cycle, the maximum net propulsive forceetween the two envelopes is caused by the rotation of the body
occurs when the creature is approximately half-way betweesbout the centre of mass in combination with its lateral
the positions in Fig. 9G and Fig. 9H. There is a significanmovement.
lateral force acting at the same time, however, producing an The trajectory of the tail exhibits the expected figure-of-
aggregate acceleration of the centre of mass not only in tleght pattern, with the solid triangle indicating the direction of
forward direction but also to the creature’s left. At around thidgravel around the trajectory. The nose trajectory also exhibits
point in the cycle, the creature is farthest to the right in it® figure-of-eight form. The direction of travel indicated for the
trajectory (see Fig. 10A). The lateral force is therefore seen toose (open triangle) is shown at the same point in the cycle as
be restoring the overall motion of the creature towards thor the tail. Thus, it can be seen that, for a small part of the
mean direction of travel. cycle, the lateral direction of travel of the tail is opposite to
The creature’s position is also determined partly by thehat of the nose. This is brought about by the effect of rotation,
moment of forces about the centre of mass. Fig. 13C shows teace for the wavelength of 1.0 used here, the trajectories of
variation of this moment during cycle 15. It can be seen thahe nose and tail would otherwise cycle in phase.
between points g and h the moment is positive, or
anticlockwise, and from Fig. 2 the rotation of #g@xis is also
anticlockwise. The combined effect of this rotation and the Discussion
lateral progression of the centre of mass is to produce aThe results presented here illustrate the behaviour of a
relatively large lateral movement of the creature’s nose, as calynamical system representing the motion of an anguilliform
be seen in Fig. 2. swimmer. The present model differs from previous
The rotational effect occurs along the whole body, agomputational models in that the forward swimming speed of
illustrated in Fig. 14, which shows the body centre-linethe creature has not been specified beforehand but has arisen
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from the computation. The mean forward speed attained is thhéad and the tail, eel body-shape data are difficult to interpret.
at which the forward pressure force balances the backwalttis not clear to what extent the lateral movement of the centre
drag, over each cycle of activity. In contrast, in previouof mass, the creature’s rotation and the increasing wave
studies in which viscosity was included in the computatioramplitude contribute to the final amplitude profile along the
(Williams et al. 1995; Liuet al. 1996, 1997), the calculated body. Over the first 20% of the body length, where the lateral
forward force due to pressure was greater than the calculatetbvement is small, the observed amplitude envelope lies in the
backward drag. Hence, those creatures were effectivelange from 0.1 to 0.2 times the amplitude at the tail. In
prevented from swimming forward. addition, the body curvature is smaller in both the head and the
One consequence of this artificial imbalance may be in th&il regions. For these reasons, the published pictures of
resulting vortex structure in the wake. In the previous twoanguilliform swimmers (e.g. Gray, 1933) tend to show
dimensional studies, vortices shed by the creature remained @gproximately one wave on the creature’s body at any time.
clearly identified structures in the wake (see Fig. 8 in WilliamsThus, the effective wavelength in anguilliform swimming may
et al. 1995; Fig. 11 in Liuet al. 1996), whereas in the present be larger than previously supposed. As a consequence of the
study the vortices join the overall circulation soon after beingnterdependence of these geometric parameters, the following
shed from the creature (Figs 6, 9). As those creatures wecenfiguration was chosen for the present study: a wavelength
effectively restrained, much of their body motion was probablyf 1.0 body length and a linearly increasing amplitude envelope
used to build up the strength of the generated vortices. Thoséth a value at the nose of 0.2 times the value at the tail. In
circumstances perhaps resemble a swimmer anchored infudaure work, the effects of using different nose amplitudes and
stream while at the same time engaging in vigorous paddlingavelengths will be investigated. The results of such studies
of the feet. should produce an amplitude envelope that more closely
Another assumption of previous work has been that theatches the published profiles.
forward speed of the creature is constant. At first, from Forces and movements were originally calculated in the
observing either real or calculated swimming, this may seetateral and forward directions only, on the assumption that
reasonable. For example, the forward progression shown moments of force and rotation about the centre of mass would
Fig. 10B does not appear to differ significantly from a straighhave only minor effects. However, the resulting forward
line. However, the time derivative of this progression, thepressure forces in that system were significantly greater than
forward velocity, does undergo significant oscillation, as caim the system described here, and the asymptotic mean forward
be seenin Fig. 11A. This oscillation in velocity reflects the factelocity reached a value some 40 % greater than the asymptotic
that the net forward force on the body fluctuates betweewelocity found here. As Fig. 11A indicates, such a value would
positive and negative values, and the excursions are even largieen be slightly greater (by some 8 %) than the velocity of the
than the oscillations in lateral force. Since it is the forces rathdrackward-travelling wave (J. Carling, T. L. Williams and
than the velocities that are important to the understanding @. Bowtell, unpublished data). This is not physically realistic.
the biomechanics of swimming, oscillations in all forces mustmposing zero rotation on the creature was equivalent to
be allowed for in the mathematical formulation. Models thaproviding an externally applied moment of force with the
assume a constant forward speed cannot be used to reaehuired direction and magnitude to prevent the animal rotating
reliable conclusions about the development of forces duringbout its centre of mass. The achievement of a forward velocity
swimming. greater than that of the backward-travelling wave indicates that
The importance of rotational forces in the behaviour of théhe creature was able to gain net forward force from this
model creature is illustrated by the fact that a linearly changingnplicit externally applied moment. Similar arguments apply
amplitude with respect to the axis of generatignproduces to the imposition of zero acceleration in the forward direction,
a non-linear profile with respect to the axis of forwardthus emphasising that it is ill-advised to assume a constant
progression (see Fig. 14). In addition, the imposed non-zerferward velocity in modelling swimming fish.
amplitude at the nose has been enhanced considerably byThe work described here is based on two-dimensional fluid
rotation of the body about its centre of mass. Publisheflow in the plane of the anguilliform motion. The results may
accounts of eel kinematics do show a significant non-zertherefore be interpreted as representing the behaviour of a
movement of the nose during swimming (Grillner and Kashinswimming sheet extending in directions perpendicular to the
1976; Hess, 1983). However, there is no obvious way tplane of swimming. The results might also be thought to
disaggregate lateral and rotational movements in kinematapproximate the behaviour of an anguilliform swimmer in
data, since there is no straightforward way to discover a uniquehallow water within an enclosure. Clearly, it is desirable to
equivalent to the axis of generatiog, Hence, choosing the develop a three-dimensional version of the model, and work is
