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The hydrodynamics and undulating propulsion of
tadpoles were studied using a newly developed two-
dimensional computational fluid dynamics (CFD) modeling
method. The mechanism of thrust generation associated
with the flow patterns during swimming is discussed. Our
CFD analysis shows that the kinematics of tadpoles is
specifically matched to their special shape and produces a
jet-stream propulsion with high propulsive efficiency, as
high as that achieved by teleost fishes. Investigation of the
effect of Reynolds number indicates that the Froude
efficiency increases with increasing Reynolds number with
no ceiling in generating the jet-stream propulsion. Further

studies using tadpole- and fish-shaped models with
hindlimbs added to their body profiles reveal that the
tadpole shape – a globose head with a tapered tail and
hindlimbs at the base of the tail – allows tadpoles, but not
fish, to develop hindlimbs with very little handicap on
propulsion. The shapes and kinematics of tadpoles appear
to be specially adapted to the requirement of these
organisms to transform into frogs.

Key words: CFD (computational fluid dynamics), jet-stream
propulsion, kinematics, swimming, metamorphosis, tadpoles, fish,
locomotion.

Summary
Tadpoles are traditionally considered to be inefficient
swimmers compared with teleost fishes (Romer, 1966; Dudley
et al. 1991); indeed, several characteristics of these amphibian
larvae contribute to this impression. The abrupt transition from
their globose bodies to their laterally compressed tails makes
tadpoles seem less ‘streamlined’ than fishes (Videler, 1993).
Tadpoles wobble: their snouts oscillate greatly when they
swim, even in a straight line (Wassersug and Hoff, 1985). Such
large lateral deflections certainly enhance the impression of
mechanically inefficient locomotion. However, measurement
of propulsive efficiency suggests that the mechanical
efficiency of tadpoles may be almost as high as that of teleost
fishes, such as salmonids (Wassersug, 1989). It is, in fact, not
clear what the relatively simple shape of tadpoles means to
their ability to swim or to their cost of locomotion.

Undulatory swimming by aquatic vertebrates is
accomplished by propagating a traveling wave down the body
to the tip of the tail. Undulatory swimmers cover a wide range
of Reynolds numbers, from approximately 102 for tadpoles up
to approximately 108 for the most rapid cetaceans. Undulatory
swimming is the most effective movement for swimming
propulsion and is employed by a large number of aquatic
animals. Several excellent analyses by Lighthill (1971), Wu
(1971a,b,c) and Newman (1973) have been developed for

Introduction
modeling undulatory swimming in aquatic vertebrates. These
analyses are based on inviscid potential flow theory. They have
revealed many key points of undulatory propulsion, but still
fail to address important subjects related to viscous flow during
swimming, including separation, boundary layer and/or vortex
production. Much is still unknown regarding the behavior of
this unsteady viscous flow that could be of importance to
undulatory propulsion.

A long-standing goal in fluid mechanics, and the key to
understanding the importance of viscous fluid phenomena in
estimating the propulsive efficiency of swimming animals, is
solving the incompressible Navier–Stokes equations for
unsteady flow.

In this paper, we describe a computational fluid dynamic
(CFD) method developed by Liu (1995a,b). We apply this
CFD method to a series of real biological problems involving
flows around undulatory swimming animals.

The biological problems we address all concern the shape
and locomotion of tadpoles. The tadpole is a good model
organism for application of our CFD methods. First, the basic
kinematics of locomotion in anuran larvae is well established
(Wassersug and Hoff, 1985; Wassersug, 1989), which means
that empirical data are available to describe precisely the form
of the propulsive wave during undulatory swimming. Second,
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the common head–bodies of tadpoles are of a spheroidal shape
that does not deform with locomotion, while tadpole tails are
laterally compressed and tapered to a point. As a consequence
of their overall simplistic morphology, a two-dimensional
transverse section through a tadpole changes little in shape as
one moves more dorsally or ventrally from the midplane of the
body. Although our analyses to date are limited to two
dimensions, we believe that this two-dimensional analysis
provides interesting results and that this is an appropriate
starting place towards the development of a truly realistic
model of swimming in aquatic vertebrates.

We use our CFD analysis to examine the efficiency of
tadpole locomotion. In addition, we address a series of other
biological questions regarding tadpole morphology. (1) How
costly is locomotion for tadpoles swimming with their unique
kinematics compared with fishes? (2) Why do hindlimbs on
tadpoles develop where they do, in the crease between the
head–body and the tail? (3) Does fluid dynamics constrain
tadpoles to a relatively small size?

The conclusions that emerge from these analyses are that
tadpole locomotion is uniquely suited for their morphology and
that the premetamorphic morphology of anurans is directly
linked to their obligatory requirement to develop hindlimbs
and transform into frogs.

