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Wingbeat frequencies of 15 species of birds, observed
in the field in level, cruising flight were compared with
predicted frequencies, calculated according to the
formula derived from an earlier sample of 32 species. All
of the data were collected by the author, using the same
methods throughout. The new observations were
predicted well for species with low wingbeat frequencies,
but were underestimated at the higher frequencies. The
following revised proportionality gave the best fit of the
wingbeat frequency (f) to the combined data set of 47
species:

f ∝ (mg)1/2b−17/24S−1/3I−1/8ρ−3/8 ,

where m is the body mass, g is the acceleration due to
gravity, b is the wingspan, S is the wing area, I is the wing
moment of inertia, and ρ is the air density. As
measurements of I were not available for most species, its
exponent was combined with those of m and b, by assuming

that I∝ mb2. The following equation was fitted to the data
on this basis:

f = m3/8g1/2b−23/24S−1/3ρ−3/8 .

These formulae are dimensionally correct, according to the
rules derived in the earlier paper, and the equation is also
numerically correct as it stands, without requiring a
multiplication factor. For allometric comparisons between
geometrically similar species, where body mass and wing
measurements vary together (including wing moment of
inertia), the expected relationship is f∝ m−1/6. If the mass
alone varies, owing to feeding or consumption of fuel, while
the wing measurements and other variables remain
unchanged, the expected relationship is f∝ m1/2. These
relationships apply to any dimensionally correct formula
and are not affected by adjusting the coefficients within the
dimensional constraints.
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Summary
Limits to frequency variation

The frequency with which a bird flaps its wings in flight
cannot be too high, otherwise the force needed to accelerate
the wing at each downstroke would be beyond that available
from the pectoralis muscle and perhaps would incur the risk of
breaking the muscle insertion, or even the humerus. The
frequency cannot be too low either, as the strain rate in the
muscles must be within a certain range as they shorten, if fuel
energy is to be converted into work at an acceptable level of
efficiency. A particular bird may vary its wingbeat frequency
to some extent, depending on whether it is taking off, cruising
horizontally, climbing or descending, but only a limited range
of wingbeat frequencies is available for use by any particular
individual bird or species. No heron could flap its wings at even
the lowest frequency used by a starling. Skilled birdwatchers
are well aware of this, consciously or otherwise, and often use
small differences of wingbeat frequency to distinguish between
similar and closely related species, at distances too great to see
plumage details. Although a given bird’s wingbeat frequency
is under neural control to some extent, one may surmise that

Introduction
its mass and wing morphology, together with some
environmental variables such as gravity and air density, define
a ‘natural’ frequency, from which the bird cannot stray too far,
in the same way that a pendulum has a natural frequency and
can only be driven at frequencies close to this. If a natural
wingbeat frequency exists, it does not follow that the bird is
obliged to use it at all times. The general expectation would be
that the bird would select a wingbeat frequency close to the
natural frequency in sustained cruising flight, but might drive
its wings above the natural frequency, perhaps to the limits of
their structural strength, in high-power manoeuvres such as
take-off.

Predicting wingbeat frequency

It is of great interest to be able to predict the frequency at
which a particular bird will flap its wings, especially in
sustained, level cruising flight, as this is one of the factors that
determines the mechanical power output per unit mass of flight
muscle (Pennycuick and Rezende, 1984). The simple statistical
approach to this problem would be to measure the wingbeat
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Table 1. Values of exponents chosen for proportionality 1