value for nose amplitude in the model is not straightforwardcurrently in progress to achieve this. Until such work is
The choice of wavelength raises further complicationscompleted, it is difficult to judge whether the effect of
Published values of wavelength for anguilliform swimmersremoving the two-dimensional restriction will substantially
(Gray, 1933; Grillner and Kashin, 1976; Hess, 1983) are in thalter the results, particularly the magnitude of the forces acting
range 0.79-0.67 body lengths. This suggests that between 1@ the creature. Nevertheless, whatever differences the three-
and 1.5 waves are on the body at any time. However, near tdamensional results may produce, the present study is an
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important step since it represents the first dynamic model irotational speed within each vortex. The relative velocity
which the position and the movement of the creature are nbetween the creature and the surrounding water then tends to
prescribed; it is a self-propelled swimming shape. be less than it was in the early stages, and the smaller velocity
The idealised shape used to represent the body of @madient accounts for the resulting reduction in the mean drag.
anguilliform swimmer exhibits a square-cornered nose and tailn this sense, this creature is gaining some small benefit from
This shape, not an obvious choice biologically, facilitates th¢he inevitable presence of the vortex structures.
particular solution procedure used here to solve the flow The present results clearly support the view that an
equations. It is fair to question whether the decapitation affecenguilliform swimmer can use most of the full length of its
the general form of the flow and the forces generated. Close bmdy to generate vortex structures. In contrast, the generation
the rectangular corners, it is clear that the local fluid velocitpf vortices in carangiform swimming is more closely
and pressure will depend on the local shape. However, associated with the movement of the tail and that part of the
Fig. 9 shows, the main rotating fluid structures are created ammbdy near the tail. For example, Mdllet al. (1997) have
sustained not only by displacement as the creature movesblished results of experiments using particle image
through the water but also by the action of the viscous layefelocimetry to show the tail-dominated vortex wake behind a
along the side of the creature’s body. The general shape amulllet (Chelon labrosufRisso). As Miilleret al. (1997) point
magnitude of these vortex structures would probably not beut, however, Rosen (1959) observed attached vortices on the
affected to any substantial degree by changing the shape of thedy. Thus, just as there may not be a rigid demarcation into
nose or the tail. The presence of sharp corners at the nose midigtinct modes of anguilliform and carangiform swimming
enhance the strength of the circulation near the nose, b(Breder, 1926; Webb, 1975), so there may be a spectrum of
further along the body it is unlikely greatly to affect the overallmechanisms of vortex generation, with both viscous and
behaviour. A greater influence is likely to be the effect of thelisplacement mechanisms always present to some degree but
lateral movement of the nose and its cyclic acceleration angdith one or the other being predominant in each individual
deceleration. Taking proper account of the movement of thease.
nose, as has been done here, may be the more important factoThe value of Reynolds numbeRd& used here to non-
rather than the precise detail of its shape. Nevertheless, to telétnensionalise the computation is baseddgrnthe amplitude
this contention, it would be useful to experiment with a varietyof the travelling wave as it reaches the tail, dgith, wheretg
of nose shapes, and such a study is a longer-term aim. is the cycle duration. For the present case, this gives a value
The 8cm anguilliform shape used here reaches aof 83. As far as the numerical work is concerned, the definition
asymptotic mean forward speed of 0.72bodylengthstlcle of Redoes not affect the solution, since these same values of
Although this is within the range obtained from experimentalength and velocity are subsequently used to assign dimensions
work on non-anguilliform swimmers, it is larger than thatto the computed values. However, another common use of
found by Gray (1933) for a 7cm edir(guilla vulgarig and a  Reynolds number is to classify problems in fluid dynamics
13cm butterfish @entronotus gunnelds which were  with respect to the relative importance of viscous and inertial
swimming at mean forward speeds of approximately 0.4 anfibrces. For this use, a standard length and a standard velocity
0.5 body lengths cyctd, respectively. Hess (1983) calculated amust be chosen that somehow characterise the flow. It has been
value of 0.55bodylengthscycfefor a 14cm eel (species common practice to classify the swimming behaviour of fish
unidentified). Upon comparing the ratio of the forward velocityby using a value dRebased on body length and forward speed.
with the velocity of the backward-travelling wave, a similarin the present study, having found the asymptotic mean
pattern is apparent. Here, this ratio is 0.77, which is somewh&irward speed, it becomes possible to calcuRaasing these
larger than the values of 0.65 and 0.67 found by Gray (193®ustomary parameters. Using the given body length and the
for the eel and butterfish, respectively. The value obtained hgalculated forward speed, the valueRgfwould be 3840. It is
Hess (1983) was 0.70. Direct quantitative comparisons mustorth considering which definition oRe more closely
be made with caution, however, since the present twasharacterises the flow. The answer may be that neither gives a
dimensional model may well give rise to higher swimmingfair reflection of the flow regime. As discussed above, a typical
speeds than a more realistic three-dimensional equivalent. ratio of pressure force to drag in this model is 8 (see Fig. 11B).
The results have shown (see Fig. 11B) that the mean drddnis ratio is effectively an alternative way of definiRg
reaches a maximum during the early part of the creaturetsased on forces due to inertia and to viscosity. In the present
journey and then reduces towards an asymptotic value as tbase, therefore, the customary definitioRRefs approximately
cyclic behaviour of the flow becomes fully established. Thi00 times as large as this ratio of forces. The results of this
comes about because, in the early stages, before the vortudy therefore suggest that viscous effects may be far more
structure around the body has developed its final cyclic patterimportant than previously supposed.
there tends to be a larger difference between the speed of theThe remaining major simplifying assumption in the present
creature and that of the slowly rotating fluid adjacent to thevork is that the body shape (as opposed to its position) is
body. This difference gives rise to a steeper velocity gradiemrescribed. Further development is therefore required before
at the creature’s body and hence a greater drag force. As tthee model can be used to investigate the mechanisms
speed of the creature increases, however, so too does thaderlying the curious relative timing of muscle stimulation
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and body curvature in fish (Willianet al. 1989; van Leeuwen Since the derivatives df and g on the right-hand sides of
et al. 1990; Wardle and Videler, 1993). Such relative timingequations A4—A6 will eventually be defined in the transformed
has important implications for the physiology and energeticsoordinatesx,y,f), terms such adf/ox need to be expressed as
of fish muscle (Altringham and Johnston, 1990; Curtin andlerivatives in the new coordinates. Substitutirend g into
Woledge, 1993; Romet al.1993). The next step in the presentequations A4-A6 and rearranging gives:
approach will be to incorporate into the system a model of th