Materials and methods
Unsteady solution to the Navier–Stokes equations

In this study, we aimed to resolve viscous flow around an
undulating creature. Unsteady solutions to the incompressible
Navier–Stokes (N–S) equations are a key to understanding
such highly unsteady fluid phenomena. We describe a
computational system based on a method of two-dimensional
N–S solving developed by Liu (1995a), which can be directly
applied to realistic biological problems.

The nondimensionalized Navier–Stokes equations in the
conservative form of x,y momentum and mass, if transformed
into a generalized curvilinear coordinate system with a moving
boundary, can be rewritten in an integral form as:

where

In the third equation of mass conservation, a time derivative of
pressure is artificially added to the equation of continuity, with
a positive parameter b. Vector q consists of two velocity
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components of (u, v) and a pressure term p. Term S(t) expresses
the area of a cell (i, j) constructed by four grid points, and
l(t) are its four edges with unit outward normal vectors of 
n=(nx, ny). Subscripts x and y denote derivatives with respect
to x and y, and Re is the Reynolds number. To analyse the
moving computational object of an undulating swimmer that
continuously deforms, a body-fitted (boundary-fitted) mesh
system that regenerates with time is introduced. This leads to
a contribution from grid velocity Vg=(ug, vg) into the
governing equations.

The above governing equations are discretized using the
finite volume method and are solved in a time-accurate manner,
using the pseudo-compressibility technique (Chorin, 1958). A
third-upwind differencing scheme is used to compute the
convective term in an ultimate conservative difference scheme
(Van Leer, 1977), and the viscous term is evaluated by a Gauss
integration using the finite volume method. An implicit
factorization approximate method, based on the Euler implicit
scheme, is used for the discretization of the time derivative. In
the time-accurate formulation, the time derivatives of the
velocity components in the momentum equations are
differenced using a first-order, two-point, backward-difference
formula. To satisfy the equation of continuity at each physical
time step, subiteration is also introduced, considering the
artificial compressibility relationship.

For the two-dimensional modeling of an undulating object,
the moving body may have three basic motions: translation,
rigid rotation and flexible deformation. The translating motion
can be replaced completely by introducing inertial forces into
the momentum equations explicitly in a fixed coordinate
system. For the rotating and deforming motions, however, this
becomes quite difficult, which is why a moving mesh system
is introduced. Since our goal is to compute unsteady flow
around the undulating body, a method of regenerating grids
fitting the deforming body surface at each time step with the
outside boundary fixed is employed.

Kinematics of swimming

We base our kinematics on the bullfrog tadpole Rana
catesbeiana, whose tadpoles are generalized pond-dwelling
larvae with gross morphology and locomotor behavior similar
to that of most tadpoles. The kinematics for undulatory
swimming used in the present analyses is based on the straight
locomotion of a Rana catesbeiana larva with a total length of
4.7 cm (Wassersug and Hoff, 1985).

We first define the static geometry of our computational
object by digitizing the shape of the Rana catesbeiana tadpole
from a top-view picture (Fig. 1). An offset for grid generation,
as illustrated in Fig. 2A, is then constructed using a spline
interpolation technique, after appropriate smoothing. To
‘swim’ our tadpole, we created a sinusoidal function which
sends a lateral wave propagating down the tadpole towards the
tail tip. The wave is of the form:

(2)hi(x,t) = ai(x)sin 2p − ,
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Fig. 1. Hydrodynamics, inertial force, elastic forces and moments acting on a longitudinal segment of a flexible body in transverse movements.
Digitized offset of the realistic tadpole is illustrated from a top-view picture. In deriving power during undulatory locomotion, note that the
elastic forces acting on each section cancel each other out, when integrated over the whole body surface. Furthermore, bending moment is
neglected because of the extremely small amount of rotation, and hence only terms concerning hydrodynamics and inertial forces finally remain
as shown in equation 6.
where ai(x) represents amplitude, l is wavelength, T is period,
hi(x,t) is the center line, t is time and x is the coordinate in the
x-direction. By defining a reduced frequency of k =
(2pfL)/(2U) = (pL)/(TU), where L represents body length, f is
frequency and U is forward speed, we can obtain a simplified
form of equation 2:

Subscript i denotes the grid points on the center line. Equation
3 for lateral motion is very compact, yet coincidentally similar
to one developed by Videler (1993) for swimming fishes.
Videler, however, developed his formula using the first three,
odd Fourier terms, but pointed out that the contributions of the
higher frequencies, even the third and the fifth, were marginal.
Amplitudes of ai(x) are given by using the spline interpolation
from five original maximum amplitudes along the length (L)
of the tadpole: at the snout (x=0.0L, a=0.05L), at the otic
capsule (x=0.19L, a=0.005L), at the base of tail (x=0.384L,
a=0.04L), at the mid tail (x=0.692L, a=0.1L) and at the tail tip
(x=1.0L, a=0.2L). These values are taken directly from Fig. 4
in Wassersug and Hoff (1985). The reduced frequency is

hi(x,t) = ai(x)sin 2p −2kt .
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evaluated from a plot of forward velocity against tail-beat
frequency in the same paper. The overall propulsive
wavelength is taken as 0.87L, on the basis of empirical data of
0.87±0.1L (Wassersug and Hoff, 1985). Three normal
swimming speeds of 1.5 L s21, 5 L s21 and 8 L s21 are selected
with corresponding frequencies of 4.7 s21, 9.2 s21 and
13.2 s21, resulting in Reynolds numbers of 2.13103, 7.23103

and 1.13104, respectively.

Evaluation of thrust, power and Froude efficiency

The Navier–Stokes equations, once solved, can give both
micro and macro information on the flow field. Local flow
patterns, no matter where they are (as long as they are inside
the computational domain), can be described and visualized
with the information generated on velocity and pressure at
discretized grid points or cell-centers. Furthermore, integrated
quantities, such as thrust, lift, etc., can be evaluated using the
distributions of pressure and shear stress on the deforming
body’s surface. To obtain these values, we make two
assumptions: (1) the object is an elongated body with body
length unchanged during swimming and (2) undulation is
purely a lateral compressive motion. Kinematic tracings of
swimming tadpoles in Wassersug and Hoff (1985) confirm
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B 1.41e+00

1.13e+00
8.47e-01
5.65e-01

2.82e-01
0.00e+00

Fig. 2. Computational objects for the present study: a Rana catesbeiana tadpole (A), a circular cylinder (B) and a fish-shaped hydrofoil
(NACA0020) (C). (A) A C-type grid system (with a cutline in the wake) around the tadpole. (B) The computed von Karman vortex street in
the form of iso-speed contours behind a circular cylinder at Re=105. (C) A similar grid system around the fish-shaped hydrofoil. In the present
algorithm, four adjacent grids constitute a cell with variables of both velocity and pressure located at each cell center.
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C

Fig. 2C.
these assumptions. With these caveats, we can now define the
force-related quantities.

As illustrated in Fig. 1, two components of the force (Fx, Fy)
acting on the body surface (Fbody) can be evaluated by
integrating the projection of pressure and shear stress in the x
and y directions, respectively. As we see in equation 1, the
present N–S solver builds a flux of both convective and viscous
terms on the body surface at each cell, which means a force
acting towards the direction of water flow. Therefore,
summation of this opposite force over the whole body gives
just the forward and lateral forces as follows:

Here, the third component Q comes from the equation of mass
conservation, the third component of equation 1. Thus, thrust
can be defined as 2Fx. Note that the contributions of both
pressure and stresses are included in the present definition.
On the basis of the previous analysis, we define the bending
moment at an arbitrary point (xM, 0) on the center line as:
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The power required for undulating swimming, i.e. the work
done per unit time, can be considered as a summation of work
done by inertial forces and by hydrodynamic forces containing
pressure and stresses on the body surface, such that:

where ile and ite represent the leading edge (the head) and
trailing edge (the tail tip), respectively, r is water density and
Ai(x) is the area of section i on the center line. Any contribution
of bending moment is neglected here.

To define the Froude efficiency (propeller efficiency), i.e.
the rate of effective work done, for assessing the performance
of an undulating swimmer, attention is paid to the
instantaneous features of both thrust and power as described
above. Considering the undulating object overall to be a
propeller, we define our Froude efficiency Feff in a time-
averaged manner (in one cycle), such that:
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Here Thrustave is net thrust including the force due to skin
friction. Note that, using the above definition, swimming at
constant velocity will result in zero Froude efficiency. We
suggest a method of assessing the performance in such a case
by comparing the power output.

In order to make comparisons among different species, we
define the thrust, the moment and the power in
nondimensionalized forms as:

Here Sbody expresses the surface area of the object.

Results and discussion
Computational validation

A variety of validation tests were undertaken (Liu, 1995a,b)
to assess the reliability of results using this CFD method. We
give an example of flow around a circular cylinder at a
Reynolds number of 105 in Fig. 2B. The von Karman vortex
street in the wake is captured well by our simulation when
compared with reported experimental results (Van Dyke,
1982). Similarly, our Strouhal number St of 0.156 is also in
good agreement with many experimental results, such as those
of Tritton (1959) and Kovasznay (1949), who report values
very close to 0.16. Other CFD results on unsteady flow behind
an accelerated flat plate and around a pitching foil were also
in reasonable agreement with previously reported values.