Pennycuick Revised 
Variable Exponent (1990) value

Body weight mg α 1/2 1/2
Wing span b β −2/3 −17/24
Wing area S γ −1/4 −1/3
Moment of inertia I δ −1/6 −1/8
Air density ρ ε −1/3 −3/8
frequencies of a sample of birds, then use multiple regression
analysis to determine how the frequency depends on such
variables as body mass, wing span and wing area. However,
there are two difficulties in applying this familiar approach to
a problem which is partly physical in character. First, some of
the independent variables of interest cannot be conveniently
manipulated, especially the strength of gravity and the density
of the air. Second, and perhaps more important, while the
regression results in a predictive formula which may give a
useful result, it is not guaranteed to represent the physics of the
process correctly. Pennycuick (1990) devised a hybrid method,
using a preliminary dimensional analysis to ensure physical
correctness. Although this did not produce a unique solution,
it identified constraints to which a physically valid solution
must conform. Multiple regression was then used to select a
solution which fitted the data without violating the physical
constraints. The data used to calculate the regression were field
observations of wingbeat frequency in level flight, derived
from video recordings of 32 species of birds for which
estimates of body mass, wing span and wing area had already
been collected.

Physical constraints on wingbeat frequency

The dimensional analysis need not be repeated here in full,
but an outline of the reasoning will help to show how new data
have been used to modify the previous result. The first step was
to make a list of variables, which were judged to be likely to
affect the frequency, as follows.

Body mass m
Wing span b
Wing area S
Wing moment of inertia I
Acceleration due to gravity g
Air density ρ

Air speed is not included in the list, because the birds were
all observed in level, cruising flight. They were assumed, in
effect, to be flying at a fixed multiple of their minimum power
speed, which is compatible with earlier observations of the
flight speeds of many species of birds on local flights
(Pennycuick, 1982, 1987). If this is the case, then a change in
any of the variables m, b, S, g or ρ will cause a corresponding
change in the cruising air speed (Pennycuick, 1989), so that,
under this restricting assumption, the air speed is not an
independent variable. The six selected variables were reduced
to five by combining the body mass and gravity as the weight
mg, so that the assumed proportionality relationship was:

f ∝ (mg)αbβSγIδρε , (1)

where α, β, γ, δ and ε are dimensionless numbers, whose
values are initially unknown. As the wing moment of inertia
(I) was unknown for most of the species represented in the field
data, it was assumed for purposes of practical calculation that
the moment of inertia depends on the body mass and wing
span, thus:

I ∝ mb2 . (2)
Under this assumption, proportionality 1 can be converted into
a form in which I does not appear explicitly, but its influence
is represented by modifying the exponents of m and b, thus:

f ∝ mα+δgαbβ+2δSγρε . (3)

The frequency f has the dimensions of inverse time, and
therefore the right-hand sides of proportionalities 1 and 3 must
have the same dimensions. It was shown by Pennycuick (1990)
that this places the following constraints on the values of the
five exponents:

α = 1/2 , (4)

δ + ε = −1/2 , (5)

β + 2γ + 2δ − 3ε = −1/2 . (6)

To select a particular set of values, conforming to the
constraints expressed by equations 4–6, the predicted
frequencies were compared with a multiple regression of the
observed frequencies on body mass, wing span and wing area.
This resulted in the first set of values shown in Table 1
(Pennycuick, 1990). Substituting them into proportionality 1
gives:

f ∝ (mg)1/2b−2/3S−1/4I−1/6ρ−1/3 . (7)

This was converted into a practical predictive equation, whose
right-hand side has the same form as proportionality 3:

f = 1.08m1/3g1/2b−1S−1/4ρ−1/3 . (8)

The exponents are actually the same as in proportionality 7,
but since the moment of inertia I is no longer included
explicitly, its influence is incorporated into the exponents of
body mass and wing span. The dimensionless multiplier 1.08
came from the multiple regression. It was noted that
proportionality 7 and equation 8 could be amended by
changing the values of the exponents, provided that any new
combination of values still conforms to equations 4–6. In the
present paper, new field data are added to the original data set,
bringing the number of species to 47, on all of which wing
measurements and wingbeat frequencies have been measured
personally by the author, using the same methods throughout.
A new ‘best’ set of values for the exponents is selected by an
improved method, not involving multiple regression.