of 10 ogU

dynamic behaviour of an anguilliform body (Bowtell and 1- — = — M +-207, (A7)
Williams, 1991, 1994). Instead of a predetermined body shap: ox K g oyQ
the input to the combined model will then be the known
patterns of muscle activation generated by the nervous systel og 109
An investigation using this more comprehensive model shoul ax K ox (A8)
increase our understanding of the dynamics of anguilliforr,
swimming and should also provide some insight into why the of 1 of
particular relative timing between muscle activation and — =, (A9)
muscle shortening has evolved. dy Koy
og 10 of0
. . . . 1- —=— +—-0, (A10)
Appendix A. Solving the Navier—Stokes equations on a dy K g oxpg
grid which follows the creature’s body: transformation
methods of 1 0of O o990 og of O
In describing the coordinate transformations used here, it i ot K Ea%t_ %1 * Fy% - aT_aTTE (AL1)
helpful first to consider the general non-orthogonal case, i,
which the angle® and®shown in Fig. 4A do not add to zero and
at the local origin,O. Reducing the general case to an dg 1 O of ag .\ g ELL .\ of %g (A12)
i iat = [F==1T = —=UILh
;)étsr:ggt(i)gr;asllsystem can then follow by making the appropriat ot K dtex ot o oxon

Having derived the transformed equations, a briefvhere

explanation of the numerical solution procedure is given
P P g O of00 oagO og of

together with a test case to show that in a simplified geometr K=+ —0+ 20— — . (A13)
the computed results compare favourably with an analytice O oxgg oyg ox oy
solution.

Before developing the analysis further, it is appropriate to

. , consider how the incremental changes ¢ df) are reflected
General transformations and reduction to the orthogonal casg, e original Cartesian frame. Again, by using standard

Consider the general transformation from the Cartesiagechniques in conjunction with equations A7-A12, it follows

coordinatesxy,t) to new coordinatex(y,f), where: that:
X =x=f(xy.t) , (A1) Ko agg o g
_ X = + ~ X —— y
y =y - gxyit) (A2) 0O 0yD oy
and
_ Oof O oagl ag of O
t=t, (A3) - [%_[[L+—gD g—_Ddt, (Al4)

do oyn ot @
wheref and g are functions of the independent variables. In D YO

order to represent the derivatives of quantities occurring i . .
of

equ_ations 4 and 5, the following expressions are requirec Kdy =- ‘lgder L +——Ody
derived by standard means from equations A1-A3: X O ox[O

0 ETL af% 0 0dg 0 (Ad) Uof og dg Eﬂ N of Egdt ALS

—-— = -l =, + = — — = =

0X Ox[] 0x  0x oy Eﬁ ox ot O oxOp (A15)

9 ot o O ogDad and -

999,799 (A5) df =t (A16)

oy dyox [ odynoy o I : :

A grid line in thex direction can now be defined by setting

and dy=di=0. Using this condition, equations A14—A16 give:

O ogO . of
9 __0otd 099 0 (A6) KdX =L + 290 dx - —— dy (A17)

ot~ ot ox ot oy ot 0 oyQ oy



and
og O  ofU
O:—idX+Eﬂ+—_Dd .
0X 0 6ny

After rearranging terms, it follows that alorg

dx

of _ =co®
Tk ax
and
0 d _
—%:—{:sirﬂ,
ox  dx

whered has been introduced to represent the inclination of the
X grid line. Similarly, along a grid line in thg direction,

dx=di=0 and equations A14-A16 give:
ag dy -
cosp
0y dy
and
of  dx

oy dy o

(A18)

(A19)

(A20)

(A21)

(A22)

where @ is the inclination of they grid line. The angléd is
measured from the globat axis and is positive in the
anticlockwise direction, whereas the anglis measured from
the globaly axis and is positive clockwise. IntroduciBgand
@ in this manner is effectively a separation in whesi(x,f)
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where the Cartesian translatiot,§o) has been introduced to
represent the rate of change in the position of local or@jin,
at timef. As the grid point positions change with time, so do
the values oko andyo.

It is now possible to combine equations A4—A6 and A7-A12
and then substitute for the derivative$ ahdg from equations
A19 and A20, A21 and A22, and A25 and A26 to give:

a_cospa sinff 9

- = == (A27)
ox c X ¢ oy
G sing @ 9 0
-— = - er gt + co gt (A28)
oy c 0Xx c oy
and
a a Xo & VY
9.0 %0 _ Yoo (A29)
ot ot c OXx c oy
where o
c=cosf+q), (A30)
X0 = Xoc0gp — Yosing (A31)
and _ _ B
Yo = yoc0$ — xosing . (A32)

Before the Navier—Stokes equations can be transformed to
the new coordinates, the Laplacian operatéroccurring in
equations 4 and 5, has to be considered. Since under
transformation the Laplacian operator will contain second
derivatives off andg with respect tx andy, the nature of the

only and@=@(y,f) only. In the numerical implementation, for a separation into 8(xf) and @yf) also requires further

given grid at any timé€, a path length along, sayAx, may be

investigation. Applying the transformations in equations

obtained from equations A19-A20 by a numerical integratiom4—A6 twice, using equations A7—A12 where necessary, gives

of B with respect tax from one grid point to its neighbour.

the following expression for the Laplacian operator:

Similarly, Ay may be obtained from equations A21-A22 by an

integration ofg alongy.

0 0
02=N2+Ty — +To —,

. ) : . " _ — (A33)
Tracking a grid point as it changes position with time, by 0X oy
tting c&k=dy=0 i ti Al14-Al6, gi ise to:
setting ck=dy=0 in equations gives rise to where
0 o9g00 of O of O oag O sing cosp
0L+ —00dx- —= dtd - —= Cdy- —= dtd=0 Ti= — " N2g- 2
O oyoo ot o oyo o ot O 1= Nom o N (A34)
(A23) and
and _ _
cod no
ag U of O O oftn g O To=- NZg + N2f (A35)
a_de— e dt%+ 51+FDEdy—a—t_dtD 0. ¢
. P )
(A24) with operatorN“ defined to be:
2 2 2
From this, sinc&#0, it follows that, alond: N2 = ! Da 67 - 2sin@+ ¢ 0 D (A36)
of d 2R o ﬂy
X
a——: ot =Xo (A25) In equation A33, all first derivatives dfand g have been
replaced by their trigonometrical equivalents given in
and equations A19 and A20 and equations A2land A22. At this
stage, however, no assumptions have been made about how the
99 - dy =Vo (A26) second derivatives dfindg are to be represented. This is most
ot dt ’ readily resolved by making the assumption that the grid is
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orthogonal. Here, this is achieved by settB{f,f)+@®0,;)=0 Each component V) is in the same direction as the
(see Fig. 4A). The term involving the cross-derivative nowcomponent Xo,Yo) in equations A27-A29 is the velocity
disappears from the operatd?, the separationB(x,t),@(v.,D) component perpendicular t§ and V is the component

is consistent with these circumstances and the required secqmelpendicular tx.

derivatives off andg follow from equations A19 and A20 and  In equations A42 and A43, a further rationalisation can be
equations A21 and A22 as: made so that the derivatives of pressure are separated.
Resolving first to eliminat@p/dy and then to eliminat@p/ox

sz - —sine_ﬁ (A37) from equations A42 and A43 gives:
ox2 ox ' 3
cosL[u] + sinBL[V] = - &® (A48)
9 _ cog 2 (A38) >
=C0Y — ,
X2 ox and
_ — — op
0% — 0¢ cogpL[V] + singpL[u] = - —— (A49)
— =COo%p—— A39 y
o2 5y (A39) oy
and where operatot. is:
29  — 99 =2 _1a A50
ap TS (A40) o Re (AS0)
On making the orthogonal assumption and using the abO\NJOW introducingl andV, whe_re _
expressions for second derivatives, the Laplacian operator in U = ucod + vsind (A51)
equation A33 becomes: and _ _
— ~ V = vcogp+ using, (A52)
2 2 0p o0 08
= &, 8 990 B0 (g

it is possible to construct the primitive velocity components

(uv) in two combinations. Along, (U,V) can be used in
The transformation of first derivatives, already defined ircombination to give:

equations A27-A29, is now simplified slightly by settiowi

to give the orthogonal case. . u=Ucosd - Vsinb (A53)
an

Transforming the Navier-Stokes equations v =Usind + Vcos . (A54)

For the orthogonal case, equations A27-A29 and A41 caflong y, the combination{,V) can be used to give:
be used to transform the Navier—Stokes equations 4 and 5 to