Generally, the quality of grids, including grid number,
orthogonality, smoothing and minimum spacing, affects the
CFD results. To achieve high resolution of the flow in the
wake and to make grids easily fit the moving boundary of our
object, a C-type grid topology, as illustrated in Fig. 2A, was
chosen. We tested two grid systems: one was 199341 (199
grids in the streamwise direction and 41 grids in the direction
vertical to the body surface) with 50 grids in the wake, the
other 163341 with 30 grids in the wake. For both grid
systems, the minimum grid spacing (dmin) normal to and
adjacent to the body surface was controlled using an
experimental formula of dmin=0.1/√−Re. Grids were clustered
to the solid wall in order to resolve viscous flow inside the
boundary layer. Grids were also clustered at the leading and
trailing edges because of steep pressure divergence there. The
computational domain was limited to a region around the
body with a radius for the outside open boundary of 6 L. Since
the higher reduced frequency of 5.843 (corresponding to a
swimming speed of 5 L s21, see above) leads to a
nondimensionalized period of approximately 0.54, a physical
time increment dt of 0.01 was taken. All the computations

(8)Thrust* = ,
Thrust

GrU2Sbody

(9)CM = ,
Moment

GrU2SbodyL

(10)Power* =

and

.
Power

GrU3Sbody
were carried out using an HP Apollo 9000 series workstation
(model 755).

The tadpole swimming mechanism

We first analyzed steady flows around a tadpole with its tail
kept straight (at Re=7200), to assess dead drag (Fig. 3A). The
non-streamlined shape of the tadpole produces a large dead
drag coefficient of 0.115, compared with the value of 0.067
given by the more typically fish-shaped body of the
NACA0020 hydrofoil, as illustrated in Fig. 3B. For the
tadpole, there is a pair of large-scale vortices visible at the
posterior tail, and strong back flows over the tail tip up to the
head–body, resulting in a large region of thick boundary-layer
separation over the tail. This produces a greater pressure
component for the drag coefficient, but at the same time
reduces the friction component for the drag coefficient. At the
Re examined here, frictional drag coefficient is equal to 0.0084
for the tadpole compared with a value of 0.0235 for the fish-
like body.

A representative speed of 5 L s21 (corresponding to a Re of
7200), a speed at which a Rana catesbeiana larva normally
swims, was chosen for investigating the flows around the
undulatory swimming tadpole. The flow pattern, visualized in
a velocity fringe manner in Fig. 4, shows a completely
different pattern from the steady case shown in Fig. 3A. In the
wake, it is clear how the vortices released at the end of every
stroke to the left and to the right gradually increase in size, but
decrease in strength due to viscous dissipation (Fig. 4). Note
that the vortex sheet looks very similar to the famous von
Karman vortices, as in Fig. 2B, but shows opposite rotation.
The flow between the vortices is accelerated backwards,
forming a jet-stream, very similar to the wake pattern
photographed by Wassersug and Hoff (1985) of a Rana pipiens
tadpole swimming through a thin layer of milk. The tadpole
gains an opposite forward force from the momentum in this jet.
This is the source of the thrust of jet-stream propulsion in
undulating swimmers. Furthermore, focusing attention on the
near-wall flows, we see that the large-scale vortices observed
in the steady, straight-tail situation (Fig. 3A) disappear. In
addition, the region with the separated thick boundary layer in
the steady case reduces to a very small region at the base of
the tail when the tail is undulating. Contrary to expectation, the
boundary layer along the posterior tail becomes thinner during
undulatory swimming in comparison with the steady case. We
believe that this is because viscosity makes fluid particles on
the body surface have the same velocity as the oscillating body.
This, in turn, leads to the local flow being accelerated and
oscillating in correspondence with the undulating body.
Considering the law of energy conservation, fluid near the wall
usually gains kinetic energy from the mechanically oscillating
body. This means that the momentum being lost due to the
viscous dissipation inside the boundary layer is instantaneously
supplied from this mechanical oscillation, which contributes to
the production of the jet-stream in the wake.