Materials and methods
Since the earlier paper of Pennycuick (1990), new

observations of wingbeat frequency have been obtained on 15
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Table 2. Species observed and wing measurements

Frequency 
Mass Span Area ± S.D. V λ

Taxonomic name English name (kg) (m) (m2) (Hz) (m s−1) (m) H

Diomedea exulans Wandering albatross 8.55 3.01 0.583 2.49±0.11 15.0 6.02 2.00
Diomedea melanophris Black-browed albatross 3.08 2.19 0.354 2.97±0.15 13.3 4.48 2.04
Macronectes giganteus/M. halli Giant petrel 3.24 1.98 0.326 3.14±0.19 15.2 4.84 2.44
Procellaria aequinoctialis White-chinned petrel 1.23 1.41 0.167 3.93±0.10 − − −
Daption capensis Cape pigeon 0.418 0.875 0.0773 5.61±0.55 12.3 2.19 2.51
Pachyptila desolata Dove prion 0.155 0.635 0.0469 5.42±0.36 11.1 2.05 3.23
Oceanites oceanicus Wilson’s storm-petrel 0.035 0.396 0.0215 7.65±0.60 10.4 1.36 3.43
Pelecanoides georgicus South Georgia diving petrel 0.122 0.388 0.0197 12.3±0.64 − − −
Pelecanoides urinatrix Common diving petrel 0.133 0.408 0.0221 12.3±0.64 − − −
Phalacrocorax atriceps Blue-eyed shag 2.23 1.13 0.183 5.85±0.25 − − −
Catharacta skua Southern skua 1.69 1.43 0.241 3.95±0.21 − − −
Larus dominicanus Kelp gull 0.890 1.41 0.228 3.46±0.16 − − −
Chionis alba Sheathbill 0.610 0.822 0.105 6.35±0.29 − − −
Anas georgica South Georgia pintail 0.437 0.682 0.0646 7.62±0.23 − − −
Cygnus cygnus Whooper swan 8.50 2.26 0.589 3.56±0.11 − − −

The last three columns are included for comparison with Pennycuick (1990). 
V, observed mean air speed from Pennycuick (1982); λ, wavelength; H, advance ratio assuming a stroke angle of 1 rad.
Frequencies based on 63–1118 wingbeats per species (mean 310).

Fig. 1. Observed wingbeat frequency plotted against predicted
wingbeat frequency from equation 8 (the formula from Pennycuick,
1990). Open circles, data from Pennycuick (1990). Filled circles, new
data from Table 2. Standard major axis line fitted through new data
points only, slope 1.21, r=0.994, N=15. The broken line represents a
perfect fit of predicted and observed data.
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bird species, listed in Table 2. All of these except the whooper
swan were South Atlantic seabirds, observed by video recording
at sea from the British Antarctic Survey (BAS) ship RRS James
Clark Ross between 31 December 1993 and 31 January 1994,
from the Royal Navy frigate HMS Norfolk between 28 February
and 2 March 1994, and on land during a stay at the BAS base
on Bird Island, South Georgia, from 1 to 27 February 1994. The
whooper swans were observed at the Wildfowl and Wetlands
Trust’s reserve at Caerlaverock, Scotland, between October
1994 and March 1995, also by video. The video recordings were
taken with a Panasonic S-7 camcorder on S-VHS-C tape, under
the European (PAL) video standard, and were then copied via
an Amiga A3000 computer, using the genlock on an IV-24 board
from GVP. Individual field numbers, generated by the Amiga,
were superimposed on each field of the copy, which was made
on a Panasonic FS-200 full-sized S-VHS video recorder. On
playing back the tape through the FS-200, each field could be
examined as a separate picture, identifiable by its field number,
giving a time resolution of 1/50 s. In the case of birds that were
flap-gliding (i.e. alternately flapping and gliding), the frequency
recorded was that observed within a sequence of continuous
flapping, not the average frequency over periods of flapping and
gliding. Long sequences of continuous flapping were broken
into segments of 20 wingbeat cycles, each of which was
considered an ‘observation’. The methods of counting wingbeat
cycles, and of calculating wingbeat frequency and its standard
deviation from counts of wingbeat cycles and fields, were the
same as described by Pennycuick (1990).