T ox2 oy2 0y OX  OX oy

the new coordinate§,f). It follows that: g u = Ucosp+ Vsing (AS5)
an
Du — 0 _ 9 1 _ v = - Using + Vcosp. A56
—_:—cosp—e+sir6—8+—D2u (A42) e * (A36)
Dt 0x dy Re Equations A53 and A54 are now used to form derivatives with
and respect tax, whereas equations A55 and A56 are usedyfor

derivatives. For an orthogonal system, there is no need to
op N 1 A2y (A43) distinguish between compondsitandU nor betweerV andV.
D X dy Re ' Henceforward, the dependent variableandV will be used,
where these are defined such that they are always perpendicular

where to one another witlJ in the direction o alongx andV in
D d . .9 the direction ofpalongy.
oot (U -Xo) Fra V-Yo) N (A44) Finally, substituting fou andv in equations A48 and A49,
using the expressions given in equations A53 and A54 or A55
and and A56 as appropriate, gives rise to the following transformed
- — Navier—Stokes equations in the orthogonal coordin&tgg)(
_ 92 02 0po 08 9
D=t % e oo A4 DU 9 1 S
ox= oy yoxo ooy e s TR (A57)
with new convective velocity components: Dt ox  Re Re
U = ucosp - vsi A46
and i(p rip (40 D—Y:—a—g+iﬁzv+32+§, (A58)
V = vcod - usind . (A47) Dt dy Re Re
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where Spalding, 1972). That method is used here, with a modification
to make the convergence more rapid. It can be shown
i_ i_ . (A59) analytically that this modified SIMPLE method is consistent,
ot oy in the same sense as for the standard method, in that when the
method converges it correctly produces a solutignp) that
satisfies the Navier—Stokes equations. Thus, the numerical
solution will be the same whether the standard or the modified
SIMPLE method is used. The advantage of using the modified
S =VS, S=-USs, (A61) version is that the solution can be obtained to the same
specified accuracy as the standard SIMPLE method but with
where an economy of computational effort.
a 6(5 To assess the degree of accuracy to be expected in a typical
PV

.0 .
+(U-X0)(TX_+(V-YO)

9o

092 02 o0po 00 0

02 . (A60)

ax2  oy2 0y 0X  OX dy

(A62)  application of the present method, a test case has been
considered in polar coordinatesd). The coordinates are

_ _ shown in Fig. 15A, together with the associated velocity
00 oV 0Q oV components. The boundamgsrp, has been set to rotate about

$=-2——+2———=-VS-US (AB3)
0X 0X dy oy

and A r=rp B\']
=2 98 oU ) 0 9U l
T ox ax oy oy

Sg—ae+U ' ag—V—Y
s ( XO)(T)T ( 0)

+US-VS, (A64)

where

T 32 a2 (AB5)
ox= oy Va=Vb S

and

0082 DopL? |

S=0—-0 +0—-0 . A66 i
"“OexO | ooy O (A66) 109D

In equations A57 and A58, the ternBg S, S and Ss alll
depend on derivatives of angular position. It is thes
derivatives alone (rather thémndg) that are used to specify
the geometry of the curvilinear domain. Once an orthogon
grid has been established, the derivatives of angular positi
are implicit in the formulation. The use of an orthogona
system gives rise to a succinct formulation (equations A57 a
A58) which in turn enables an accurate numerice
approximation of the governing equations and the fluid flow | -0.5 -

0.5 4 ]

Vaorp

Fig. 15. Test case in polar coordinates). (A) Polar coordinate
. . geometry and corresponding velocity componeisVg). At the
case in polar coordinates moving boundary=rp, the tangential velocity/a=Vp and the radial
The numerical variablddij, Vij andpi;j associated with the velocity V;=0. At point O, r=ro and a=ao, the local transformed
transformed equations A57 and A58 are depicted iicoordinatesx,y are shown. (B) Part of the grid used in the full
Fig. 4B-D. Fig. 4C shows((y) coordinates centred dhj and  computation near the tail of the creature, enlarged from Fig. 3. (C)
applies to equation A57; Fig. 4D, centred \dp, applies to  Grid resolution used for the numerical solution in the test case.
equation A58. Fig. 4B shows the locationsUf, Vij andpi; Arrows indicate points at whlcva is computgd, wher&/q is thg
centred on a cell within the grid. This serves to illustrate hoy"ermalised velocity Vo/Vh; @ indicates points for computing
the continuity constraint in equation 8 is satisfied. Rather thaO'Maised pressurg, wherep is defined in equation A83. The
. . ._domain of computation for the test case#0 to r=1, as shown,
use the transformed version of equation 8, the volume flow in

. . X \Nherer‘ is the normalised radial coordinatey,. Boundary conditions
and out of each cell is computed instead, as a divergent,, e numerical solution ardy=0 atr=0 andV,=1 atr=1. (D)

Driving this divergence to zero to satisfy continuity can therggjig jines give the analytical solution in equations A82 and A83 for
follow the solution of equations A57 and A58 as part of they, and p as functions ofr. Symbols represent the corresponding
iteration at each time step. A well-established technique fcnumerical solution, with triangles depictiiy and circles depicting
solving such a system is the SIMPLE algorithm (Patankar anp at the seven points indicated in C.