Hysteresis of thrust, power and drag due to friction are
plotted against time in Fig. 5. Velocity profiles and iso-
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Fig. 3. Flow patterns around a non-
undulating tadpole (A) and a fish-shaped
object (B) at a Reynolds number of 7200.
Velocity is visualized by a color map in
which the red end of the color spectrum
represents larger values. (A) Flow around
the tadpole. Note a pair of large-scale
vortices and the separated region behind
the head–body. In contrast, flow around the
streamlined fish-shaped hydrofoil (B)
shows a very thin boundary layer, even at
the trailing edge.
pressure distributions at four moments, t=5.18 (≈0T), t=5.28
(≈T/5), t=5.45 (≈T/2) and t=5.55 (≈4T/5), during one cycle are
shown in Fig. 6A–D, respectively. The instantaneous thrust
coefficient reaches its maximum with a value of 0.41 twice in
each cycle because of the symmetrical undulating movement
of the tail to the left and right. The maxima occur when the tail
takes an arched form (C-shaped) with a maximum angle of
incidence (equivalent to an angle of attack) and a maximum
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1.97e+00

1.57e+00
1.18e+00
7.86e-01

3.93e-01
0.00e+00

Fig. 4. Flow pattern around an undulatory
swimming tadpole at a Reynolds number of
7200. The frame of reference is fixed on the
moving swimmer. Note that a jet-stream is
clearly detected in the wake, gradually
increasing in width, but decreasing in
strength. Also, the large-scale vortices that
were visible in the computation of steady
flow around a straight-tailed tadpole
(Fig. 3A) disappear, reducing to a small
separated region at the base of the tail.
Additionally, the boundary layer at the
posterior tail becomes thinner.

Fig. 5. Hysteresis of thrust, power and drag due to friction plotted
against time at a Reynolds number of 7200. Variation during nearly
two periods is shown within an interval of dimensionless
computational time from 5.0 to 5.8. Each variable is a
nondimensionalized coefficient as described in Materials and
methods. Both the thrust and the drag due to friction reach peak values
twice during each cycle because of the symmetrical left and right
deflection of the tail.
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area to push water backwards immediately following the
position of the tail tip at which it has its maximum amplitude.
The iso-pressure contours show that both the upper (pushed by
positive pressure) and lower (sucked by negative pressure)
sides of the arched tail contribute to thrust generation. At the
two thrust maxima, the frictional drag coefficient reaches a
minimum while the power curve reaches a value of 0.33
(Fig. 5). Since the thrust has a higher value than the power at
these two points, the tadpole can achieve a very high
instantaneous propeller efficiency (equation 7) of 124.2 %. In
contrast, the S-shaped tail, at the two points where it occurs in
each cycle, leads to a minimum thrust with a value of 0.11, but
a larger friction drag coefficient of 0.042 (maximum friction
drag coefficient = 0.047). At this point, the power curve has a
value of 0.30, almost three times the instantaneous thrust,
clearly handicapping its instantaneous propeller efficiency
(36.3 %).

Note that the variation with time of the thrust curve gives a
positive mean value of 0.26. This indicates that a tadpole, if
swimming at the same speed (5 L s21) and with the same
kinematics, would be accelerating rather than swimming at a
steady speed. Using equation 7 as explained above, we
calculated the propeller efficiency or Froude efficiency from
the averaged thrust (0.26) and the mean power (0.32), leading
to a value of 82.2 % at a Reynolds number of 7200. Wassersug
(1985) reported a very similar value of 83 % from empirical
kinematic data, using the formula Feff=120.5(12U/Vc), where
Vc is the velocity of the traveling wave, U is the forward
swimming speed and Feff is Froude efficiency.

We also calculated the Strouhal number (St) for vortices in
the wake, determined by tail-beat frequency (f), forward
speed (U) and the width of vortices in the wake (AM), i.e.
St=2AMf/U, yielding a value of 0.72. A series of studies on
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the optimum swimming of teleost fishes by Triantafyllou et
al. (1995) shows that fishes normally generate a jet-stream of
high propulsive efficiency (greater than 80 %) with a Strouhal
number ranging from 0.2 to 0.4, half that obtained here for
tadpoles. The magnitude of the vortex width is dominated by
the maximum amplitude of the undulating motion at the tail
tip. A comparison of tail-beat frequency versus specific
swimming speed among fishes and tadpoles in Fig. 12 of
Wassersug and Hoff (1985) showed a tight regression line for
tadpoles and fishes. A review of fish kinematics (Table 6.1 in
Videler, 1993) indicated that maximum amplitudes at the tail
tip lie at around 0.1L for most fishes, which is approximately
half that reported by Wassersug and Hoff (1985) for tadpoles.
Hence, the higher tail amplitude (almost double that of
carangiform fish such as salmon and trout) will contribute to
the higher Strouhal number for tadpoles. We believe that
tadpoles manage to swim efficiently in comparison with
teleost fishes, but using very different kinematics. Below, we
suggest that these high-amplitude kinematics fit the special
shape of tadpoles and help them to achieve jet-stream
propulsion effectively.