Results and discussion
The ordinate in Fig. 1 is the mean frequency observed in
cruising flight, and the abscissa is the predicted wingbeat
frequency, calculated from equation 8 (the formula from
Pennycuick, 1990). A constant value of 1.23 kg m−3 for air
density was used for all the predicted frequencies, as all of
the birds were observed near sea level, in actual air densities
close to this standard sea-level value. A constant value of
9.81 m s−2 was used for the acceleration due to gravity. If a
point lies on the diagonal broken line, the observed and
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Fig. 2. Observed wingbeat frequency plotted against predicted
frequency calculated from the revised formula (equation 9) using the
combined data set from Pennycuick (1990) and Table 2. The slope of
the standard major axis line is 1.004, r=0.965, N=47. The broken line
represents a perfect fit of predicted and observed data.
predicted frequencies are the same. It can be seen that the
majority of points for the new data lie above this line. The
slope of the standard major axis line is also significantly
greater than 1 (P<0.01), meaning that, although the observed
and predicted frequencies agree well for birds with low
wingbeat frequencies (large birds, or birds with large wings),
the observed frequencies are higher than predicted at the
higher frequencies. The two points at the top of the graph are
for the two diving petrel species, which, like alcids, have
higher wingbeat frequencies than other birds of similar mass,
because their wings are adapted for underwater swimming.
The predictive formula should be able to take account of any
such adaptations, but has underestimated these high
frequencies. Fig. 1 suggests that there may be some scope for
adjusting the values of the exponents, in search of another
valid combination of values, which will bring the predicted
and observed frequencies closer together.

Selecting new values for the exponents

The new method of finding the ‘best’ set of values for the
exponents was based on systematically varying these values,
always selecting combinations that conformed to equations
4–6. First, it was noted that each of the exponents is confined
to a narrow range. α is fixed (α=1/2), and the other four
exponents must all be negative, since an increase in any one
of the corresponding variables (wing span, wing area, moment
of inertia or air density) by itself would cause a decrease in
wingbeat frequency. In that case, the values of both δ and ε are
confined by equation 5 to the range 0 to −1/2. β and γ are
similarly limited by equations 5–6 to a small range of negative
values. Each combination was substituted into the expression
on the right-hand side of proportionality 3, and this expression
was used to calculate a predicted wingbeat frequency for each
of the 47 species in the combined data set [from Pennycuick
(1990) and Table 2 of this paper]. A standard major axis line
was then calculated, relating the observed to the predicted
frequencies. Systematically varying the exponents through the
permissible ranges, and calculating the standard major axis line
for each set of values, caused the slope of the line to vary both
above and below 1, and also caused the correlation coefficient
to vary up to a maximum of 0.973. The ‘best’ set of values was
chosen according to the following criteria: (1) the slope should
be as near 1 as possible, and (2) while satisfying the first
condition, the correlation coefficient should be as high as
possible. On this basis, the second set of fractional values in
Table 1 was chosen, giving a slope of 1.004 and a correlation
coefficient of 0.965. Fig. 2 shows the standard major axis line,
calculated using these values. It is very close to the broken
diagonal line, which represents a perfect fit. No constant of
proportionality is needed, since the slope has already been
adjusted to 1. The revised practical formula for predicting the
wingbeat frequency is:

f = m3/8g1/2b−23/24S−1/3ρ−3/8 . (9)

This formula can be used for predicting the wingbeat frequency
of a species whose mass, wing span and wing area are known,
but not for predicting the effect of changing the values of
individual variables, because the exponents of m and b are
based on the assumption that changes in the values of these
variables will also change the wing moment of inertia
according to proportionality 2. A change in the body mass of
an individual bird in the course of a flight, or of the density of
the air through which it flies, is not expected to affect the wing
moment of inertia. To predict these effects on the wingbeat
frequency, the form of proportionality 1 is required:

f ∝ (mg)1/2b−17/24S−1/3I−1/8ρ−3/8 . (10)