Numerical solution of the transformed equations and a test
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the originr=0 at a constant angular speed, with tangentiaand from equation A68:
velocity Va=Vp at r=rp. This represents, in an approximate

sense, the geometry near the tail of the creature as shown @ = V;"z ) (A76)

Fig. 3. A part of the full grid in Fig. 3 has been selected anc dr r

is shown in magnified form in Fig. 15B. This indicates theRedefiningVa andr such that:

sense in which the resolution of the grid used in the test case

as shown in Fig. 15C, is comparable to the grid in the full . Va

computation. The test case curvature and radial grid size a Va = Vo (A77)

roughly the same as their counterparts in the full computatior..

The idealised problem provides a reasonable basis fc r

assessing the accuracy of the numerical approach. r=—0: (A78)
The equations governing the fluid flow in such a geometry fb

are the standard polar coordinate form of the Navier-Stokegg introducing a mean veloci@y defined as:

equations. These equations may also be obtained from th~ 1

general transformed equations A57 and A58 by making th Q= & Vodi™ (A79)

appropriate restriction fromxf) to (r,a). Referring to Jo
Fig. 15A, setting/=ro—r andx=—ro(a—ao) will give rise to the

polar coordinate form. These equations can be written as: then leads to the following expression fé from equation

AT75:
DV 10 1 _ S Va=r[1+2(1-2Q)Inr]. A80
ix:_*ip"'iDZVa"'s_]_'F— (A67) a [ ( Q) j ( )
Dt r oo Re Re The pressure gradieRtis related taQ as follows:
e p= "R J1-20) (A81)
DV op 1 _ S B A
P P 2 (A68) Vo
Dt or  Re Re The most useful example to illustrate the application of the
where numerical method is the ca®0, giving, from equation A81,
P=4. From equation A80, the tangential velocity now
D 9 Va 0 0 i
=+ — +V, — (A69) becomes:
Dt ot r oda or Vo= (1+2Im). (A82)
and After integrating equation A76, for this cade&=4), the radial
_ 1 92 2 19 variation in pressure becomes:
DZE—L+07+—— (A70)
r oo 9r2 r or on 2
p=—-=—|[1+4(nr ¥, A83
and other terms are: P V2 2 [ (7] (A83)
S1=-ViValr, (A71) where an arbitrary constant has been set to zero. The profiles
S =Vodr, (A72)  for Vo andp from equations A82 and A83, respectively, are
plotted in Fig. 15D, together with the numerical solution for
2 M Vg A73 the grid in Fig. 15C. The degree of agreement between the
T2 9 r2 (A73) numerical solution (symbols) and the analytical solution (solid
lines) is good. For example, at pointr=Q.075), where the
and error is greatestVy is in error by 1.94%. The degree of
2 Na Vi agreement at the other points is considerably better than this.
T2 a2 (A74) In general, the numerical solution procedure conserves

volume flow in the domain of computation. In this test case,

Equations A67 and A68 can be solved analytically for thehe implication of this is that the pressure gradiéptda, is

special case in which the radial velocityis identically zero,

calculated such that the numerical integratioWg@from r=0

the tangential velocityq is a function ofr only and pressure to r=1 is zero (i.eQ=0). Because the numerical integration is
p=Pa+p(r), whereP is a constant pressure gradient in the not precisely the same as the analytical integration, a
direction. Under these assumptions and using the boundagscrepancy arises between the numerical valudp/@b and
conditions implied in Fig. 15A, equation A67 can be integratedhe analytical value correspondingRe4. In this example, the

twice to give:

ReP
Va = Vi(r/rp) + - rin(r/ry) ,

(A75)

value of dp/oa from the numerical solution which is
comparable t& was found to be 3.9772 at all radial positions.
In other words, conserving volume flow leads to an error of
0.57 % in the calculation of the pressure gradigida which
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is maintaining the computed velocity profile. Once again, the With the new position determined, the velocity components
degree of agreement is good. around the outline of the body can be evaluated. These
The numerical solution in the full computation can becomponents form the boundary conditions required to solve the
expected to approximate its analytical formulation to a level oNavier—Stokes equations. Following this solution, new values
accuracy comparable to that found in the test case. lior pressure and velocity everywhere in the fluid will be
particular, good accuracy can be obtained with a grid whichvailable and, from these, the force due to pressure and the drag
has relatively coarse spatial resolution. In this respect, theredm the body can be evaluated. In the forward direction, the
an advantage in having an analytical formulation (such as tHerce acting on the centre of mass at tiraad iteratiork will
present orthogonal system) which represents curvatutee F¢(t)®). This force can now be used to update the forward
explicitly when approximating the governing equations in avelocity. Rather than using the newly computed force directly
curvilinear domain. in equation 22, a weighted average force is used instead:

Fi(t) = wFi()® + (1 - w)Fs(t - At) , (A87)

Appendix B. The numerical iteration procedure to . N
. i , wherew is a weighting factor commonly chosen to be between
determine the position of the creature’s centre of mass . . .
) i . 0.5 and 1.0. In this case, numerical experiment has shown that
The dynamic behaviour of the creature’s body is governeg,q optimum choice for is 0.75. Below this value, the
by equations 22, 23 and 28 giving, respectively, the forward,,|cyjation becomes numerically unstable, whereas increasing

lateral and rotational components of force referred to the cent{§¢.om 0.75 towards 1.0 reduces the accuracy of the numerical
of mass. The corresponding linear and rotational VelOCitieﬁpproximation.