In addition, the drag coefficient due to friction on swimming
tadpoles varies from 0.021 to 0.047 with a mean value of 0.032.
This value is almost four times that calculated for the dead drag
coefficient (0.0084) and is mainly because the velocity
gradient at the body surface, inside the boundary layer,
becomes steeper due to local accelerated motion, especially at
the posterior tail. Therefore, an undulating body or, generally
speaking, an oscillating body relative to a non-undulating body
will have a reduced drag due to pressure or may even generate
greater thrust, but has an increased friction resistance. As the
skin friction drag is significantly affected both by the Reynolds
number and by the undulating motion, any analysis that fails
to consider the behavior of the unsteady boundary layer cannot
accurately estimate thrust, power and propeller efficiency
during swimming.

Interactions between the head–body and the tail

As noted above, tadpoles use specific kinematics matched to
their particular shape and size for jet-stream propulsion. In this
regard, we have assumed that tadpoles do not produce thrust
effectively by using their tails alone. The head–body also takes
an active part in generating thrust, which requires an
interaction of flows between the head–body and the tail.

To illustrate how the kinematics of locomotion for tadpoles
is closely matched to their shape, we computed the flows
around a fish-shaped body (a NACA0020 hydrofoil) oscillating
with the same kinematics as the tadpole. Specifically, we
‘allowed’ this fish-shaped object to have large-amplitude
lateral deflections at the snout, similar to the rostral wobble
seen in swimming tadpoles. The result is illustrated in Fig. 7.
The hydrofoil that we used had the same maximum thickness
(0.2L) as the tadpole. Although a jet-stream flow pattern
similar to that around tadpoles is established, the streamlined
hydrofoil retains a thin boundary layer without separation over
the whole body. As discussed previously, this will lead to
increased friction drag. The averaged value of the frictional
drag coefficient was 0.050, or nearly 1.5 times the value for
the tadpole swimming in the same mode. Mean thrust was 0.19,
i.e. only 73 % of the thrust produced by the tadpole. The fish-
shaped body, however, required very low power (0.24) for
swimming, so that it still achieved a high propeller efficiency
of 0.80 (Fig. 8). Note that the propeller efficiency for the fish-
like body swimming in the tadpole kinematic mode is slightly
less than that for the tadpole. We conclude that, with the high
oscillations at the snout and tail tip that characterize tadpole
kinematics, tadpoles can actually produce jet-stream thrust
with a high propeller efficiency, similar to that produced by a
fish-like body swimming in the same manner. Thus, we cannot
derive a reasonable estimate of the efficiency of undulatory
swimming merely by considering the tail as a propeller isolated
from the body.

Furthermore, it should be noted that the power requirement
is greater for the tadpole than for the fish, which is consistent
with the ecology of this organism. As inhabitants of small
bodies of water, tadpoles do not swim continuously for long
distances or at high speeds (Wassersug, 1989). Perhaps the
broad conclusion to be drawn from this analysis is that the
popular view of what is either a streamlined shape or an
efficient kinematic pattern can be very misleading. While
neither its globose shape nor the wobble in its swimming
movement gives the tadpole the subjective appearance of
efficient locomotion, both features function in concert. The
kinematics of a tadpole is closely linked to its premetamorphic
morphology. All told, the tadpole is an efficient undulatory
swimmer.