Allometry of wingbeat frequency

When comparing a range of different species, the wingbeat
frequency does not scale according to the exponent of m in
either equation 9 or proportionality 10. This is because the
wing span, wing area and wing moment of inertia are all
functions of the mass and have to be included in the allometric
argument. Specifically, in a series of geometrically similar
birds (if any such existed), these variables would depend on
the mass as follows:

b ∝ m1/3 , (11)

S ∝ m2/3 , (12)

I ∝ m5/3 . (13)

Combining these with the the exponents of proportionality 10,
the allometric relationship is:

f ∝ (m)1/2(m1/3)−17/24(m2/3)−1/3(m5/3)−1/8 = m−1/6. (14)

Actually, the same result is obtained by using the original
values of the exponents, from Pennycuick (1990), or any set
of values conforming to equations 4–6. This result was also
predicted on the basis of a somewhat different argument by
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Table 3. Wingbeat frequencies (Hz) of whooper swans at
Caerlaverock in early, middle and late winter

Date Level flight Take-off Climb-out

1 Nov 1994 Mean 3.53 4.03 3.97
S.D. 0.097 0.194 0.132
N 56 7 6

6 Feb 1995 Mean 3.58 3.96 3.98
S.D. 0.086 0.201 0.199
N 53 32 29

14 Mar 1995 Mean 3.57 3.89 3.98
S.D. 0.118 0.185 0.185
N 105 50 43

Take-off + Climb-out

All dates Mean 3.56 3.95
S.D. 0.107 0.191
N 214 167
Pennycuick (1975), for cruising flight. For maximal exertion,
as in take-off, the wingbeat frequency would be expected to
vary with the −1/3 power of the mass, rather than the −1/6
power, following the classical argument of Hill (1950), which
was based on the different assumption that the wingbeat
frequency is limited by the mechanical strength of bones,
tendons and muscles. The consequence of these different
slopes is that, at some limiting value of the mass, the maximum
wingbeat frequency (limited by structural strength) is only just
sufficient to sustain cruising flight. If the mass increases
further, cruising flight is no longer possible.

Effect of changing mass on wingbeat frequency

The effect of feeding, or using up fuel during a long flight,
is to alter the mass while leaving the wing span, area and
moment of inertia unchanged. This is not an allometric
problem. The expected effect is expressed by the exponent α,
and is that the wingbeat frequency should vary with the square
root of the mass, other variables being held constant:

f ∝ m1/2 . (15)

It remains to be seen whether birds actually do change their
wingbeat frequencies according to proportionality 15, in
response to changes of body mass. It is possible that they might
not. If a bird’s flight muscles were adapted to operate
efficiently at a particular frequency suitable for typical
combinations of the variables in equation 9, it might then not
be able to deviate far from that frequency. It would be
interesting to know whether individual birds do in fact adjust
their wingbeat frequencies in response to changes of mass and
air density, as this affects the power output available from the
flight muscles.

Brent geese

Evidence that such an effect exists was reported by
Gu∂′ mundsson et al. (1995), who observed the wingbeat
frequency of brent geese (Branta bernicla) in Iceland in spring
(mean 5.5 Hz), when the geese were about to set off across the
Greenland ice cap to their breeding grounds in the Canadian
arctic. The mean body mass at this stage of the migration cycle
was estimated to be 2.01 kg. Brent geese from the same
population had earlier been observed by Hedenström and
Alerstam (1992) passing south-east Sweden in autumn, when
their mean wingbeat frequency was 4.5 Hz, and mean mass
1.36 kg. Both populations were observed on the coast, at sea
level, so that the air density may be assumed to have been near
the standard sea level value of 1.23 kg m−3. According to
proportionality 15, the wingbeat frequency is expected to
increase by a factor equal to the square root of the mass ratio,
i.e. √(2.01/1.36)=1.22. The reported frequency increased by
exactly this factor.