have been defined in equations 19, 20 and 27. The linearty aqqist in understanding the relationship between the

velocities are, by definition, equal to the rate of change in thgqitions, velocities and forces in equations A86 and A87, it
position of the creature’s centre of mass aneifpandvi(t) s helpful to interpret the numerical scheme in the following

can be written as: way. In equation A86, the velocityi(t)®, may be regarded
more appropriately to represent the value of velocity half-way
wi(t) = Yin(t) (A85) between the body positions gt timré\t andt. In the language
' of numerical analysis, equation A86 could then be regarded as
with v(t) positive in the negativen(t) direction. The angular a central difference approximation at tihéAt/2, which is
velocity, v(t), defined in equation 27, has been separated suecbughly one order more accurate than it otherwise would be.
that only part of the rotational movement, that dudc), By the same argument, a weighted force, such- 3 in
remains to be determined. equation A87, will tend increasingly to provide a better
An iterative procedure must now be established so that alpproximation as the value afis reduced from 1.0 towards
the equations relating to the centre of mass, those for positi@h5. However, in common with many iterative schemes, there
and orientation, the various velocities and the forces ars a lower limit for stability. Here, as has been stated above,
satisfied simultaneously. The best way to describe how this h#sis limit is w=0.75, corresponding to a tinheAt/4, precisely
been done is to consider the mechanism for updating thealf-way between the time)(at which the new body position
velocity of the creature’s centre of mass. For clarity, thés being calculated and the effective tihe{/2) at which the
forward direction alone will be used in the explanation,velocity may be thought to occur.
although a broadly similar process in the lateral and rotational Using the weighted force as given in equation A87 in place
directions has to take place in parallel. Using a superscrigf Ff(t), equation 22 can be rearranged to give:
notation to represent iteration level and assuming an — _ —
appropriate finite difference approximation, the position of the V() = vi(t - &) + Fr(AYA, (A88)
centre of mass can be evaluated from equation A84 as: where the new velocity(t)K, corresponds to the weighted
_ force, F¢(t). Even now the use of equation A88 to update the
xm(®® = xm(t - &) = w() WAL, (A86) velocity from iterationk to k+1 gives rise to excessive
wherevi(t)® represents the forward velocity between tirt  corrective forces which cannot be controlled. So, the final stage
andt at iteratiork. The ordinateym(t)¥), can also be evaluated within each iteration is to evaluate the next velocity as:
in this manner, by rearranging equation A85. An expression 1)
for the orientation of the body axi8n(t)K, can be found by v =W + (1= yw(® (A89)
rearranging equation 27, bearing in mind that the summatiomhere another weighting parametet, has been introduced.
which depends on body shape alone and not orientation, willhis weighting parameter allows a cautious increment in
be known. At this stage, for given velocity component$)f¥,  velocity towards the final converged state. In general, the
vih)®, w(t)®], the new values afm(t)®), ym()® anddm(t)®  parametery may take on different values for the forward,
are calculated from equations such as equation A86 togethlateral and rotational components of the motion. Extensive
with the other constraints of the body geometry. This willnumerical investigation has shown that, for optimum
completely determine the shape and position of a new bodynvergence, the value pfshould be set tg=0.25,y1=0.05
outline. andyy=0.05 for the three directions.

Vi(t) = — Xm(t) (A84)
and
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With the updated velocity in equation A89, it is now possibleQ
to return to equation A86, calculate the new position of th&e
centre of mass and begin the calculation again. When thé),o(i)
iterative process has converged (typically in 10 iterations), the
three velocities in equation A89 will all have the same values,a
(to within a specified tolerance) and so it can be seen that the,0o
numerical solution is independent of the particular valuey,
chosen fory. There is therefore a difference between the role
of win equation A87 and that gfin equation A89. Whereas
y controls numerical stability alone and does not affect, &, ..., S
accuracy, the choice of influences both the stability and the

accuracy of the numerical approximation. s
T1, T2
List of symbols
A total mass of body, equation 21 t
a(i) mass of body segment to
b amplitude parameter
c trigonometric Jacobian, equation A30 f
D/Dt total derivative with respect tp equation 6
D/Dt total derivative with respect ) equations u,Vv
A44, A59 and A69
do amplitude of the travelling wave at the tail g,V
(characteristic reference distance)
Fs(t) force acting on the centre of mass in the
forward direction, equations 13 and 22 u, v
Fi(t) weighted average force, equation A87
Fi(t) force acting on the centre of mass in the Vi, Va
lateral direction, equations 14 and 23
Fo reference force defined in Fig. 11 (not the Vb
characteristic force)
fa(i) force acting on body segmendue to drag Va
fo(i) force acting on body segmendue to fluid
pressure vi(t), vi(t)
f function of &,y,t) used inx coordinate
transformation, equation Al
g function of &,y,t) used iny coordinate Vi (t)
transformation, equation A2
I moment of inertia, equation 26 Vr(t)
i body segment (indicates position of body Ws
segment relative to the nose)
K Jacobian, equation A13 Wo
L an operator, equation A50 w1
I body length along body centre-line Xo, Yo
(dimensionless)
M(t) moment of forces acting on the creature’s
body about the centre of mass, equations 15y
and 28
N2 a second-order operator, equation A36 Xm(t),ym(t)
n number of body segments Xs,Ys
@] local origin
P pressure gradierp/da in the test case
P normalisedP, equation A81 Xy
p dimensionless pressure X(i), y(i)
p normalised pressure in the test case, equation
A83