Implications for metamorphosis

The tadpole’s globose shape and undulatory kinematics
produce an almost ‘dead water’ region directly behind the
head–body, next to the base of tail. We hypothesized that this
is a region in which tadpoles could grow hindlimbs with little
detrimental effect on their swimming ability. By adding
developing limbs to the profile of tadpoles in our analysis, we
tested the hypothesis that tadpole shape allows for the growth
of the adult hindlimbs in the crease between the body and tail,
without the tadpole incurring a large locomotion handicap from
the resulting change in shape (Dudley et al. 1991; Wassersug,
1989). We added triangles to our tadpole profile to represent
the knees, which project laterally in anuran larvae as they near
metamorphosis. In our first simulation of a tadpole with these
hindlimbs, we made the height of the triangles half the
thickness of the base of the tail (Fig. 9). No significant change
in the flow pattern can be seen, except for a slight deformation
of the boundary layer at the location of added hindlimbs
(compare Figs 9 and 4). The propeller efficiency (see diamond
symbol in Fig. 8) has a value of 0.62, almost a 25 % reduction
compared with the CFD analysis without the hindlimbs.
Further study indicated that reducing the height of the triangles
effectively avoided such reduction of the propeller efficiency.
A test of a model with triangles half this height increased the
Froude efficiency to 0.77. In fact, tadpoles when swimming
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Fig. 6. Views of velocity profiles and pressure distributions around a swimming Rana catesbeiana tadpole at a Reynolds number of 7200.
Velocity profiles are visualized by vectorial arrows and pressures by iso-pressure contours with a color map representing their arbitrary
magnitudes. We show four frames of flow patterns at 0T (A), at T/5 (B), at T/2 (C) and at 4T/5 (D), which correspond to four points during the
time variation of forces illustrated in Fig. 5. The C-shaped tail produces maximum thrust at T/5 and 4T/5, but the S-shaped tail generates
minimum thrust at 0T and T/2.
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Fig. 6C,D.
fast extend and adduct their hindlimbs. This reduces the height
of their knees and should help them to retain relatively high
propeller efficiency values.
‘Hindlimbs’ were also added to our model of the undulatory
fish-shaped body. These ‘limbs’ were the same size and shape
as the ‘knees’ of our tadpole and were placed at the same
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Fig. 7. Flow pattern around an undulating
fish-shaped object swimming using a
tadpole kinematic mode, i.e. with large
lateral oscillations at the snout, at a
Reynolds number Re of 7200. Over the
whole body, the boundary layer is thinner
than for the tadpole at the same Re,
swimming with the same propulsive wave
form (see Fig. 4).
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distance along the rostral–caudal axis as in the tadpoles
(Fig. 10). CFD anlysis shows a flow pattern very different from
that around the tadpole (compare with Fig. 9). A separated
region is observed near the added limbs, which seriously
affects both the local boundary layers and the pressure
distributions. This results in a sharp reduction of the propeller
efficiency to 0.35 (Fig. 8). Hence, addition of these ‘limbs’ had
major detrimental effects on flow around the fish compared
with the tadpole.

The overall implication of these simulations of tadpole and
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fish with limbs added is that the shape and kinematics of
tadpoles are as much driven by the tadpoles’ requirement to
grow hindlimbs and to transform into frogs as by any aspect
of larval locomotion. Fish do not transform into limbed
creatures, and their body form and kinematics are not adapted
to the development of hindlimbs and feet.

Reynolds number effect
Because all known tadpoles are small (<23 cm total length;

Emerson, 1988) and they swim at relatively low Re (<105), we
suspected that fluid dynamic factors might constrain organisms
that were shaped like and swam like tadpoles from efficient
locomotion at high Reynolds numbers. We tested this
hypothesis by modeling the flow around tadpoles swimming at
Fig. 8. Variation of propeller Froude efficiency versus power with
changing Reynolds number plotted for a tadpole (Rana catesbeiana)
and a fish-like body (NACA0020 hydrofoil). The line with five circles
indicates the change in output power with Froude efficiency at the
Reynolds numbers shown. The curve is parabolic, with a tendency for
power to decrease with increasing Re. At a realistic tadpole speed
(Re=7200), the CFD analysis yields a value of Froude efficiency of
0.822. The diamond symbol indicates the value for a swimming
tadpole with developing hindlimbs at the base of the tail. The two
triangles indicate values for a fish swimming in the tadpole kinematic
mode (Re=7200), with and without hindlimbs. Although the power
requirement of this fish model is smaller than that of the tadpole
(about 0.25) and it produces a high propeller efficiency, similar to that
for the tadpole, the presence of protruding hindlimbs seriously
handicaps a fish, with a sharp reduction in propeller efficiency to 0.35
and an increase in power requirement to 0.35.
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Fig. 9. Flow pattern around an undulatory
swimming tadpole with hindlimbs, at a
Reynolds number of 7200. Only a slight
deformation of the boundary layer at the
base of the tail is detected in comparison
with a tadpole without protruding
hindlimbs (see Fig. 4).

Fig. 10. Flow pattern around an undulating
fish-shaped object swimming in a tadpole
kinematic mode, but with protruding
‘hindlimbs’ (Re=7200). Unlike the
situation for the tadpole (see Fig. 9),
protruding hindlimbs here detrimentally
affect the flow pattern, producing a large-
scale flow separated in the region of the
protruding limbs.
Re values up to 105. We investigated how the jet-stream
propulsion varies with increasing Re, i.e. the effect of Reynolds
number, by undertaking a series of computations at Re values
of 2.13103, 7.23103 and 1.13104 (at which the Rana
catesbeiana larva normally swims) and at two additional Re
values of 53102 and 105. The resulting flow patterns at Re of
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Fig. 11. Flow patterns around three undulatory swimming tadpoles at Reynolds numbers of 2.13103 (A), 1.13104 (B) and 105 (C). Jet-
stream patterns are observed in all the three cases. There is a tendency for the jet-stream propulsion to be more effective at higher Reynolds
numbers.
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Fig. 11C.
2.13103, 1.13104 and 105 are shown in Fig. 11A–C. Similar
jet-stream patterns, as well as the separated region at the base
of tail, are seen for all the Reynolds numbers. Also, close-up
views of near-wall flows show that the velocity gradients inside
the viscous boundary layers, especially at the posterior tail,
become steeper due to local undulating motions. This should,
as described above, lead to an increase in the drag due to
friction. An overall tendency to reduce the drag due to friction,
however, is observed in our CFD analysis with increasing
Reynolds number. Notice that the quantity of the viscous term,
as shown in the N–S equations (equation 1), which is
determined by the inverse Reynolds number and the velocity
gradient, ordinarily decreases with increasing Reynolds
number. This is because the increase in the velocity gradient
with increasing Reynolds number is usually less than the
increase in Reynolds number alone. In this regard, the skin
friction drag during swimming is mainly affected by two key
factors, the undulating motion and the Reynolds number.
Overall, our CFD analysis for tadpoles indicated a tendency
for a reduction in frictional drag with increasing Reynolds
number.