Whooper swans

The above observation suggested that it might be possible
to exploit the effect of mass on wingbeat frequency, as an
indirect method of estimating the mass of wintering whooper
swans (Cygnus cygnus), without catching them as is usually
necessary. With this in mind, video recordings were made of
whooper swans at the Wildfowl and Wetlands Trust’s reserve
at Caerlaverock, Scotland, on three occasions during the winter
of 1994–1995, as listed in Table 3. The majority of the swans
arrived at Caerlaverock from Iceland in the last week of
October, a crossing which would require a swan of average
size to consume around 2 kg of fat (Pennycuick et al. 1996).
They were assumed to be light when their wingbeat frequency
was first observed on 1 November, soon after their arrival in
Scotland. On the second occasion (6 February), the swans had
been feeding well, but were not about to migrate for another
4–6 weeks. On the third occasion (14 March), some swans had
already left for Iceland, and the rest were expected to depart
soon afterwards, so their mass was assumed to be augmented
by fuel for the crossing. On each of these three occasions, the
observations of wingbeat frequency were divided into three
categories, level flight, take-off (meaning the first five
wingbeats during the ground or water run, starting with the first
full wingbeat) and climb-out (starting with the first full
wingbeat after the feet were lifted off the ground or water).
These samples were compared with each other using the d-test
of Bailey (1959). No significant differences were found
between take-off and climb-out on any date, and these two
categories were therefore combined. The mean of the
combined take-off/climb-out sample for all three dates
(3.95 Hz) was significantly higher (P!0.01) than the mean for
level flight for all dates (3.56 Hz). However, no significant
differences were found between means in any category, when
comparing different dates.

Either the swans did not increase their mass during the
course of the winter, which seems unlikely, or else there was
no effect of mass on wingbeat frequency. If the latter was the
case, then there must be some reason for the absence of any
effect in whooper swans, when evidence that the expected
effect does indeed occur was seen in brent geese. A possible
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explanation is that these large birds are near the limits of
performance, even when flying horizontally near their
minimum power speed. Table 3 shows that they are capable of
increasing their wingbeat frequency by about 11 % over the
cruising value, for a few seconds at take-off, but their muscles
may not be able to maintain the higher frequency in sustained
cruising flight. The nature of these limitations, which result
directly from large size, is further considered by Pennycuick
et al. (1996).

Conclusion

There are limits to the consistency that can be claimed for
the data presented here, even though all were collected
personally by the author, using the same methods throughout.
As is usual with field observations, the estimates of mass, wing
span and wing area are means of samples for each species.
These measurements were not known for individual birds. The
birds were assumed to be flying level, at a fixed multiple of
their minimum power speeds, but there was no way to check
this, as the flight conditions were uncontrolled. Such data are
adequate for establishing broad inter-species relationships, but
when it comes to investigating the effect of changing body
mass or air density on the wingbeat frequency of an individual
bird, observations under controlled conditions will be needed
on birds whose individual measurements are known. It may be
possible to study the effect of mass changes in individual birds
trained to fly for prolonged periods in a wind-tunnel, while
Lishman’s (1994) success at training birds to follow a
microlight aircraft suggests that the effect of air density might
be investigated by observing the same bird flying at different
altitudes. The effect of gravity should not be forgotten just
because it cannot be manipulated, although a direct test may
have to wait until interstellar travel is more readily available
to ornithologists.
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Dominic McCafferty and Nic Huin, augmented by John
Croxall, made my stay there both enjoyable and productive,
especially by catching live birds for me to measure, and
bringing in dead ones for study. I am most grateful to Steve
Fiddes, Marcel Klaassen and Åke Lindström for reading earlier
drafts of the paper and suggesting major improvements. I am
indebted to the Wildfowl and Wetlands Trust, especially to
John Doherty and Richard Hesketh, for facilities to observe
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