mean velocity in the test case, equation A79

Reynolds number, equation 9

polar coordinates of body segmémelative to
the centre of mass

polar coordinates in the test case

local origin inr,a

radius of outer boundary in the test case

normalised radial coordinate in the test case,
equation A78

symbols representing combinations of
derivative terms, equations A61-A66

distance along body centre-line from nose
(dimensionless)

second derivative terms, equations A34 and
A35

dimensionless time

locomotor cycle duration (characteristic
reference time)

time in transformed coordinates=(),
equation A3

velocity components in the andy directions,
respectively, equations A51 and A52

velocity components perpendiculargt@and
perpendicular tx respectively, equations
A46 and A47

dimensionless velocity components in the
andy directions, respectively

velocity components in theanda directions,
respectively, used in the test case

tangential velocity of the outer boundary in
the test case

normalised tangential velocity in the test case,
equation A77

velocity components of the centre of mass in
the forward and lateral directions,
respectively, equations 19 and 20

velocity component corresponding fe(t),
equation A88

rotational velocity component, equation 27

body width at distance from the nose,
equation 3

body width at the nose

body width at the tail

resolved components of the rate of change in
position of the local originQ, equations
A31 and A32

Cartesian coordinates (dimensionless and fixed
in the enclosure)

position of the creature’s centre of mas,in

Cartesian coordinates defining body shape
independently of the enclosure (see
equations 1 and 2)

transformed coordinates, equations Al and A2

components of the rate of change in position
of the body segmeitin thex andy
directions, respectively
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Xo, Yo components of the rate of change in position of  Animal Swimminged. L. Maddock, Q. Bone and J. M. V. Rayner),
the local originO, in thex andy directions, pp. 119-132. Cambridge: Cambridge University Press.
respectively, equations A25 and A26 CHENG, J.-Y., ZHUANG, L.-X. AND TONG, B.-G. (1991). Analysis of

s ys scaled by a factds swimming three-dimensional waving platds.Fluid Mech.232,

o seer o 341-355.

CurTIN, N. A. AND WoLEDGE, R. C. (1993). Efficiency of energy

a(i) angular position of body segmenelative to the ) ) ) . X
x axis (positive anti-clockwise), equation 12 conversion during sinusoidal movement of red muscle fibres
- o P from the dodfish, Scyliorhinus canicula J. exp. Biol. 185
aqi) rate of change afi(i) with respect to time 195-206.
B amplitude scaling factor, equation 30 EskiNazi, S. (1967)Vector Mechanics of Fluids and Magnetofluids
Ve, Vi, Vr weighting parameters for velocity in the forward, New York: Academic Press.
lateral and rotational directions, respectively Fevnman, R. P., lEiGHTON, R. B. AND Sanps, M. (1963). The
As body segment length (along body centre-line) Feynman Lectures on Physiddenlo Park: Addison-Wesley.
At time step size GRAY, J. (1933). Studies in animal locomotion. I. The movement of
Bm(t) angular position of thgs axis relative to the fish with special reference to the eklexp. Biol.10, 88-104.
axis (positive anti-clockwise) GRILLNER, S. AND KAsHIN, S. (1976). On the generation and
o} inclination of thex grid line relative to the performance of swimming in fish. Meural Control of Locomotion
axis (positive anti-clockwise) (ed. R. ngman, S. Grillner, P. Stein and D. Stuart), pp.181-202.
S . New York: Plenum Press.
Ul dynamic viscosity of water

Hess F. (1983). Bending moments and muscle power in swimming

P . denSI.ty of water fish. Proceedings of the 8th Australasian Fluid Mechanics

o) seer(i),(i) Conference, University of Newcastle, NSW12A, 1-3.

() rate of change af(i) with respect to time Hess F. AND VIDELER, J. J. (1984). Fast continuous swimming of

0] inclination of they grid line relative to the saithe Pollachius virenk a dynamic analysis of bending moments
axis (positive clockwise) and muscle powed. exp. Biol.109, 229-251.

W weighting factor for force, e.g. fd#(t) in LIGHTHILL, M. J. (1960). Note on the swimming of slender fidh.
equation A87 Fluid Mech.9, 305-317.

12 Laplacian operator, equations 7, A33 and A41 LIGHTHILL , M. J. (1969). Hydromechanics of aquatic animal

02 Laplacian operator in transformed coordinates, = PropulsionA. Rev. Fluid Mechl, 413-446.

: LIGHTHILL, M. J. (1970). Aquatic animal propulsion of high hydro-
equations A45, AGO and A70 mechanical efficiencyd. Fluid Mech.44, 265-301.
Liu, H., WassersuG R. J.aND KawacH!, K. (1996). A computational

Additional subscripts fluid dynamics study of tadpole swimming. exp. Biol.114

iy ] integer pair depicting a cell in the 1245-1260.
Cc_’mpUtationa| grid (S?e Fig. 4) L, H., Wassersug R. J.AND KawacHi, K. (1997). The three-
o] a variable at a previous time step (see equations dimensional hydrodynamics of tadpole locomotidnexp. Biol.
16-18, 25 and 28) 200, 2807-2819.
MULLER, U. K., vaN DEN HEuVEL, B. L. E., SAamHuIis, E. J.AND
Superscript VIDELER, J. J. (1997). Fish foot prints: morphology and energetics
(K iteration level (see equations A86—A89) of the wake behind a continuously swimming mull€&h¢lon

labrosusRisso).J. exp. Biol200, 2893-2906.
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