Jet-stream propulsion shows a tendency to achieve high
efficiency at high Reynolds numbers. In other words, the
energy exchange between the mechanically oscillating body
and the local fluid flow should become more efficient with
increasing Reynolds number. A plot of propeller efficiency
against power at different Reynolds numbers for the tadpole
(Fig. 8) follows a parabolic curve. In fact, we achieved a
propulsive efficiency of 0.93 at a Re of 105 using the
assumption of the body undergoing sinusoidal swimming
motion and without taking into consideration either transition
or turbulence. We suggest that a giant tadpole the size of a
dolphin swimming at a Re of 105, using the present specific
kinematics, would still be capable of effectively producing the
jet-stream. In contrast, the current kinematics rapidly result in
a reduction in the propeller efficiency of the tadpole when the
Reynolds number decreases to 53102. This is consistent with
the observation that the kinematics of tadpole swimming
changes greatly at slow swimming speeds when Reynolds
numbers are very low, as illustrated in Fig. 3 of Wassersug and
Hoff (1985).

We conclude that fluid dynamics alone does not constrain
tadpoles to small size or low velocity. Rather, physiological
(e.g. muscle contraction velocity; Lutz and Rome, 1994) and/or
ecological (e.g. predation risks; Werner, 1986) factors confine
tadpoles to living at low Reynolds numbers.

Our results establish the power of CFD to explain the design
of living organisms. In our present study, CFD models have
helped us to understand the specific undulatory mechanism of
tadpoles compared with fishes. Through these computational
methods, we have been able to perform ‘experiments’, such as
making fish swim in a tadpole mode, which have never been
performed with unconstrained living animals. Such
computational experiments have also made it possible to
compare different undulatory swimming methods over a much
larger Re range than that occurring in nature. Our CFD models
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provide insight into how different shapes and sizes interact
with kinematics and why different swimmers are built in any
particular way. A CFD three-dimensional analysis of
undulatory locomotion would further enhance the realism of
our model and is our next task.

List of symbols
AM maximum width of vortices in a wake
A(x) area of section x on the center line

(nondimensional)
ai(x) amplitude at point i on the center line 

(nondimensional)
CM bending moment coefficient (nondimensional)
dt time increment
Fbody force acting on body surface
Feff Froude efficiency
Fx, Fy components of force acting on body surface

(nondimensional)
f frequency (Hz)
hi(x,t) center line of a tadpole (nondimensional)
ḣ(x,t) velocity component in the y-direction of segment

x at time t (nondimensional)
ḧ(x,t) acceleration component in the y-direction of

segment x at time t (nondimensional)
k reduced frequency
L body length (nondimensional)
l(t) four edges of a cell (i, j) at time t

(nondimensional)
n=(nx, ny) unit outward normal vector of a cell (i, j)
p pressure (nondimensional)
Powerave time-averaged power coefficient

(nondimensional)
Power* power coefficient (nondimensional)
Q residual of the equation of mass conservation
Re Reynolds number
S surface area
Sbody surface area of the object
S(t) area of a cell (i, j) at time t (nondimensional)
St Strouhal number
T period (nondimensional)
Thrustave time-averaged thrust coefficient

(nondimensional)
Thrust* thrust coefficient (nondimensional)
t physical time
U forward swimming speed (nondimensional)
u, v velocity components (nondimensional)
Vc velocity of traveling wave (nondimensional)
Vg=(ug, vg) grid velocity (nondimensional)
xM center of bending moment (nondimensional)
b any positive parameter
dmin minimum grid spacing adjacent to the body

surface
l wavelength (nondimensional)
r water density
t pseudo (artificial) time (nondimensional)
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